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Abstract 

An analytical theory is developed for predicting the nonlinear susceptibility of ionic polarization to 
continuous electromagnetic waves in both bulk and strained thin film ferroelectrics. Using a perturbation 
method for solving the nonlinear equation of motion for ionic polarization within the framework of Landau-
Ginzburg-Devonshire theory, the full second-order nonlinear susceptibility tensor is derived as a function 
of frequency, temperature, and strain. The theory predicts the coexistence of a significantly enhanced 
second-order dielectric susceptibility and a relatively low dielectric loss in BaTiO3 films with a strain-
stabilized monoclinic ferroelectric phase and in a strained SrTiO3 film near its temperature-driven second-
order ferroelectric-to-paraelectric phase transition. This work establishes a theoretical framework for 
predicting and exploiting nonlinear interactions between THz waves and ferroelectric materials, and more 
generally, suggests exciting opportunities to strain-engineer nonlinear dynamical properties of 
ferroelectrics beyond the static and quasi-static limits. 
*E-mail: jhu238@wisc.edu  
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I. Introduction 

Nonlinear susceptibility in the terahertz (THz) band (frequency: 0.1-10 THz) is critical to nonlinear THz 
wave interactions such as THz high-order harmonic generation [1–5], THz-field-induced second harmonic 
generation (SHG) [6–8], and THz field-induced Kerr effect [9]. These nonlinear processes underpin the 
development of a wide variety of THz applications ranging from nonlinear THz spectroscopy to high-power 
THz sources and to THz imaging [10,11].  

Ferroelectric materials, due to their non-centrosymmetric nature, permit even-order harmonic generation 
and have been widely used for nonlinear wave phenomena at optical frequencies (~1014 Hz). For example, 
LiNbO3, a workhorse nonlinear optical material [12,13], is a uniaxial ferroelectric whose spontaneous 
polarization (denoted as Pion to indicate its origin in ionic displacements) aligns along the c axis of its 
hexagonal unit cell.  

In the optical regime, frequency-dependent dynamic (linear or nonlinear) susceptibility of ferroelectric 
materials is primarily associated with the optical electric field-induced electronic polarization Pe [14,15] 
(Pe=0 under zero electric field). In the THz and gigahertz (GHz) regimes, dynamic susceptibility of 
ferroelectrics contains contributions from both the Pion and Pe, because both types of polarizations can 
promptly respond to the GHz-THz electric fields given their high resonant frequencies (~1012 Hz for Pion 
and ~1015 Hz for Pe). However, the contribution of Pion to the dynamic susceptibility should be much more 
significant [16] because the linear dielectric susceptibility of Pion is much larger than the induced Pe in the 
GHz-THz range, and because the Pion can resonantly interact with the THz electric field. 

Frequency-dependent nonlinear susceptibilities of bulk ferroelectric crystals have been analytically 
calculated by employing the perturbation method to solve the equation of motion for Pion within the 
framework of a Landau-Devonshire-type thermodynamic energy density function [17–21]. However, the 
thermodynamic potential used in these works  [17–21] does not incorporate the strain-polarization coupling, 
which has recently been shown to have a significant influence on the resonant frequency of the Pion even in 
stress-free bulk ferroelectric materials [22,23]. Furthermore, these works  [17–21] are largely focused on 
the mathematical derivation without extensively discussing the underlying physical picture, e.g., the 
relation between the nonlinear susceptibility and the landscape of the thermodynamic energy density. In 
this article, based on the Landau-Ginzburg-Devonshire (LGD) thermodynamical energy density function 
that incorporates strain-polarization coupling and the equation of motion for Pion, we analytically derive the 
full nonlinear susceptibility tensor of Pion in monodomain ferroelectrics and incipient ferroelectrics as a 
function of frequency, temperature, and, in the case of coherently strained thin films, the epitaxial strain.  

This work focuses on THz SHG, where a nonlinear THz polarization Pion with an angular frequency 2𝜔 is 
generated in the material by an incident THz field E with an angular frequency 𝜔. After calculating the 
THz second-harmonic susceptibility in a few bulk ferroelectric single crystals, we predict a dramatically 
enhanced THz second-harmonic susceptibility in monodomain BaTiO3 films with a strain-stabilized 
monoclinic phase, as well as near the temperature-driven ferroelectric-to-paraelectric phase transition in 
strained SrTiO3 films. These findings indicate the potential application of using these strained ferroelectric 
films for source-current-free SHG at both the microwave and THz frequencies. The theory advances the 
physical understanding of the nonlinear interaction between THz waves and ferroelectrics. More broadly, 
this work suggests exciting opportunities for strain engineering of nonlinear dynamic properties in 
ferroelectrics beyond the static and quasi-static limits. 
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II. Theory 

The nonlinear THz susceptibilities refer to the third- and higher-rank 𝛘 tensors in the relation between the 
total ionic polarization Pion (hereafter P) and the incident electric field E. In ferroelectric materials that have 
a spontaneous polarization 𝑃!" under zero electric field, the total polarization can be written as,  

𝑃! = 𝑃!" + ∆𝑃! = 𝑃!" + ∆𝑃!
($) + ∆𝑃!

(&) +⋯,																																										(1a) 

∆𝑃!
($)(𝜔) = 𝜅0 /𝜒!'

($)(𝜔)𝐸'(𝜔)
'

,																																																							(1b) 

∆𝑃!
(&)(𝜔( ±𝜔)) = 𝜅0 / / 𝜒!'*

(&)(𝜔( ±𝜔), 𝜔(, 𝜔))𝐸'(𝜔()𝐸*(𝜔))
()()'*

,												(1c) 

where 𝜅0 is the vacuum permittivity and 𝐸! is the electric-field component of the incident THz wave. The 
subscripts i,j,k=1,2,3 indicate crystal physics coordinates. Under the plane wave assumption	in the thin slab 
limit, i.e., the thickness of the ferroelectric is significantly smaller than THz wavelength 𝜆+ =

&,
*!"

 (𝑘-. is 
the real component of the complex wave number 𝐤 [23]), one has 𝐸! = 𝐸!"𝑒/𝐢12. Equation (1c) follows the 
notation in [24,25] except that all the P hereafter refers to ionic polarization; ∆𝑃! in Eq. (1a) is the dynamic 
variation of the ionic polarization, which can be separated into a first-order polarization ∆𝑃!

($)(𝜔) =
∆𝑃!

($),"𝑒/𝐢12 that has the same angular frequency as the incident THz wave (Eq. (1b)) and second-order 
polarization ∆𝑃!

(&)(𝜔( ±𝜔)) = ∆𝑃!
($),"𝑒/𝐢(1#±1$)2 that can contain multiple frequency components (Eq. 

(1c)). Here the bold “i” denotes the imaginary unit. Specifically, an incident THz wave containing waves 
of two angular frequencies 𝜔( and 𝜔) (the notation (𝑚𝑛) indicating that the 𝜔( ±𝜔) is fixed while 𝜔( 
and 𝜔)  can individually vary) can generate two SHG polarization components ∆𝑃!

(&) ( 2𝜔()  and 
∆𝑃!

(&)(2𝜔)), a sum frequency generation (SFG) component ∆𝑃!
(&)(𝜔( +𝜔)), a difference frequency 

generation (DFG) component ∆𝑃!
(&)(𝜔( −𝜔)), and a dc polarization shift ∆𝑃!

(&)(0) induced by a static 
electric field rectified from complex electric fields 𝐸!(𝜔) = 𝐸!"𝑒/𝐢12  and its conjugate 𝐸!∗(𝜔) =
𝐸!(−𝜔) = 𝐸!"𝑒𝐢12.   

Each second-order polarization component is associated with its own 𝜒!'*
(&)  tensor, including 

𝜒!'*
(&)(2𝜔(, 𝜔(, 𝜔() , 𝜒!'*

(&)(2𝜔), 𝜔), 𝜔)) , 𝜒!'*
(&)(𝜔( +𝜔), 𝜔(, 𝜔)) , 𝜒!'*

(&)(𝜔( −𝜔), 𝜔(, −𝜔)) , and 

𝜒!'*
(&)(0, 𝜔), −𝜔)) and/or 𝜒!'*

(&)(0, 𝜔(, −𝜔(). In this work, the analytical formulae for all these 𝜒!'*
(&) tensors 

are derived. The examples focus on the THz SHG, where a monochromatic incident THz wave with an 
angular frequency 𝜔, 𝐄(𝜔), generates a second-order polarization ∆𝑃!

(&)(2𝜔), i.e., 

∆𝑃!
(&)(2𝜔) = 𝜅0 /𝜒!'*

(&)

'*

(2𝜔,𝜔,𝜔)𝐸'(𝜔)𝐸*(𝜔).																																										(2) 

The analytical formulae for the frequency-dependent linear susceptibility 𝜒!'
($)  and second-order 

susceptibility 𝜒!'*
(&) can be obtained by finding the steady-state solution of the nonlinear equation of motion 

for the ∆𝑃!, given as [23], 
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𝜇
𝜕&∆𝑃!
𝜕𝑡&

+𝛾!'
𝜕∆𝑃'
𝜕𝑡

=∆𝐸!.66 = 𝐸!789:8; + 𝐸!<=8>? + 𝐸!: + 𝐸! + 𝐸!@8:,																									(3) 

where the subscripts i=1,2,3 of the polarization component indicate the Cartesian crystal physics 
coordinates of the paraelectric cubic phase within the framework of the LGD theory [26]. Specific 
ferroelectric materials considered in this work include (i) tetragonal perovskite ferroelectric single crystals 
BaTiO3 and PbTiO3 where the initial equilibrium polarization P0  aligns along the x axis in the lab coordinate 
system; (ii) trigonal ferroelectric single crystals LiTaO3 and LiNbO3 where the initial equilibrium 
polarization P0 also aligns along the x axis in the lab coordinate system; (iii) an anisotropically strained 
(001)pc BaTiO3 (pc: pseudocubic) thin film which has a surface parallel to the (001) plane of its cubic parent 
paraelectric phase; and (iv) an biaxially strained (001)pc SrTiO3 film  grown on an orthorhombic (o) DyScO3 
(110)o substrate [cite]. Normal incidence of a p-polarized THz wave is considered under the plane wave 
assumption, where the THz electric field inside the ferroelectric material, the 𝐸! in Eq. (3), only contains 
an x component in the lab coordinate system. The lab and the crystal physics coordinate systems in the 
above four cases are illustrated in Fig. 1.  

In Eq. (3), 𝜇 is the mass coefficient  and 𝛾!' is the phenomenological damping coefficient; the temporal 
variation of the total effective electric field is given by ∆𝐸!.66=𝐸!.66(𝑃!)-𝐸!.66(𝑃!"). At the initial equilibrium 
state (𝑃! = 𝑃!"), one has 𝐸!.66(𝑃!")=0. Thus, ∆𝐸!.66=𝐸!.66(𝑃!), which is sum of the various (effective) electric 

fields as indicated in Eq. (3).	Among them, 𝐸!789:8; = − AB%&'(&)

AC*
 and 𝐸!<=8>? = − AB+,&-.

AC*
 are nonlinear 

polynomials of 𝑃!  (𝑓789:8;  and 𝑓<=8>?  are the Landau and elastic energy densities, respectively) [25]. 
Detailed expressions of 𝑓789:8;  and 𝑓<=8>?  for BaTiO3, PbTiO3, SrTiO3, LiTaO3 and LiNbO3 and the 
relevant materials parameters are summarized in Appendix A.  

