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Abstract

The zero-shot capability of Large Language
Models (LLMs) has enabled highly flexible,
reference-free metrics for various tasks, making
LLM evaluators common tools in NLP. How-
ever, the robustness of these LLM evaluators
remains relatively understudied; existing work
mainly pursued optimal performance in terms
of correlating LLM scores with human expert
scores. In this paper, we conduct a series of
analyses using the SummEval dataset and con-
firm that LLMs are biased evaluators as they:
(1) exhibit familiarity bias—a preference for
text with lower perplexity, (2) show skewed
and biased distributions of ratings, and (3) ex-
perience anchoring effects for multi-attribute
judgments. We also found that LLMs are incon-
sistent evaluators, showing low “inter-sample”
agreement and sensitivity to prompt differences
that are insignificant to human understanding
of text quality. Furthermore, we share recipes
for configuring LLM evaluators to mitigate
these limitations. Experimental results on the
RoSE dataset demonstrate improvements over
the state-of-the-art LLM evaluators.

1 Introduction

The advancement of NLP research has relied much
on automatic evaluation to conduct quantitative
analysis by comparing proposed and existing so-
lutions for shared problems. The use cases for
automatic evaluation are extensive, but most fa-
mously text generation tasks such as text summa-
rization and machine translation, with classic evalu-
ation metrics, including the family of ROUGE (Lin,
2004) and BLEU (Papineni et al., 2002) scores, still
widely in use today.

A core limitation of automatic evaluation is in
developing new metrics and scaling them beyond
limited benchmark datasets, primarily due to their
common reliance on reference outputs. While there
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is a line of work in reference-free automatic eval-
uation metrics, it is known that it is less reliable
than the current reference-based metrics (Fabbri
et al., 2021; Deutsch et al., 2022). Large Language
Models (LLMs) have proven useful in this domain
due to their demonstrated high natural language
understanding abilities and performance at adher-
ing to instructions. Furthermore, with the powerful
zero-shot capability, LLMs do not require refer-
ence texts and can generate scores directly from
the system output. This has led to great interest in
developing LLM-based automatic evaluation met-
rics (Zheng et al., 2023b; Fu et al., 2023; Lin and
Chen, 2023; Chiang and Lee, 2023; Chen et al.,
2023; Wang et al., 2023a; Liu et al., 2023a; Gao
et al., 2023; Shen et al., 2023; Luo et al., 2023;
Chan et al., 2023); LLM evaluators (also known as
LLM-as-a-judge) have become part of automatic
evaluation for commonly used benchmarks for a
variety of NLP tasks (Li et al., 2024; Huang et al.,
2024) including LLM benchmarks such as MT-
Bench (Zheng et al., 2023b).

However, little is known about the robustness of
these LLM evaluators. A few studies have looked
deeper into this point (Wang et al., 2023b; Zheng
et al., 2023b; Liu et al., 2023c; Li et al., 2024); there
is a need for further analysis into potential risks and
failure points when using them, especially if used
in sensitive applications. Therefore, in this paper,
we aim to study two important characteristics of
the LLM evaluator, namely bias and consistency,
in order to understand and share the limitations of
LLM evaluators. To this end, we conduct extensive
experiments using GPT-3.5 and GPT-4, which are
commonly used as LLM evaluators, with various
prompts and generation configurations on the sum-
marization evaluation benchmarks SummEval and
RoSE datasets.

In this paper, we quantitatively analyze biases in
LLM evaluators, while linking the biased behaviors
with those of humans.
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First, we use the perplexity as a familiarity met-
ric and analyze the relationship between the av-
erage perplexity and each rating returned by the
LLM evaluator. We show that the average perplex-
ity shows a descending trend as the score increases.
The results support that LLM evaluators have fa-
miliarity bias (Zajonc, 1968)—LLM evaluators
tend to develop a preference for texts simply be-
cause they are familiar with them. Second, we
explore scoring granularity and report that LLM
evaluators exhibit score biases, including round
number bias Thomas and Morwitz (2009), assign-
ing some scores more frequently than others. Third,
we report that LLM evaluators experience anchor-
ing effects (Tversky and Kahneman, 1974) when
multiple labels are predicted in one output.

Then, we analyze the consistency of the LLM
evaluator and show that LLM evaluators signifi-
cantly change their judgments for different samples,
demonstrating significantly lower inter-sample
agreement than human experts’ inter-annotator
agreement. We also analyze LLM evaluators’ in-
consistent behaviors by changing the prompt con-
figuration that should not affect the judgment.

Throughout analyzing these issues, we compiled
findings into a set of recipes for LLM evaluators.
We used the recipes to develop our new LLM eval-
uator and compared it with two existing LLM eval-
uators for text summarization. Experiment results
on the RoSE dataset (Liu et al., 2023d) show that
our new LLM evaluator statistically significantly
improves upon the state-of-the-art.

2 Methodology

Analysis and results in this paper are the result of
more than 560,000 generated outputs by LLMs.

