
ar
X

iv
:2

40
5.

01
76

2v
2 

 [
cs

.L
G

] 
 1

6 
M

ay
 2

02
4

EiG-Search: Generating Edge-Induced Subgraphs

for GNN Explanation in Linear Time
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Abstract

Understanding and explaining the predictions

of Graph Neural Networks (GNNs), is crucial

for enhancing their safety and trustworthiness.

Subgraph-level explanations are gaining atten-

tion for their intuitive appeal. However, most

existing subgraph-level explainers face efficiency

challenges in explaining GNNs due to com-

plex search processes. The key challenge is

to find a balance between intuitiveness and ef-

ficiency while ensuring transparency. Addition-

ally, these explainers usually induce subgraphs

by nodes, which may introduce less-intuitive dis-

connected nodes in the subgraph-level explana-

tions or omit many important subgraph struc-

tures. In this paper, we reveal that inducing

subgraph explanations by edges is more com-

prehensive than other subgraph inducing tech-

niques. We also emphasize the need of deter-

mining the subgraph explanation size for each

data instance, as different data instances may in-

volve different important substructures. Build-

ing upon these considerations, we introduce

a training-free approach, named EiG-Search.

We employ an efficient linear-time search algo-

rithm over the edge-induced subgraphs, where

the edges are ranked by an enhanced gradient-

based importance. We conduct extensive ex-

periments on a total of seven datasets, demon-

strating its superior performance and efficiency

both quantitatively and qualitatively over the

leading baselines. Our code is available at:

https://github.com/sluxsr/EiG-Search.
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1. Introduction

The explainability of Graph Neural Networks (GNNs)

has become a crucial topic, driven by their “black

box” nature and the demand for transparency in sensi-

tive fields. While earlier works focus on generating

node-level or edge-level explanations (Pope et al., 2019;

Baldassarre & Azizpour, 2019; Shrikumar et al., 2017;

Vu & Thai, 2020; Huang et al., 2022; Ying et al., 2019;

Luo et al., 2020; Schlichtkrull et al., 2021; Zhang et al.,

2021; Lin et al., 2021), there is growing attention on

subgraph-level explanations (Yuan et al., 2021; Shan et al.,

2021; Feng et al., 2022; Zhang et al., 2022; Ye et al., 2023;

Li et al., 2023; Pereira et al., 2023), since they are more in-

tuitive and human-understandable.

However, existing subgraph-level explainers often involve

sophisticated processes to generate subgraph explanations,

resulting in inefficiency and limiting their practical applica-

tions. For example, MotifExplainer (Yu & Gao, 2022) re-

lies on costly expert knowledge to first identify subgraphs

before passing them to the explainer. As another exam-

ple, SubgraphX (Yuan et al., 2021) searches for the sub-

graph explanations with the Shapley value serving as the

scoring function. Although employing the Monte Carlo

Tree Search algorithm, their method is still computation-

ally demanding. Therefore, it remains a key challenge to

balance intuitiveness and efficiency of GNN explainability.

Moreover, most existing subgraph-level explainers induce

the subgraphs by node groups, which may result in discon-

nected nodes in the explanations, reducing the intuitiveness.

Inducing by nodes also leads to non-exhaustive enumera-

tion over the possible subgraphs, posing the risk of omitting

important subgraph structures. Futhermore, they usually

pre-specify a universally fixed number or ratio for the ex-

planation size. Nevertheless, given that different data sam-

ples may have varying explanation sizes, this setup makes

the explanations less convincing and reliable.

Another line of existing GNN explainability approaches

rely on a second auxiliary black-box model (Ying et al.,

2019; Luo et al., 2020; Vu & Thai, 2020; Bajaj et al., 2021;

Shan et al., 2021; Lin et al., 2021; Huang et al., 2022;

Li et al., 2023; Pereira et al., 2023). While these methods

provide high quality explanations, they can be inconsis-
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tent across different runs. As pointed out by Zhao et al.

(2023), these methods may introduce non-deterministic be-

haviors even for the same input graph since they require

training an auxiliary or secondary model. A lack of con-

sistency will compromise the faithfulness of the expla-

nation as well. In view of this issue, other studies uti-

lize gradients or gradient back-propagation to determine

the critical graph components (i.e., nodes, edges, sub-

graphs) (Pope et al., 2019; Baldassarre & Azizpour, 2019;

Schnake et al., 2021). While being white-boxes and

training-free, these techniques suffer from the gradient sat-

uration problem (Shrikumar et al., 2017), affecting their ex-

plaining performance. More discussion on related work

can be found in Appendix B.

In this paper, we point out via analysis that edge-induced

subgraph explanations are more intuitive and exhaustive

than subgraphs typically induced by nodes or by nodes

and edges in the literature. Moreover, we show that the

size of the best explaining subgraph can vary between

graph samples, and thus prior methods that find subgraphs

at a specified size (or sparsity) for all the samples in a

dataset may not be optimal. Based on these insights, we

propose an Efficient Linear-Complexity Search Algorithm

over Edge-induced SubGraphs (EiG-Search), which is a

training-free and efficient search procedure to generate the

best subgraph-level GNN explanation for a given graph in-

stance in linear time complexity, while also automatically

searching for the optimal subgraph size.

Unlike many existing subgraph-level explainers that typi-

cally employ intricate heuristic search methods and gener-

ate explaining subgraphs at a predetermined size, our ef-

ficient method generates the optimal subgraph by evaluat-

ing a reduced search space of subgraphs induced by sorted

edges. In particular, for each edge, EiG-Search first uti-

lizes an edge importance approximation algorithm that cal-

culates a linear gradient of the original graph representation

from a baseline graph representation with respect to that

edge. Then, we perform a search over candidate subgraphs

induced by top-k edges, exhausting all values of k to ob-

tain the subgraph that maximizes the overall explanation

performance.

Furthermore, different from existing gradient-based inter-

pretation, the linear gradient that we use to approximate

edge scores avoids direct manipulation of gradients. In-

stead, it constructs latent lines connecting base points to the

original data points in space. We compute the gradients of

the latent lines to represent edge importance, which will not

“saturate”. We further distinguish this mechanism from In-

tegrated Gradients (IG) (Sundararajan et al., 2017) through

both a discussion of its design and empirical results. The

findings indicate that our Linear Gradients outperform IG

on graph-related tasks.

We compare our approach with a range of leading subgraph-

level GNN explanation methods to demonstrate the faithful-

ness and efficiency of EiG-Search. Also, we evaluate the ef-

ficacy of individual components in our method, including

the linear-time search and edge importance approximation

by augmenting existing methods with these proposed com-

ponents. The results clearly show that EiG-Search yields

significantly superior subgraph explanations compared to

existing methods, while being remarkably more efficient.

2. Preliminary

Notations. Let G = (V,E) denotes a graph with a node

feature matrix X ∈ Rn×d, where each row of X represents

the node feature vector xv for v ∈ V . d is the dimension

of node features and n = |V | represents the number of

nodes in G. The graph adjacency matrix is A ∈ Rn×n. A

graph neural network could be written as φ(A,X) → Y,

which maps a graph to a probability distribution over a set

of classes denoted by Y.