Under the plane wave assumption	in the thin slab limit, [23] the polarization-oscillation-induced radiation 
electric field can be calculated as 𝐸!@8: = (− D/

&E/+
APx
A2
, − D/

&E/+
APy
A2
, 0) for a single-domain ferroelectric [23], 

where 𝑑" is the thickness of the ferroelectric and c is the speed of light in vacuum. For thick bulk crystals,  
𝐸!@8: has a complex analytical expression and varies spatially along the thickness direction, as derived 
in  [23], At the initial equilibrium state, both the 𝐸! and 𝐸!@8: are zero. For a single-domain ferroelectric 
thin film with an infinitely large x-y plane and mobile screening charges (e.g., electrons, holes, and absorbed 
ions) at the top and bottom surfaces, the depolarization field at the initial equilibrium state is zero. Under 
the excitation by THz or higher-frequency electric fields, we assume that these charged species at the 
surfaces remain largely frozen. Consequently, the film is subjected to a dynamic depolarization field that is 
given by ∆𝐸!: = (0, 0, − $

E/E0
∆𝑃F) , where 𝜅b  is the background dielectric constant accounting for the 

contribution from the electronic contribution [27,28]. Here, a typical value of 𝜅G=5 [29] is used for all 
ferroelectric materials in the calculation. The lab coordinate system (i=x,y,z) is used in the above 
expressions for the 𝐸!, 𝐸!@8:, and 𝐸!:.  

The elastic energy 𝑓<=8>? = $
&
𝑐!'*HH𝜀*H − 𝜀*H" JH𝜀!' − 𝜀!'" J , where 𝑐!'*H  is the elastic stiffness tensor; the 

stress-free strain 𝛆" is induced by the 𝑃! through the electrostrictive effect. The solution of the total strain 
𝜀!' at the initial equilibrium state depends on the mechanical boundary condition of the system. In the case 
of coherently strained BaTiO3 and SrTO3 thin films, one has a mixed boundary condition [30] with 𝜀$$ =
𝜀$$IJ>, 𝜀&& = 𝜀&&IJ>, 𝜀$& = 0 and 𝜎!K = 0 (i=1,2,3) from which the expressions of the total strain 𝜀!K can be 
obtained. The mismatch strain 𝜀$$IJ>  and 𝜀&&IJ>  result from the lattice constant and/or thermal expansion 
coefficient mismatch between the epitaxial film and substrate. It is known that such mismatch strain can 
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enable polymorphic ferroelectric phase transitions that are absent in the stress-free state or modulate the 
ferroelectric-to-paraelectric transition temperature in ferroelectric thin films [30,31] and that the static (i.e., 
driven by dc electric field) linear dielectric susceptibility 𝜒!'

($),:L = AC*
E/AM1

 can be significantly enhanced near 

such phase transitions [26,32].  

To analytically solve the 𝜒!'*
(&), we first rewrite Eq. (3) into the following matrix form by expanding the 

𝐸!789:8;and	𝐸!<=8>? in Taylor series and dropping the higher-order terms (see Appendix B), 

µ
𝜕&∆𝐏
𝜕𝑡&

+𝛄.66
𝜕∆𝐏
𝜕𝑡

+ K∆𝐏 + 𝐂∆𝐏NN = 𝐄,																																																(4) 

where the 𝐄 is the incident THz electric field; ∆𝐏NN = (∆𝑃$&, ∆𝑃&&, ∆𝑃K&, 2∆𝑃$∆𝑃&, 2∆𝑃$∆𝑃K, 2∆𝑃$∆𝑃&)O is a 
6´1 matrix; 𝛄.66	is a 3´3 tensor which contains contributions from both the phenomenological intrinsic 
damping (related to crystal viscosity of the ferroelectric) and the radiation-induced damping  [22,23]. For 
strained ferroelectric thin films, one has 𝛄.66 ≈ diag(𝛾$ +

$
&
D/
E/+

, 𝛾& +
$
&
D/
E/+

, 𝛾K) in the thin slab limit, where 

the intrinsic damping coefficients are assumed to be isotropic 𝛾$ = 𝛾& = 𝛾K=2×10-7 Ω×m [23] and 𝑑"=10 
nm which is small enough to ensure the film is coherently strained by the substrate. For thick bulk crystals, 
the complex expression of the radiation electric field 𝐸!@8: would result in a radiation-induced damping that 
varies along the thickness and does not have an explicit analytical expression [23]. For simplicity, we use 
the same 𝛄.66 in the analytical calculation of both bulk and thin-film ferroelectrics in this work. For the 
components of the 3´3 tensor K, 𝐾!' = −𝐴!' − 𝐵!' (i,j=1,2,3). In the case of (001)pc BaTiO3 and SrTiO3 
thin films (Figs. 1(c-d)) under dynamic electric-field excitation (𝜔 ≠0), we use 𝐾KK=−𝐴KK − 𝐵KK +

$
E0E0

, 

where the term 1 𝜅0𝜅G⁄  results from the dynamic depolarization field ∆𝐸F:(𝑡) = −∆𝑃F(𝑡) 𝜅0𝜅G⁄  (𝑧 ≡3) in 
a thin film with infinitely large x-y plane (see Appendix B). In the case of dc excitation (𝜔=0) and/or bulk 
ferroelectric crystals, the dynamic depolarization field does not need to be considered, thus 𝐾KK=−𝐴KK −
𝐵KK. For the components of the third rank tensor C, 𝐶!'* = − $

&
𝐴!'* −

$
&
𝐵!'* (i,j,k=1,2,3), where, 

𝐴!' = − A2B%&'(&)

AC*AC1
_
𝐏Q𝐏/

, 𝐴!'* = − A3B%&'(&)

AC*AC1AC4
_
𝐏Q𝐏/

,                                      (5a) 

𝐵!' = − A2B+,&-

AC*AC1
_
𝐏Q𝐏/

,	𝐵!'* = − A3B+,&-

AC*AC1AC4
_
𝐏Q𝐏/

. 																																															(5b) 

Thus, 𝐾!' and 𝐶!'* represent, respectively, the local curvature of the total free energy density (a sum of the 
Landau and elastic energy density) at the initial equilibrium (spontaneous) polarization state 𝐏". Both the 
mismatch strain and the temperature can modulate the 𝐏", K, and 𝐂 tensors.  

We then employ the perturbation method, which has previously been used to derive the nonlinear 
susceptibility of electronic polarization at optical frequencies [24], to analytically solve Eq. (3) for both the 
linear and nonlinear susceptibility (see Appendix B). The linear susceptibility 𝜒!'

($)(𝜔) is given as, 

𝜒!'
($)(𝜔) =

1
𝜅0
`
𝐷$$(𝜔) 𝐾$& 𝐾$K
𝐾&$ 𝐷&&(𝜔) 𝐾&K
𝐾K$ 𝐾K& 𝐷KK(𝜔)

b

/$

, 𝑖, 𝑗 = 1,2,3,																													(6)	
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In Eq. (4), the diagonal components 𝐷!!(𝜔) = μH𝜔!&−𝜔&J − 𝐢γ!!.66𝜔 , where the resonant frequency of 
polarization oscillation 𝜔! = h𝐾!! μ⁄   [23]. Under the application of a static (dc) electric field (𝜔=0), one 
has 𝜒!'

($),:L = 1 𝜅0𝐾!'⁄  (i,j=1,2,3). 

The THz SHG susceptibility 𝜒!'*
(&)(2𝜔,𝜔,𝜔) is given by, 

𝜒!'*
(&)(2𝜔,𝜔,𝜔) = −𝜅"& / 𝐶RST𝜒!R

(1)(2𝜔)𝜒S'
(1)(𝜔)𝜒T*

(1)(𝜔)
R,S,TQ$,&,K

. 𝑖, 𝑗, 𝑘 = 1,2,3																		(7) 

Equation (7) indicates that 𝜒!'*
(&) can be expressed as a function of linear susceptibilities 𝜒!'

($) , which is 
consistent with the theory by Garret [33] and later by Mayer and Keilmann [34]. A notable finding of our 
theory is that the coefficient 𝐶RST , which was referred to as generalized Miller’s coefficient [34] and 
typically fitted to experimental measurement [34,35], is now specifically connected to the third-order 
derivatives of the LGD energy density with respect to the equilibrium polarization P0. For SHG, the tensor 
𝑑!'* =

$
&
𝜒!'*
(&) is also used. In this paper, we use 𝜒!'*

(&) to show its relation with 𝜒!'
($), as in Eq.(7). 

To demonstrate the validity of Eq. (7), two tests are performed (see details in Appendix C). First, the 
expression of 𝜒!'*

(&),:L directly from thermodynamic analysis is the same as the expression obtained by letting 
𝜔=0 in Eq. (6). As an example, in the case of a tetragonal BaTiO3 bulk crystal, we first calculate the static 
𝜒KKK
(&),:L based on Eq. (6), which describes the generation of static nonlinear polarization ∆𝑃K by a static 

electric field 𝐸K (≡ 𝐸U in the lab coordinate system, see Fig. 1(a)). The calculate value (𝜒KKK
(&),:L=-1.573×10-

6 m/V) agrees well with the value of -1.576×10-6 m/V extracted by fitting a static 𝑃K–𝐸K curve obtained 
from thermodynamic analysis. Second, the numbers of nonzero and independent elements in the third-rank 
tensor 𝜒!'*

(&),:L for stress-free BaTiO3 crystals of cubic, tetragonal, orthorhombic, or rhombohedral phase are 
consistent with those of the second-order susceptibility tensor of the electronic polarization (optical SHG) 
under the same crystal symmetry [24]. 

III. Results and Discussion 

We first calculate the frequency-dependent nonlinear susceptibility at room temperature (25°C) in the bulk 
tetragonal BaTiO3 and PbTiO3 as well as the trigonal LiNbO3 and LiTaO3 single crystals. As shown in Figs. 
1(a) and 1(b), the initial equilibrium polarization P0 aligns along the polar axis of the BaTiO3, PbTiO3, 
LiNbO3 and LiTaO3 in the crystal physics coordinates, which is the x axis in the lab coordinate system. 
When the incident THz wave is polarized only along the x in the lab coordinate system (𝐸U ≡ 𝐸K), one has,  

∆𝑃K
(&)(2𝜔) = 𝜅0𝜒KKK

(&) 𝐸K(𝜔)&,																																																											(8) 

Since the amplitude of the incident THz electric field inside the material has a time-dependence, 
𝐸K(𝜔) = 𝐸K"𝑒/𝐢12, the amplitude and the phase of the second-order nonlinear polarization, ∆𝑃K

(&)(2𝜔) =
∆𝑃K

(&),"𝑒𝐢V/&12WX(2)Y are related to the modulus, k𝜒!!!
(&)k, and the argument, 𝜃, of the 𝜒!'*

(&), respectively, i.e.,  

∆𝑃K
(&)," = E0

&
k𝜒KKK

(&) k 𝐸K"
&, 𝜑(&) = 𝜃,																																																					(9)  

Figure 2(a) shows the frequency-dependent k𝜒KKK
(&) k for the four ferroelectric materials. Notably, in the case 

of LiTaO3, by tuning the Landau parameters provided in [36], good agreement with the experimental 
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measurement [34] is achieved both in the nonlinear susceptibility modules k𝜒KKK
(&) k  and the resonant 

frequencies. Based on Eq. (6), one has, 

𝜒KKK
(&) = −𝜅"&𝐶KKK𝜒KK

($)(2𝜔)𝜒KK
($)(𝜔)&.																																																(10) 

Equation (10) also suggests the existence of two peaks for the k𝜒KKK
(&) k at 𝜔 = 𝜔K, 𝜔K 2⁄ , where the 𝜒KK

($)(𝜔) 

and 𝜒KK
($)(2𝜔) reach their maximum, respectively, as shown in Fig. 2(a). By comparison, the 𝜒KK

($)(𝜔) 
resonates only at 𝜔K, as shown in Fig. 2(b). In particular, the k𝜒KKK

(&) k at 𝜔K 2⁄  is at about the same order-of-
magnitude with its value at 𝜔K . Furthermore, the dielectric loss of the ferroelectric [37], which is 
represented by the imaginary part of the linear susceptibility 𝜒KK

($),NI, is three orders-of-magnitude smaller 
at 𝜔K 2⁄  (see bottom panel of Fig. 2(b)). Therefore, for potential applications of THz SHG, it is an attractive 
option to set the frequency of the incident THz wave at the half-resonance frequency of the ionic 
polarization in ferroelectrics.  

