
PIPEORGAN: Efficient Inter-operation Pipelining
with Flexible Spatial Organization and Interconnects

Raveesh Garg1, Hyoukjun Kwon2, Eric Qin3, Yu-Hsin Chen3, Tushar Krishna1, and Liangzhen Lai4

1Georgia Tech, 2UC Irvine, 3Meta, 4Witmem

Abstract—Because of the recent trends in Deep Neural Networks
(DNN) models being memory-bound (e.g., large language models
and convolutional neural networks with heavy skip connections),
inter-operator pipelining for DNN accelerators is emerging
as a promising optimization. Inter-operator pipelining reduces
costly on-chip global memory and off-chip memory accesses by
forwarding the output of a layer as the input of the next layer
within the compute array, which is proven to be an effective
optimization by previous works.

However, the design space of inter-operator pipelining is huge,
and the space is not yet fully explored. In particular, identifying
the right depth and granularity of pipelining (or no pipelining at
all) is significantly dependent on the layer shapes and data volumes
of weights and activations, and these are different even within
a domain. For instance, AR/VR applications have 6 orders of
magnitude swing in the activation to weight ratios. Another factor
affecting the right depth and granularity is the dependencies in the
form of skip connections, which increase the activation accesses
and vary in reuse distance and density across applications.

Moreover, works divide the substrate into large chunks and
map one layer onto each chunk, which requires communicating
halfway through or through the global buffer. However, for fine-
grained inter-operation pipelining, placing the corresponding
consumer of the next layer tile close to the producer tile of the
current layer is a better way to exploit fine-grained spatial reuse.

In order to support variable number of layers (ie the right
depth) and support multiple spatial organizations of layers (in
accordance with the pipelining granularity) on the substrate, we
propose PIPEORGAN, a new class of spatial data organization
strategy for energy efficient and congestion-free communication
between the PEs for various pipeline depth and granularity.
PIPEORGAN takes advantage of flexible spatial organization
and can allocate layers to PEs based on the granularity of
pipelining. We also propose changes to the conventional mesh
topology to improve the performance of coarse-grained allocation.
PIPEORGAN achieves 1.95x performance improvement over the
state-of-the-art pipelined dataflow on XR-bench workloads.

I. INTRODUCTION

Deep Neural Networks (DNN) are gaining popularity due
to their use in applications including natural language pro-
cessing (NLP) [1], [7], computer vision [11], [12], [28]
and personalized recommendations [30]. The most compute-
intensive Deep Neural Networks operators are the Einstein
summation (einsum)-based operators, which refers to dot
product-based operations generalized to arbitrary dimensions
(e.g., general matrix multiplications, or GEMM). Example
DNN operators based on Einstein summation include linear
layer, convolution, and batched matrix multiplication. Because
the einsum-based operators typically account for 70% of total
latency on GPUs [32], many accelerators focusing on matrix

multiplication [5], [13], [16], [24], [32] and design-space
exploration tools [15], [17], [21], [22], [31], [41] emerged.

DNN accelerators employ various dataflows and scheduling
strategies to map the matrix multiplication spatially over the
processing elements (PEs) and temporally. However, optimizing
individual matrix multiplication operators does not always
translate to optimal execution of the whole application. This
is because it misses out on the opportunity to reuse the output
feature map in the next operator that certain layers have.
Therefore, current works are actively investigating inter-layer
pipelining or inter-operator (operator means tensor-operator)
pipelining in order to reuse the portions of the intermediate
feature maps [2], [3], [8], [35], [37], [40], [44]. Moreover,
recent prior works also explore design-space exploration with
inter-operator pipelining [3], [37], [43], [44]. Prior work
FLAT [18] and TANGRAM [8], respectively claim 1.5x and
2x performance gains from pipelining, over their respective
state-of-the-arts. However, the benefits of pipelining heavily
depend on two aspects: (1) pipelining depth (i.e., how many
layers do we pipeline) and (2) pipelining granularity (i.e., the
tile size of the pipelining).
Pipelining Depth Fig. 1 shows the impact of depth on two
opposite kinds of layers. The right pipeline depth depends
on two factors - A/W ratio (Activationvolume/Weight volume)
and skip connections.

A/W ratio:Activation-heavy layers prefer higher pipelining
depth, since, pipelining essentially reuses activations, which
are shared between two consecutive layers, while shallow
pipelining results in a large overhead of re-fetching big
activations. On the other hand, weight-heavy layers do not favor
pipelining, and prefer intra-operator reuse, since weights are not
shared between the layers, and deeper pipelines, involves those
unshared weights being together at a time. In case of models [4],
[6], [10], [11], [25], [27], [27], [29], [33], [34], [36], [38], [39],
[42] inside XR-bench [23], Activationvolume/Weight volume
ratio roughly spans from 10−3 to 103 as Fig. 5 shows in Sec. III.

Skip connections: Skip connections make the otherwise
activation-heavy layer, even more activation-heavy, since these
combine activations from multiple preceeding layers. The last
layer of the DenseNet [14] (used in RITNet [4] model for eye
segmentation) block combines four activations, and op-by-op
operator in the middle means, re-fetching all these activations.
Multiple XR-bench models have skip connections with different
densities and reuse distances as shown in Fig. 6 in Sec. III.
Skip connections also diminish the benefits if the pipeline is

1

ar
X

iv
:2

40
5.

01
73

6v
1

 [
cs

.A
R

]
 2

 M
ay

 2
02

4

1 2 3 4

Eye tracking UpBlock, Activation-heavy
Model: RITNet

Depth=1 [Non-pipelined]

1 2 3 4

Late layer, Weight-heavy
Model: HandGraphCNN

Depth=4

Actin

Act1

Act2

Act3

Act
in

Act4

wt4
wt3
wt2
wt1

wt4

wt3

wt1

wt2

Actin
Act4

wt4

Example Scenarios

Actin

Act1

wt1 Actin

Act1

Act2

Layer 1 Layer 2

wt2 Actin

Act1

Act2

Layer 3

wt3

Act3

Layer 4

Sequential layers Skip connections

Act3
Act4 wt4Actin

Act1 wt1
Act1
Act2

Layer 1 Layer 2

wt2
Act2

Layer 3

wt3Act3

Layer 4

Act1

A
ct2

Act3

Act1

A
ct

1

Act2

A
ct2

Act1

Act3

Input to the block

A W A W A W A W

A
W

A
W

A
W

A
W

Depth=2

Actin

Act2

wt1

Act1

A
ct

1

Actin

Act2

wt3

Act1

A
ct

3

wt2

Act4

Layers 1 and 2 Layers 3 and 4

wt4

Skip input to the block

Actin
Act2 wt1

A
ct

1

Act2
wt3

A
ct

3wt2

Act4

Layers 1 and 2 Layers 3 and 4

wt4

Memory Footprint ↑ Memory Footprint

Memory Footprint ↓ Memory Footprint

Memory Footprint ↓

Memory Footprint ↑

Tensor
size

Actin

Actin

Fig. 1. Impact of pipeline depth for different sets of layers. We only show data movement with one PE from each layer in the figure. The
boxes represent memory footprint, and not the space allocated in the buffer. Tensors with larger volumes get reused within PE array with
deeper pipelining.