Graph neural networks. GNNs (Kipf & Welling, 2017;

Xu et al., 2019) use the graph structure, namely the adja-

cency matrix A, and the node features X to learn node rep-

resentations hv for each node v ∈ V or a graph represen-

tation hG of G, and then perform node/graph classification

tasks. At each layer, GNNs update the representation of a

node by aggregating its neighboring node representations.

The node representation with a L-layer GNN can capture

the structural information within its L-hop neighborhood.

Formally, the representation vector h
(k)
v of each node v at

the k-th layer is:

a(k)v = AGG(k)
({

h(k−1)
u : u ∈ N (v)

})

, (1)

h(k)
v = COMB(k)

(

h(k−1)
v , a(k)v

)

, (2)

where N (v) is a set of nodes adjacent to v, AGG is an

aggregation function, and COMB is a combining function.

Problem setup. This paper focuses on generating intu-

itive subgraph explanations for instance-level GNN ex-

plainability. In an instance-level GNN explanation task, we

are given a pre-trained GNN: φ(A,X) → Y and a cor-

responding dataset G, where G ∈ G. In our paper, we

aim to highlight the outstanding subgraphs within G that

are important to the GNN predictions for each instance G
in G. We assess the subraph explanations using two com-

monly used metrics (Yuan et al., 2022; Wu et al., 2022) the

edge removal-based counterfactual metric Fidelity+ and

the completeness metric Fidelity−. The definitions of

these metrics can be found in Section 3.2.
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3. Investigating Subgraph-level Explanations

via Inducing Technique and Size

In this section, we provide a comprehensive study on

the process of producing subgraph-level explanations via

the perspectives of subgraph inducing technique and ex-

planation size. In terms of the subgraph inducing tech-

nique, most existing subgraph-level GNN explanation ap-

proaches (Yuan et al., 2021; Shan et al., 2021; Feng et al.,

2022; Zhang et al., 2022; Pereira et al., 2023) utilize a

node-induced technique to obtain the explanation sub-

graphs. However, we find that the edge-induced tech-

nique is better than the node-induced technique in pro-

viding intuitive subgraphs. On the other hand, most

existing approaches rely on human experts to manu-

ally determine the appropriate size of subgraph expla-

nations. For example, DEGREE (Feng et al., 2022) re-

stricts explanatory subgraphs to contain q nodes, while RG-

Explainer (Shan et al., 2021) confines node-induced sub-

graphs to contain k edges. Here, q and k are hyperparam-

eters representing the size of the presumed “ground-truth”

subgraph explanations. While such presumptions may be

effective on synthetic datasets, applying them to real-world

tasks becomes impractical as it is not always feasible to

have human experts predetermine these parameters. In re-

sponse, approaches such as SubgraphX (Yuan et al., 2021),

GStarX (Zhang et al., 2022), and DnX (Pereira et al., 2023)

control the ratio of nodes or edges in the graph instances to

form subgraph explanations. However, this involves speci-

fying a fixed ratio applied uniformly to all instances in the

datasets. Our study reveals that such a one-size-fits-all ratio

may not be widely applicable, as instances in the datasets

may require explanations with varying ratios of nodes or

edges.

3.1. Subgraph Inducing Technique

We first provide illustrative examples where edge-induced

techniques can provide more intuitive and exhaustive sub-

graph explanations than node-induced techniques. As

shown in Figure 1(a), if nodes that are not directly neigh-

boring each other are selected, determining the impor-

tant subgraph structure becomes non-trivial. Taking sev-

eral “isolated” nodes as an implicit representation of the

explanatory subgraph loses the inherent intuitive benefits

of subgraph-level explanations. In contrast, when edges

are selected, the corresponding edge endpoints are natu-

rally selected as well. Therefore, the important subgraph

structure is naturally identified. Also, producing subgraph-

level explanations via node selection may fail to identify

some candidate subgraph structures. Taking Figure 1(b) as

an example, if three nodes are connected in the original

graph, the underlying triangle connecting the three nodes

will be selected to induce a subgraph-level explanation,

whereas the true explanation might be the angle-shaped

subgraph highlighted in the bottom. Such subgraph selec-

tion dilemma based on node selection can be naturally tack-

led via edge selection methods. This observation is aligned

with (Faber et al., 2021), which points out that highlighting

only the nodes is insufficient for providing comprehensive

explanations.

Next, we formally define the intuitiveness and the exhaus-

tiveness in producing the subgraph-level explanations. We

then propose theorems to determine the most effective sub-

graph inducing technique in both aspects, considering op-

tions such as inducing by nodes, edges, or a combination

of both nodes and edges. Proofs of all the theorems can be

found in Appendix A.

Definition 3.1 (Intuitiveness of Subgraph-Level Expla-

nations). The intuitiveness I(S) of a subgraph-level expla-

nation S is defined as follows: I(S) = CS

C
, where C refers

to the number of disconnected components in the explana-

tion S, CS refers to the number of disconnected subgraph

components in S. We define that a disconnected compo-

nent G′ = (V ′, E′) is said to be a disconnected subgraph

component iff |V ′| > 0 and |E′| > 0.

Definition 3.2 (Exhaustiveness of Subgraph-Level Ex-

planation Inducing Techiniques). The exhaustiveness

X (T |G) of a subgraph-level explanation inducing tech-

inque T on the corresponding data instance G = (V,E) is

defined as follows: X (T |G) = T (G)
CS

, where CS refers to

the number of disconnected subgraph components enumer-

ated in G, and T (G) refers to the number of disconnected

subgraph components that can be induced by T .

Definition 3.3 (Node-Induced Subgraph-Level Explana-

tions). Let G = (V,E) denote the data instance, VS ⊆ V
be the node subset to induce the subgraph-level explanation

S. The node-induced subgraph is defined as S = G[VS ] =
(VS , E

′
S), where E′

S := {{u, v} ∈ E : u, v ∈ VS}.

Definition 3.4 (Edge-Induced Subgraph-Level Explana-

tions). Let G = (V,E) denote the data instance, ES ⊆ E
be the edge subset to induce the subgraph-level explanation

S. The edge-induced subgraph is defined as S = G[ES ] =
(V ′

S , ES), where V ′
S := {u, v ∈ V : {u, v} ∈ ES}.

Definition 3.5 (Node-and-Edge-Induced Sub-

graph-Level Explanations). Let G = (V,E) denote

the data instance, VS ⊆ V be the node subset and

ES ⊆ E be the edge subset to induce the subgraph-

level explanation S. The node-and-edge-induced

subgraph is defined as S = G[VS , ES ] = (V ′
S , E

′
S)

where V ′
S := VS ∪ {u, v ∈ V : {u, v} ∈ ES} and

E′
S := ES ∪ {{u, v} ∈ E : u, v ∈ VS}.

Theorem 3.6. Given a graph G = (V,E), an

edge-induced subgraph-level explanation G[ES ], a node-

induced subgraph-level explanation G[VS ], and a node-

and-edge-induced subgraph-level explanation G[VS , ES ].