By letting 𝜔=0 in Eq. (10), one has 𝜒KKK
(&),:L = −𝜅"&𝐶KKK𝜒KK

($),:LK. Therefore, materials with large dc dielectric 
susceptibility 𝜒KK

($),:L also tend to have large 𝜒KKK
(&),:L. From Fig. 2(a), it is evident that the tetragonal BaTiO3 

has a substantially larger 𝜒KKK
(&),:L and larger peak values of k𝜒KKK

(&) k than the other three ferroelectric materials. 
As shown in Figs. 2(c), the local curvature of the energy landscape near the 𝑃K"  is the smallest in the 
tetragonal BaTiO3. As a result, the tetragonal BaTiO3 has the largest 𝜒KK

($),:L and hence the k𝜒KKK
(&),:Lk among 

the four materials, as shown in Fig. 2(d). Furthermore, the analytically calculated k𝜒KKK
(&) k of the tetragonal 

BaTiO3 agrees well with the values extracted independently from dynamical phase-field simulations (see 
Appendix D), demonstrating that the analytical model is valid.  

We now calculate the 𝜒$$$
(&)  in an anisotropically strained (001)pc BaTiO3 film at room temperature (25°C). 

Here, the 𝜒$$$
(&)  is associated with the generation of second-order nonlinear polarization ∆𝑃$ by a dynamic 

electric field 𝐸$ (≡ 𝐸U in the lab coordinate system, see Fig. 1(c)). The BaTiO3 film is subjected to a fixed 
mismatch strain 𝜀&&IJ>  = -1% yet the strain 𝜀$$IJ>  can vary. This strain condition is considered for three 
reasons. First, varying the 𝜀$$IJ> from 2% to -1% leads to a transition from an in-plane tetragonal T1 phase 
with (𝑃$" ≠0, 0, 0) to an out-of-plane orthorhombic O13 phase with (𝑃$" ≠0, 0, 𝑃K" ≠0), followed by a 
transition to an out-of-plane tetragonal T3 phase with (0, 0, 𝑃K" ≠0), as shown in Fig. 3(a). We can therefore 
study how these two typical polymorphic ferroelectric phase transitions influence the 𝜒$$$

(&) . Second, the 
zero 𝑃&"  component in such an anisotropically strained film allows for excluding the contribution of 
𝜒&!
($)(i=1,2,3) to the 𝜒$$$

(&)  (see Eq. (6)), thereby simplifying the analysis. Third, the three strain-stabilized 
polar phases (T1, O13, and T3) have all been experimentally observed in BaTiO3, where the O13 phase is also 
defined as a monoclinic MC phase if o𝑃K"o > o𝑃$"o  [38,39]. 

The variation of 𝜒$$$
(&),:L with the 𝜀$$IJ>, as shown in Fig. 3(b), can be understood by analyzing the strain 

modulation of the local curvature and asymmetry of the energy landscape. For the tetragonal T1 and T3 

phases, one can analogously derive that 𝜒$$$
(&),:L = −𝜅"&𝐶$$$𝜒$$

($),:LK. In the T3 phase, 𝐶$$$ = 0	since the local 
energy landscape is symmetric with respect to ∆𝑃$, thus 𝜒$$$

(&),:L=0. In the T1 phase, the 𝜒$$$
(&),:L decreases as 

the 𝜀$$IJ> increases, which is attributed to the decreasing 𝜒$$
($),:L, as shown in Fig. 3(c). For the O13 phase, a  
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𝜒$$$
(&),:L = −𝜅"& q𝐶$$$𝜒$$

($),:LK + 3𝐶$$K𝜒$$
($),:L&𝜒$K

($),:L + 3𝐶$KK𝜒$$
($),:L𝜒$K

($),:L& + 𝐶KKK𝜒$K
($),:LKr . (11) 

As shown in Fig. 3(c), the diagonal component 𝜒$$
($),:L is much larger than the 𝜒$K

($),:L in the MC phase, 
especially near the O13/T3 phase boundary. Thus, the significant increase in 𝜒$$$

(&),:L of the MC phase is mainly 
caused by the associated increase in the 𝜒$$

($),:L. 

Let us now discuss the frequency dependence of the k𝜒$$$
(&) k for the O13 and T1 phases under different strain 

𝜀UUIJ>, noting that k𝜒$$$
(&) k=0 in the T1 phase. The 𝜒$$$

(&)  of the tetragonal T1 phase is given by, 

𝜒$$$
(&) = −𝜅"&𝐶$$$𝜒$$

($)(2𝜔)𝜒$$
($)(𝜔)&.																																																							(12) 

Notably, Equation (12) above is also approximately applicable to the O13 phase, since it is reasonable to 
consider 𝜒!K

($) = 𝜒K!
($) ≈ 0 because the large dynamical depolarization field tends to suppress the magnitude 

of the out-of-plane polarization variation (i.e., |∆𝑃K(𝑡)| is much smaller than |∆𝑃$(𝑡)|). Based on Eq. (12), 
there should be two peaks at 𝜔$, 𝜔$ 2⁄ , in the frequency spectrum of k𝜒UUU

(&) k, consistent with the results in 

Fig. 3(d). The locations of the 𝜔$ can be seen more clearly at the peaks in the frequency spectrum of 𝜒$$
($),NI, 

as shown in Fig. 3(e).  

As the strain 𝜀$$IJ> becomes less compressive (e.g., from -0.05% to -0.008%) in the O13 phase, 𝐾$$ decreases 
(see Fig. 3(c)), leading to a smaller 𝜔$ = h𝐾$$ μ⁄ . As a result, the discrepancy between 𝜔$ and 𝜔$ 2⁄  also 
decreases. Since the peaks of 𝜔$, 𝜔$ 2⁄  both have a finite linewidth due to the nonzero damping, these two 
peaks can partially overlap when they are close. This explain why the k𝜒$$$

(&) k at 𝜔$ 2⁄  is larger than its value 

at 𝜔$ 2⁄  at 𝜀$$IJ>=-0.008%. Together, Figure 3(d-e) demonstrate the effectiveness of using strain to enhance 
the k𝜒$$$

(&) k yet to keep the 𝜒$$
($),NI (dielectric loss) at a relatively low value. Specifically, at 𝜀$$IJ>=-0.008%, 

k𝜒$$$
(&) k reaches a value of ~ 2.54×10-3 m/V at 0.45 THz, yet 𝜒UU

($),NI is ~ 636.5 (one order of magnitude 

smaller than its peak value). This value of k𝜒$$$
(&) k is one order of magnitude larger than the k𝜒.66

(&)k (~10-4 
m/V) reported in the superconducting NbN thin film [40]. 

The above analyses indicate that a significant enhancement in 𝜒$$$
(&)  simultaneously requires a vanishing 

curvature (in other words, a large dielectric susceptibility) and a non-vanishing asymmetry (𝐶$$$ ≠0) of 
the energy landscape, which can be achieved in BaTiO3 with a monoclinic MC phase, occurring near the 
strain-driven second-order O13 – T3 ferroelectric phase transition in coherently strained BaTiO3 film. With 
this understanding, we further evaluate the 𝜒$$$

(&)  near the second-order ferroelectric-to-paraelectric 
transition in an equixially strained (001)pc SrTiO3 film with 𝜀$$IJ> = 𝜀&&IJ>=1%. As shown in Fig. 4(a), the 
calculated equilibrium polarization P0 is (𝑃$" ,0,0), which is consistent with the recent experimental 
observation in a coherently SrTiO3 film grown on (110)o DyScO3 substrate with a largely single polarization 
domain after in-plane electric poling  [41]. As the temperature T approaches the Curie point Tc, 𝑃$" gradually 

decreases to zero (Fig. 4(a)); the 𝜒$$$
(&),:L = −𝜅"&𝐶$$$𝜒$$

($),:LK increases dramatically and then drops to zero 
in the paraelectric phase, as shown in Fig. 4(b). Likewise, this is mainly because 𝜒$$

($),:L  is enhanced 
significantly at near the Tc (see Fig. 4(c)) and because 𝐶$$$ is zero in the cubic paraelectric phase. 
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The frequency spectrum of the k𝜒$$$
(&) k of the in-plane tetragonal SrTiO3 film should likewise only display 

two peaks at 𝜔$ 2⁄  and 𝜔$, which are tens of GHz due to the reduced soft mode frequency near the Tc  [42]. 
Furthermore, at close to Tc, the two peaks of the k𝜒UUU

(&) k spectrum at 𝜔$ 2⁄  and 𝜔$ can merge into one, see 
for example the cases of 243.7 K and 243.5 K in Fig. 4(d). Importantly, these features allow for identifying 
the frequency of the incident THz/GHz wave for obtaining significantly enhanced k𝜒$$$

(&) k together with a 

relatively low 𝜒$$
($),NI. For example, at T=242 K, k𝜒$$$

(&) k has a value of 0.466 m/V yet the 𝜒$$
($),NI is about 

56.46 at 1 GHz; at T=242 K, k𝜒$$$
(&) k has a value of 0.611 m/V at 16 GHz yet the 𝜒$$

($),NI is about 985. These 

values of k𝜒$$$
(&) k  are three orders of magnitude larger than the k𝜒.66

(&)k  (~10-4 m/V) reported in the 
superconducting NbN thin film [40]. Such a high o𝜒(&)o, along with manageable dielectric loss, suggests an 
exciting prospect of using coherently strained SrTiO3 film as a structurally simple, source-current-free (and 
hence ultralow power dissipation) frequency doubler operating in the GHz/millimeter-wave band for high-
data-rate wireless communication. 

IV. Conclusions 

We have developed an analytical theory for predicting the dynamic nonlinear dielectric susceptibility of 
monodomain ferroelectric crystals as a function of frequency, temperature, and in the case of strained thin 
films, the epitaxial strain. Our theory reveals the important role of the strain-polarization coupling in 
ferroelectrics, which has been ignored in existing theoretical works  [17–21], in determining the nonlinear 
dielectric susceptibility through the modulation of the curvature and asymmetry of the local energy 
landscape. 

Based on the well-established LGD thermodynamic energy density function and the kinetic parameters of 
different ferroelectric materials, the theory predicts a route to enhancing the modulus of the second-
harmonic susceptibility 𝜒$$$

(&)  and simultaneously maintaining the dielectric loss at a low level in a (001)pc 
BaTiO3 film with strain-stabilized monoclinic MC phase and a strained (001)pc SrTiO3 film near its 
temperature-driven second-order ferroelectric-to-paraelectric phase transition. These results reveal the 
critical importance of stabilizing the MC phase in enhancing the 𝜒$$$

(&)  of BaTiO3 and similar ferroelectric 
systems, which is analogous to the critical role of MC phase in enhancing the nonlinear optical and 
piezoelectric property coefficients of BaTiO3 [38,39]. In addition to the 𝜒$$$

(&)  which is relevant to the THz 
SHG, the analytical formulae of other second-order 𝜒!'*

(&) , including THz SFG/DFG and THz wave 

rectification (dc shift), are also derived (see Appendix C). By comparing the predicted 𝜒!'*
(&) to experimental 

measurements (e.g., THz SHG), one can refine the LGD coefficients (e.g., here we refine the coefficients 
of LiTaO3, as shown in Fig. 1(a)) and the kinetic parameters such as the mass and damping coefficients of 
a wide range of ferroelectric materials.  