2.1 Datasets
To investigate the performance of LLM-based eval-
uators, we test predictions on two main datasets.
We use SummEval (Fabbri et al., 2021) as our
development set, perform extensive analyses of
LLM-based evaluators on this set, and then use
RoSE (Liu et al., 2023d) as an evaluation set for
our case study comparing our system with the cur-
rent SOTA LLM evaluator for summarization.

2.1.1 SummEval
Introduced by Fabbri et al. (2021), SummEval is
a dataset of human annotated evaluations for auto-
matically produced summaries for CNN/Daily Mail
news articles. The dataset annotates summaries on

four dimensions: Coherence (collective quality of
sentences in the summary), Consistency (factual
alignment with the source), Fluency (quality of the
individual sentences), and Relevance (well-selected
content). The dataset includes expert human judg-
ments for 16 summaries produced by varying mod-
els on 100 articles over these four dimensions.

2.1.2 RoSE
RoSE (Liu et al., 2023d) is a benchmark of three
datasets covering common summarization datasets:
CNN/Daily Mail News articles (Nallapati et al.,
2016), SAMSum dataset on chat dialogues (Gliwa
et al., 2019), and XSum containing extremely short
abstractive summaries of text documents (Narayan
et al., 2018). Annotations for RoSE are done to
record recall of “Atomic Content Units (ACU)”,
which is a recall-like metric measuring how many
of the atomic facts displayed within an article were
captured by the summary. We choose this bench-
mark due to its target labels very unlikely inclu-
sion in any OpenAI model training given the time
of its release, the high quality labels they achieve
through a novel method for multi-stage annotation,
and three domains to stress test our system on.

2.1.3 Models
We run our experiments in the analysis on a mix
of GPT-3.5 (gpt-3.5-turbo-0301) and GPT-4 (gpt-
4-0613). GPT-4 consistently outperforms GPT-3.5-
Turbo. For the eventual test evaluation reported in
Section 4 on RoSE, we run previous work and our
own approach using GPT-4-Turbo. Perplexity cal-
culations are done using text-davinci-003 to match
the LLM evaluator models as close as possible. We
report our values against our own implementation
of G-Eval to limit any potential differences in per-
formance due to changes by OpenAI.

2.1.4 Prompts
Following Stureborg et al. (2024), we use a slight
variations on a prompt derived from Liu et al.
(2023b) to prompt LLMs for scores. The full
prompt we use is shown in Figure 1 and Figure 8.
This prompt takes five input strings: metric,
metric_definition, aspects, article,
and summary. We replace metric with a name
describing what dimension of analysis to focus
on. For SummEval, this is replaced with the string
‘Coherence’ to investigate the first label, for exam-
ple. Further, metric_definition is replaced
with a written explanation of what the metric is



You are the automatic summary evaluator
of a writing editor:

- You consider an input document and a
corresponding summary

- You evaluate the summary according to
one important quality:
1. {{metric}} (1-10) -

{{metric_definition}}
- All ratings are between 1-10 where 1

is very poor and 10 is very good.
- Your evaluation should be critical

and careful, and should closely
match the ratings of experts. This
evaluation is very important.

- Consider these aspects when
evaluating:
{{aspects}}

The user will give you both the article
(document) and summary, and prompt
you to provide an evaluation.
Respond with your integer 1-10
score first, then a rationale.

Example:

Figure 1: System text input for prompting chat-based
LLMs to generate automatic evaluation scores in text
summarization. This prompting strategy is generalized
to allow for use of evaluating any metric(s) of interest,
whether multiple or just one.

meant to indicate, while aspects explains some
broader considerations that are helpful in assessing
the quality of a summary on this dimension. Fi-
nally, article, and summary are replaced with
the source document and summary for the models
to make a prediction on.

2.2 Evaluation Metrics

The goal of automatic evaluation is to provide
scores highly correlated with human judgments
on the task at hand. In our work, we primarily mea-
sure this through Kendall’s τ correlation on scores
produced for each label in SummEval (Coherence,
Consistency, Fluency, Relevance), following the
convention in other work on automatic evaluation
of text summarization.

3 Results and Analysis

In this section, we perform extensive analysis into
the performance of LLM evaluators, we uncover
several issues of bias and inconsistency with these
systems, and propose potential solutions.
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Figure 2: Average perplexity for each rating by GPT-
4 and Experts. Summaries are grouped by evaluation
scores (as assigned either by Experts or by GPT-4). GPT-
4 exhibits a disproportionate bias toward low perplexity
summaries compared to expert annotators, demonstrat-
ing a familiarity bias.

3.1 Familiarity Bias
We investigate the bias models have toward low
perplexity examples. Summaries are first grouped
by evaluation scores (as assigned either by Experts
or an LLM evaluator). This group of summaries
is held separate for each dimension of analysis in
SummEval. Perplexities are then computed with
GPT-3 on the summary text, and a mean score is
calculated for each group of summaries. Figure 2
shows that GPT-4 is disproportionately biased to-
wards low perplexity summaries as compared with
expert annotators. The mean perplexities of sum-
maries assigned high scores (5s) are lower than that
for expert raters, while mean perplexities of low
assigned scores (1-3) are higher than expert raters.