3
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Node-level

Edge-level

(a) Select two isolated nodes/edges (b) Node-selection fails to 

select angle-structure

?

?

?

?
?

?
?

(c) p-dinitrobenzene (d) nitrobenzene

Figure 1. Illustration of subgraph explanations. (a): If nodes that are not directly neighboring each other are selected, determining

the important subgraph structure becomes non-trivial. If edges are selected, the corresponding endpoints are naturally selected, which

naturally gives a subgraph explanation. (b): Node-selection-based methods are not able to discover the angle-shape structure as an

explanation, whereas edge-selection can be helpful. (c): The orange nodes stand for “C”, blue nodes stand for “N”, and red nodes stand

for “O”. Picking a single subgraph for explanations cannot properly find the disconnected “NO2” groups as we highlighted. (d): The

size of the critical subgraph is the size of highlighted “NO2”, which is different from (c).

The following inequalities on the intuitiveness of these ex-

planations always hold, for any VS ⊆ V and ES , E
′
S ⊆ E:

I(G[ES ]) ≥ I(G[VS ]),

I(G[ES ]) ≥ I(G[VS , E
′
S ]).

Theorem 3.7. Given a graph G = (V,E), a node-

based subgraph inducing algorithm Tnode, an edge-based

subgraph inducing algorithm Tedge, and a node-and-edge-

based subgraph inducing algorithm Tnode-and-edge. The fol-

lowing inequality and equation on the exhaustiveness of

these subgraph inducing techniques always hold:

X (Tedge|G) ≥ X (Tnode|G),

X (Tedge|G) = X (Tnode-and-edge|G).

It is worth noting that X (Tedge|G) = X (Tnode-and-edge|G)
since we can consider Tedge as the special case of

Tnode-and-edge, where the vertex set VS fed to Tnode-and-edge is

set to VS = Ø. However, in real-world scenarios, the expla-

nation vertex set is typically not empty, which poses a risk

of failure in identifying the bottom subgraph as illustrated

in Figure 1(b) using the node-and-edge-based inducing al-

gorithm. Therefore, by Theorem 3.6 and Theorem 3.7, the

edge-induced subgraph-level GNN explanations are more

comprehensive in the perspectives of intuitiveness and ex-

haustiveness, compared with the node-induced or node-

and-edge-induced subgraph-level explanations.

3.2. Size of the Subgraph Explanations

As discussed earlier in Section 3, presumptions about the

number of nodes or edges in subgraph explanations may

be ineffective when applied to real-world datasets. Many

existing approaches attempt to address this issue by pre-

specifying the sparsity of the subgraph-level explanations.

Definition 3.8 (Sparsity). Let S denote the subgraph-level

explanation for a graph instance G = (V,E). The spar-

sity of the explanation S is defined as: Sparsity(S|G) =

1− |S|
|G| , where |S| and |G| refer to the number of nodes or

edges in S and G.

However, controlling the sparsity of these explanations still

assumes a certain size for the explanations. This one-size-

fits-all ratio may not be universally applicable to all in-

stances in the datasets. For example, in a task that identifies

whether there is at least a “-NO2” group in the molecules,

the true explanation sizes of the p-dinitrobenzene and the

nitrobenzene, as illustrated in Figure 1(c,d), are different.

As a result, using sparsity to determine the size of expla-

nations may not be effective. Therefore, it is crucial for

the GNN explanation techniques to determine the optimal

explanation size for each individual graph.

The faithfulness of the GNN explanations is com-

monly assessed using the Fidelity+ and Fidelity− met-

rics (Yuan et al., 2022; Wu et al., 2022), which may help to

determine the optimal explanation size. We formally define

the subgraph-level Fidelity as follows.

Definition 3.9 (Subgraph-Level Fidelity). Let S =
(VS , ES) denote the subgraph-level explanation for a graph

instance G = (V,E) on the GNN classifier φ(·), where

VS ⊆ V,ES ⊆ E. The subgraph-level Fidelity+ of the

explanation S is defined as:

Fidelity+(S|G) = φ(G)y − φ(G[E\ES ])y,

4
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where y is the original prediction of the GNN φ on the

graphG, G[E\ES ] refers to the subgraph induced by E\ES

using the edge-based subgraph inducing technique. Simi-

larly, the subgraph-level Fidelity− is defined as:

Fidelity−(S|G) = φ(G)y − φ(S)y.

Intuitively, Fidelity+ studies the prediction change when

the explanation subgraph is removed, while Fidelity−

studies the prediction change when only the explanation

subgraph is retained. We calculate Fidelity+ by the sub-

graph induced by the edge set E \ES , as opposed to re-

moving VS and ES from G. This choice is made because

removing VS may lead to edges with missing endpoint

nodes in the remaining graph, which could be unnatural for

GNNs and potentially cause unexpected behaviors. Both

Fidelity+ and Fidelity− represent the prediction proba-

bility change. Higher Fidelity+ and lower Fidelity− per-

formance indicate that more discriminative subgraph-level

explanation is identified. We have the following proposi-

tion of these metrics and the optimal size of the subgraph-

level explanations. Since this proposition is obvious, we

omit the proof.

Proposition 3.10. Given a graph G = (V,E) and a

GNN classifier φ(·), there exists an optimal edge sparsity

̂Sparsity
E

(S|G) ∈ [0, 1] of the subgraph-level explana-

tion S that maximizes Fidelity+(S|G)−Fidelity−(S|G).

Determining ̂Sparsity
E

(S|G) is challenging, as larger ex-

planation subgraphs do not necessarily lead to better fi-

delity performance. For example, let “-NO2” and “car-

bon ring” be the defining structures for classes a and b re-

spectively of a binary classification problem. Consider the

graph in Figure 1(c) and the metric Fidelity+. Removing

both “-NO2” groups will certainly result in a dramatic drop

in the prediction probability for class a. However, if we

further lower the sparsity by removing more edges, some

edges in the carbon ring will be removed, and thus the

probability of class b will decrease, which may result into

an increase in the probability of class a. This means that

larger subgraph-level explanations may lead to less optimal

fidelity performance. Therefore, it is vital for the subgraph-

level explainers to be able to determine the optimal sparsity.

By Proposition 3.10, we dertermine the optimal sparsity by

the performance of Fidelity+(S|G)−Fidelity−(S|G) in

our paper.

4. Linear-Complexity Search over

Edge-induced Subgraphs

Based on observations in Section 3, a comprehensive

subgraph-level GNN explainer should induce the subgraph-

level explanations by edges, and determine the optimal

(a) A graph with nodes 
n1, n2 and

edges e1, e2.

w_e1

0.0

1.0 w_e20.0

0.5

.0

f(
c
|.

)

0.0

0.5

1.0

Data point

(b) A GNN f(c|.) with
respect to the edge weights

of edges e1 and e2.

