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Abstract

A review of some errors made by the author and others in their search for quantum

models of gravity in cosmological space-times that asymptote to de Sitter (dS) space in

the future. The “static de Sitter Hamiltonian”, which measures the energy of localized

objects in a static patch, is not a conserved quantity. The static time translation

diffeomorphism of eternal dS space is a gauge symmetry, and the static energy is

an approximate property of meta-stable constrained states. It’s not clear whether a

theoretical model has to have a time independent Hamiltonian at all, but if it does, its

eigenvalues are, in principle, not accessible to measurement by local detectors.
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1 Introduction

Towards the end of the twentieth century it began to become clear that the universe we
inhabit appeared to be evolving towards a dS space-time with a Hubble radius about 1061

in Planck units. For those of us who were string theorists, this posed an acute problem.
Perturbative string theory seemed to make sense only in asymptotically flat space-time. The
discovery of the AdS/CFT correspondence allowed us to think about anti-dS space and
certain mild perturbations of it (which did not perturb its asymptotic boundary), but there
was nothing in string theory that looked anything like dS space. We had of course known
for a long time that string theory could not deal with the Big Bang or inflationary origin
of our universe. Many string theorists explained this to themselves by saying that ”we were
just doing particle physics, not cosmology”, but the fact that all Poincare invariant string
models had exact SUSY made that little myth a part of science fiction as well.

With W. Fischler, the present author first responded to this crisis by trying to imagine a
model of eternal dS space. We quickly realized that the thing that naively converged to the
Penrose diagram of Minkowski space was a single static patch of dS, and that most particles,
thought of as geodesics, would asymptotically approach the horizon of the patch in a time
of order the dS radius R. We were of course familiar with the behavior of horizons, from
extensive experience with black hole physics, and realized that there could be no asymptotic
observables. We therefore proposed that the observables in a dS universe would have to be
finite time amplitudes, since the eventual fate of every state was to return to the equilibrium
of the empty dS universe [1].

Fischler and Susskind [3] had earlier proposed an extension of the Bekenstein-Hawking [2]
bound on black hole entropy to cosmological space-times, and Bousso [4] had generalized
this to a bound on the entropy of a general causal diamond in a general space-time, in terms
of the maximal d−2 volume (”area”) of leaves of a null foliation of its boundary. This led to
the independent conjectures [5] [6] that the Gibbons-Hawking entropy of dS space was the
logarithm of the dimension of the Hilbert space describing dS space in a quantum theory of
gravity. This implies that the density matrix of empty dS space is proportional to the unit
matrix.

This claim was met by incredulity, if not ridicule, by much of the community (including
some people who now call it the ”central dogma about dS space”), but there were a number
of sanity checks on it. The most important of these is that the introduction of localized
objects into dS space reduces the entropy. Indeed, for small mass of the localized object,
the BGHJCSFSB1 entropy law gives a derivation of the Gibbons-Hawking temperature of dS
space independent of quantum field theory. It invites an interpretation of that temperature as
a statement that the localized energy is a measure of the number of constrained holographic
q-bits on the boundary of the static patch. It turns out [7] that this interpretation can
be sustained even if the density matrix is not maximally uncertain. An interpretation of
localized states as living in a constrained subspace, gives a simple quantum mechanical
explanation of why they should eventually return to the empty dS equilibrium state.

Another vexing issue with the claim that the quantum dS space had a finite number
of states was the non-compact nature of the dS isometry group. In private conversations

1Bekenstein-Gibbons-Hawking-Jacobson-Carlip-Solodukhin-Fischler-Susskind-Bousso

2



with L. Susskind, E. Witten, G. Horowitz and others, I often invoked the fact that most of
the dS isometry group just mapped one static patch into gauge copies of itself. Indeed, in
the constructive field theory computation of non-gravitational global dS field theories from
Euclidean path integrals [8] on the sphere, one uses precisely this mapping to prove dS invari-
ance of the correlators. In a gravitational theory, these mappings are gauge transformations.
What I missed in this argument was that dS transformations that preserved a given static
patch are gauge transformations as well.

This fact was emphasized by Marolf and collaborators [9], based on earlier work [10]
and led to the procedure of ”group averaging”. As emphasized in [11] it is most efficiently
done by the standard procedure of BRST gauge fixing in a covariant gauge in perturbative
quantum gravity.