Full results are reported in Table 1. We would
like to note that LLM evaluators are even biased
by the source document, as LLM evaluators’ rat-
ings are still negatively correlated with the average
perplexity of source documents, for which human
experts’ ratings show no correlation. As system
summaries in the SummEval are genearted by var-
ious summarization models and the perplexity of
the summaries negatively correlates with the LLM
evaluator’s rating, we confirm that we can expand
the notion of self-enhancement bias into familiarity
bias.

3.2 Scoring Granularity and Score Biases
A common scale for scoring is 1-5 (Nemoto and
Beglar, 2014). However, when producing scores
for automatic evaluation, ties between candidate



Avg. perplexity of summary Avg. perplexity of source document

GPT-4 Human experts GPT-4 Human experts
Rating Coh Con Flu Rel Coh Con Flu Rel Coh Con Flu Rel Coh Con Flu Rel

1 – 7.05 – 8.42 7.03 7.47 7.66 7.53 – 7.76 – 8.51 7.21 7.66 7.68 7.94
2 8.15 7.61 7.45 7.53 6.80 7.42 7.71 7.14 8.32 7.86 7.77 7.79 7.67 7.61 8.01 7.53
3 7.60 7.46 7.92 7.33 6.58 7.07 6.96 6.73 8.09 7.69 8.48 7.90 7.73 7.52 7.55 7.67
4 6.44 6.83 6.48 6.44 6.37 6.67 6.96 6.42 7.72 8.00 7.74 7.75 7.81 7.29 7.99 7.81
5 5.34 6.06 6.01 5.51 6.36 6.43 6.39 6.26 6.51 7.44 7.06 6.84 7.63 7.75 7.69 7.58

Table 1: Average Perplexity of Summary and Source documents for each rating by GPT-4/Human experts.

examples are often undesirable. To reduce ties, we
aim to increase scoring granularity: the distinct
number of possible scores for candidate responses.
We explore the following methods for increasing
granularity:

• 1-5 star: Resulting prediction when a model is
instructed to provide an integer rating between
1-5 (inclusive).

• 1-5 + word modifier: Model is instructed to
provide an integer rating between 1-5 along
with a single word modifier indicating if it is
‘strong’ or ‘weak’. For example, a summary
may be rated as a “3”, “weak 5”, or “strong
4”. To map these ratings to a numerical value,
we convert the ‘strong’ modifier to add 0.33
to the base rating, and ‘weak’ subtracts 0.33
(similar to grading scales).

• 1-5 + float modifier: this score is directly pre-
dicting the resulting numerical value from the
word modifier. We instruct the model to pre-
dict values on a GPA scale (1.0, 1.33, 1.67,
2...).

• 1-10 score: instruct model to provide integer
ratings between 1-10.

• 1-100 score: instruct model to provide integer
ratings between 1-100.

For each of these cases, we also consider methods
of taking a sample average. In this approach, we
produce N model responses 1 and average the re-
sulting scores to provide a final float value with a
greater granularity without changing the prompt.
This approach is similar to the approach outlined
in G-Eval (Liu et al., 2023b), where each potential
score is multiplied by its token probability to get an
expected value score. Since OpenAI does not allow
access to log probabilities of their top-end models
we instead sample several times at a temperature of
1.0, which approximates the expected value score
and maintains an increased granularity.

1For all experiments in this work, we set N=10 to balance
reducing variance with avoiding prohibitive cost increases
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Figure 3: Frequencies of each possible score as found
in 64,000 predictions using the 1-100 scale. Models
sparsely predict scores within the range. Frequencies of
some scores, such as 90 and 95, are far higher than ‘odd’
scores such as 92 or 19, and much of the range is almost
entirely ignored (1-60). Interestingly, 1-60 is a range
often largely ignored in academic grading scales. This
indicates an issue within instruction-following specific
to automatic evaluation.

Figure 3 shows the distribution of scores pro-
duced when instructing GPT-3.5-Turbo and GPT-4
to rate summaries on a 1-100 scale. The scores in
this distribution are not respected as intended, and
the model assigns outsized probabilities to certain
scores such as 90 and 95. This reaffirms results
by Zheng et al. (2023a) which found that multiple-
choice selections by LLMs suffered from similar
token biases, deteriorating performance. The full
range is also not utilized, with predicted scores
largely occurring between 70 and 100.

Figure 3 also shows that the score distribution
has several peaks for round numbers such as 60,
70, 80, 90 (Similarly for 75, 85, and 95), indicating
that LLM evaluators also have round number bias
like human.2

To verify which rating scales produce higher
quality responses by LLM evaluator frameworks,
we run a comparative analysis of the cases men-

2It is indeed an interesting open question that how LLMs
inherit round number bias from human through text written by
human. Existing work reported round number bias for human
judgments (Coupland, 2011; Honda et al., 2022).