Figure 2. An example illustrating edge score approximation,

where we1 and we2 are the edge weights, c is a class of the GNN.

sparsity for each data sample individually. Ideally, one

could ascertain the optimal sparsity for a given data in-

stance by exhaustively enumerating all edge subsets and

select the edge-induced subgraph with the highest fidelity

performance. However, due to its exponentially growing

computational cost, such enumeration is impractical in real-

world applications. To this end, we propose an Efficient

Linear-Complexity Search Algorithm over Edge-induced

SubGraphs (EiG-Search) to produce the subgraph-level ex-

planations in linear time complexity. The intuition is to

selectively use only the “important” edges to induce sub-

graphs, which prunes the search space. For example, as we

discussed in Section 3.2, the edges in “-NO2” are impor-

tant edges for class a, while the ones in the carbon ring are

unimportant.

EiG-Search achieves the efficiency by using a two-phase

scheme to effectively prune the candidate subgraphs that

have to be evaluated. In the first phase, we efficiently ap-

proximate each edge’s importance by the gradients of the

latent lines from the baseline inputs to the original data,

with a concept of Linear Gradient, which is distinct from

the conventional gradient approaches as we will later show

in this section. This phase results in O(|E|) complexity. In

the second phase, we sort edges by the importance values

assigned to them, and induce a subgraph using top-k edges,

letting k iterate through {1, . . . , |E|}. As a result, we ob-

tain |E| candidate subgraph explanations instead of expo-

nentially many. Then, we evaluate all these candidates to

find the subgraph explanation that optimizes the subgraph-

level fidelity. Therefore, our design is very efficient, with

an overall O(|E|) time complexity for the two phases while

being training-free. The code can be found in the supple-

mentary material. We will explain our approach in detail in

the remainder of this section.

As discussed in Section 1, the explainers that require aux-

iliary models may introduce non-deterministic behaviors

5
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over different runs. Therefore, we avoid training a sec-

ondary model in our approach. Instead, we find the im-

portance of edges by constructing latent lines connecting

base points to the original data points in space.

As illustrated in Figure 2, consider a graph instance G =
(V,E) in the dataset, which is classified to Class c by the

GNN φ(·), and we aim to approximate the importance of

the edge set Et. We firstly find the “data point” in the latent

space, which represents the GNN’s prediction on the target

class c with respect to the weights of all edges in G. For

each arbitrary edge ei ∈ E, the edge weight 0 ≤ wei ≤ 1
if G is a weighted graph and wei = 1 if G is unweighted.

Then, we locate the “base point” of Et ⊆ E in the latent

space, which denotes the “base” representation of Et. For

example, in Figure 2(b), if Et = {e1}, then the base point

would be the “Base of e1” as shown in the figure. As an-

other example, if Et = {e1, e2}, then the base point of it

would be the Point B. The base edge weight could be pre-

cisely assigned to 0 as it denotes a complete absence of

signal. This strategy is consistent with Sundararajan et al.

(2017).

After obtaining the representations of the data point and

the base point of the target edge set, we construct a line

connecting the two points. Next, we use the gradient of

this line to approximate the importance of the target edge

set. Specifically, the importance of the edge set Et at the

target class c is calculated by

s(c|Et) =
φ(c|A,X)− φ(c|At,X)

|A−At|
, (3)

where X is the node features, A is the adjacency matrix,

A
t is the adjacency matrix with the edges in Et assigned to

the corresponding base weights:

A
t
ij =











wij,base if {vi, vj} ∈ Et,

Aij if {vi, vj} /∈ Et and {vi, vj} ∈ E,

0 if {vi, vj} /∈ E.
(4)

The denominator of Equation (3) |A − A
t| refers to the

distance between the data point and the base point in the

latent space. Using Equation (3), we can determine the im-

portance of each edge ei ∈ E by setting Et = {ei}. In

the undirected graphs, each edge ei is represented by two

opposite-direction edges ei,fwd and ei,rvs hence we can ob-

tain the importance of ei by letting Et = {ei,fwd, ei,rvs}.

Our Linear Gradients approach is distinct from the

conventional gradient-based methods, like Grad-

CAM (Selvaraju et al., 2017), DeepLift (Shrikumar et al.,

2017) and Integrated Gradients (IG) (Sundararajan et al.,

2017). The conventional approaches rely on the gradients

that measure the local sensitivity at the test point, which

are susceptible to the saturation problem, leading to

Algorithm 1 Linear-Complexity Search for Subgraph

Input: GNN φ(·), original graph G = (V,E), ranked

edges Ê (decending by importance).

Initialize bestScore = −inf , S = None
for i = 2 to |E| − 1 do

S = G[Ê[: i]], s(c,G|S) = Fidelity+ − Fidelity−

if bestScore < s(c,G|S) then

bestScore = s(c,G|S), Ŝ = S
Output: Subgraph-level explanation Ŝ

vanishing gradients and hence vulnerable to input noise.

On the contrary, our approach utilizes the base point to

obtain the global importance of an edge rather than a

local sensitivity. In particular, Grad-CAM and DeepLift

face challenges when applied to edges. As discussed in

Section 3, edge-induced subgraph explanations are more

comprehensive, making Grad-CAM and DeepLift less

preferred for inducing subgraph-level explanations. IG

and our approach share several similarities, including

the strategy of selecting base points. However, IG is

sensitive to the integral paths. Additionally, due to the

high cost of obtaining gradients at all points along the

path, IG approximates the integral by summing gradients

at a few points, introducing potential errors. Please refer

to Appendix B.1 for detailed discussion. We compare our

Linear Gradients approach with several gradient-based

approaches to demonstrate the efficacy of our design in

Section 5.

Once we obtain the edge importance of all the edges in

a graph by Equation (3), we can rank the edges through

the importance scores. As discussed in Section 3.2, simply

having the rank of important features is insufficient, we also

need to determine the optimal sparsity of an explanation.

Rather than employing an expensive enumeration of edge-

induced subgraphs, our approach utilizes a more efficient

linear-time search over subsets of the ranked edges. This

search is guided by the fidelity performance of the edge-

induced subgraph-level explanations. The pseudo code of

our Linear-Complexity Search is presented in Algorithm 1.

Thus, we can obtain the optimal subgraph-level explanation

Ŝ of a graph G with an optimal sparsity by picking the S
that gives the best overall score s(c,G|S).

5. Experiments

In this section, we perform empirical evaluations of our

proposed EiG-Search. We mainly consider the following

three sets of experiments. Firstly, to validate the overall ef-

fectiveness of our two-phase pipeline design, we compare

the faithfulness of subgraph-level explanations generated

by existing explainers with those produced by EiG-Search.

Secondly, we highlight the effectiveness of each phase by
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Figure 3. Overall Fidelity at different levels of average sparsity using EiG-Search and a number of baselines. Higher is better.

Table 1. Efficiency study over different methods on the Mutagenicity dataset.

Method
PG RG- RC GNN

SubgraphX DEGREE
PGM-

EiG-Search
Explainer Explainer Explainer Explainer Explainer

Train Time 977.0±127.5s 6359.9±1257.0s 76229.0±3569.7s - - - - -

Explain Time 0.03±0.01s 0.03±0.01s 0.07±0.03s 1.44± 0.09s 419.8±655.5s 0.53±0.34s 0.86±0.76s 0.14±0.01s

Table 2. Efficiency study over different efficient methods.