Overall, this work provides a theoretical basis for studying the nonlinear interaction between a THz wave 
and a ferroelectric material. The theory in this work can be extended to calculate the higher-order 
susceptibilities (e.g., the 𝜒!'*H

(K) ) of ferroelectrics, and the susceptibilities under the excitation of a circularly 
polarized THz wave which can enable emergent phenomena such as the dynamic multiferroicity [43–45]. 
Furthermore, the theory can also be extended to ferroelectrics under mechanical boundary conditions such 
as an uniaxially stretched ferroelectric membrane [46], and to other polar materials that have a spontaneous 
ionic polarization such as wurtzite III-nitride semiconductors [47]. 
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Appendix A. Detailed expressions of 𝑓789:8; and 𝑓<=8>? for BaTiO3, PbTiO3, SrTiO3, LiTaO3 and 
LiNbO3 and the associated materials parameters 

An eighth-order, sixth-order, and fourth-order 𝑓789:8;  is used for BaTiO3, PbTiO3, and SrTiO3, 
respectively, given as [48], 

𝑓789:8; = α1(𝑃$& + 𝑃&& + 𝑃K&) + α11(𝑃$Z + 𝑃&Z + 𝑃KZ) + α12(𝑃$&𝑃&& + 𝑃&&𝑃K& + 𝑃$&𝑃K&)
+ α111(𝑃$[ + 𝑃&[ + 𝑃K[) + α112[𝑃$&(𝑃&Z + 𝑃KZ) + 𝑃&&(𝑃$Z + 𝑃KZ) + 𝑃K&(𝑃$Z + 𝑃&Z)]
+ α123𝑃$&𝑃&&𝑃K& + α1111(𝑃$\ + 𝑃&\ + 𝑃K\)
+ α1112[𝑃$[(𝑃&& + 𝑃K&) + 𝑃&[(𝑃$& + 𝑃K&) + 𝑃K[(𝑃$& + 𝑃&&)] + α1122(𝑃$Z𝑃&Z + 𝑃&Z𝑃KZ + 𝑃$Z𝑃KZ)
+ α1123(𝑃$Z𝑃&&𝑃K& + 𝑃&Z𝑃$&𝑃K& + 𝑃KZ𝑃&&𝑃$&)																																																																														(A1) 

𝑓789:8; = α1(𝑃$& + 𝑃&& + 𝑃K&) + α11(𝑃$Z + 𝑃&Z + 𝑃KZ) + α12(𝑃$&𝑃&& + 𝑃&&𝑃K& + 𝑃$&𝑃K&)
+ α111(𝑃$[ + 𝑃&[ + 𝑃K[) + α112[𝑃$&(𝑃&Z + 𝑃KZ) + 𝑃&&(𝑃$Z + 𝑃KZ) + 𝑃K&(𝑃$Z + 𝑃&Z)]
+ α123𝑃$&𝑃&&𝑃K&																																																																																																																													(A2) 

𝑓789:8; = α1(𝑃$& + 𝑃&& + 𝑃K&) + α11(𝑃$Z + 𝑃&Z + 𝑃KZ) + α12(𝑃$&𝑃&& + 𝑃&&𝑃K& + 𝑃$&𝑃K&) + 𝛽1(𝑞$& + 𝑞&& + 𝑞K&)
+ 𝛽11(𝑞$Z + 𝑞&Z + 𝑞KZ) + 𝛽12(𝑞$&𝑞&& + 𝑞&&𝑞K& + 𝑞$&𝑞K&) − 𝑡11(𝑃$&𝑞$& + 𝑃&&𝑞&& + 𝑃K&𝑞K&)
− 𝑡12(𝑃$&(𝑞&& + 𝑞K&) + 𝑃&&(𝑞$& + 𝑞K&) + 𝑃K&(𝑞$& + 𝑞&&)) − 𝑡ZZ(𝑃$𝑃&𝑞$𝑞& + 𝑃&𝑃K𝑞&𝑞K
+ 𝑃$𝑃K𝑞$𝑞K)																																																																																																																															(A3) 

Note that the 𝑓789:8;  of the SrTiO3 also includes the terms that describe the coupling between the 
polarization 𝑃! the structural order parameter 𝑞! (i=1,2,3) which represents the linear oxygen displacement 
associated with oxygen octahedra rotation [49].  

The 𝑓<=8>? of the pseudocubic BaTiO3, PbTiO3, and SrTiO3 films can be expanded as, 

𝑓<=8>? =
1
2
𝑐$$(𝑒$$& + 𝑒&&& + 𝑒KK& ) + 𝑐$&(𝑒$$𝑒&& + 𝑒$$𝑒KK + 𝑒&&𝑒KK) + 2𝑐ZZ(𝑒$&& + 𝑒$K& + 𝑒&K& ), (A4) 

where the 𝑐$$, 𝑐$&, and 𝑐ZZ are the independent components of the elastic stiffness. The 𝑒!' = 𝜀!' − 𝜀!'"  
(i,j=1,2) is the elastic strain, where 𝜀!' is the total strain and 𝜀!'"  is the stress-free (eigen) strain. For BaTiO3 
and PbTiO3, one has, 

𝜀$$" = 𝑄$$𝑃$& + 𝑄$&(𝑃&& + 𝑃K&), 𝜀&&" = 𝑄$$𝑃&& + 𝑄$&(𝑃$& + 𝑃K&), 𝜀KK" = 𝑄$$𝑃K& + 𝑄$&(𝑃$& + 𝑃&&);	(A5a) 

𝜀&K" = 𝑄ZZ𝑃&𝑃K, 𝜀$K" = 𝑄ZZ𝑃$𝑃K, 𝜀$&" = 𝑄ZZ𝑃$𝑃&,																																								(A5b) 

where 𝑄$$, 𝑄$&, and 𝑄ZZ are the electrostrictive coefficients. For SrTiO3, one has,  

𝜀$$" = 𝑄$$𝑃$& + 𝑄$&(𝑃&& + 𝑃K&) + Λ$$𝑞$& + Λ$&(𝑞&& + 𝑞K&),																																(A6a) 

𝜀&&" = 𝑄$$𝑃&& + 𝑄$&(𝑃$& + 𝑃K&) + Λ$$𝑞&& + Λ$&(𝑞$& + 𝑞K&),																																(A6b) 

𝜀KK" = 𝑄$$𝑃K& + 𝑄$&(𝑃$& + 𝑃&&) + Λ$$𝑞K& + Λ$&(𝑞$& + 𝑞&&),																																	(A6c) 

𝜀&K" = 𝑄ZZ𝑃&𝑃K + ΛZZ𝑞&𝑞K, 𝜀$K" = 𝑄ZZ𝑃$𝑃K + ΛZZ𝑞$𝑞K, 𝜀$&" = 𝑄ZZ𝑃$𝑃& + ΛZZ𝑞$𝑞&,			(A6d) 

where Λ$$, Λ$&, and ΛZZ are the linear quadratic coupling coefficient between the strain and structural 
order parameter. At the initial equilibrium state, the total strain 𝜀!' is determined based on the mechanical 
boundary condition. In monodomain (𝑃! and 𝑞! are spatially homogeneous), stress-free bulk crystals, 
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𝜀!' = 𝜀!'" . In biaxially strained films, as indicated in Sect. II, 𝜀$$ = 𝜀$$IJ>, 𝜀&& = 𝜀&&IJ>, 𝜀KK =
− +72
+77
H𝜀$$IJ> + 𝜀&&IJ> − 𝜀$$" − 𝜀&&" J + 𝜀KK" , and 𝜀&K = 𝜀&K" , 𝜀$K = 𝜀$K" , 𝜀$& = 0.  

Table A1. List of the coefficients in the Landau and elastic free energy densities of BaTiO3, PbTiO3, and SrTiO3. 
The temperature has a unit of °C for BaTiO3 and PbTiO3 and a unit of K for SrTiO3. 

Coefficients BaTiO3 PbTiO3 SrTiO3 

α1 (N m2 C-2) 4.124 × 10"(𝑇 −
115)  [50] 3.8 × 10"(𝑇 − 479)  [51] 

4.05 × 10# 1coth 1"$
%
6 −

coth("$
&'
)6  [52] 

α11 (N m6 C-4) −2.097 × 10(  [50] −0.73 × 10(  [51] 2.899 × 10)  [41] 
α12 (N m6 C-4) 7.974 × 10(  [50] 7.5 × 10(  [51] 7.766 × 10)  [49] 
α111 (N m10 C-6) 1.294 × 10)  [50] 2.6 × 10)  [51] 0 
α112 (N m10 C-6) −1.950 × 10)  [50] 6.1 × 10(  [51] 0 
α123 (N m10 C-6) −2.500 × 10)  [50] −37 × 10(  [51] 0 
α1111 (N m14 C-8) 3.863 × 10*'  [50] 0 0 
α1112 (N m14 C-8) 2.529 × 10*'  [50] 0 0 
α1122 (N m14 C-8) 1.637 × 10*'  [50] 0 0 
α1123 (N m14 C-8) 1.367 × 10*'  [50] 0 0 

𝛽1 (N m-6) 0 0 

1.32 ×
10+) 1coth 1*$"

%
6 −

coth 1*$"
*'"
66  [52] 

𝛽11 (N m-6) 0 0 1.688 × 10"'  [52] 
𝛽12 (N m-6) 0 0 3.879 × 10"'  [52] 
𝑡** (N m2 C-2) 0 0 −1.902 × 10+)  [41] 
𝑡*+ (N m2 C-2) 0 0 −1.014 × 10+)  [52] 
𝑡$$ (N m2 C-2) 0 0 5.865 × 10+)  [52] 
𝑐** (GPa) 178  [50] 174.6  [51] 336  [52] 
𝑐*+ (GPa) 96.4  [50] 79.37  [51] 107  [52] 
𝑐$$ (GPa) 122  [50] 111  [51] 127  [52] 
Q11 (m4 C-2) 0.1  [50] 0.089  [51] 0.0536  [52] 
Q12 (m4 C-2) -0.034  [50] -0.026  [51] −0.0154  [52] 
Q$$ (m4 C-2) 0.029  [50] 0.03375  [51] 0.00472  [52] 
Λ** (N C-2) 0 0 8.820 × 10*(  [52] 
Λ*+ (N C-2) 0 0 −7.774 × 10*(  [52] 
Λ$$ (N C-2) 0 0 −4.528 × 10*(  [52] 

For trigonal crystals LiTaO3 and LiNbO3 that are uniaxial ferroelectrics, the Landau free energy density is 
written as  [36],  

𝑓789:8; = −
𝛼$
2
𝑃K& +

𝛼&
4
𝑃KZ +

𝛼K
2
(𝑃$& + 𝑃&&),																																												(A7) 

Following  [36], the elastic energy density 𝑓<=8> of the LiTaO3 and LiNbO3 is written, in contrast with Eqs. 
(A4-6), using Voigt notation, i.e.,  

𝑓<=8> = 𝛽$𝜀K& + 𝛽&(𝜀$ + 𝜀&)& + 𝛽K[(𝜀$ − 𝜀&)& + 𝜀[&] + 𝛽Z𝜀K(𝜀$ + 𝜀&) + 𝛽]H𝜀Z& + 𝜀]&J
+ 𝛽[[(𝜀$ − 𝜀&)𝜀Z + 𝜀]𝜀[] + 𝛾$(𝜀$ + 𝜀&)𝑃K& + 𝛾&𝜀K𝑃K& + 𝛾K[(𝜀$ − 𝜀&)𝑃&𝑃K + 𝜀[𝑃$𝑃K]
+ 𝛾Z(𝜀]𝑃$𝑃K + 𝜀Z𝑃&𝑃K) + 𝛾](𝜀$ + 𝜀&)(𝑃$& + 𝑃&&) + 𝛾[𝜀K(𝑃$& + 𝑃&&)
+ 𝛾^[(𝜀$ − 𝜀&)(𝑃$& − 𝑃&&) + 2𝜀[𝑃$𝑃&] + 𝛾\[𝜀Z(𝑃$& − 𝑃&&) + 2𝜀]𝑃$𝑃&],																									(A8) 
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where the 𝜀!  here are the total strain. For monodomain, stress-free bulk crystals, 𝜀!  can be obtained by 
solving the mechanical boundary condition 𝜎' = 𝜕𝑓<=8> 𝜕𝜀'� = 0, j=1,2,3,4,5,6, given by, 

𝜀$ = Γ$𝑃$& + Γ&𝑃&& + ΓK𝑃K& + ΓZ𝑃&𝑃K, 𝜀& = Γ&𝑃$& + Γ$𝑃&& + ΓK𝑃K& − ΓZ𝑃&𝑃K,																		(A9a) 

𝜀K = Γ]𝑃$& + Γ]𝑃&& + Γ[𝑃K&, 𝜀Z = Γ̂ 𝑃$& − Γ̂ 𝑃&& + Γ\𝑃&𝑃K,																																	(A9b) 

𝜀] = Γ\𝑃$𝑃K + 2Γ̂ 𝑃$𝑃&, 𝜀[ = 2ΓZ𝑃$𝑃K + Γ_𝑃$𝑃&,																																										(A9c) 

Here the coefficients Γ!  are Γ$ =
S7V/\S3S8T8W&S92T8/\S2S8T:WZS2S9T;YWS<VZS3S8T9/S92T9W&S<S8T:/S<S9T;Y

&(ZS7S2/S<2)(ZS3S8/S92)
, 

Γ& =
S7V/\S3S8T8W&S92T8W\S2S8T:/ZS2S9T;YWS<VZS3S8T9/S92T9/&S<S8T:WS<S9T;Y

&(ZS7S2/S<2)(ZS3S8/S92)
,	 ΓK =

/&S7T7WS<T2
&(ZS7S2/S<2)

, ΓZ =
/&S8T3WS9T<
&(ZS3S8/S92)

,	Γ] =
S<T8/&S2T9
ZS7S2/S<2

,	Γ[ =
S<T7/&S2T2
ZS7S2/S<2

,	Γ̂ = S9T:/&S3T;
ZS3S8/S92

,	Γ\ =
S9T3/&S3T<
ZS3S8/S92

,	Γ_ =
&S9T;/ZS8T:
ZS3S8/S92

.	