Method G Coh Con Flu Rel Avg

1-5 star 5 .332 .362 .325 .337 .339
1-5 avg 41 .422 .370 .356 .439 .397
5 +word mod. 13 .361 .408 .345 .363 .369
5 +word (avg) 121 .394 .364 .316 .419 .373
5 +float mod. 13 .425 .453 .380 .395 .413
5 +float (avg) 121 .416 .378 .334 .438 .392
1-10 score 10 .450 .433 .366 .462 .428
1-10 avg 91 .424 .366 .332 .435 .389
1-100 score 100 .463 .423 .308 .339 .383
1-100 avg 991 .406 .351 .343 .414 .379

Table 2: Correlation with human judgement for GPT-
4 by method for increased granularity. “G” is the
effective granularity (number of unique scores) possible
within the given scale. Methods denoted “avg” are a
10-sample average run with temperature 1.0, while all
other methods benefited from reducing temperature to 0.
It seems that increasing granularity generally helps low-
granularity methods, while high-granularity methods
are harmed by increasing granularity. This may be due
to the increase in temperature setting. Our results indi-
cate that there may be diminishing returns of increasing
scoring granularity.

tioned in §3.2. Table 2 shows performance of
GPT-4 based evaluators on SummEval under the
mentioned rating scales. The performance of 1-
10 score performs best on average, with an aver-
age score of 0.428 Kendall’s τ across the labels in
SummEval. This method also performs the best
on relevance, at 0.462 Kendall’s τ , while 1-100
scoring performs better on Coherence and the float
modification method performs best on both Consis-
tency and Fluency3. Ultimately, increasing scoring
granularity is shown to improve performance in our
experiments, which should be carefully conducted
for the risk of score bias and round number bias.

3.3 Anchoring Effect in Multiple Judgments

During evaluation of text, it is often helpful to de-
scribe several attributes regarding the text at the
same time. For some tasks (such as hierarchical
classification (Zhu et al., 2024) or N-ary relation
extraction (Cheung et al., 2023)), the large set of
target labels and long required contexts make sepa-
rating annotation into independent generations in-
feasible; it is cheaper to predict all labels within the
same output (Gao et al., 2023). We explore whether
doing so is beneficial for the performance of the
model, since it could be argued that this is similar

3It is unclear why the results should differ across each
dimension, indicating another potential issue with LLM eval-
uation: hyper-parameters may not be stable across different
labels.

to a multi-task setting where scores of one feature
may help determine the correlation of others. How-
ever, conditioning on previously generated scores
may bias generation on previous predictions in the
context, thereby worsening performance.

We prompt GPT-4 to produce scores for Coher-
ence, Consistency, Fluency and Relevance in a sin-
gle generation (in that order). We then look at the
distributions of, for example, Consistency given
each predicted score on Coherence. Formally, we
are interested in using our predictions to estimate
the conditional probability:
P (Consistency = X | Coherence = Y )

We then plot the frequency of evaluated scores
when the previous score was above or below 5 out
of 10. Figure 4 shows one such plot, and the re-
mainder of pairings are shown in Appendix C. We
find that there is a disproportionate biasing effect
from the model, where the mean score assigned
to samples with a previous assigned score above
5 is substantially greater than the mean score as-
signed to samples with previous scores of 5, while
these scores should not be so strongly correlated.
In other words, LLM evaluators tend to overrely on
this adjustment of its priors—experiencing an an-
choring effect. This is unsurprising due to LLM’s
auto-regressive generation, but points out the need
to correct for such biases if utilizing multi-attribute
predictions.

0 2 4 6 8 10
GPT-4 Score for Consistency

0.0

0.2

0.4

0.6

Fr
eq

ue
nc

y

Previous Score of 1-5
Previous Score of 6-10
Means

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Human Expert Score for Consistency

0

1

2

Fr
eq

ue
nc

y

Previous Score of 1-3
Previous Score of 3.33-5
Means

Figure 4: (Top) Score distribution for consistency,
conditioned on the previously assigned score for co-
herence when predicting both within the same con-
text. (Bottom) Human-determined scores for consis-
tency conditioned on what range the score fell into
for coherence.4Human scores are correlated by Pear-
son’s r = 0.315, while GPT-4 scores are correlated by
r = 0.979. The above figures clearly show how previ-
ous scores bias the distribution of future scores in the
generation. While such biasing is natural (and in part
valid), the effect here is so large it harms performance.



As seen in Figure 4 , one source of poor per-
formance for GPT-4 is that humans mostly rate
summaries as highly consistent (4-5) while GPT-4
questions consistency very often, assigning rela-
tively low scores.

We run another experiment where we again gen-
erate all four scores on SummEval within one out-
put, but change the relative order of the Coherence
attribute as compared to the other three attributes.

As in Table 3, we find labels predicted later in the
LLM generation experience a degradation in corre-
lation against expert annotators (τ ). The results in-
dicate that the judgment for the target attribute (i.e.,
Coherence) was influenced by the previous judg-
ments for the other attributes and LLM evaluators
can experience anchoring effects when multiple
attributes are judged in the same prompt.