Blocked 1D Blocked 2D
[Time multiplexed within
register file]

Fine-grained 2DFine-striped Coarser 2-D

-High hops → High energy
-More Overlapping paths +
fine-grained compute intervals
→ High congestion
-More locality wrt intra-op
reuse.
-Most flexibility wet intra-op
dataflow

-Low hops → low energy
-Low overlapping paths →
No congestion
-Less locality wrt intra-op
reuse
-Tightly coupled with less
flexibility wrt intra-op
dataflow

-Moderate hops →
moderate energy
-Moderate overlap →
Light congestion
-Moderate locality wrt
intra-op reuse

1 2 3 4

Eye Tracking UpBlock,
Activation-heavy
Fine-grained pipelining

-Low hops → low energy
-Low overlapping paths → No
congestion
-Less locality wrt intra-op
reuse
-Tightly coupled with less
flexibility wrt intra-op dataflow

-Moderate to very high hops
→ moderate to very high
energy
-High overlapping paths →
High congestion
-Moderate locality wrt intra-op
reuse
-Moderate flexibility wrt
intra-op dataflow

Most fine-grained and most
tightly coupled with least
flexibility wrt intra-op dataflow

Sequential Pipelining

Observed Properties Sequential Pipelining Fine-striped Blocked 1D Fine-grained 2D Coarser 2-D Blocked 2D
Hops None Low Moderate to very high Low Moderate High
Communication energy None Low Moderate to very high Low Moderate High
Path overlaps None Low High None Moderate High
Chances of Congestion None Negligible High None Low High
Intra-op datafow flexibility Lowest Low (tightly coupled) Moderate Low Moderate High

(a) Example spatial organizations

(b) Properties of spatial organizations

Sequential layers Skip connections PEs running layer 1 PEs running layer 2 PEs running layer 3 PEs running layer 4

Fig. 2. High-level example showing the impact of spatial organizations on energy and latency. We consider depth = 4, along with the traffic
that results after running an activation-heavy UpBlock in RITNet [4], used extensively in eye-tracking. We only show data movement with 2
PEs from each layer. Cycle-level analysis on traffic is shown in Fig. 8-11

not deep enough. As Fig. 1 shows, with pipeline depth of 2, the
output of layer 1 eventually needs to be written back because
of a downstream dependency, and we only observe the benefit
on output of layer 3.

Pipelining Granularity: Pipeline granularity refers to the
size/portion of the intermediate tensor consumed by the
consumer. In prior works on inter-operator pipelining, one
layer is mapped on a block of PEs with each partition running
an individual layer. This is inefficient for highly fine-grained
pipelining between layers, and this spatial organization can
lead to higher hop energy and possibly NoC congestion.
Fig. 2 Blocked-2D and Fine-grained-2D show examples of
aforementioned spatial arrangements. Interleaving creates a
trade-off between locality and flexibility since finest-grained
interleaving makes the layers tightly coupled to each other and
poses constraints on the tile sizes. On the other hand, coarse
grained interleaving, may not exploit enough locality but it
provides, flexibility in tiling layers. We show that arrangement
of the layers spatially depends on the preferred dataflow of the
layers which also depends on the layer shape.

In this work, we propose PIPEORGAN1, a new class of
spatial organization strategies for inter-operator pipelining, and
a systematic optimization methodology for that. Fig. 2 shows
some examples of different organization strategies for depth=4.

We also characterize the possible traffic patterns that
arise from plethora of factors, like depth, granularity, skip
connections, load balancing layers with unequal MACs etc.
Mesh topology does not achieve the best energy efficiency
different kinds of traffic patterns, specially ones which involve
skip connections. Moreover it requires us to trade-off on-
chip energy for intra-operator flexibility, in cases where
fine-grained pipelining is not possible, since coarse-grained
allocation requires large hops. Also, spatial organizations
on mesh topology trade-off inter-operator and intra-operator
reuse specially in cases of large pipelining depths. Flattened
butterfly [19] topology allows direct communication between
distant PEs, however is an overkill, and increases the link
complexity to O(NlogN). Thus we propose changes to mesh
topology that reduce congestion and hop count for mesh without
adding too many or too long links.

1Pipelining Organization

2

Our contributions are as follows:

• We show the importance of considering variable depth and
pipelining, given variation across applications and variation
within an application itself.

• We quantitatively show that activation/weight ratio is the
key metric that affects the pipeline depth and granularity.

• We propose PIPEORGAN, a new class of spatial organiza-
tion strategies, with different granularities at which multiple
layers are arranged, ranging from fine-grained checkerboard
and striped to traditional blocked 1-D or 2-D arrangement
as Fig. 2 shows. This is the first work (to the best of our
knowledge) that proposes finer-grained spatial organization
strategies between different layers.

• We characterize the traffic patterns resulting from different
spatial organization strategies and different factors like
depth, granularity, skip connections, unequal PE allocation
between layers etc. We identify the bottlenecks in mesh
and propose AMP2, a modified mesh for supporting coarse-
grained patterns as well.

II. BACKGROUND AND RELATED WORK

A. Individual Operation Dataflows and Mappings

Majority of the expensive operations in DNNs involve
Convolutions and matrix multiplication operations. These
operations can be represented using einsums as follows:

Om,n = ΣkAm,k ×Bk,n (1)

On,h,w,k = Σc,r,sIn,h+r,w+s,c ×Wr,s,c,k (2)

Equation 1 represents matrix multiplication with M,K and
K,N as the dimensions of the input matrices and M,N as
the dimensions of the output matrix. Equation 2 represents
Convolution layer, with H and W as the feature map height
and width respectively, R and S as the filter height and width
respectively, N as the batch size and C and K as the number
of input and output filters respectively.

These operations can be represented as loop nests as shown
below.

1. for n in range(N):
2. for h in range(H):
3. for w in range(W):
4. for k in range(K):
5. for c in range(C):
6. for r in range(R):
7. for s in range(S):
8. O(n,h,w,k)+=I(n,h+r,w+s,c)*W(r,s,c,k)

Dataflow is used to describe the loop transformations for
staging the operations in space and time on a spatial accelerator.
Here, the order of the temporal loops in the above example,
is NHWKCRS where N is the outermost loop. The dataflow
determines the compute utilization and the locality of the
tensors in the memory hierarchy, thus choice of the right
dataflow is crucial for performance and energy efficiency. In

2Augmented Mesh for Pipelining

this work, term "dataflow" is to refer to hardware agnostic loop
transformations.

One example of a loop transformation is shown below-

1. for n in range(N):
2. for h in range(H):
3. for w in range(W):
4. for k in range(K):
5. for c1 in range(C/C0):
6. for r in range(R):
7. for s in range(S):
8. parfor c0 in range(C0):
9. c=c1*C0+c0
10. O(n,h,w,k)+=I(n,h+r,w+s,c)*W(r,s,c,k)

Moreover, C is spatially parallelized across multiple pro-
cessing elements or PEs. C0 is based on the PE array
size. Hardware dependent loop transformations determine the
complete mapping. We discuss the space for inter-operation
dataflows and mappings in Sec. III

B. Inter-Operation Pipelining

Layer-by-layer computation leads to the whole feature map
being written into the memory which leads to high occupancy
of the data in the memory hierarchy and also causes excess
roundtrip memory accesses to fetch the data for the next
layer. To overcome this, prior works have proposed inter-
operation pipelining, also known as inter-layer pipelining or
layer fusion or inter-operation pipelining where a portion of the
feature map is produced and used by the next layer, decreasing
the occupancy of the data inside the memory hierarchy and
consequently reducing the overall roundtrip memory accesses.
Since the next layer consumes only a portion that the previous
layer produces, the dataflows of both the layers must be
staged to ensure that, thus leading to an interdependence of
dataflows [9].

Fig. 3 shows the producer-consumer relationship in inter-
operation pipelining. The producer produces a portion of the
intermediate data in one timestep which is consumed within
the next timestep with producer producing the next piece of
data in parallel. Once the data has been consumed, that data
is no longer needed. The first stage where the consumer has
not started consuming is referred to as "init" while the rest
of the stages are collectively referred to as "steady-state". We
refer to the duration of the timestep as "interval". The portion
of the intermediate data produced/consumed in a timestep is
referred to as "granularity" here.