BA- BA- Tree- BA-
MUTAG Mutagenicity

Shapes Community Grid 2Motifs

GNNExplainer (Ying et al., 2019) 0.65±0.05s 0.78±0.05s 0.72±0.06s 1.16±0.10s 0.43±0.03s 1.44±0.09s

PGExplainer (Luo et al., 2020) 0.181±0.04s 0.0495±0.01s 0.215±0.07s 0.306s±0.07 0.138±0.03s 0.274±0.08s

DEGREE (Feng et al., 2022) 0.44±0.20s 1.02±0.35s 0.37±0.06s 0.575±0.11s 0.83±0.45s 0.53±0.34s

EiG-Search (Ours) 0.006±0.000s 0.007±0.000s 0.003±0.000s 0.089±0.01s 0.07±0.01s 0.14±0.01s

integrating our Linear-Complexity Search algorithm with

existing explainers that generate node-level or edge-level

explanations. On one hand, this augmentation allows us

to assess whether our linear-time search can enhance the

performance of existing methods. On the other hand, by

comparing the augmented baselines to EiG-Search, we in-

vestigate whether our Linear Gradients method provides a

better approximation of edge importance compared to exist-

ing approaches. Thirdly, we perform empirical time analy-

sis to showcase the efficiency of EiG-Search.

Faithfulness of the entire framework. We use the

subgraph-level fidelity metric mentioned in Proposi-

tion 3.10 with Definition 3.9, i.e., the overall fidelity

calculated by subtracting Fidelity− from Fidelity+,

to evaluate the faithfulness of the subgraph-level GNN

explanations. We conduct experiments both on the

synthetic dataset BA-2Motifs (Luo et al., 2020), and

the real-world datasets MUTAG (Debnath et al., 1991),

Mutagenicity (Kazius et al., 2005), NCI1 (Wale & Karypis,

2006). While our approach can generalize to any type

of GNN, we consider two popular variants: Graph

Convolutional Networks (GCN) (Kipf & Welling, 2017)

on BA-2Motifs, Mutagenicity and MUTAG as well as

Graph Isomorphism Networks (GIN) (Xu et al., 2019)

on BA-2Motifs, Mutagenicity, and NCI1. We conduct

extensive experiments to compare our method with

the state-of-the-art methods including the gradient-

based SA (Baldassarre & Azizpour, 2019) and Grad-

CAM (Pope et al., 2019), perturbation-based GNNEx-

plainer (Ying et al., 2019) and PGExplainer (Luo et al.,

2020), search-based SubgraphX (Yuan et al., 2021),

decomposition-based DEGREE (Feng et al., 2022),

surrogate-based PGM-Explainer (Vu & Thai, 2020),

7



EiG-Search: Generating Edge-Induced Subgraphs for GNN Explanation in Linear Time

0.45 0.55 0.65 0.75 0.85
Average sparsity (%)

−0.75

−0.50

−0.25

0.00

0.25
O−

e)
a%
% f
id
el
ity

(a) MUTAG (GCN)

0.55 0.65 0.75 0.85
Average sparsity (%)

−0.25

0.00

0.25

0.50

0.75

1.00

O−
e)
a%
% f
id
el
ity

(b) BA-2Motifs (GIN)

0.55 0.65 0.75 0.85
Average sparsity (%)

0.0

0.2

0.4

0.6

0.8

Ov
er
al
l f
id
el
ity

(c) Mutagenicity (GIN)

EiG-Search
EiG-Search (no linear search)
SA (with linear search)
SA (no linear search)

Grad-CAM (with linear search)
Grad-CAM (no linear search)
IG (with linear search)
IG (no linear search)

GNNExplainer (with linear search)
GNNExplainer (no linear search)
PGExplainer (with linear search)
PGExplainer (no linear search)

Figure 4. Comparsion between the baselines and EiG-Search after applying Linear-Complexity search.

RL-based RG-Explainer (Shan et al., 2021) and decision

boundary-based RCExplainer (Bajaj et al., 2021). We

run experiments using the open-source implementations

of these works. All the baselines necessitate the pre-

specification of subgraph-level explanation sizes. To

facilitate a fair comparison with these baselines, we adopt

the setup outlined in Bajaj et al. (2021), where the fidelity

results are evaluated and compared across a range of

edge sparsity levels. Among the baselines, SubgraphX,

DEGREE, RG-Explainer were designed to provide

subgraph-level explanations, while other baseline methods

only provide node-level or edge-level explanations. We

induce subgraph-level explanations with the explanations

produced by these node-level and edge-level explainers

according to Definition 3.3 and 3.4. In particular, SA, Grad-

CAM, PGM-Explainer generate node-induced subgraph

explanations, while GNNExplainer, PGExplainer, RCEx-

plainer generate edge-induced subgraph explanations in

our experiments. The details of model configurations and

datasets are provided in Appendix C.5.

The overall fidelity results are presented in Figure 3. The

Fidelity+ and Fidelity− results can be found in Ap-

pendix C.1. Our proposed EiG-Search, along with SA,

Grad-CAM, SubgraphX and DEGREE, belongs to the cat-

egory of training-free methods. This distinguishes them

from GNNExplainer, PGExplainer, PGM-Explainer, RG-

Explainer and RCExplainer, which require training. As

shown in Figure 3, across various datasets, training-free

methods exhibit greater consistency in performance com-

pared to the training-required PGExplainer. While PGEx-

plainer achieves notably strong results on NCI1 (GIN), its

performance is less effective on MUTAG (GCN), where

it demonstrates the poorest fidelity results. Our pro-

posed EiG-Search outperforms both node-induced and

edge-induced baselines in fidelity across all datasets, show-

casing the strength of the entire design. The qualitative

results can be found in Appendix C.2.

Effectiveness of each phase. We further study the em-

pirical performance of the Linear Gradients and Linear-

Complexity Search respectively, which together consti-

tute our proposed EiG-Search. We integrate the Linear-

Complexity Search algorithm with both typical training-

requiring node-level or edge-level baselines, such as GN-

NExplainer and PGExplainer, and various training-free

baselines, including SA, Grad-CAM, and Integrated Gra-

dients (IG). We generate node-induced subgraph explana-

tions with SA and Grad-CAM, and edge-induced subgraph

explanations with GNNExplainer, PGExplainer and IG. We

evaluate the overall fidelity on MUTAG, BA-2Motifs, Mu-

tagenicity.