N 1 2 3 4

τ 0.400 0.391 0.359 0.368

Table 3: Performance of GPT-3.5-Turbo on Coher-
ence attribute when it is the N-th attribute predicted.

3.4 Self-Inconsistency

The general performance and self consistency of
LLM-based metrics is problematic when consid-
ering actual uses. While Stureborg et al. (2024)
point out that even low correlations with human
judgements can be used to make high-confidence
comparisons on the system level, correlation needs
to be very high for any individual prediction by
the automatic evaluator to be trusted. Figure 5
shows scatter plots of predictions made by an LLM
evaluator as compared to human judgements. It
shows that even predictions on a single example
can vary widely by the same model given slight
prompt modifications or even just sampling at tem-
perature settings > 0.

To analyze the self-inconsistency of LLM eval-
uators, we calculated inter-sample agreement us-
ing Krippendorff’s α. Table 4 shows that the self-
consistency is worse than the consistency between
multiple human annotators.

3.5 Sensitivity to Temperature and CoT

Chiang and Lee (2023) determined that CoT is not
always helpful in improving the performance of

4Yet again we note the LLM evaluator does not make use
of the full range of the scores, with no predictions of 5/10 for
consistency in this experiment

α

Inter-annotator agreement (Human) 0.659

Inter-sample agreement (GPT-4) 0.587

Table 4: Krippendorff’s α for inter-annotator agree-
ment (Human) and inter-sample agreement (GPT-4).

LLM-evaluation. We investigate this further by
tuning temperature settings on the task under CoT
and non-CoT approaches.

Many guidelines for LLM prompt-engineering
have unintuitive implications when combined. Gen-
erally, lower temperature generations are preferred
during simple inference tasks with LLMs. Also,
Chain-of-Though (CoT) is a popular (Wei et al.,
2022) strategy to increase text generation qual-
ity, reasoning, and task performance across many
settings. However, we find that when using CoT
prompting, lower temperatures are not preferable.
This result is not immediately obvious. Instead,
we propose using multiple generations at higher
temperatures. Looking through the raw outputs,
this seems to be due to a more diverse set of ex-
planations that lead to a more robust numerical
prediction. We posit this is similar to combining
many weak estimators, and that increasing temper-
ature helps decrease the correlation between each
estimators prediction.

Figure 6 shows that CoT prompting benefits
from higher temperatures, while non-CoT performs
better with lower temperatures. Setting outputs to
deterministic generation (temperature of 0) may
serve counter-productive since generating the most
likely token ensures granularity is limited by the
original range of the scoring.

We produce predictions at various temperatures
using GPT-3.5-Turbo in Figure 6, showing that in-
creasing temperature steadily reduces performance
of non-CoT prompts, while performance of CoT
prompts increases sharply until approximately 0.5.
CoT prompts performance then subsequently drops
off or plateaus as temperature is increased further.
This trend is not just over the average scores on
SummEval. Figure 11 shows similar plots for both
non-CoT and CoT prompts, plotting the perfor-
mance on each label in SummEval individually.
The trends described in Figure 6 seem to replicate
on each label in this dataset. Our findings show that
a single generation at temperature 0 outperforms
the best tuning of multi-sample CoT is cheaper



1 2 3 4 5
Mean Expert Score on Coh

2

4

6

8

10
GP

T-
4 

Co
h

Kendall's : 0.424

1 2 3 4 5
Mean Expert Score on Con

2

4

6

8

10

GP
T-

4 
Co

n

Kendall's : 0.366

1 2 3 4 5
Mean Expert Score on Flu

2

4

6

8

10

GP
T-

4 
Fl

u

Kendall's : 0.332

1 2 3 4 5
Mean Expert Score on Rel

2

4

6

8

10

GP
T-

4 
Re

l

Kendall's : 0.435

Figure 5: Scatter-plots of evaluated score versus expert judgements reveal that while many papers claim 0.40
τ is strong performance, the correlation with human judgements still needs substantial improvements. Even with
correlation of over 0.40 Kendall’s τ , we notice that any individual evaluation may lie within a very wide range as
compared to the ground-truth labeled by experts. Note that the full range of 1-10 is underutilized again.
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Figure 6: Performance of CoT and non-CoT prompt-
ing at varying Temperatures. Each prediction is com-
puted by the average of 10 generations. Low temper-
atures are beneficial when making simple predictions,
but higher temperatures (to a point) help improve perfor-
mance when using Chain-of-Thought (CoT) prompting.
This could be because of a more diverse set of explana-
tions, leading to more unique features for prediction.

and simpler than the weighted average approach
from Liu et al. (2023b). When using CoT, our
results motivate drawing multiple samples while
tuning temperature appropriately to maximize per-
formance.