Table A2. List of the coefficients in the Landau and elastic free energy densities of LiTaO3 and LiNbO3 

Coefficients LiTaO3 LiNbO3 
α1 (N m2 C-2) 1.25 × 10!(fitted from  [34]) 2.012 × 10!  [36] 
α" (N m2 C-2) 6 × 10# (fitted from  [34]) 3.608 × 10!  [36] 
α$ (N m2 C-2) 1.3 × 10! (fitted from  [34]) 1.345 × 10!  [36] 
𝛽1 (N m-2) 13.55 × 10%&  [36] 12.25 × 10%&  [36] 
𝛽" (N m-2) 6.475 × 10%&  [36] 6.4 × 10%&  [36] 
𝛽$ (N m-2) 4.925 × 10%&  [36] 3.75 × 10%&  [36] 
𝛽' (N m-2) 7.4 × 10%&  [36] 7.5 × 10%&  [36] 
𝛽( (N m-2) 4.8 × 10%&  [36] 3 × 10%&  [36] 
𝛽) (N m-2) −1.2 × 10%&  [36] 0.9 × 10%&  [36] 
𝛾1 (N m2 C-2) −0.202 × 10!  [36] 0.216 × 10!  [36] 
𝛾" (N m2 C-2) 1.317 × 10!  [36] 1.848 × 10!  [36] 
𝛾$ (N m2 C-2) −2.824 × 10!  [36] −0.33 × 10!  [36] 
𝛾' (N m2 C-2) 4.992 × 10!  [36] 3.9 × 10!  [36] 

 

Table A1 and A2 list the coefficients in the Landau and elastic free energy densities of the four ferroelectric 
materials. The mass coefficient 𝜇 = 1.35 × 10/$\ J m s2 C-2 for BaTiO3 [53], 𝜇 = 1.59 × 10/$\ J m s2 C-

2 for PbTiO3 [53], 𝜇 = 22 × 10/$\  J m s2 C-2 for SrTiO3 [54], 𝜇 = 1.81 × 10/$\  J m s2 C-2 for 
LiNbO3 [55]. The 𝜇 value of the LiTaO3, which is not yet available in literature to our knowledge, is set to 
be the same as the LiNbO3. 
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Appendix B. Linear and nonlinear susceptibility derivation by perturbation method 

Given that 𝐸!789:8;(𝑡) = 𝐸!789:8;H𝑃!"J + ∆𝐸!789:8;(𝑡) , 𝐸!<=8>?(𝑡) = 𝐸!<=8>?H𝑃!"J + ∆𝐸!<=8>?(𝑡) , 𝐸!: =
𝐸!:H𝑃!"J + ∆𝐸!:(𝑡) , and that 𝐸!789:8;H𝑃!"J + 𝐸!<=8>?H𝑃!"J + 𝐸!:H𝑃!"J = 0  in the initial equilibrium state 
(𝑃! = 𝑃!"), the equation of motion for polarization (Eq. (3)) can be rewritten as,  

μ
𝜕&∆𝑃!
𝜕𝑡&

+𝛾!
𝜕∆𝑃!
𝜕𝑡

= ∆𝐸!789:8; + ∆𝐸!<=8>? + ∆𝐸!: + 𝐸! + 𝐸!@8:, 𝑖 = 1,2,3.																					(B1) 

where ∆𝐸!789:8; and ∆𝐸!<=8>? can be expanded through Taylor series expansion, i.e., ∆𝐸!789:8; = 𝐴!'∆𝑃' +
$
&
𝐴!'*∆𝑃'∆𝑃* +⋯, ∆𝐸!<=8>? = 𝐵!'∆𝑃' +

$
&
𝐵!'*∆𝑃'∆𝑃* +⋯, where the expressions of 𝐴!' , 𝐴!'* , 𝐵!' , and 

𝐵!'* are provided in Sec. II. Since ∆𝐸!: = (0, 0, − $
E/E0

∆𝑃F) and 𝐸!@8: = (− D/
&E/+

APx
A2
, − D/

&E/+
APy
A2
, 0), and if 

only keeping the first two terms in the expanded expressions of ∆𝐸!789:8; and ∆𝐸!<=8>?, Eq. (B1) can be 
further rewritten into the matrix form as shown by Eq. (3), reproduced below, 

μ
𝜕&∆𝐏
𝜕𝑡&

+𝛄.66
𝜕∆𝐏
𝜕𝑡

+K∆𝐏 + 𝐂∆𝐏NN = 𝐄.																																																	(B2) 

To solve Eq. (B2) by the perturbation method, we begin by replacing 𝐄 with 𝜆𝐄 ,where 𝜆 is a parameter 
that characterizes the strength of the perturbation and ranges continuously between zero and one and will 
be set equal to one at the end of calculation. In the framework of perturbation method, the solution of Eq. 
(B2) can be written as ∆𝐏 = 𝜆∆𝐏($) + 𝜆&∆𝐏(&) + 𝜆K∆𝐏(K) +⋯, where ∆𝐏($) is the lowest-order (linear) 
contribution to the ∆𝐏, calculated as ∆𝐏($) = ∆𝑃!7J9.8@ = 𝜅0𝜒!'

($)𝐸' , ∆𝐏(&) is the second-order nonlinear 

term of nonlinear polarization oscillation, calculated as ∆𝐏(&) = 𝜅0𝜒!'*
(&)𝐸'𝐸*, and so forth.  

It is worth emphasizing that the premise of the perturbation theory in the present application is that the 
center of polarization oscillation is always at 𝑃! = 𝑃!", which is only valid when the amplitude of the 𝐸!J9L 
is not too large. Under strong excitation, the d.c. polarization shift ∆𝑃!

(&)(0), as discussed in the text after 
Eq. (5), would be large and therefore shifts the center of polarization oscillation from 𝑃!" to 𝑃!" + ∆𝑃!

(&)(0). 
Alternatively, the polarization dynamics under strong excitation can be obtained by numerical solutions 
from a dynamical phase-field model with coupled strain-polarization-EM wave dynamics [22,23]. With 
this in mind, we proceed by writing the term ∆𝐏NN as: 

∆𝐏NN = (�/𝜆!∆𝑃$
(!)

&

!Q$

�

&

, �/𝜆!∆𝑃&
(!)

&

!Q$

�

&

, �/𝜆!∆𝑃K
(!)

&

!Q$

�

&

, 

	2 �/𝜆!∆𝑃&
(!)

&

!Q$

��/𝜆!∆𝑃K
(!)

&

!Q$

� , 2�/𝜆!∆𝑃$
(!)

&

!Q$

��/𝜆!∆𝑃K
(!)

&

!Q$

� , 2�/𝜆!∆𝑃$
(!)

&

!Q$

��/𝜆!∆𝑃&
(!)

&

!Q$

�)` 

= 𝜆&[∆𝑃$
($)&, ∆𝑃&

($)&, ∆𝑃K
($)&, 2∆𝑃&

($)∆𝑃K
($), 2∆𝑃$

($)∆𝑃K
($), 2∆𝑃$

($)∆𝑃&
($)]` 

+𝜆K[2∆𝑃$
($)∆𝑃$

(&), 2∆𝑃&
($)∆𝑃&

(&), 2∆𝑃K
($)∆𝑃K

(&), 

2∆𝑃&
($)∆𝑃K

(&) + 2∆𝑃K
($)∆𝑃&

(&), 2∆𝑃$
($)∆𝑃K

(&) + 2∆𝑃K
($)∆𝑃$

(&), 2∆𝑃$
($)∆𝑃&

(&) + 2∆𝑃&
($)∆𝑃$

(&)]` +⋯ 
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= 𝜆&∆𝐏NN
($) + 𝜆K∆𝐏NN

($,&) +⋯																																																					(B3) 

Plugging in the expression ∆𝐏 = 𝜆∆𝐏($) + 𝜆&∆𝐏(&) + 𝜆K∆𝐏(K) +⋯ and Eq. (B3) into Eq. (B2), Eq.(B2) 
can be rewritten into a form given by 𝜆(Eq. 𝑢$)+	𝜆&(Eq. 𝑢&) + 𝜆K(Eq. 𝑢K) + ⋯ = 𝜆	𝐄J9L. The solution to 
this equation requires that Eq. 𝑢$ = 𝐄J9L and that Eq. 𝑢( = 0 (n=2,3,4…), which can be expanded into a 
series of linear equations as follows, 

μ
𝜕&∆𝐏($)

𝜕𝑡&
+𝛄.66

𝜕∆𝐏($)

𝜕𝑡
+K∆𝐏($) = 𝐄J9L																																												(B4a) 

μ
𝜕&∆𝐏(&)

𝜕𝑡&
+𝛄.66

𝜕∆𝐏(&)

𝜕𝑡
+K∆𝐏(&) + 𝐂∆𝐏NN

($) = 0																																				(B4b) 

μ
𝜕&∆𝐏(K)

𝜕𝑡&
+𝛄.66

𝜕∆𝐏(K)

𝜕𝑡
+K∆𝐏(K) + 𝐂∆𝐏NN

($,&) = 0																																				(B4c) 

Under a single-frequency continuous incident THz wave in the thin slab limit, 𝐸!J9L(𝑡) = 𝐸!
J9L,"𝑒/𝐢12, one 

can write ∆𝐏($)=∆𝐏"𝑒𝐢(/12WX) as a steady-state solution, where the 𝜑 is the phase difference between the 
incident THz wave and the excited polarization wave. Accordingly, Eq. (B4a) can be rewritten as,  

−μ𝜔&∆𝐏($) − 𝐢𝛄.66𝜔∆𝐏($) +K∆𝐏($) = 𝐄J9L.																																														(B5) 

Rearranging Eq. (B5), one has ∆𝐏($) = (K− μ𝜔& − 𝐢𝛄.66𝜔)/$𝐄J9L = 𝜅0𝜒!'
($)𝐸'J9L , from which the 

expression of 𝜒!'
($) can be derived, as shown by Eq. (4) in Sect. II.  