As we can see in Fig. 3 pipelining can be expressed
as a waterfall diagram with vertical axis showing different
operations and horizontal axis showing time. With variable
granularities and load imbalance, we compute producer side
delay as the previous interval delay normalized by the ratio of
the number of operations in the current interval and the previous
interval. The interval delay is the maximum of the producer
side and the consumer side delays. The overall latency is the
summation of all the interval delays once (which accounts for
all the init delay) and the steady state delay of the last operation.
These subtleties are captured in the equations in Fig. 3.

3

Producer ConsumerProducer Consumer

Init Steady state

Not needed

Producer Consumer

Step 1 Step 2 Step 3

Init

Interval
(Duration of a step)

Latency = ∑Linit+Lsteady-state
Lsteady-state= Intervallast*occurancelast

Pipelining between two operations

S
pace

Time

Pipelining with variable granularities and load imbalance

Granularity

T_prodcur = Intervalprev*OpsPIcur/OpsPIprev
Intervalcur = max (T_prodcur, T_conscur)

With on-chip communication delays and memory-bound
workloads
Intervalcur = max(T_prodcur, T_conscur, T_comm, T_mem)

T_prod2 (scaled from Interval1)
Interval1 = max
(T_prod1, T_cons1)

Linit,1

Linit,2

Fig. 3. Inter-operation pipelining between producer and consumer and latency equation for pipelines with arbitrary depth. For fine-grained
pipelining, where tiles are small enough to fit inside the local memory of PEs, the data can also be moved through the NoC as opposed to
accessing the global buffer.

Producer
Order -
MNK

Consumer
Order -
MNK

Producer
Order -
MNK

Consumer
Order -
MNK

✅
Producer
Order -
MNK

Consumer
Order -
NMK

Producer
Order -
MNK

Consumer
Order -
NMK

?
?
?
? ❌

❌Producer
Order -
KMN

Consumer
Order -
MNK

Partial
output

Producer
Order -
KMN

Consumer
Order -
MNK

Partial
output

(a)

(b)

(c)

Mismatch

NM

Contracted rank

Fig. 4. Conditions for inter-operation pipelining. (a) Conditions met
(b) Violation of the same outermost loop (c) Contracted rank of the
producer in the outermost loop

Conditions (shown in Fig. 4) for making inter-operation
pipelining between producer and consumer possible are-
• For a tensor shared between the producer and the consumer,

atleast the outermost loop should be the same. This is
needed to divide the producer and consumer into stages.

• The contracted rank should not be the outermost rank for
the producer, since complete sums are needed earlier for
consumption. Similarly, the unshared rank of the consumer
must not be in the outermost loop since it would nullify
the benefits of pipelining by having to use the complete
intermediate tensor in the inner loops multiple times.

C. Related Work
Various prior works like Atomic Dataflow [43], Stream [37],

HyGCN [40], OMEGA [9], TANGRAM [8] and FusedC-
NNs [2] work on inter-operation pipelining between two tensors.
Some mapping frameworks like CoSA [15] and GAMMA [17]
focus on layer-by-layer computation but explore multiple
dataflows on a flexible accelerator.

Most of the prior works on pipelining do not consider both
variable pipeline depth and variable granularity together. We
show the prior works in terms of their support for fine grained
pipelining and depth awareness in Table I. Please note, that each
work presents a different set of contributions, and our work
primarily focuses on interconnect and spatial organization. This
is the first work, within DNN accelerators that also explores
finer-grained spatial organization of layers on PEs (Fig. 2).

TABLE I
RELATED WORK TABLE SHOWING PRIOR WORKS ON INTER-LAYER
PIPELINING. REGARDING ORANGE CHECKMARK, - 1) TILEFLOW

CANONICALLY SUPPORTS VARIABLE DEPTH BUT FIXES IT WITHIN AN
APPLICATION, AND 2) HYGCN HAS TWO GRANULARITIES.

Prior Work Variable Variable Contibution
Depth Granularity

Atomic ✓ ✗ Inter-operation
Dataflow [43] mapper
Stream [37] ✗ ✓ Heterogeneous

Dataflow Framework
HyGCN [40] ✗ ✓ Accelerator
EnGN [26] ✗ ✗ Accelerator

OMEGA [9] ✗ ✓ Cost model
TANGRAM [8] ✓ ✗ New dataflow
FusedCNN [2] ✗ ✗ Accelerator

SET [3] ✓ ✗ Mapper
TileFlow [44] ✓ ✓ Mapper
SIMBA [35] ✓ ✗ Mapper
PIPEORGAN ✓ ✓ Spatial organization,

NoC and Dataflow

D. Motivation toward Flexible Pipelining: Heterogeneity in
AR/VR models

As XR-bench [23] shows, DNN models have high hetero-
geneity in terms of kinds of layers (convolution, depthwise
convolution, GEMM, RPN, ROIAlign), in terms of DAG (skip
connections with various reuse distances and densities in a
block), layer dimensions etc. Fig. 5 shows the activation/weight
ratios of layers within the XR-bench models. These ratios
range six orders of magintude from activation-dominant to
weight-dominant layers. Moreover, unlike traditional models
like ResNet [12], the location of activation heavy and weight
heavy layers inside the model isn’t predictable. Fig. 6 shows
the skip connections within five X-R bench models. These skip
connections vary in reuse distance and density. For example,
RITNet has dense skip connections of multiple reuse distances
and midas one skip connection per block with varying reuse
distance. Therefore, high heterogeneity in layers requires more
attention to finding the right depth and granularity of pipelining,
and a flexible NoC that can efficiently execute each scenario.

III. PIPELINING DESIGN-SPACE

The pipelining dataflow space consists of four aspects - depth,
intra-operator dataflow, granularity and spatial organization.

4

Fig. 5. Activation/weight ratios of CNN tasks inside XRBench [23]. Layers in red have larger activations, than weights, and the blue ones
have larger weights. This excludes the skip connection activation traffic.

Fig. 6. Skip connections between convolutional layers in XR-bench CNN models

Depth. Refers to the number of layers being pipelined at a
time. The model is divided into "pipeline segments" of various
depths.
Intra-operator Dataflow. Refers to the dataflow of the
individual operator.
Granularity. Refers to the size/portion of the intermediate
tensor consumed by the consumer. For example, granularity of
pipelining in Fig. 3 is one row.
Spatial Organization. Patterns in which different layers can
be arranged on the PEs. Fig. 2 shows examples of different
spatial organization strategies.

DNN models can be represented as a DAG of layers. We
divide the model into segments of variable depths, which is
dependent on shapes of multiple layers and DAG dependencies.
We choose the intra-operator dataflow, which depends on the
shape of that layer. Based on the intra-operator dataflow, we
determine the granularity at which we can pipeline a pair of
producer and consumer, within the confines of the depth. Then,
we determine the right spatial organization strategy, which
depends on the depth and the granularity of pipelining.

The first three namely, depth, granularity and intra-operator
dataflow are agnostic of specific hardware details like NoC
topology etc. Spatial organization on the other hand, comprises
of mapping as it depends upon specific hardware details like
NoC topology, PE array dimensions etc.