3.6 Sensitivity to Source Document

While the long-context abilities of LLMs allow pre-
dictions over more complex documents, we find
that the model’s use of the provided source docu-
ment (the article being summarized) is questionable
during automatic evaluation. The presence of this
source document substantially affects ratings on
fluency, which should be independent of the article
text. The table below shows performance drops of
LLM-based evaluation using GPT-3.5-Turbo when
removing the Source document, although many of
the categories which surely require the document to

render a sensible judgement remain relatively high-
performing. The LLM-evaluator may be picking up
on spuriously correlated features when predicting
its judgement, indicating a potentially problematic
bias.

Source Doc Coh Con Flu Rel Avg

Included .346 .250 .237 .330 .291
Excluded .291 .167 .212 .183 .213

∆ -.055 -.083 -.025 -.147 -.078
%∆ -15.9 -33.2 -10.6 -44.6 -26.7

Table 5: Performance of GPT-3.5-Turbo with and
without Source Document. Removing the source doc-
ument (unsurprisingly) substantially reduces the perfor-
mance of the automatic evaluator. However, this is also
true for attributes that should not be dependent on the
source document in the first place, such as Fluency. For
categories such as relevance, making a prediction on the
summary quality without the article should be impossi-
ble.

Overall performance drops by 27% (relative),
heavily driven by a drop in performance on rele-
vance. While relevance is a dimension of evalua-
tion that depends entirely on the source documents
match with the summary, GPT-3.5-Turbo is able to
find features that may be correlated with the expert
scoring.

4 Case Study

Using the lessons learned from SummEval in Sec-
tion 3, we determine a few simple guidelines to sig-
nificantly improve automatic evaluation with LLMs
(see Table 6). We evaluate whether these guidelines
improve performance by comparing to two previ-
ous works: G-Eval (Liu et al., 2023b) and a follow-
up work by Chiang and Lee (2023). Chiang and
Lee (2023) establish SOTA performance on Sum-
mEval, beating G-Eval’s correlation with human



judgements on the dataset. However, some (Bhan-
dari et al., 2020; Liu et al., 2023d) have pointed
out issues in these style of datasets, including that
(1) expert ratings themselves include a lot of dis-
agreement, (2) closed-source LLMs may have been
trained on these well-established datasets, and (3)
conclusions on these datasets don’t always hold for
new systems.

For these reasons, we evaluate our system on
RoSE, a summary evaluation dataset built carefully
in a multi-stage process to maximize label quality
and is unlikely to be included in GPT training data.
RoSE’s target label is the metric Atomic Content
Units (ACU) which is a normalized metric ranging
from 0 to 1. Note that the CNNDM partition of
the dataset is shared with SummEval, meaning that
performance on this data is an in-domain test, while
the other two partitions of RoSE serve as out-of-
domain tests.

Implementation of Previous Work Chiang and
Lee (2023) point out issues in replicating the re-
ported correlation values from the G-Eval paper.
Therefore, we compare with these works by re-
implementing their systems using the descriptions
in their methods and released code, and compute
all correlation values from scratch. Both Chiang
and Lee (2023) and G-Eval were approaches de-
signed for OpenAI’s Completions API endpoint,
as opposed to a ChatCompletion end-point, which
is more limited in formatting and has no access to
token probabilities. We map the prompts into a
Chat format by simply placing them into the user
prompt.5 For G-Eval, we sample 10 times and av-
erage the score to approximate their expected value
calculation (which was done by multiplying token
probabilities extracted from the model). We use
auto-CoT as specified, but notice that this causes
a higher proportion of “failed” generations which
give texts but omit any final, parseable score. Chi-
ang and Lee (2023) suggest not including auto-CoT
or any evaluation steps in their approach. For our
method, we include the evaluation steps undergone
by annotators for the ACU metric. This text is
taken directly from Liu et al. (2023d) with edits
only for grammar and conciseness. Finally, we use
the rate-explain setting they describe since it is one
of their two best settings. They state rate-explain
and analyze-rate are “do not see rate-explain to be

5Experiments with using our own prompt this way in-
dicated a small but not statistically significant performance
increase.

significantly better (or worse) than analyze-rate”.
While the authors don’t point this out, rate-explain
is much cheaper and faster for generation given
you can safely stop generation after the rating has
been produced.

We compare all methods on GPT-4-Turbo. Our
method, as determined by insights from Section 3,
relies on a 1-10 scoring granularity and includes
both evaluation steps and a definition of ACU
(which is copy pasted from Liu et al. (2023d) and
also added to other two approaches). We use non-
CoT prompting at a temperature of 0, and gen-
erate a single output. Table 6 summarizes these
approaches. None of these parameters are tuned
on RoSE. While each solution in Table 6 might
look commonly used techniques, to the best of our
knowledge, none of existing work has combined
them into a single recipe and conduct an empirical
study to verify the effectiveness of the techniques.

Results Our method outperforms both G-Eval
and rate-explain on the CNNDM and SAM-
Sum partitions. The performance of our method
achieves Kendall’s τ = 0.220 on the in-domain
test set, and τ = 0.308 on SAMSum, indicating
this partition may be easier to evaluate. While
we outperform Chiang and Lee (2023) on SAM-
Sum, the difference is not statistically significant.
This significant variation in performance is due
to prompting strategies, indicating a lot of room
for performance improvements by closer studies in
prompt engineering.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Kendall's  Correlation with Human Judgments of ACU

XSum

SAMSum
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0.120

0.184
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0.143

0.308
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0.148
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0.190
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Chiang et al.
Ours
90% C.I.