Substituting the steady-state solution of ∆𝐏($) into Eq. (B4b) allows for deriving the steady-state solution 
of ∆𝐏(&) and therefore the 𝜒!'*

(&). To do this, we first expand the terms that are contained in the expression 

∆𝐏NN
($) as follows,  

∆𝑃'
($)(𝜔)∆𝑃*

($)(𝜔) = 𝜅"&o𝜒')o𝐸)
J9L," cosH𝜔𝑡 + 𝜑')J|𝜒*(| 𝐸(

J9L," cosH𝜔𝑡 + 𝜑*(J 

= 𝜅"&Ho𝜒')o𝐸)
J9L,"JH|𝜒*(|𝐸(

J9L,"J �
1
2
cosH𝜑') − 𝜑*(J +

1
2
cosH2𝜔𝑡 + 𝜑') + 𝜑*(J� 

≡
𝜅"&

2
𝜒')
($)𝜒*(

($),∗𝐸)
J9L,"𝐸(

J9L," +
𝜅"&

2
𝜒')
($)𝜒*(

($)𝐸)
J9L,"𝐸(

J9L,"𝑒/𝐢&12 = ∆𝐏(&)(0) + ∆𝐏(&)(2𝜔),											(B6) 

which therefore contains both a d.c. shift ∆𝐏(&)(0) and a second-order harmonic component ∆𝐏(&)(2𝜔). 
Here 𝜑') refers to the phase difference between the oscillatory polarization component ∆𝑃'

($)(𝑡) and the 

excitation electric field component 𝐸)J9L , and so forth for the 𝜑*( . 𝜒*(
($),∗ = 𝜒*(

($),-. − 𝐢𝜒*(
($),NI  is the 

conjugation of the complex susceptibility of 𝜒*(
($) =𝜒*(

($),-. + 𝐢𝜒*(
($),NI . Plugging both the steady-state 

solution of ∆𝐏($) and Eq. (B6) into Eq. (B4b), and if only considering the ∆𝐏(&)(2𝜔), Eq. (B4b) can be 
rewritten as, 

−μ4𝜔"∆𝐏(") − 𝐢γ,,-..2𝜔∆𝐏(") +K∆𝐏(") = −
𝜅02

2 7 𝐶,/0 9 7 𝜒𝑗𝑚
(1)𝐸1

234,&

/,16%,",$

;< 7 𝜒𝑘𝑛
(1)𝐸7

234,&

0,76%,",$

= (B7) 
/,06%,",$
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Thus, the SHG susceptibility 𝜒!'*
(&)(2𝜔) can be expanded as, 

𝜒!'*
(&)(2𝜔,𝜔,𝜔) = −𝜅"& / 𝐶RST𝜒!R

(1)(2𝜔)𝜒S'
(1)(𝜔)𝜒T*

(1)(𝜔)
R,S,TQ$,&,K

	 , 𝑖, 𝑗, 𝑘 = 1,2,3 

= �
𝜒$$$
(&) 𝜒$&&

(&) 𝜒$KK
(&) 𝜒$&K

(&) 𝜒$$K
(&) 𝜒$$&

(&)

𝜒&$$
(&) 𝜒&&&

(&) 𝜒&KK
(&) 𝜒&&K

(&) 𝜒&$K
(&) 𝜒&$&

(&)

𝜒K$$
(&) 𝜒K&&

(&) 𝜒KKK
(&) 𝜒K&K

(&) 𝜒K$K
(&) 𝜒K$&

(&)
� 

= −𝜅02 >
𝜒%%
(%)(2𝜔) 𝜒%"

(%)(2𝜔) 𝜒%$
(%)(2𝜔)

𝜒"%
(%)(2𝜔) 𝜒""

(%)(2𝜔) 𝜒"$
(%)(2𝜔)

𝜒$%
(%)(2𝜔) 𝜒$"

(%)(2𝜔) 𝜒$$
(%)(2𝜔)

B . C
𝐶111 𝐶122 𝐶133 𝐶123 𝐶113 𝐶112
𝐶211 𝐶222 𝐶233 𝐶223 𝐶213 𝐶212
𝐶311 𝐶322 𝐶333 𝐶323 𝐶313 𝐶312

D ∙ 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜒$$

($)&(𝜔) 𝜒$&
($)&(𝜔) 𝜒$K

($)&(𝜔) 2𝜒$&
($)(𝜔)𝜒$K

($)(𝜔)

𝜒&$
($)&(𝜔) 𝜒&&

($)&(𝜔) 𝜒&K
($)&(𝜔) 2𝜒&&

($)(𝜔)𝜒&K
($)(𝜔)

𝜒K$
($)&(𝜔) 𝜒K&

($)&(𝜔) 𝜒KK
($)&(𝜔) 2𝜒K&

($)(𝜔)𝜒KK
($)(𝜔)

2𝜒&$
($)(𝜔)𝜒K$

($)(𝜔) 2𝜒&&
($)(𝜔)𝜒K&

($)(𝜔) 2𝜒&K
($)(𝜔)𝜒KK

($)(𝜔) 2𝜒&&
($)(𝜔)𝜒KK

($)(𝜔) + 2𝜒&K
($)(𝜔)𝜒K&

($)(𝜔)
2𝜒$$

($)(𝜔)𝜒K$
($)(𝜔) 2𝜒$&

($)(𝜔)𝜒K&
($)(𝜔) 2𝜒$K

($)(𝜔)𝜒KK
($)(𝜔) 2𝜒$&

($)(𝜔)𝜒KK
($)(𝜔) + 2𝜒$K

($)(𝜔)𝜒K&
($)(𝜔)

2𝜒$$
($)(𝜔)𝜒&$

($)(𝜔) 2𝜒$&
($)(𝜔)𝜒&&

($)(𝜔) 2𝜒$K
($)(𝜔)𝜒&K

($)(𝜔) 2𝜒$&
($)(𝜔)𝜒&K

($)(𝜔) + 2𝜒$K
($)(𝜔)𝜒&&

($)(𝜔)

 

2𝜒$$
($)(𝜔)𝜒$K

($)(𝜔) 2𝜒$$
($)(𝜔)𝜒$&

($)(𝜔)
2𝜒&$

($)(𝜔)𝜒&K
($)(𝜔) 2𝜒&$

($)(𝜔)𝜒&&
($)(𝜔)

2𝜒K$
($)(𝜔)𝜒KK

($)(𝜔) 2𝜒K$
($)(𝜔)𝜒K&

($)(𝜔)
2𝜒&$

($)(𝜔)𝜒KK
($)(𝜔) + 2𝜒&K

($)(𝜔)𝜒K$
($)(𝜔) 2𝜒&$

($)(𝜔)𝜒K&
($)(𝜔) + 2𝜒&&

($)(𝜔)𝜒K$
($)(𝜔)

2𝜒$$
($)(𝜔)𝜒KK

($)(𝜔) + 2𝜒$K
($)(𝜔)𝜒K$

($)(𝜔) 2𝜒$$
($)(𝜔)𝜒K&

($)(𝜔) + 2𝜒$&
($)(𝜔)𝜒K$

($)(𝜔)
2𝜒$$

($)(𝜔)𝜒&K
($)(𝜔) + 2𝜒$K

($)(𝜔)𝜒&$
($)(𝜔) 2𝜒$$

($)(𝜔)𝜒&&
($)(𝜔) + 2𝜒$&

($)(𝜔)𝜒&$
($)(𝜔)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

											(B8) 

The d.c. shift component ∆𝐏(&)(0) can be derived from the following equation, 

K∆𝐏(&)(0) = −
𝜅"&

2
/ 𝐶!'* � / 𝜒')

($)𝐸)
J9L,"

i,IQ$,&,K

�� / 𝜒*(
($),∗𝐸9

J9L,"

*,(Q$,&,K

� .          (B9) 
',*Q$,&,K

 

Accordingly, the nonlinear electric susceptibility 𝜒!'*
(&)(0) can be derived as, 

𝜒!'*
(&)(0, 𝜔,−𝜔) = −𝜅"& / 𝐶RST𝜒!R

(1)(0)𝜒S'
(1)(𝜔)𝜒T*

(1),∗(𝜔)
R,S,TQ$,&,K

, 𝑖, 𝑗, 𝑘 = 1,2,3 

= �
𝜒$$$
(&) 𝜒$&&

(&) 𝜒$KK
(&) 𝜒$&K

(&) 𝜒$$K
(&) 𝜒$$&

(&)

𝜒&$$
(&) 𝜒&&&

(&) 𝜒&KK
(&) 𝜒&&K

(&) 𝜒&$K
(&) 𝜒&$&

(&)

𝜒K$$
(&) 𝜒K&&

(&) 𝜒KKK
(&) 𝜒K&K

(&) 𝜒K$K
(&) 𝜒K$&

(&)
� 
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= −𝜅02 >
𝜒%%
(%)(0) 𝜒%"

(%)(0) 𝜒%$
(%)(0)

𝜒"%
(%)(0) 𝜒""

(%)(0) 𝜒"$
(%)(0)

𝜒$%
(%)(0) 𝜒$"

(%)(0) 𝜒$$
(%)(0)

B ∙ C
𝐶111 𝐶122 𝐶133 𝐶123 𝐶113 𝐶112
𝐶211 𝐶222 𝐶233 𝐶223 𝐶213 𝐶212
𝐶311 𝐶322 𝐶333 𝐶323 𝐶313 𝐶312

D ∙ 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ |𝜒11

(1)(𝜔)|2 |𝜒12
(1)(𝜔)|2 |𝜒13

(1)(𝜔)|2 2𝜒12
(1)(𝜔)𝜒13

(1),∗(𝜔)

|𝜒21
(1)(𝜔)|2 |𝜒22

(1)(𝜔)|2 |𝜒23
(1)(𝜔)|2 2𝜒22

(1)(𝜔)𝜒23
(1),∗(𝜔)

|𝜒31
(1)(𝜔)|2 |𝜒32

(1)(𝜔)|2 |𝜒33
(1)(𝜔)|2 2𝜒32

(1)(𝜔)𝜒33
(1),∗(𝜔)

2𝜒21
(1)(𝜔)𝜒31

(1),∗(𝜔) 2𝜒22
(1)(𝜔)𝜒32

(1),∗(𝜔) 2𝜒23
(1)(𝜔)𝜒33

(1),∗(𝜔) 2𝜒22
(1)(𝜔)𝜒33

(1),∗(𝜔)+ 2𝜒23
(1)(𝜔)𝜒32

(1),∗(𝜔)

2𝜒11
(1)(𝜔)𝜒31

(1),∗(𝜔) 2𝜒12
(1)(𝜔)𝜒32

(1),∗(𝜔) 2𝜒13
(1)(𝜔)𝜒33

(1),∗(𝜔) 2𝜒12
(1)(𝜔)𝜒33

(1),∗(𝜔)+ 2𝜒13
(1)(𝜔)𝜒32

(1),∗(𝜔)

2𝜒11
(1)(𝜔)𝜒21

(1),∗(𝜔) 2𝜒12
(1)(𝜔)𝜒22

(1),∗(𝜔) 2𝜒13
(1)(𝜔)𝜒23

(1),∗(𝜔) 2𝜒12
(1)(𝜔)𝜒23

(1),∗(𝜔)+ 2𝜒13
(1)(𝜔)𝜒22

(1),∗(𝜔)

 

2𝜒11
(1)(𝜔)𝜒13

(1),∗(𝜔) 2𝜒11
(1)(𝜔)𝜒12

(1),∗(𝜔))

2𝜒21
(1)(𝜔)𝜒23

(1),∗(𝜔) 2𝜒21
(1)(𝜔)𝜒22

(1),∗(𝜔)

2𝜒31
(1)(𝜔)𝜒33

(1),∗(𝜔) 2𝜒31
(1)(𝜔)𝜒32

(1),∗(𝜔)

2𝜒21
(1)(𝜔)𝜒33

(1),∗(𝜔)+ 2𝜒23
(1)(𝜔)𝜒31

(1),∗(𝜔) 2𝜒21
(1)(𝜔)𝜒32

(1),∗(𝜔)+ 2𝜒22
(1)(𝜔)𝜒31

(1),∗(𝜔)

2𝜒11
(1)(𝜔)𝜒33

(1),∗(𝜔)+ 2𝜒13
(1)(𝜔)𝜒31

(1),∗(𝜔) 2𝜒11
(1)(𝜔)𝜒32

(1),∗(𝜔)+ 2𝜒12
(1)(𝜔)𝜒31

(1),∗(𝜔)

2𝜒11
(1)(𝜔)𝜒23

(1),∗(𝜔)+ 2𝜒13
(1)(𝜔)𝜒21

(1),∗(𝜔) 2𝜒11
(1)(𝜔)𝜒22

(1),∗(𝜔)+ 2𝜒12
(1)(𝜔)𝜒21

(1),∗(𝜔)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

						(B10) 

It is noteworthy that 𝜒!'*
(&)(0, 𝜔,−𝜔) in Eq. (B10), which describes the rectification of two THz waves with 

the frequency 𝜔 and -𝜔, is conceptually different from the second-order dc nonlinear susceptibility 𝜒!'*
(&),:L. 