The results are presented in Figure 4. For a more intuitive

comparison between EiG-Search and each baseline, please

refer to Appendix C.3. The performance of both node-level

and edge-level baselines is consistently enhanced when

augmented with our Linear-Complexity Search. This ob-

servation strongly underscores the effectiveness of Linear-

Complexity Search in improving subgraph-level explana-

tions for GNNs by finding the diverse explanation sizes

of various data instances. Furthermore, it can be seen that

EiG-Search consistently outperforms the augmented node-

level and edge-level baselines, providing evidence that our

Linear Gradients method offers a more accurate approxima-

tion of edge importance. It is also noteworthy that despite

Integrated Gradients (IG) aiming to approximate global

edge importance similar to our approach, it consistently

performs worse than our Linear Gradients. It even fares

slightly worse than conventional gradient approaches like

SA and Grad-CAM. This discrepancy may be attributed to

IG’s sensitivity to the integral paths. If the integral paths

are not faithfully chosen, optimal results are not guaran-

teed. Determining accurate integral paths, especially in

high-dimensional spaces, poses a significant challenge. Ad-

ditionally, IG can only approximate the importance of indi-

vidual edges and not edge sets, as our Linear Gradients can.
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In undirected graphs, where each undirected edge is usu-

ally represented by two opposite-direction edges between

the endpoints, failure to treat these opposite-direction edges

as an entire component may be a contributing factor impact-

ing the performance of IG. In summary, our comprehensive

experiments demonstrate the effectiveness of both Linear

Gradients and Linear-Complexity Search in EiG-Search.

Efficiency. Table 1 shows the average computation time

for providing the post-hoc explanation on the graph sample

from the Mutagenicity dataset with GCN. Our approach

has the fastest explaining time compared to the presented

recent baselines that do not require explainer training. Note

that PGExplainer, RG-Explainer, and RCExplainer all re-

quire additional training time for the explainer, which is

costly. Next, we present a detailed efficiency comparison

between EiG-Search and the baseline GNN explanation ap-

proaches, including the most efficient training-required ap-

proach PGExplainer, and two efficient approaches GNNEx-

plainer and DEGREE. To calculate the average time re-

quired for producing an explanation, we consider the sum

of the training time and the inference time on all the data

samples for the baselines that require training. This sum is

then divided by the number of data samples. For example,

let’s consider PGExplainer on the BA-2Motifs dataset with

1000 data samples. It takes 225.5 seconds to train the ex-

plainer, and 0.08 seconds to infer the explanation for a sin-

gle data sample. In this case, the average time to provide

an explanation on this dataset is 225.5s
1000 + 0.08s = 0.306s.

As shown in Table 2, EiG-Search consistently outperforms

the baseline approaches in terms of efficiency across all

datasets, including both node classification and graph clas-

sification tasks. This emphasizes the superior efficiency of

our approach in generating subgraph-level explanations.

Other tasks. We also perform node-level experiments on

three popular datasets with the AUC metric. Due to space

limit, the results are shown in Appendix C.4.

6. Conclusion

In this paper, we systematically study the process of gen-

erating subgraph explanations for GNNs from the perspec-

tives of subgraph inducing techniques and optimal expla-

nation size. We show the advantage of edge-induced sub-

graphs and design a simple yet efficient, model-agnostic

method to find the optimal subgraph explanation in linear

time given a graph instance. We empirically demonstrate

the effectiveness and efficiency of EiG-Search through ex-

tensive experiments.

Impact Statement

Our technique aims to contribute to the community’s under-

standing of the decision-making process in GNNs and en-

hance the reliability of these models. We hope that our ap-

proach will be valuable in advancing the field and fostering

greater trust and transparency in GNNs. Unlike many exist-

ing subgraph-level explainers that focus on node-induced

subgraph explanations, we demonstrate that edge-induced

subgraph explanations offer a more intuitive and exhaustive

understanding. Additionally, we emphasize the importance

of identifying the explanation size rather than employing a

uniform sparsity level for all instances in a dataset. These

findings may inspire further exploration within the com-

munity on the potential of edge-induced subgraph expla-

nations. The core concept of our proposed GNN explain-

ing approach, EiG-Search, involves a two-phase process

consisting of an edge-ranking algorithm and a linear-time

search algorithm. While EiG-Search is known for its effi-

ciency and training-free nature, there remains room for im-

provement in explanation performance, albeit with a trade-

off in efficiency. In the future, the development of a more

accurate edge-ranking algorithm and an advanced subgraph

search, guided by edge importance, could be promising di-

rections for further research.
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A. Proof of Theorems

A.1. Proof of Theorem 3.6

Proof. From the definition, it is obvious that the vertex subset of the edge-induced subgraph-level explanation are exactly

all endpoints of the edge subset. In other word, all the disconnected components in the edge-induced subgraph-level expla-

nation are disconnected subgraph components. Therefore, the intuitiveness of the edge-induced subgraph-level explanation

G[ES ] can be calculated as I(G[ES ]) =
CS

C
= 1. In contrast, in a node-induced subgraph-level explanation, although the

vertex subset include all endpoints of the edge subset, it may also include additional vertices. As a result, the disconnected

components in these explanations may not be the intuitive disconnected subgraph components. The intuitiveness of the

node-induced subgraph-level explanation G[VS ] can be calculated as I(G[VS ]) = CS

C
≤ 1. When there are additional

vertices excluding the endpoints of the edges in G[VS ], we have I(G[VS ]) < 1. Lastly, in a node-and-edge-induced

subgraph-level explanation G[VS , ES ], all the endpoints of edges in ES are selected, but there can be additional vertices in

VS that contruct the disconnected node components in G[VS , ES ]. Therefore, similar to the node-induced subgraphs, we

have I(G[VS , ES ]) ≤ 1. Hence, we have proved that for any VS ⊆ V and ES , E
′
S ⊆ E:

I(G[ES ]) ≥ I(G[VS ]),

I(G[ES ]) ≥ I(G[VS , E
′
S ]).

A.2. Proof of Theorem 3.7

Proof. By definition, the exhaustiveness of the subgraph inducing technique applied to the edge-induced subgraph-level

explanations is X (Tedge|G) = 1. For the node-based inducing technique, we have X (Tnode|G) ≤ 1. In particular, we have

X (Tnode|G) < 1 when there are cycles in G. As Tnode(G) misses the disconnected subgraph components by removing

any one of the edges in a cycle. The node-and-edge-based inducing technique is equivalent to the edge-based inducing

algorithm when |VS | = Ø. Hence it has the same exhaustiveness as the edge-based subgraph inducing algorithm. Both the

node-based technique and the node-and-edge-based technique is able to produce isolated nodes. But it is important to note

that isolated nodes are not disconnected subgraph components according to Definition 3.1, hence they will not count into

T (G) or CS . Hence we have proved that

X (Tedge|G) ≥ X (Tnode|G),

X (Tedge|G) = X (Tnode-and-edge|G).

B. Further Discussions with Prior Works

We have briefly reviewed and distinguished the prior works in Section 1, 3 and 5. In this section, we provide a compre-

hensive review of related works in the domain of instance-level post-hoc GNN explainability. Recall that our approach

is motivated by the aim to introduce a GNN explaining method that is both training-free and efficient, delivering intuitive

subgraph-level explanations for graph instances. To elucidate this motivation, we categorize existing approaches based on

two criteria: whether the explainer requires training and the technique used for subgraph induction.