Figure 7: Performance Comparison on the RoSE
benchmark. Our approach performs statistically signif-
icantly better than the SOTA LLM-evaluator for summa-
rization (Chiang and Lee, 2023) on the CNNDM dataset
partition, and significantly better than G-Eval on both
CNNDM and SAMSum. Confidence intervals are com-
puted through bootstrap sampling.



Issue w/ LLM evaluators Reasonable Approach to Mitigate

Low granularity for distinguishing summaries Widen scores to 1-10 star scale
CoT prompting requires tuning temperature Remove CoT and set temperature to 0
Removing source document impacts performance Keep source even for attributes which don’t require it
Multi-attribute labels are highly correlated Predict only one attribute per generation

Table 6: Identified issues have immediate and actionable mitigations

5 Related Work

Automatic evaluation has been dependent on hu-
man annotations. Traditional automatic evaluation
metrics such as ROUGE (Lin, 2004), BLEU (Pa-
pineni et al., 2002), and METEOR (Banerjee and
Lavie, 2005) consider token-level n-gram match-
ing between system outputs and reference texts.
Later, embedding-based automatic evaluation such
as BERTScore (Zhang et al., 2020), BLEURT (Sel-
lam et al., 2020), and MoverScore (Zhao et al.,
2019) were developed to take the semantic simi-
larity into account. Extensive efforts to remove
the reliance on manually written reference texts
have been attempted by creating reference-free au-
tomatic evaluation metrics (Louis and Nenkova,
2013; Fonseca et al., 2019; Scialom et al., 2019,
2021; Vasilyev et al., 2020; Rei et al., 2021). How-
ever, Deutsch et al. (2022) have pointed out the
current limitations as the measures of how well
models perform a task.

Following the line of work, recent studies in
LLM evaluators have shown that LLMs can be
high-quality evaluators for various NLP tasks (Fu
et al., 2023) including Summarization (Chen et al.,
2023; Wang et al., 2023a; Liu et al., 2023a; Gao
et al., 2023; Shen et al., 2023; Wu et al., 2023), Ma-
chine Translation (Kocmi and Federmann, 2023),
Factual Consistency Evaluation (Luo et al., 2023),
and other text generation tasks (Chen et al., 2023;
Wang et al., 2023a; Chan et al., 2023; Kasner and
Dušek, 2024).

However, they have primarily focused on im-
provements through prompt engineering. Among
them, only a few studies have tried to reveal the
limitations of LLM evaluators. They have reported
that LLM evaluators have position bias—a prefer-
ence for the first example of a pairwise compar-
ison (Wang et al., 2023b; Zheng et al., 2023b);
verbosity bias–preference for longer texts (Zheng
et al., 2023b; Wu and Aji, 2023); and self-
enhancement bias—LLM evaluators prefer text
generated by themselves (Zheng et al., 2023b; Pan-
ickssery et al., 2024). Koo et al. (2023) have re-

ported cognitive biases in LLM evaluators. Fol-
lowing the studies, our paper aims to dig deeper
to share quantitative analysis on these points and
beyond. Our work partially overlaps with the re-
cent work by Ohi et al. (2024), who studies like-
lihood bias in LLM evaluators across data-to-text
and grammatical error correction tasks. However,
our work differs in that we use a different metric
(i.e., perplexity) to assess the bias and focus on a
different target task (i.e., summarization), provid-
ing a new perspective on this issue.

6 Conclusion

We have provided a series of analyses into biased
and inconsistent behaviors exhibited by LLM eval-
uators for the task of text summarization. Our find-
ings show that (1) LLM evaluators are dispropor-
tionately biased towards low perplexity summaries
than is helpful (familiarity bias), (2) they fail to re-
spect scoring scales given to them when attempting
to increase the granularity of scores (score bias),
(3) they show degradation in multi-attribute judg-
ment, being influenced by their previous ratings
(anchoring effect). They are inconsistent their own
judgements depending on settings such as inclusion
of source documents.

In attempts to solve some of these issues, we
share a recipe to mitigate these issues and show that
we are able to significantly outperform the current
SOTA method for LLM-based summary evaluation
on the CNNDM partition of RoSE 90% confidence.
Our work suggests that more effort should be al-
located towards understanding and remedying the
issues exhibited by LLM evaluators.

Limitations

Reliance on GPT-based models. We experiment
primarily on GPT-based, proprietary models from
OpenAI due to their SOTA performance on auto-
matic evaluation of text summarization. However,
this means it is unclear how well our results gen-
eralize to other LLMs such as Llama-2, Vicuna,
Alpaca, etc. Do to constraints in time and budget,



extending the analysis to investigate other LLMs
was not possible during the time this work was
carried out. This project involved generating more
than 560,000 outputs from OpenAI models; repeat-
ing the experiments on several models amounts to
substantial effort and resources. Future work could
aim to replicate and extend our analysis to further
models.