The latter can be obtained by letting 𝜔=0 in Eq. (B8). Like the expression of 𝜒!'*
(&)(2𝜔,𝜔,𝜔) in Eq. (B8), 

the expression of 𝜒!'*
(&)(0, 𝜔,−𝜔) is only valid when the amplitude of the 𝐸!J9L is not too large. On one hand, 

the derivation of	𝜒!'*
(&)(0, 𝜔,−𝜔) assumes that the center of polarization oscillation is always at 𝑃! = 𝑃!" as 

the premise of the perturbation theory. On the other hand, the resulting d.c. shift component 
∆𝐏(&)(0, 𝜔,−𝜔) describes a shift of the oscillation center away from the 𝑃!", which would cause sizable 
change in the coefficient matrices K and C if the magnitude of ∆𝐏(&)(0, 𝜔,−𝜔) is sufficiently large. 

If the incident electrical field contains two frequencies 𝜔(  and 𝜔)  (𝜔( > 𝜔) ), the linear polarization 
oscillation ∆𝐏($) = ∆𝐏($)(𝜔() + ∆𝐏($)(𝜔)). Substituting the steady-state different frequencies solution 
∆𝐏($)(𝜔() and ∆𝐏($)(𝜔)) into Eq. (B4b) allows for deriving the steady-state solution of ∆𝐏(&)(𝜔( ±𝜔)) 
and therefore the 𝜒!'*

(&)(𝜔( ±𝜔), 𝜔(, 𝜔)). To do this, we likewise expand the terms that are contained in 

the expression ∆𝐏NN
($) into the following expression,  

∆𝑃'
($)(𝜔()∆𝑃*

($)(𝜔)) = 𝜅"&o𝜒')o𝐸)
J9L," cosH𝜔(𝑡 + 𝜑')J|𝜒*(| 𝐸(

J9L," cosH𝜔)𝑡 + 𝜑*(J 

= 𝜅&"FG𝜒/1G𝐸1
234,&HF|𝜒07|𝐸7

234,&H J
1
2 cosF(𝜔7 −𝜔1)𝑡 + 𝜑

/1 − 𝜑07H +
1
2 cosF(𝜔7 +𝜔1)𝑡 + 𝜑

/1 + 𝜑07HP 

≡
𝜅"&

2
𝜒')
($)𝜒*(

($),∗𝐸)
J9L,"𝐸(

J9L,"𝑒/𝐢(1#/1$)2 +
𝜅"&

2
𝜒')
($)𝜒*(

($)𝐸)
J9L,"𝐸(

J9L,"𝑒/𝐢(1#W1$)2 

= ∆𝐏(&)(𝜔( −𝜔)) + ∆𝐏(&)(𝜔( +𝜔)),																																																	(B11) 



 18 

Following similar procedures as the derivation of 𝜒!'*
(&)(2𝜔) and 𝜒!'*

(&)(0), we can derive that, 

𝜒./0
(+)(𝜔3 +𝜔4, 𝜔3, 𝜔4) = −𝜅'+ A 𝐶567𝜒.5

(*)(𝜔3 +𝜔4)[𝜒6/
(*)(𝜔3)𝜒70

(*)(𝜔4) + 𝜒6/
(*)(𝜔4)𝜒70

(*)(𝜔3)]
5,6,78*,+,&

	(B12) 

𝜒./0
(+)(𝜔3 −𝜔4, 𝜔3, 𝜔4) = −𝜅'+ A 𝐶567𝜒.5

(*)(𝜔3 −𝜔4)[𝜒6/
(*)(𝜔3)𝜒70

(*),∗(𝜔4)
5,6,78*,+,&

+ 𝜒6/
(*),∗(𝜔4)𝜒70

(*)(𝜔3)]	(B13) 

 

Appendix C Thermodynamic validation and symmetry validation 

Thermodynamic Validation 

Let us first show that the dc nonlinear susceptibility 𝜒!'*
(&),:L, which can be obtained by letting 𝜔=0 in Eq. 

(B8), can equivalently be obtained from thermodynamic analyses. To this end, we consider a monodomain 
ferroelectric material, which has an electric Helmholtz free energy density given as, 

𝑓H𝑇, 𝑃! , 𝐸! , 𝜀!'J = 𝑔"(𝑇) + 𝑓789:8;(𝑇, 𝑃!) −
1
2
𝜅"𝜅j𝐸!𝐸' − 𝐸!𝑃! + 𝑓<=8>?H𝜀!' , 𝑃!J,						(C1) 

where 𝑔"(𝑇) is the Gibbs free energy density of the initial nonequilibrium state with zero spontaneous 
polarization; the Landau free energy density 𝑓789:8;(𝑇, 𝑃!)  is a function of temperature and ionic 
polarization; the elastic energy density 𝑓<=8>?H𝜀!' , 𝑃!J  is a function of the total strain 𝜀!'  and ionic 
polarization, where the total strain 𝜀!'  depends on the mechanical boundary condition of the system. If 
omitting the depolarization field, the total electric field 𝐸! (𝐸') in Eq. (C1) is the same as the applied electric 
field. Minimizing 𝑓H𝑇, 𝑃! , 𝐸! , 𝜀!'J with respect to 𝑃! under a constant electric field 𝐸' 	yields a relationship 
between 𝑃! and 𝐸!, that is, 

𝐸! = �
𝜕H𝑓789:8; + 𝑓<=8>?J

𝜕𝑃!
�
`,M*,k*1

																																																	(C2) 

Performing Taylor expansion for Eq. (C2), one has,  

𝐸! = / �
𝜕&𝑓789:8;

𝜕𝑃!𝜕𝑃'
+
𝜕&𝑓<=8>?

𝜕𝑃!𝜕𝑃'
�

'Q$,&,K

∆𝑃' +
1
2

/ �
𝜕K𝑓789:8;

𝜕𝑃!𝜕𝑃'𝜕𝑃*
+

𝜕K𝑓<=8>?

𝜕𝑃!𝜕𝑃'𝜕𝑃*
�

',*Q$,&,K

∆𝑃'∆𝑃* +			 (C3) 

Eq. (C3) can be rewritten in the matrix form, i.e., 𝐄 = K∆𝐏 + 𝐂∆𝐏NN (see Sec. II for the definitions of the 
coefficient matrices K and 𝐂), or in its expanded form,  

�
𝐸$
𝐸&
𝐸K
� = �

𝐾$$ 𝐾$& 𝐾$K
𝐾&$ 𝐾&& 𝐾&K
𝐾K$ 𝐾K& 𝐾KK

� �
∆𝑃$
∆𝑃&
∆𝑃K

� + �
𝐶$$$ 𝐶$&& 𝐶$KK 𝐶$&K 𝐶$$K 𝐶$$&
𝐶&$$ 𝐶&&& 𝐶&KK 𝐶&&K 𝐶&$K 𝐶&$&
𝐶K$$ 𝐶K&& 𝐶KKK 𝐶K&K 𝐶K$K 𝐶K$&

�

⎣
⎢
⎢
⎢
⎢
⎢
⎡ ∆𝑃$&

∆𝑃&&

∆𝑃K&
2∆𝑃&∆𝑃K
2∆𝑃$∆𝑃K
2∆𝑃$∆𝑃&⎦

⎥
⎥
⎥
⎥
⎥
⎤

,					(C4) 

Since Eqs. (C2-4) are derived for the thermodynamic equilibrium state of polarization under an applied d.c. 
electric field, the polarization does not change with time. Therefore, the time derivatives of the polarization 
are zero, i.e., 𝜕(∆𝐏 𝜕𝑡(⁄ = 0 , n=1,2. Under this condition, Equation (C4) is equivalent to Eq. (3). 
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Accordingly, the 𝜒!'
($),:L derived from Eq. (C4), with 𝛘($),:L = 𝐊/$ is equivalent to the solution shown in 

Eq. (4) under 𝜔=0. Likewise, the solution of 𝜒!'*
(&),:L derived from Eq. (C4) via the perturbation method is 

equivalent to the solution shown in Eq. (B8) under 𝜔=0, as listed below (where the superscript ‘dc’ is 
omitted for brevity). 

�
𝜒$$$
(&) 𝜒$&&

(&) 𝜒$KK
(&) 𝜒$&K

(&) 𝜒$$K
(&) 𝜒$$&

(&)

𝜒&$$
(&) 𝜒&&&

(&) 𝜒&KK
(&) 𝜒&&K

(&) 𝜒&$K
(&) 𝜒&$&

(&)

𝜒K$$
(&) 𝜒K&&

(&) 𝜒KKK
(&) 𝜒K&K

(&) 𝜒K$K
(&) 𝜒K$&

(&)
� 

= −𝜅02 >
𝜒%%
(%) 𝜒%"

(%) 𝜒%$
(%)

𝜒"%
(%) 𝜒""

(%) 𝜒"$
(%)

𝜒$%
(%) 𝜒$"

(%) 𝜒$$
(%)
B . C
𝐶111 𝐶122 𝐶133 𝐶123 𝐶113 𝐶112
𝐶211 𝐶222 𝐶233 𝐶223 𝐶213 𝐶212
𝐶311 𝐶322 𝐶333 𝐶323 𝐶313 𝐶312

D ∙ 

	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜒11

(1)2 𝜒12
(1)2 𝜒13

(1)2 2𝜒12
(1)𝜒13

(1) 2𝜒11
(1)𝜒13

(1) 2𝜒11
(1)𝜒12

(1)

𝜒21
(1)2 𝜒22

(1)2 𝜒23
(1)2 2𝜒22

(1)𝜒23
(1) 2𝜒21

(1)𝜒23
(1) 2𝜒21

(1)𝜒22
(1)

𝜒31
(1)2 𝜒32

(1)2 𝜒33
(1)2 2𝜒32

(1)𝜒33
(1) 2𝜒31

(1)𝜒33
(1) 2𝜒31

(1)𝜒32
(1)

2𝜒21
(1)𝜒31

(1) 2𝜒22
(1)𝜒32

(1) 2𝜒23
(1)𝜒33

(1) 2𝜒22
(1)𝜒33

(1) + 2𝜒23
(1)𝜒32

(1) 2𝜒21
(1)𝜒33

(1) + 2𝜒23
(1)𝜒31

(1) 2𝜒21
(1)𝜒32

(1) + 2𝜒22
(1)𝜒31

(1)

2𝜒11
(1)𝜒31

(1) 2𝜒12
(1)𝜒32

(1) 2𝜒13
(1)𝜒33

(1) 2𝜒12
(1)𝜒33

(1) + 2𝜒13
(1)𝜒32

(1) 2𝜒11
(1)𝜒33

(1) + 2𝜒13
(1)𝜒31

(1) 2𝜒11
(1)𝜒32

(1) + 2𝜒12
(1)𝜒31

(1)

2𝜒11
(1)𝜒21

(1) 2𝜒12
(1)𝜒22

(1) 2𝜒13
(1)𝜒23

(1) 2𝜒12
(1)𝜒23

(1) + 2𝜒13
(1)𝜒22

(1) 2𝜒11
(1)𝜒23

(1) + 2𝜒13
(1)𝜒21

(1) 2𝜒11
(1)𝜒22

(1) + 2𝜒12
(1)𝜒21

(1)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

		(C5) 

To demonstrate Eq. (C5) is valid, we consider a tetragonal BaTiO3 single crystal with a spontaneous 
polarization 𝐏" = (0,0, 𝑃K") under zero electric field (𝐸K:L=0), as shown in Fig. 1(a). The 𝜒KKK

(&),:L calculated 
via Eq. (C5) is -1.573×10-6 m/V, while the 𝜒KK

($),:L calculated by setting 𝜔=0 in Eq. (6) is 125.55.  In parallel, 
we evaluate the value of 𝑃K  under different bias electric fields 𝐸K:L  at thermodynamic equilibrium by 
numerically minimizing (via the random search method) the corresponding electric Helmholtz free energy 
density 𝑓H𝑇, 𝑃! , 𝐸! , 𝜀!'J in the Mathematica software, and obtain a static 𝑃K–𝐸K:L curve, as shown in Fig. 5. 