B.1. Related Works Grouped by Training Requirement

Based on the training requirements, existing instance-level GNN explaining approaches can be divided into two groups:

training-free and training-requiring approaches. Training-requiring methods usually train a secondary black-box, which

reduces the interpretability and transparency of the explainers. Moreover, the explanations generated by these ex-

plainers can be inconsistent across different runs. As pointed out by Zhao et al. (2023), these methods may in-

troduce non-deterministic behaviors even for the same input graph since they require training an auxiliary or sec-

ondary model. A lack of consistency will compromise the faithfulness of the explanation as well. Approaches in-

cluding GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), PGM-Explainer (Vu & Thai, 2020), Graph-

Mask (Schlichtkrull et al., 2021), RelEx (Zhang et al., 2021), RCExplainer (Bajaj et al., 2021), RG-Explainer (Shan et al.,

2021), Gem (Lin et al., 2021), GraphLime (Huang et al., 2022), GFlowExplainer (Li et al., 2023), DnX (Pereira et al.,

2023), K-FactExplainer (Huang et al., 2024), fall into the training-requiring category. We provide more discussions on
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these explainers in Appendix B.2. In contrast, training-free methods are usually more transparent, making them more

reliable. Therefore, it is crucial to design training-free explainers.

The training-free methods can be further divided into gradient-based methods and search-based methods. The gradient-

based methods include SA, Guide-BP, LRP (Baldassarre & Azizpour, 2019), Grad-CAM, Excitation-BP (Pope et al.,

2019), GNN-LRP (Schnake et al., 2021), DeepLIFT (Shrikumar et al., 2017; Yuan et al., 2022), Interated Gradients

(IG) (Sundararajan et al., 2017). These methods are originally designed to explain general neural networks like CNNs

and adapted for use with GNNs. They are white-box approaches but are noted to suffer from the gradient saturation prob-

lem (Shrikumar et al., 2017; Sundararajan et al., 2017). Furthermore, these methods have various drawbacks. Grad-CAM

obtains the activation map by multiplying two terms. One is the hidden embedding ahead of the classifier layers, the other

is the output gradient with respect to the hidden embedding. However, in GNNs, there is only hidden node embedding

instead of hidden edge embedding. Thus, CAM-based methods are not applicable to the adjacency matrix, hence are not

able to provide intuitive and exhaustive edge-induced subgraph-level explanations as we discussed in Section 3.1. LRP,

Excitation-BP and DeepLIFT are decomposition methods. Since layer-wise back-propagation is performed, they require

expert knowledge of the original GNNs and need specific designs for various GNN structures. Besides, different from a

traditional input of neural networks that appears only once at the first layer of the whole network, the adjacency matrix A

appears in every GNN layer. This makes decomposing the prediction probability to the components in A a much more

complicated problem than decomposing to node-level. GOAt (Lu et al., 2024) requires expert knowledge to design differ-

ent attribution equations for different GNN architectures. And our method, EiG-Search, is extremely trivial to implement

and can be applied to all the GNNs. IG computes the edge importance by the integral of edge gradients starting from a

global base point. However, the performance is sensitive to the integral paths. As it is costly to obtain the gradients at all

points on the path, the integral is approximated by the summation of a few gradients along the path, which could bring

more error. And our proposed EiG-Search eliminates the need for guessing integral paths. The search-based methods

including SubgraphX (Yuan et al., 2021), GStarX (Zhang et al., 2022), SAME (Ye et al., 2023), are typically utilized to

search for the best subgraph-level explanations. Due to the computational challenges associated with searching among the

exponential number of candidate subgraphs, these methods often use Monte Carlo Tree Search (MCTS) to speed up the

process. However, MCTS introduces randomness, leading to non-deterministic behaviors to the explanations even for the

same input graph. Further discussions on these methods are provided in Appendix B.2. In contrast, the two-phase design

of EiG-Search allows it to be highly efficient while maintaining consistency across various runs.

B.2. Related Works Grouped by Subgraph Inducing Technique

The existing approaches can be grouped into node-level, edge-level and subgraph-level methods. SubgraphX (Yuan et al.,

2021), RG-Explainer (Shan et al., 2021), DEGREE (Feng et al., 2022), GStarX (Zhang et al., 2022), SAME (Ye et al.,

2023), GFlowExplainer (Li et al., 2023), DnX (Pereira et al., 2023) belong to the subgraph-level methods. We surprisingly

find that all of these methods choose to induce the subgraph-level explanations by vertices. However, as we discussed

in Section 3.1, edge-induced technique, as our method EiG-Search uses, offers more intuitive and exhaustive subgraph-

explanations. Additionally, we argue that a single connected subgraph may not always be sufficient to explain the GNN

prediction on a graph instance. Take, for instance, a binary graph classification task where the presence of “-NO2” desig-

nates Class 1; otherwise, it is Class 0. In this scenario, the most accurate subgraph-level explanation for p-dinitrobenzene,

as shown in Figure 1(c), should be the two “-NO2” components rather than a single connected component. From this

perspective, our proposed EiG-Search, which first identifies the critical edge set and then induces subgraph explanations,

is better than the methods that select an anchor point and then grow by neighbors to find a single important connected

component, as seen in approaches like RG-Explainer.

Although node-level and edge-level explanations are less intuitive than subgraph-level explanations, we can in-

duce subgraph explanations with the node or edge importance produced by the node or edge-level explainers.

Node-level explainers including Grad-CAM, Excitation-BP (Pope et al., 2019), LRP (Baldassarre & Azizpour, 2019),

DeepLIFT (Shrikumar et al., 2017), PGM-Explainer (Vu & Thai, 2020), GraphLime (Huang et al., 2022), can be used

to induce high quality subgraph-level explanations in most cases. However, as we have explained in Section 3.1, node-

induced subgraph explanations can be less intuitive than the edge-induced subgraph explanations, and the node-level

subgraph inducing technique is less exhaustive than the edge-level technique that our method uses. To this end, there

are many works that are able to produce edge-level explanations, including GNNExplainer (Ying et al., 2019), PGEx-

plainer (Luo et al., 2020), GraphMask (Schlichtkrull et al., 2021), RelEx (Zhang et al., 2021), Gem (Lin et al., 2021), RC-

Explainer (Bajaj et al., 2021), SA (Baldassarre & Azizpour, 2019), Integrated Gradients (IG) (Sundararajan et al., 2017),
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GOAt (Lu et al., 2024). The limitations of these works are discussed in Appendix B.1.

C. Experimental Details

C.1. Fidelity+ and Fidelity− performance on the graph classification tasks.

We report separate Fidelity+ and Fidelity− results in Figure 10 and Figure 11. The results are obtained while optimizing

the Overall Fidelity, hence in some datasets, e.g. MUTAG, Fidelity+ does not necessarily decrease as sparsity increases.

In this case, the performance that Fidelity− gains outweighs Fidelity+, resulting in higher Overall Fidelity in Figure 3.

C.2. Qualitative Results.