Reliance on SummEval for analysis. Our anal-
ysis section primarily investigates issues by mea-
suring performance of various model and prompt
configurations against SummEval. There is a risk
that our results to do generalize well beyond For
this reason, we also sought to measure performance
on the RoSE benchmark, which is comprised of
three datasets in different domains. We find that ad-
dressing the issuess seen in SummEval significantly
improves performance on one of the domains, and
has insignificant but positive results on the other
domains.

Limited solutions. Although we investigate solu-
tions to some of the identified issues in this paper,
many remain to be studied and may provide the
research community with directions for future re-
search efforts. LLM’s inconsistencies and biases
as automatic evaluators is tough to build solutions
around. There is ample opportunity for creative
solutions, and while our work offers some, its main
focus is in identifying the existing issues in the first
place.

Ethics Statement

As this study focuses on text summarization and
uses publicly available datasets, we do not see any
clear ethical implications or considerations. We
adhere to ethical research practices.
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A Our Method for Prompting LLM Evaluation

Document:
{{article}}

Summary:
{{summary}}

Evaluation Form (Scores ONLY):
{{metric}}:

Figure 8: User text input, used in conjunction with the system prompt in Figure 1. The next immediate token is
expected to be within the range of 1 to 10, but oftentimes the models will output restatements of the metric name or
other content first. In general, we find it is safe to stop the model generation after 10-20 tokens and parse this output
using regex to find the first digit.

System Prompt:

You are the automatic summary evaluator of a writing editor:
- You consider an input document and a corresponding summary
- You evaluate the summary according to one important quality:

1. ACU Salience (1-10) - a desired summary quality that requires the summary
to include all and only important information of the input article.
Salience can be determined by dissecting the summaries into fine-grained
content units and defining the annotation task based on those units.
Specifically, we introduce the Atomic Content Unit (ACU), elementary
information units which no longer need to be further split for the
purpose of reducing ambiguity in human evaluation. The evaluation process
is decomposed into extracting facts from one text sequence, and checking
for the presence of the extracted facts in another sequence.

- All ratings are between 1-10 where 1 is very poor and 10 is very good.
- Your evaluation should be critical and careful, and should closely match the

ratings of experts. This evaluation is very important.
- Consider these aspects when evaluating:

1. ACU Writing - Read the document carefully and identify all Atomic Content
Units (ACUs) and facts.

2. ACU Matching - Read the summary and compare it to the list of ACUs. Check
what proportion of the extracted ACUs that the summary correctly covers.

3. Assign a score for ACU Salience on a scale of 1 to 10, where 1 is the
lowest (covers very few of ACUs) and 10 is the highest (covers all
important ACUs) based on the Evaluation Criteria.

The user will give you both the article (document) and summary, and prompt you
to provide an evaluation. Respond with your integer 1-10 score first, then a
rationale.

Example:

User Prompt:

Document:
{{article}}

Summary:
{{summary}}

Evaluation Form (Scores ONLY):
ACU Salience:



B Familiarity Bias
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Figure 9: Average Perplexity associated with Automatic Evaluation Score, for each Attribute. While GPT-4
shows a preference for low perplexity samples, GPT-3.5-Turbo seems to show a dis-preference for high perplexity
examples.

C Anchoring Effect in Multiple Judgments
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(a) Consistency conditioned on coherence
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(b) Fluency conditioned on coherence
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(c) Fluency conditioned on consistency
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(d) Relevance conditioned on coherence
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(e) Relevance conditioned on consistency
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(f) Relevance conditioned on fluency

Figure 10: Distribution of scores conditioned on the values of previous scores in the same generation.



D Performance of CoT and non-CoT prompting for each attribute
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Figure 11: Performance of CoT and non-CoT prompting at varying Temperatures. Trends shown in Figure 6
hold up on individual target dimensions in SummEval. In general, non-CoT predictions are harmed by higher
temperatures, while CoT predictions are improved (though with diminishing returns).

E Self-inconsistency

Coh Con Flu Rel Avg

Human Inter-annotator agreement 0.559 0.899 0.726 0.453 0.659

GPT-4 Inter-sample agreement 0.646 0.630 0.484 0.589 0.587
Single- vs Multi-attribute 0.493 0.667 0.472 0.421 0.513

1-5 star vs 1-10 score 0.731 0.442 0.506 0.707 0.597
1-5 star vs 1-100 score 0.557 0.128 0.471 0.600 0.439

Table 7: Full results for Krippendorff’s α values for inter-annotator agreement and self-consistency evaluation.
For GPT-4’s “inter-sample” agreement, multiple samples are considered annotations made by different annotators.
For the remaining Krippendorff’s α values were calculated for the agreement between judgments obtained for
different settings (e.g., using single-attribute template and multi-attribute template.) For 1-10 and 1-100 score
judgments, the judgements were converted into the same scale (1-5) by binning the numbers.