Next, we fit this static curve using the equation 𝑃K = 𝑃K" + 𝜅" q𝜒KK
($),:L𝐸K:L + 𝜒KKK

(&),:L𝐸K:L
&
r, through which 

we determine that 𝜒KK
($),:L=125.2 and 𝜒KKK

(&),:L=-1.576×10-6 m/V, which agree well with the analytically 
calculated values. 

Symmetry Validation 

The numbers of nonzero and independent elements of both the 𝜒!'
($),:L and 𝜒!'*

(&),:L can be mathematically 
evaluated based on Eq. (C5), which depends on the coefficient matrix C and K (in other words, the 
symmetry of the 𝑓789:8; and 𝑓<=8>? with respect to the equilibrium polarization state and the mechanical 
boundary condition of the system). As an example, considering a stress-free boundary condition, the 
numbers of nonzero(independent) elements of the 𝜒!'

($),:L for cubic, P4mm, Amm2, and R3m BaTiO3 bulk 
crystals are determined to be 3(1), 3(2), 5(3), and 9(2), respectively, in the cubic coordinate system. The 
numbers of nonzero(independent) elements of the 𝜒!'*

(&),:L for cubic, P4mm, Amm2, and R3m BaTiO3 bulk 
crystals are 0(0), 5(2), 10(3), and 18(3), respectively, in the cubic coordinate system. By transforming the 
𝜒!'
($),:L and the 𝜒!'*

(&),:L tensors from the cubic to the principle coordinate system (PCS), one can diagonalize 
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the 𝜒!'
($),:L tensor and simplify the matrix for the 𝜒!'*

(&),:L tensor. We perform this transformation by first 
transforming the polarization 𝑃' in the Landau free energy from the cubic coordinate system (indicated as 
the x1-x2-x3 coordinates in Table C1) to 𝑃!l in the PCS (indicated as the 𝑥$l -𝑥&l -𝑥Kl  coordinates in Table C1) 
via 𝑃!l = 𝑇!'𝑃', and then calculating the 𝜒!'

l($),:L and the 𝜒!'*
l(&),:L tensors in the PCS based on Eq. (C4) and 

(C5). The transformation matrix 𝑇!' is calculated as, 

𝐓 = �
cos𝜑$ −sin𝜑$ 0
sin𝜑$ cos𝜑$ 0
0 0 1

� ∙ �
1 0 0
0 cosΦ −sinΦ
0 sinΦ cosΦ

� ∙ �
cos𝜑& −sin𝜑& 0
sin𝜑& cos𝜑& 0
0 0 1

�,													(C6)  

where the Euler angles 𝜑$,	Φ, and 𝜑& (also illustrated in Table C1) describe the sequence of rotating the 
x1-x2-x3 (cubic) to the 𝑥$l -𝑥&l -𝑥Kl  (PCS). Specifically, the rotation starts with an initial rotation 𝜑$ about the 
x3-axis, followed by a rotation Φ about the x1-axis, and then a final rotation 𝜑& about the x3-axis again.  

As shown in Table C1, the numbers of nonzero(independent) elements of the 𝜒!'*
l(&),:L for cubic, P4mm, 

Amm2, and R3m BaTiO3 bulk crystals are 0(0), 5(2), 5(3), and 8(3), respectively, in the PCS. The obtained 
number of independent and non-zero elements for the 𝜒!'*

l(&),:L are consistent with ref.  [24]. 
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Table C1. List of elements in the 𝝌𝒊𝒋
(𝟏),𝐝𝐜 and 𝝌𝒊𝒋𝒌

(𝟐),𝐝𝐜 of a stress-free BaTiO3 bulk crystal  
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Appendix D. Evaluating the k𝝌𝟑𝟑𝟑
(𝟐) k (𝟐𝝎) and 𝝌𝟑𝟑

(𝟏),𝐈𝐦(𝝎) from dynamical phase-field simulations 

A dynamical phase-field model with coupled dynamics of strain, polarization, and EM waves [22,23] was 
used to simulate the excitation of polarization oscillation in a freestanding tetragonal BaTiO3 slab by a 
monochromatic continuous THz wave with an angular frequency 𝜔 . The BaTiO3 slab has an initial 
equilibrium polarization (𝑃$",	𝑃&",	𝑃K")=(0, 0, 0.26 C/m2) at 298 K. The slab thickness is set to be 10 nm 
(which is far smaller than the THz wavelength) to ensure that the excited polarization is spatially uniform 
along the thickness direction and in-phase. A sinusoidal source current 𝐽@ = 𝐽@'sin(𝜔𝑡) was injected to 
generate a continuous incident THz wave with an electric field component that is spatially uniform in the 
thin BaTiO3 slab, i.e., 𝐸U(𝑡) = 𝐸U"𝑒/𝐢12, with 𝑥 ≡3	(see Fig. 1(a)). We consider 36 different 𝜔 in total near 
the two peaks of the analytically calculated k𝜒KKK

(&) k (2𝜔) shown in Fig. 2(a) and performed 36 groups of 

simulations to extract the k𝜒KKK
(&) k (2𝜔) at each 𝜔. In all simulations, we set 𝐽@'=2×1012 A/m2, leading to an 

𝐸U
J9L," of 376730 V/m. Under this electric field, the BaTiO3 slab will be driven into the anharmonic regime, 

but the magnitude of the dc polarization shift ∆𝑃K
(&)(0) arising from 𝜒KKK

(&) (0, 𝜔,−𝜔), see Eq. (B10), remains 
relatively small. For such a weakly nonlinear oscillation, one can expect that the numerical simulation 
results would agree well with the results calculated analytically based on the perturbation theory, because 
a negligibly small ∆𝑃!

(&)(0) is the premise of the present analytical model, as discussed in Appendix B (see 
the paragraph before Eq. (B3)). Details of the dynamical phase-field model and the set-up of the numerical 
simulations are provided in [23].  

As an example, Figure 6(a) shows the steady-state evolution of the ∆𝑃K(𝑡) in the middle layer of the BaTiO3 
slab (note that ∆𝑃K  is spatially uniform in the slab) under a continuous THz wave excitation with 
𝜔=0.5𝜔K=2p´2.0542 THz, corresponding to the first peak of k𝜒KKK

(&) k (2𝜔)  in Fig. 1(a). The temporal 

waveform is the sum of a linear component ∆𝑃K
($)(𝑡) = ∆𝑃K

($),"𝑒𝐢(/12WX(7)) with the same frequency 𝜔 as 
the incident THz wave and a second-order nonlinear component ∆𝑃K

(&)(𝑡) = ∆𝑃K
(&),"𝑒𝐢(/&12WX(2)) , as 

confirmed by the frequency spectrum of ∆𝑃K(𝑡) in Fig. 6(b). Performing the inverse Fourier transform for 
the second peak at 2𝜔 allows for reconstructing the temporal profile of the ∆𝑃K

(&)(𝑡), as shown in Fig. 6(c), 
from which both the amplitude ∆𝑃K

(&),"(=0.027762 mC/m2) and phase 𝜑(&) (= 1.48140 rad) (84.878°) can 

be extracted. Thus, k𝜒KKK
(&) (2𝜔)k = 2∆𝑃K

(&)," 𝜅"H𝐸K
J9L,"J

&
�  is calculated to be 4.454×10-5 m/V, which agrees 

well with the analytically calculated value of 4.67×10-5 m/V. Likewise, performing the inverse Fourier 
transform for the first peak at 𝜔 enables the reconstruction of ∆𝑃U7(𝑡), from which we obtain ∆𝑃K

($),"=0.569 
mC/m2 and 𝜑($) = 0.0515 rad (2.951°). Therefore, k𝜒KK

($)(𝜔)k = ∆𝑃K
($)," 𝜅"𝐸K

J9L,"� = 170.5995. Given that 

𝜒KK
($) = k𝜒KK

($)k 𝑒𝐢X(7) = 𝜒KK
($),-. + 𝐢𝜒KK

($),NI, one has 𝜒KK
($),NI = k𝜒KK

($)k sin𝜑($) =8.651, which agrees well with 

the analytically calculated 𝜒KK
($),NI of 7.259 at 𝜔=2p´2.0542 THz. 
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Figure 1. Schematics of (a) the tetragonal unit cells of BaTiO3 and PbTiO3; (b) the hexagonal unit cells of 
the LiTaO3 and LiNbO3. (c,d) Cubic representation of the pseudocubic (pc) unit cells of a (001)pc strained 
BaTiO3 film and a (001)pc strained SrTiO3 film. The red arrow indicates the direction of the spontaneous 
polarization. In (c,d), x1-x2-x3 coordinates indicate the Cartesian axes of the cubic paraelectric unit cells of 
the BaTiO3 and SrTiO3, consistent with the notation 𝑃! (i=1,2,3) in the LGD thermodynamic energy density 
function. x-y-z coordinates indicate the lab coordinate system. 
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Figure 2. Frequency-dependent (a) modulus of the nonlinear susceptibility !𝜒333
(2) !; (b) Real and imaginary 

component of the linear susceptibility 𝜒33
(1) in tetragonal BaTiO3 (BTO) and PbTiO3 (PTO) as well as the 

trigonal LiTaO3 (LTO) and LiNbO3 (LNO) bulk ferroelectric crystals. (c) Free energy density f as a function 
of ∆𝑃K = 𝑃K − 𝑃K" in these four materials. (d) dc linear susceptibility 𝜒33

(1),$% and the magnitude of the dc 

second-order nonlinear susceptibility k𝜒KKK
(&),dck of these four materials. 
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Figure 3. Strain-dependent (a) equilibrium polarization state 𝐏0; (b) dc nonlinear susceptibility absolute 
value k𝜒$$$

(&),:Lk; and (c) dc nonlinear susceptibility 𝜒11
(1),dc and 𝜒13

(1),dc in a coherently strained (001)pc BaTiO3 

film. 𝜀&&IJ> is fixed at 1%. The shade indicates the monoclinic MC phase, which belongs to the O13 phase but 

with o𝑃K"o > o𝑃$"o. Frequency-dependent (d) !𝜒111
(2) ! and (e) 𝜒11

(1),Im under different mismatch strains 𝜀$$IJ>. 
The temperature is 298 K. 
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Figure 4. Temperature-dependent (a) equilibrium polarization state 𝐏", (b) d.c. nonlinear susceptibility 
absolute value k𝜒$$$

(&),:Lk, and (c) dc nonlinear susceptibility 𝜒11
(1),dc in a coherently strained (001)pc SrTiO3 

film at 𝜀$$IJ>=𝜀&&IJ>=1%. Frequency-dependent (d) k𝜒$$$
(&) k  and (e) 𝜒$$

($),NI  under different temperature at 
𝜀$$IJ>=𝜀&&IJ>=1%. The structural order parameter 𝑞$=𝑞&=𝑞K=0 under these strain and temperature conditions. 
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Figure 5. The 𝑃K as a function of an applied dc electric field 𝐸K:L obtained by thermodynamic analysis in a 
bulk tetragonal BaTiO3 single crystal (shown in Fig. 1(a)) at 25°C and its nonlinear fitting as explained in 
Appendix C. 
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Figure 6. (a) Steady-state evolution of the dynamically excited polarization ∆𝑃K(𝑡) = 𝑃K(𝑡) − 𝑃K" in a thin 
freestanding (100) BaTiO3 slab under a continuous THz wave with 𝜔=2p´2.0542 THz at 298 K; (b) 
Frequency spectrum of the ∆𝑃K(𝑡) for the duration of t=5-33 ps; (c) Reconstructed temporal profiles of 
∆𝑃K

($) and ∆𝑃K
(&), as well as the profile of the incident THz electric field 𝐸K(𝑡) obtained from a reference 

simulation without the (100) BaTiO3 slab. t=0 ps is the moment the source current is injected. 
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