As demonstrated in Table 5 and Table 6, EiG-Search excels at identifying significant subgraph structures, such as the

”house” and ”pentagon” motifs in the BA-2Motifs dataset, the ”C-Cl-O” chemical group in the Mutagenicity dataset, and

the carbon ring in the NCI1 dataset. On the other hand, the baseline methods like GNNExplainer, PGExplainer, PGM-

Explainer, RCExplainer, RG-Explainer, DEGREE, and Integrated Gradients struggle to generate human-interpretable

subgraph-level explanations. Moreover, these baseline methods fail to recognize structural and computational equiva-

lents among edges. For instance, RCExplainer marks only one of the ”C-O” bonds in Table 6 as critical, while leaving the

other one unmarked, despite both bonds having identical neighborhood information. In contrast, EiG-Search assigns equal

importance to edges with identical neighborhood information, selecting all of them as critical when one is selected. This

highlights the efficacy of EiG-Search in providing comprehensive subgraph-level explanations.

C.3. Comparison between EiG-Search and each Augmented Baseline

Figure 5-9 presents a more intuitive comparison between our EiG-Search and each augmented baseline. The baselines are

augmented with our proposed search method in Algorithm 1. In particular, for IG, we use the straightline path and let the

step size be 50 as suggested in their paper.

C.4. More Tasks

Node-level tasks. We further conduct experiments on three node-level tasks: BA-Shapes, BA-Community, Tree-

Grid (Ying et al., 2019). For node classification, the node itself is important for its prediction and we cannot remove it

from the graph, otherwise, we cannot make a prediction on it or compute fidelity. However, as highlighted by Faber et al.

(2021), when we are able to train an GNN close to its maximum possible performance (e.g. 100% prediction rate for clas-

sification), it is likely that we can use the ground-truth explanations to evaluate the explainers. Therefore, we train GINs to

near optimal performance on the node classification datasets, and use the explanation AUC to evaluate the performance of

explaining methods, which aligns with Ying et al. (2019), Luo et al. (2020), Bajaj et al. (2021), Feng et al. (2022).

We compare our method EiG-Search, in particular, the Linear Gradients method, with the state-of-the-art explaining tech-

niques on node classification tasks. We report AUC under the ROC curve in Table 3. The results demonstrate that our

approach is very accurate in extracting the optimal explanations on these datasets. Another advantage is that EiG-Search

does not require any hyperparameters, and thus is more faithful to the GNNs, unlike PGExplainer, RCExplainer and RG-

Explainer, which require tuning hyperparameters for each dataset.

C.5. Statistics of datasets and GNNs.

The statistics of datasets and GNNs are presented in Table 4. The GNNs are trained with the following data splits: training

set (80%), validation set (10%), testing set (10%). All the experiments are conducted on Intel® Core™ i7-10700 Processor

and NVIDIA GeForce RTX 3090 Graphics Card. All the GNNs contain 3 message-passing layers and a 2-layer classifier,

the hidden dimension is 32 for BA-2Motifs, BA-Shapes, and 64 for BA-Community, Tree-grid, MUTAG, Mutagenicity

and NCI1.
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Figure 5. Comparsion between SA and EiG-Search after applying Linear-Complexity search.
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Figure 7. Comparsion between IG and EiG-Search after applying Linear-Complexity search.
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Figure 8. Comparsion between GNNExplainer and EiG-Search after applying Linear-Complexity search
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Figure 9. Comparsion between PGExplainer and EiG-Search after applying Linear-Complexity search
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Table 3. AUC evaluation on synthetic node classification datasets. The results of baselines are from the original papers.

Method
BA- BA- Tree-

Shapes Community Grid

GRAD 0.882 0.750 0.612

ATT 0.815 0.739 0.667

GNNExplainer 0.925 0.836 0.875

PGExplainer 0.963 0.945 0.907

DEGREE 0.991 0.984 0.935

RG-Explainer 0.985 0.919 0.787

RCExplainer 0.998 0.995 0.995

EiG-Search (ours) 0.999 0.996 0.947

Table 4. Statistics of the datasets used and the train/test accuracy of the trained GNNs.

BA- BA- TREE- BA-
MUTAG MUTAGENICITY NCI1

SHAPES COMMUNITY GRID 2MOTIFS

# GRAPHS 1 1 1 1,000 188 4,337 4,110

# NODES (AVG) 700 1,400 1,231 25 17.93 30.32 29.87

# EDGES (AVG) 4,110 8,920 3,410 25.48 19.79 30.77 32.30

# CLASSES 4 8 2 2 2 2 2

GCN

TRAIN ACC - - - 1.00 0.84 0.95 -

VALID ACC - - - 1.00 1.00 0.86 -

TEST ACC - - - 1.00 0.95 0.82 -

GIN

TRAIN ACC 0.99 1.00 0.97 1.00 - 0.93 0.93

VALID ACC 1.00 0.93 0.99 1.00 - 0.87 0.87

TEST ACC 0.97 0.95 0.97 1.00 - 0.89 0.83

17



EiG-Search: Generating Edge-Induced Subgraphs for GNN Explanation in Linear Time

0.55 0.65 0.75 0.85
Average sparsity (%)

0.2

0.4

0.6

0.8

1.0
Fid

el
ity
+

(a) BA-2Motifs (GIN)

0.55 0.65 0.75 0.85
Average sparsity (%)

0.2

0.4

0.6

Fid
el
ity
+

(b) Mutagenicity (GIN)

0.55 0.65 0.75 0.85
Average sparsity (%)

0.4

0.5

0.6

0.7

0.8

Fid
el
ity
+

(c) NCI1 (GIN)

0.55 0.65 0.75 0.85
Average sparsity (%)

0.1

0.2

0.3

0.4

0.5

0.6

Fid
el
ity
+

(d) BA-2Motifs (GCN)

0.55 0.65 0.75 0.85
Average sparsity (%)

0.2

0.4

0.6

0.8
Fid

el
ity
+

(e) Mutagenicity (GCN)

0.55 0.65 0.75 0.85
Average sparsity (%)

0.2

0.4

0.6

0.8

Fid
el
ity
+

(f) MUTAG (GCN)

SA (node)
Grad-CAM

GNNExplainer
PGExplainer

SubgraphX
DEGREE

PGM-Explainer
RG-Explainer

RCExplainer
EiG-Search (Ours)

Figure 10. Fidelity+ at different levels of average sparsity. The higher the better.
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Figure 11. Fidelity- at different levels of average sparsity. The lower the better.

18



EiG-Search: Generating Edge-Induced Subgraphs for GNN Explanation in Linear Time

Table 5. Detailed qualitative results on BA-2Motifs. IG refers to Integrated Gradients.

METHOD (GCN) CLASS 0 (GCN) CLASS 1 (GIN) CLASS 0 (GIN) CLASS 1

EIG-SEARCH

SA

GRAD-CAM

IG (EDGE)

GNNEXPLAINER

PGEXPLAINER

PGM-EXPLAINER

RCEXPLAINER

RG-EXPLAINER

SUBGRAPHX

DEGREE
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Table 6. Detailed qualitative results on Mutagenicity and NCI1. IG refers to Integrated Gradients.

METHOD MUTAGENICITY (GCN) MUTAGENICITY (GIN) NCI1 (GIN)
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