A. Factors Affecting Pipelining Depth

The choice of pipelining depth impacts inter-operation vs
intra-operation reuse. Right pipeline depth depends on two
main factors - A/W ratios and skip connections

A/W ratios: Deeper pipeline implies reusing intermediate
activations, but at the same time increasing the memory
footprint of weights from multiple layers as Fig. 1 also shows.
Therefore, for pipeline depth of D, weight memory footprint is
∑

l+D
i=l Wi where l is the first layer of that segment. Activation

memory footprint on the other hand is reduced significantly

in comparison, its Al + Al+D + ∑
l+D−1
i=l+1 Granularityi, where

granularity is the portion of the intermediate matrix between the
producer and the adjacent consumer. If certain pairs of layers
are fine-grained pipelined, the granularity component can be
taken care of by PE-to-PE communication leaving the footprint
Al +Al+D. Thus larger depth implies, more activations in the
middle can simply be skipped from calculation. Although, in
case of weights, larger depth implies incurring the footprint
of D layers throughout the execution, at all times, reducing
the available tile size for weights. Thus, layers with large
activation/weight ratios benefit from deep pipelining while the
ones with small ratios benefit from shallow or no pipelining.

Skip connections: Skip connections were specific to
ResNet [12] but have become a norm, and are used in various
DNN models [4], [6], [33], [38], [39]. Skip connections can vary
in density as well as reuse distance. The activation footprint in
presence of the skip connections changes to Al +Al+D +∑Ai
such that i /∈ (l, l+d) and there exists skip connection between
i and j ∈ (l, l+D). This includes both outgoing and incoming
skip connections. Thus, for deeper pipelining, the instances of
skip connections from outside (l, l +D) are likely to be lower.
Therefore, presence of skip connections skews towards deeper
pipelining, to absorb those connections within the depth of
pipelining.

B. Factors Affecting Intra-operator Dataflow

The performance of intra-operator dataflow depends primar-
ily on the tensor dimensions [5], [21], since the purpose is to
get reuse. For the off-chip dataflow for operators with extreme
A/W ratios, larger tensors should be stationary and the smaller
tensors should be streaming, as they can stream from on-chip.

C. Factors affecting Pipelining Granularity

Granularity is determined by inta-operator dataflow. For a
finer-grained pipelining, the tensor should be consumed in
the same order in which it is being produced. For example,

5

`

Stage 2: HW Mapper and NoC Architecture
Stage 1: Pipelined Dataflow

Optimization

Perf. Report
- Latency: XX ms
- Energy: YY mJ
…

Heuristic-driven
Pipelining Depth

Optimization
A/W ratio-driven
Offchip Dataflow

Optimization

Pipelining
Granularity

Optimization

Input

D0

D1

D2

D3

D4

Pipelined-Dataflow

NoC Architecture
and Topology
Optimization Spatial

Organization
OptimizationNoC Spec

- Topology: 2D Torus
- Switch architecture
- Routing

Compile Time?

N

Y

Output

D0

D1

D2

D3

D4

Pipelined Mapping

3 3 3 3 3 3

4 4 4 4 4 4

Optimized NoC
Topology
(Example)

Performance
 Report

Cost model

PipeOrgan

DNN-operator Pipeline segment Pipelined layers (Fine-grained) Pipelined layers (Fine-grained) Non-pipelined layers

Fig. 7. Entire flow, including mapping heuristics, PIPEORGAN and AMP.

in convolutions, the finest grained pipelining is between the
pair NHWKCRS-NHWCKRS, given that the data is being
consumed exactly as produced. However, the pair NHWKCRS
and NHKWCRS has a coarser granulairty since layers can
only be staged by NH. Similarly for a GEMM, for example,
MNK-MKN is the finest grained pipelining possible while
MNK-MNK is a coarser grained pipelining.Depending on the
loop order, we can calculate the portion of the intermediate
tensor and hence the granularity.

Tile sizes can have an impact of granularity particularly
if they are unequal. Lets consider the pair NHWKCRS-
NHWKCRS. Just based on the loop order, the pipeline
granularity is that of a filter. However, if, for example tile
size of H is different, the producer and consumer will only
be synchronize only when LCM(Tile_Hproducer,Tile_Hconsumer)
rows have been computed. Hence regardless of the loop order,
difference in tile sizes can affect the granularity of pipelining.

D. Factors affecting Spatial Organization

The right spatial organization depends on the pipeline depth,
which determines how many different layers are allocated at a
time, and on pipeline granularity, which determines whether
the inter-layer communication should fine-grained or coarse-
grained. Prior works divide the PE array into blocked chunks
based on the depth and assigned a layer to the chunk, however
this is inefficient for fine-granularity pipelining. Therefore we
propose a new class of mappings where the layers can be
organized flexibly on the PE array.

In Sec. IV, we focus on spatial organization in more detail.

IV. PIPEORGAN: FLEXIBLE SPATIAL ORGANIZATION

Fig. 7 shows the whole flow of PIPEORGAN. The first stage
involves pipelined dataflow optimization, and the second stage
involves hardware-aware mapping and NoC architecture.

Stage 1: Pipelined Dataflow Optimization This stage
involves using heuristics to choose the right depth and intra-
operator dataflow, which then helps determine granularity of
pipelining.

Stage 2: HW mapping and NoC architecture: In the
second stage on the depth and granularity, we determine

the spatial organization strategy to determine the complete
mapping. At design-time we study the traffic patterns of various
pipelined-dataflows on various spatial organization strategies,
identify bottlenecks in the mesh and propose AMP. At compile-
time, we determine the spatial organization strategy based
for AMP based on pipelined-dataflow. We discuss the details
of AMP in Sec. IV-D.

A. Pipelined Dataflow

First stage of PIPEORGAN takes in an input DAG and uses
heuristics to (a) partition the whole model into segements of
flexible depth, (b) determine intra-operation dataflows and (c)

Determining Depth: In this work, we determine depth
of a segment (starting at layer l) by comparing the memory
footprints Al +Al+D with ∑

l+D
i=l Wi (see Sec. III-A), increasing

the value of D. We stop adding more depth, the moment
∑

l+D
i=l Wi is greater. In case of skip connections, we also

add additional activations due to skip connections, thus skip
connections skew the descision towards deeper pipeline. We
also cut the depth if we encounter a complex layer like
ROIAlign. The depth is also limited by the size of the substrate.
The maximum depth we consider is

√
numPEs.

Determining Intra-operation Dataflows (Loop order):
Intra-operation dataflows greatly influence pipelining and even
the ability to pipeline as Sec. III-C shows. Ideal intra-operation
dataflows can depend on layer shapes as prior works [5], [21]
have shown. For the scope of the paper, we simply choose a few
dataflows depending on the ratio of the weight and activation
volumes. In case of larger weights, we use weight stationary
dataflow, where ranks from weights form the outermost loop,
to get more reuse on weights. This dataflow is not friendly to
pipelining. While for the activation-heavy layers, we choose
the activation stationary dataflow. Depending on how large
activation is compared to the weight, we decide weather to make
the dataflow completely activation stationary (for example,
NHWKCRS) or we allow some reuse on weights (for example,
NHKCWRS). We validate our heuristic on XR-bench usage
scenarios. We are able to achieve the best possible arithmetic

6

R
ow

s of P
E

s

Time

Compute Interval = 6
cycles

Time

Compute interval = 2 cycles
Congestion with flits competing
for a link

Traffic - Row 1 → Row 5
Traffic - Row 2 → Row 6
Traffic - Row 3 → Row 7
Traffic - Row 4 → Row 8

Time

Compute interval = 2 cycles
Actual cycles without extra BW

R
ow

s of P
E

s

Time

Compute Interval = 3
cycles

Traffic - Row 1 → Row 3
Traffic - Row 2 → Row 4
Traffic - Row 3 → Row 5
Traffic - Row 4 → Row 6
Traffic - Row 5 → Row 7
Traffic - Row 6 → Row 8

A) - Depth = 2; no
spatial interleaving

R
ow

s of P
E

s

Time

Compute Interval = 1 cycle
Congestion with flits competing
for a link

R
ow

s of P
E

s

Time

Compute Interval = 1 cycle
Actual cycles without extra BW

B) - Depth = 4; no
spatial interleaving

Data from row 1→2

Text heavy
Mark latency and effect of congestion
Separate them out as independent figures

A+B - Effect of congestion
C - Another scenario leading to

congestion
F - Organization to resolve congestion
Checkerboard organization

Hops per column=36
Hops=36*8=288
(8 columns)

Hops per column=48
Hops=48*8=384
(8 columns)

Fig. 8. Fine-grained inter-operation pipelining with coarse-grained (blocked) spatial allocation for depth=2 and depth=4.

intensity3 in case of 99.94% of the layers with on-chip buffer
size of 512KB and 97.2% of the layers with on-chip buffer
size of 256KB. Note that this only determines the order of
dimensions in the outer loops, not including spatial parallelism
and spatial tiling.

Determining Finest Possible Granularity Based on Loop
Order We determine granularity from intra-operation dataflows
using Alg. 1 model in this section. The algorithm compares

Algorithm 1: Determination of granularity from intra-
operation dataflows (within a pipeline segment)

1 Granularity = Output size
2 pipnest=0
3 %Within each pipeline segment
4 for layer ∈ CUR to CUR+DEPTH-1 do
5 for loop ∈ 0 to NUM_UNCONTRACTED_LOOPS do
6 if (loop==0 || tilesz[layer][loop-1]==tilesz[layer+1][loop-1])
7 && (looppair(layer,layer+1)==(N,N)||(H,H)||(W,W)||(K,C))

then
8 Granularity = Granularity/Dimension[layer][loop]∗

lcm(tilesz[layer][loop], tilesz[layer+1][loop])
9 pipnest+= 1

the loop pairs to determine if they can be fused and does
the same till the loop nests are fusible. However it stops if
there is a mismatch in the tile size as discussed in Sec. III-C.
This step determines the finest possible granularity, but the
granularity can also change depending on the parallelization
strategy determined in the spatial organization.

B. HW Mapping: Determining Spatial Organization Strategy

To determine spatial organization, we use the depth to
ascertain the number of layers to organize spatially. We allocate
number of PEs for each layer based on the ratio of MACs.

We determine the arrangement of those layers based on
granularity. We compare the total register file (RF) size with
the granularity of pipelining. If RFtotal < Granularity, the
data is moved through the Global Buffer. In mappings with

3Best-case arithmetic intensity is obtained by considering only cold misses.

coarse granularity of pipelining, the intermediate data is moved
through the Global Buffer (GB). This is always done in a
blocked organization.

On the contary if the total register file size of the producer is
larger than the granularity, the spatial organization is decided
based on how fine the granularity is, relative to the PE register
file. For example, the finest possible granularity can be executed
on a checkerboard organization or via sequential pipelining. If
the granularity is almost at par with total producer register file
size, then pipelining can be done in a blocked organization.
The number of PEs involved on the producer side is determined
by Granularity/RF_per_PE.

The key idea is that once the granularity is ascertained, we
allow each pipeline interval (defined in Fig. 3) to be mapped
flexibly to allow for optimal intra-operation reuse. Fine-grained
spatial organization for coarse-grained pipelining constrains the
parallelization and tiling strategies that the individual layers
use. For example, in case of sequential pipeline fine-grained
checkerboard allocation and sequential pipelining, only the
part of the intermediate tensor that is produced, would be
consumed. For example, if the activations parallelize K and W
dimension, they also have to be consumed in the same way,
with fine-grained spatial allocation.

Hence coarser-grained pipelining also should use coarser-
grained spatial organization. Additionally, 1-D vs 2-D organiza-
tion is decided based on the depth and on the reuse within the
pipeline stage (whether its more along one dimension, or along
multiple dimensions). Once the spatial organization strategy
is decided, PEs could be allocated to the layers in ratios that
ensure load balancing and maximum utilization. Parallelization
strategy is also decided at this step, which could potentially
increase the granularity from stage 1, but this change does
impact the spatial organization decision.

C. HW Mapping: Design-time Traffic Analysis

Fig. 8 shows the traffic patterns generated by fine grained
pipelining with blocked 1D spatial organization. Here, we
compare the total hop time against the interval time. The

7

a) Depth = 4; no
spatial interleaving;
skip connections

Traffic - Row 1 → Row 3
Traffic - Row 2 → Row 4
Traffic - Row 3 → Row 5
Traffic - Row 4 → Row 6
Traffic - Row 5 → Row 7
Traffic - Row 6 → Row 8
Traffic - Row 3 → Row 7
Traffic - Row 4 → Row 8

R
ow

s of P
E

s

Time

Compute Interval 3 cycles

Congestion with flits
competing for a link

Hops per column=60
Hops=60*8=480

b) Depth = 2; no
spatial interleaving;
unequal allocation

Traffic - Row 1 → Rows 3-5
Traffic - Row 2 → Rows 6-8

R
ow

s of P
E

s

Time

Compute Interval = 3
cycles

Time

Compute Interval = 1
cycles

Hops per column=30
Hops=30*8=240

Fig. 9. Effect of (a) skip connection (b) unequal PE allocation due to load balancing on traffic pattern

R
ow

s of P
E

s

Time

Compute Interval = 6
cycles

Time

Compute interval
= 2 cycles

Row 1 → 2
Row 3 → 4
Row 5 → 6
Row 7 → 8

Depth=2;interleaving
Depth=4; interleaving

Row 1 → 2
Row 2 → 3
Row 3 → 4
Row 5 → 6
Row 6 → 7
Row 7 → 8

R
ow

s of P
E

s

Time

Compute Interval
= 3 cycles

Time

Compute Interval
= 1 cycle

Hops per column=12
Hops=12*8=96

R
ow

s of P
E

s

Time

Compute Interval = 3
cycles

Time

Compute interval
= 1 cycleDepth=2; interleaving,

unequal allocation

Row 1 → 2-4
Row 5 → 6-8

Depth=4; interleaving,
skip connections

Row 1 → 2
Row 2 → 3
Row 3 → 4
Row 5 → 6
Row 6 → 7
Row 7 → 8
Row 2 → 4
Row 6 → 8

R
ow

s of P
E

s

Time

Compute Interval
= 3 cycles

Time

Compute Interval
= 1 cycle

Hops per column=18
Hops=18*8=144

Hops per column=18
Hops=18*8=144

Hops per column=30
Hops=30*8=240

Fig. 10. Congestion-free traffic with 1-D interleaving (fine-striped configuration). Significant hop reduction is observed corresponding to
counterparts from Fig. 8 to 9.

Depth=4, 2D, no
interleaving

Depth=4, 2D, no
interleaving, skip
connections

Col/Row 1 → 5
Col/Row 2 → 6
Col/Row 3 → 7
Col/Row 4 → 8

Time

Compute interval = 2 cycles
Overlapping Congestion traffic

R
ow

/C
ol

 (E
as

t L
1→

2,
 S

ou
th

L2

→
3

an
d

W
es

t L
3→

4)

Hops=48*4*3=576 (4
rows/cols and 3 paths pairs
of layers)

Col/Row 1 → 5
Col/Row 2 → 6
Col/Row 3 → 7
Col/Row 4 → 8

Time

Compute interval = 2 cycles

R
ow

/C
ol

 (E
as

t L
1→

2,
 S

ou
th

 L
2→

3,

W
es

t L
3→

4,
 a

nd
 S

ou
th

w
es

t s
ki

p
co

nn
ec

tio
ns

 L
2→

4) Hops=48*4+96*4+96*4=960
(4 rows/cols and 2x traffic for
S and W)

For south and west parts, the volume of traffic increases 2x (leading to more congestion) because of the skip connection from L2→4.

Time

Hops=12*4*3=144 (4
rows/cols and 3 paths
pairs of layers)

R
ow

/C
ol

 (E
as

t L
1→

2,
 S

ou
th

L2

→
3

an
d

W
es

t L
3→

4)
R

ow
/C

ol
 (E

as
t L

1→
2,

 S
ou

th
 L

2→
3,

W

es
t L

3→
4,

 a
nd

 S
ou

th
w

es
t s

ki
p

co
nn

ec
tio

ns
 L

2→
4)

Col/Row 1 → 2
Col/Row 3 → 4
Col/Row 5 → 6
Col/Row 7 → 8

Compute interval = 2 cycles

Time

Hops=12*4+24*4+24*4=240
(4 rows/cols and 2x traffic for
S and W)

Compute interval = 2 cycles

Col/Row 1 → 2
Col/Row 3 → 4
Col/Row 5 → 6
Col/Row 7 → 8

Fig. 11. 2-D spatial organization with and without interleaving and with and without skip connections. Pipelining with 2-D allocation can be
broken down into multiple 1-D paths. In this example, eastern path spans communication from layer 1 to 2, southern path - layer 2 to layer 3
and western path - layer 3 to layer 4. Skip connection requires traversal along multiple directions.

compute interval time stems from the temporal reduction that
needs to be done within the PEs to produce an output that
can be consumed. If this time is greater than the hop count,
congestion does not happen. However, if this time is less, it
leads to congestion. This is due to the contention caused by the
new traffic getting generated at a faster rate. On resolving this
congestion, we find that the latency is limited by the hop count

rather than the compute interval. This traffic pattern also has
a high overall hop count. Moreover, coarse-grained pipelined
dataflows benefit from intra-operation reuse.

Fig. 9a) shows additional congestion that is caused by skip
connections in residual blocks of ResNet. This would be even
more detrimental, in case of RITNet where there is a skip
connection to each later layer inside the block, with highly

8

8x8 array
Long wire distance=2

32x32 array
Long wire distance=4

(b) Traffic analysis on AMP
(a) AMP Topology

Traffic - Row 1 → Row 5
Traffic - Row 2 → Row 6
Traffic - Row 3 → Row 7
Traffic - Row 4 → Row 8

Time

Compute interval = 2 cycles
No overlapping paths due to
additional 2-hop links

R
ow

s of P
E

s

Fig. 12. (a)AMP topology (b) Traffic analysis on depth=2, no spatial
interleaving with AMP topology.

activation-heavy layers.
Fig. 9b) shows, a case where PEs for the producer and

consumer are unequally allocated. The traffic hotspot is at the
boundary of the producer and the consumer, so it is hard to
pinpoint the exact row of PEs where it happens. A common
example of this is ResNet, with 1x1 and 3x3 filter sizes and
varying number of output channels inside a residual block.

Finally, Fig. 10 shows, how 1-D interleaving can avoid
congestion by co-locating the producer and the consumer tiles,
which is beneficial for fine-grained exchange between the layers.
It also shows the traffic benefits in case of skip connections
and unequal allocation. Significant reduction in congestion and
hop count is observed compared to the blocked organization
counterparts in Fig. 8-9.

Fig. 11 compares blocked and fine-grained spatial orga-
nization for 2-D allocation, with depth=4. In 2-D allocation,
the traffic can be broken down into multiple sets of paths
involving 1-D communication. In this example, communication
from layer 1 to 2 is along east in the top half, and four rows
are involved. Communication from layer 2 to 3 is along the
south in the right half and four columns are involved. similarly
communication from layer 3 to 4 is along west in the bottom
half and four rows are involved. Skip connections involve
traversal along both southern and western paths doubling the
traffic for those.

Notice that coarse grained pipelining incurs less congestion
even with blocked organization, however, it incurs high hop
count. Reducing the hop count would require us to organize
the coarse grained pipelined layers in a tightly coupled manner,
which reduces intra-op mapping flexibility and efficiency. This
motivates us to propose AMP to account for the traffic patterns,
in order to not trade-off intra-operation flexibility for on-
chip energy. We summarize the bottlenecks caused by various
scenarios on mesh in Table II.

TABLE II
SUMMARY OF MESH BOTTLENECKS OBSERVED IN FIG. 8-11.

Cause Effect Prevalent in
Many long overlapping paths High Congestion Blocked 1D and 2D
Many long overlapping paths High hop energy Blocked 1D and 2D

Extra BW for skip connections High congestion All organizations
Extra hops with skip connections High hop energy All configurations

Routing in multiple directions Higher hop energy 2D organizations

D. AMP Topology

Table II shows the bottlenecks with the mesh topology.
These bottlenecks are caused by overlapping paths that could
go all the way through a row/column in case of coarse-grained
spatial organization (as Sec. IV discusses, fine-grained spatial
organization can resolve this, but is not always possible). This
bottleneck is made worse by skip connections, as they introduce
extra congestion. Flattened butterfly [18] adds links to increase
the bandwidth but is an overkill and the number of links
increase in complexity from O(N) to O(NlogN). SMART [20]
adds single-cycle multi-hop support to mesh, and can help in
reducing energy, however, it does not resolve congestion by
increasing the available bandwidth.

Fig. 12a shows the AMP topology for 8× 8 array. We
modify the conventional mesh topology by adding wires of
length Round(

√
Rows

2)4, in each PE, from each direction. This
limits the length of the wires and it scales by O(

√
N) (the wire

length spans 4 PEs for a 32×32 PE array and 8 PEs for a 64×64
PE array). By the virtue of having long enough wires itself,
the congestion decreases because of less overlapping paths,
without links going all the way unlike torus. AMP increases
the number of links compared to mesh by under 2x. This also
reduces the hop count. Fig. 12b shows the resulting reduction
in congestion and hop count.

V. EXPERIMENTAL METHODOLOGY

A. Evaluation Framework

We develop an in-house simulation framework for evaluating
the spatial organizations.

PIPEORGAN: The framework models PIPEORGAN stage
1 using the heuristics described in detail in Sec. IV-A. Based
on the pipeline depth ie, number of different layers, and the
pipeline granularity, the framework determines the right spatial
organization strategy at compile time as Sec. IV-B explains,
and evaluate performance and energy. At design-time, the
framework evaluates the performance and energy of different
spatial organization strategies for different stage 1 outputs, for
traffic analysis and NoC design.

Performance modeling: The framework models the commu-
nication energy and latency cost using in-house NoC simulator
to model traffic patterns, topology and routing to compute
the hops and estimate the congestion. The NoC simulation
automates the NoC and traffic analysis visually shown in Fig. 8-
11. We obtain the producer and consumer compute interval
latency based on Fig. 3. We also factor in the additional stalls
due to limited on-chip memory and limited memory bandwidth.
Using compute, communication and memory components, we
are able to obtain inter-layer pipelining, based on Fig. 3.

B. Workloads and Datasets

We primarily evaluate PIPEORGAN and AMP on XR-
bench [23] CNN tasks, capturing different tasks related to
eye tracking, hand tracking, keyword spotting, world locking,

4We choose this as its the geomean of single hop and Rows
2 hop case in Fig. 8.

9

Fig. 13. End-to-end performance benefits for each task in XR-bench [23]. Results are normalized to TANGRAM-like dataflow. Higher is
better.

Fig. 14. End-to-end normalized DRAM accesses for each task in XR-bench [23]. Results are normalized to TANGRAM-like dataflow. Lower
is better.

object detection, action segmentation etc. As Fig. 5-6 show,
these workloads have wide variery of layer shapes and different
DAG structures due to skip connections.

C. Baselines

We compare the end-to-end performance of PIPEOR-
GAN on AMP against the dataflows used by TANGRAM [8]
and SIMBA [35], for each XR-bench task [23]. TANGRAM-
like dataflow alternates between output stationary and input
stationary, thus uses fine-grained pipelining with depth=2.
SIMBA like dataflow parallelizes input and output channels
and does pipelining only when these two dimensions cannot
utilize the substrate.

We also show the depth and granularity as an output of stage
1 for each of the XR-bench [23] task in Fig. 16 and 17.

D. Architecture Parameters

We consider the architecture parameters shown in Table III.

TABLE III
CONFIGURATIONS FOR WORKLOADS AND ARCHITECTURE

Parameter Value
Bytes per word/element 1B (8 bits)
PE array size 32×32
PE dot product size5 8
SRAM capacity 1MB
Memory bandwidth 256 GB/s

VI. RESULTS

A. Performance

Fig. 13 shows the end-to-end performance benefits
of PIPEORGAN over SIMBA-like [35] and TANGRAM-like [8]

dataflows for each task. SIMBA-like dataflow pipelines if one
layer is unable to utilize the substrate. SIMBA experiences
latency in cases where parallelizing input channels and output
channels is not sufficient. Other major source of latency
is load imbalance, specially in cases with different filter
sizes. TANGRAM-like dataflow uses fine-grained pipelining
alternating between output stationary and input stationary.
However, blocked spatial allocation leads to congestion, hence
deteriorating the performance, as it becomes on-chip NoC
bound. KD-resnet in particular, is the most affected in case of
TANGRAM-like, since the compute interval duration is 1-cycle,
and blocked organization is too coarse. PIPEORGAN uses fine-
grained spatial organization to avoid this issue. This is similar
to the behavior observed in Fig. 8. Action segmentation and
hand tracking are mostly weight heavy, with large channels,
and therefore do not favor pipelining. Gaze estimation and
depth estimation do better with deeper pipelining in the
activation heavy regions, given that DWCONV layers are
memory bound. PIPEORGAN exploits reuse through flexible
depth and spatial organization. All in all, PIPEORGAN gains
geomean 1.95x in performance (this includes all the layers and
not just the layers that benefit from pipelining).

B. Normalized DRAM accesses
Fig. 14 shows end-to-end normalized DRAM accesses,

which are normalized to TANGRAM-like. High DRAM access
reduction was achieved on eye segmentation due to flexible
depth which absorbs the dense skip connections. Similarly, gaze
estimation and depth estimation have memory-bound layers,
where PIPEORGAN is able to reduce memory accesses in earlier
segments. All in all, DRAM accesses were reduced by 31%

10

(a) 16 rows for layer 1 and layer 2 (b) 27 rows for layer 1 and 3 rows for layer 2 [9:1 ratio]

Fig. 15. Worst case channel load as a function of compute interval for 1-D spatial allocation with depth=2 for 32×32 mesh/AMP . We
compare blocked organization, PIPEORGAN fine 1-D organization and AMP.

Fig. 16. Depths of XR-bench CNN tasks. L0 stands for Layer 0 and so on.

Fig. 17. Finest possible granularity based on depth and intra-operation dataflows across CNN tasks . L0 stands for Layer 0 and so on.

geomean. Note that this is end-to-end reduction, which also
includes non-pipeline friendly layers (which in some cases,
might also have larger tensors, and hence more accesses).

C. Congestion analysis: PIPEORGAN and AMP

Fig. 15 shows the variation of congestion with compute
interval and spatial organization strategies. We show 1-D allo-
cation with depth=2 since we observe most of the congestion
in those cases, specially in TANGRAM-like dataflow. Two
highly observed cases were equal allocation, and unequal
allocation with 1×1 anf 3×3 filters. Blocked organization has
a large delay per packet for equal allocation case. The overall
interval delay is Worst casechannel load ×ComputeInterval.
For compute interval of 2 cycles, the overall communication
delay increases by a factor of 8, as a result its 16. Fine-grained
1-D interleaving resolves this by avoiding congestion since
it brings the consumer closer. Likewise, AMP topology, by
virtue of long links, reduces the congestion delay and only
incurs congestion when compute interval is below 4 cycles. The
unequal allocation case incurs lower latency compared to the
equal allocation counterpart, nevertheless, blocked organization
is still more likely to cause congestion.

D. Pipeline Depth and Granularity

1) Pipelining Depth across Tasks: Fig. 16 shows the depths
of CNN layers obtained after applying the depth heuristic, for

the entire models. Eye segmentation [4] task has the most
regions with deep pipelining, primarily because of the high
A/W ratios and skip connections. Keyword detection [38]
in particular prefers pipelining despite nominal A/W ratios
because of skip connections. Depth estimation [33] also has
multiple deep pipelined regions. This is primarily because of
DWCONV layers, which have a high A/W ratio, given that,
weights are only along one channel. Moreover, these layers
actually need pipelining since these layers are memory bound
compared to a CONV with same number of multiplications.

2) Finest Pipelining Granularity across Tasks: Fig. 17
obtain the finest possible granularities assigned by stage 1,
for the entire CNN models. However, this does not include
the final granularities after the spatial organization is finalized.
Granularity also depends on activation size, thus some cases
appear fine-grained despite no pipelining. High-depth regions
can have long regions of finer granularity.

VII. CONCLUSION

Modern DNN application domains consist of multiple models
with vastly different layer shapes, layer dependencies and
types of operations used. The right depth and granularity of
inter-operation pipelining or lack thereof depends heavily on
these model characteristics. Prior works on pipelining miss
out on the opportunity to take advantage of fine-grained inter-
operation pipelining opportunities and regions are allocated

11

to layers in a course-grained inter-layer manner, which has
a significant on-chip communication overhead. In this work,
we propose PIPEORGAN, a new class of spatial organization
strategies for inter-operation pipelining, and a systematic
methodology to choose the right depth, granularity and con-
sequently the spatial organization. We also propose AMP,
a topology that reduces the hops and congestion for coarse-
grained spatial allocation.

ACKNOWLEDGEMENT

Part of this work was supported by ACE, one of the seven
centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

12

REFERENCES

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[2] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn
accelerators,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016, pp. 1–12.

[3] J. Cai, Y. Wei, Z. Wu, S. Peng, and K. Ma, “Inter-layer scheduling
space definition and exploration for tiled accelerators,” in Proceedings of
the 50th Annual International Symposium on Computer Architecture, ser.
ISCA ’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589048

[4] A. K. Chaudhary, R. Kothari, M. Acharya, S. Dangi, N. Nair, R. Bailey,
C. Kanan, G. Diaz, and J. B. Pelz, “Ritnet: Real-time semantic segmen-
tation of the eye for gaze tracking,” in 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW). IEEE, 2019, pp.
3698–3702.

[5] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA ’16. IEEE Press, 2016, p. 367–379. [Online].
Available: https://doi.org/10.1109/ISCA.2016.40

[6] X. Dai, A. Wan, P. Zhang, B. Wu, Z. He, Z. Wei, K. Chen, Y. Tian,
M. Yu, P. Vajda et al., “Fbnetv3: Joint architecture-recipe search using
predictor pretraining,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 16 276–16 285.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[8] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram:
Optimized coarse-grained dataflow for scalable nn accelerators,”
in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 807–820. [Online]. Available:
https://doi.org/10.1145/3297858.3304014

[9] R. Garg, E. Qin, F. Muñoz-Martínez, R. Guirado, A. Jain, S. Abadal,
J. L. Abellán, M. E. Acacio, E. Alarcón, S. Rajamanickam, and
T. Krishna, “Understanding the design-space of sparse/dense multiphase
gnn dataflows on spatial accelerators,” in 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2022.

[10] L. Ge, Z. Ren, Y. Li, Z. Xue, Y. Wang, J. Cai, and J. Yuan, “3d hand
shape and pose estimation from a single rgb image,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 10 833–10 842.

[11] J. Gu, H. Kwon, D. Wang, W. Ye, M. Li, Y.-H. Chen, L. Lai, V. Chandra,
and D. Z. Pan, “Multi-scale high-resolution vision transformer for
semantic segmentation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 12 094–12 103.

[12] K. He et al., “Deep Residual Learning for Image Recognition,” in CVPR,
2016.

[13] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “Extensor: An accelerator for
sparse tensor algebra,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New
York, NY, USA: Association for Computing Machinery, 2019, p.
319–333. [Online]. Available: https://doi.org/10.1145/3352460.3358275

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[15] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel,
J. Wawrzynek, and Y. S. Shao, “Cosa: Scheduling by <u>c</u>onstrained
<u>o</u>ptimization for <u>s</u>patial <u>a</u>ccelerators,” in
Proceedings of the 48th Annual International Symposium on Computer
Architecture, ser. ISCA ’21. IEEE Press, 2021, p. 554–566. [Online].
Available: https://doi.org/10.1109/ISCA52012.2021.00050

[16] N. P. Jouppi, , C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,

G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA), 2017.

[17] S.-C. Kao and T. Krishna, “Gamma: automating the hw mapping of
dnn models on accelerators via genetic algorithm,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2020, pp. 1–9.

[18] S.-C. Kao, S. Subramanian, G. Agrawal, and T. Krishna, “An optimized
dataflow for mitigating attention performance bottlenecks,” arXiv preprint
arXiv:2107.06419, 2021.

[19] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-
chip networks,” in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), 2007, pp. 172–182.

[20] T. Krishna, C.-H. O. Chen, W. C. Kwon, and L.-S. Peh, “Breaking the
on-chip latency barrier using smart,” in 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), 2013,
pp. 378–389.

[21] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
“Understanding reuse, performance, and hardware cost of dnn dataflow:
A data-centric approach,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2019, pp. 754–
768.

[22] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chandra,
“Heterogeneous dataflow accelerators for multi-dnn workloads,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 71–83.

[23] H. Kwon, K. Nair, J. Seo, J. Yik, D. Mohapatra, D. Zhan, J. Song,
P. Capak, P. Zhang, P. Vajda et al., “Xrbench: An extended reality (xr)
machine learning benchmark suite for the metaverse,” Proceedings of
Machine Learning and Systems, vol. 5, 2023.

[24] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: enabling flexible
dataflow mapping over dnn accelerators via programmable interconnects,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 2018, p. 461–475.

[25] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal
convolutional networks for action segmentation and detection,” in
proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 156–165.

[26] S. Liang, Y. Wang, C. Liu, L. He, L. Huawei, D. Xu, and X. Li, “Engn:
A high-throughput and energy-efficient accelerator for large graph neural
networks,” IEEE Transactions on Computers, 2020.

[27] C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz, “Planercnn: 3d plane
detection and reconstruction from a single image,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4450–4459.

[28] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted windows,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 10 012–10 022.

[29] F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse
depth samples and a single image,” in 2018 IEEE international conference
on robotics and automation (ICRA). IEEE, 2018, pp. 4796–4803.

[30] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong,
and M. Smelyanskiy, “Deep learning recommendation model for personal-
ization and recommendation systems,” arXiv preprint arXiv:1906.00091,
2019.

[31] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A systematic approach to dnn accelerator evaluation,” in 2019 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019, pp. 304–315.

[32] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,
and T. Krishna, “Sigma: A sparse and irregular gemm accelerator with
flexible interconnects for dnn training,” in 2020 IEEE International

13

https://doi.org/10.1145/3579371.3589048
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1145/3297858.3304014
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1109/ISCA52012.2021.00050

Symposium on High Performance Computer Architecture (HPCA), 2020,
pp. 58–70.

[33] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 3, pp. 1623–1637, 2022.

[34] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[35] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik,
N. Jiang, B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G.
Tell, Y. Zhang, W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and
S. W. Keckler, “Simba: Scaling deep-learning inference with multi-
chip-module-based architecture,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’52. New York, NY, USA: Association for Computing Machinery, 2019,
p. 14–27. [Online]. Available: https://doi.org/10.1145/3352460.3358302

[36] Y. Shi, Y. Wang, C. Wu, C.-F. Yeh, J. Chan, F. Zhang, D. Le, and
M. Seltzer, “Emformer: Efficient memory transformer based acoustic
model for low latency streaming speech recognition,” in ICASSP 2021 -
2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2021, pp. 6783–6787.

[37] A. Symons, L. Mei, S. Colleman, P. Houshmand, S. Karl, and M. Ver-
helst, “Towards heterogeneous multi-core accelerators exploiting fine-
grained scheduling of layer-fused deep neural networks,” arXiv preprint
arXiv:2212.10612, 2022.

[38] R. Tang and J. Lin, “Deep residual learning for small-footprint keyword
spotting,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018, pp. 5484–5488.

[39] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 10 734–
10 742.

[40] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 15–29.

[41] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using
halide’s scheduling language to analyze dnn accelerators,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
369–383. [Online]. Available: https://doi.org/10.1145/3373376.3378514

[42] H. You, C. Wan, Y. Zhao, Z. Yu, Y. Fu, J. Yuan, S. Wu, S. Zhang,
Y. Zhang, C. Li et al., “Eyecod: eye tracking system acceleration via
flatcam-based algorithm & accelerator co-design,” in Proceedings of the
49th Annual International Symposium on Computer Architecture, 2022,
pp. 610–622.

[43] S. Zheng, X. Zhang, L. Liu, S. Wei, and S. Yin, “Atomic dataflow based
graph-level workload orchestration for scalable dnn accelerators,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2022, pp. 475–489.

[44] S. Zheng, S. Chen, S. Gao, L. Jia, G. Sun, R. Wang, and Y. Liang,
“Tileflow: A framework for modeling fusion dataflow via tree-based
analysis,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, 2023.

14

https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/3373376.3378514

	Introduction
	Background and Related Work
	Individual Operation Dataflows and Mappings
	Inter-Operation Pipelining
	Related Work
	Motivation toward Flexible Pipelining: Heterogeneity in AR/VR models

	Pipelining Design-space
	Factors Affecting Pipelining Depth
	Factors Affecting Intra-operator Dataflow
	Factors affecting Pipelining Granularity
	Factors affecting Spatial Organization

	PipeOrgan: Flexible Spatial Organization
	Pipelined Dataflow
	HW Mapping: Determining Spatial Organization Strategy
	HW Mapping: Design-time Traffic Analysis
	AMP Topology

	Experimental Methodology
	Evaluation Framework
	Workloads and Datasets
	Baselines
	Architecture Parameters

	Results
	Performance
	Normalized DRAM accesses
	Congestion analysis: PipeOrgan and AMP
	Pipeline Depth and Granularity
	Pipelining Depth across Tasks
	Finest Pipelining Granularity across Tasks

	Conclusion
	References