The covariant BRST gauge fixing preserves the illusion of locality at the expense of
introducing state spaces with indefinite metric. As a consequence, the algebras of bounded
functions of smeared local operators in the BRST quantized theory are not von Neumann
algebras. Nonetheless, it will still be true that commutators are singular on light cones, so
that the full operator algebra does not factor into a tensor product of algebras localized in the
two causally disconnected static patches. As a consequence it will still be true that the static
patch time translation operator acts as an outer automorphism on the local algebra in the
static patch, and the naive ”one sided static patch Hamiltonian” will have UV singularities.
The authors of [11] have argued that these can be removed by a version of the crossed
product construction of von Neumann algebra theory, and that this is a step towards the
correct quantum theory. In a somewhat disconnected argument they have proposed that
a projection on a Type II1 sub-algebra of the standard Type II∞ crossed product is the
correct algebra for dS space, so that they could adopt the proposal of [5] [6] that the density
matrix was maximally uncertain.

In this paper, we will instead follow the standard BRST quantization procedure and ask
what perturbative quantum gravity tells us about the ”observables” of dS space. Although
our arguments will be somewhat heuristic, since we will be cavalier about the choice of
gauge and the proper treatment of ghosts, we will argue that a picture similar to that of [1]
arises, except that the perturbative observables appear to be true asymptotic quantities
localized at points on the boundary of a given static patch. We then argue that the fast
scrambling behavior of horizons [12] and the hypothesis that dS space has a finite dimensional
Hilbert space imply that this localization is a temporary phenomenon and that the original
picture proposed in [1] is roughly correct. In the final section we discuss the correct way
to implement ”modular flow” in the quantum theory of dS space, and in more realistic
cosmological models, and propose an approximate meaning for ”eigenvalues of the static
patch Hamiltonian” within that definition of time evolution.

2 Perturbative Quantum Gravity

The BRST formalism for perturbative quantum gravity has been explained concisely in the
second appendix of [11] . One works in a gauge in which only the global dS isometries are
unfixed (the precise gauge choice is not specified but has been discussed in earlier work by
Marolf and collaborators and the papers they cite). There are then sectors of ghost number
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ranging from 0 to the dimension of the isometry group of dS. The space of physical states
is the BRST co-homology with maximal ghost number. The algebra of BRST invariant
operators is thus represented by functionals of the original fields that are invariant under
the dS isometries. Heuristically, these are integrals of local densities over dS space, divided
by the volume of the dS group.

As mentioned in the introduction, our treatment of the BRST formalism will be heuristic
and based on the model of world sheet string theory, which similarly deals with a non-
compact group of diffeomorphisms acting on a space-time with compact spatial sections.
The role of the ghosts is primarily to properly define what it means to average over the
non-compact group action [9]. The statement that a collection of operators all belongs to
the algebra localized in a single static patch is invariant under diffeomorphisms in dS space,
and consequently in perturbative quantum gravity expanded around the dS background.
dS group averaging of expectation values of products of such operators in the dS invariant
vacuum state just corresponds to restricting attention to the operator algebra restricted to
a given static patch.

The most interesting question is how to average over the static time translation, which
acts as modular flow in the local operator algebra. Let’s imagine an operator that transforms
as a scalar density, localized around some particular point (r,Ω, t). There is a unique radial
geodesic through this point. The diffeomorphism generated by static time translation moves
the point along this geodesic. For most of the infinite static proper time interval the trans-
formed points are within a spacelike Planck distance from the horizon. So it is plausible that
a rigorous definition of the BRST invariant observable associated with this operator will be
an operator ϕr(Ω) localized around some point on the d− 2 sphere. Of course, we also have
to average over rotations, which are also gauge transformations.

However, if we now consider a product of different operators, located at separated points
in the static patch, the rotational averaging will preserve the angular separation between
those operators.

The conclusion of this non-rigorous analysis is that group averaging will lead to observable
correlation functions of the form

⟨ϕr1(Ω1) . . . ϕrN(ΩN)⟩, (2.1)

on the d − 2 sphere, which are invariant under global rotations. Another way to think of
these correlation functions is that they are functions on the space of time-like geodesics on
dS space (whose boundary is the space of null geodesics) modulo the overall dS isometry
group. We can associate the observables to fields localized on gravitational Wilson lines
along the geodesics.

Of course, depending on the field content of the model, there may be many choices for
the scalar densities ϕ that label these correlators. In QFT, many of these densities might
be related by operator product relations, but those relations are obscured by the fact that
gravity is not renormalizable. The list of ”independent” scalar densities also depends on the
”non-gravitational field content” of the effective field theory model.

String theory sheds light on both of these ambiguities. In the Minkowski limit of dS
space we expect the only perturbative observables correspond to scattering amplitudes of
perturbative strings and D-particles (if any), whose spectrum is determined by the choice
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of compact background. Away from the weakly coupled string regime, but still assuming
gravity can be treated perturbatively, we would expect only a small number of distinct
amplitudes, corresponding to particles carrying conserved quantum numbers, would survive.

Each of these operators is the sum of two terms, one from the past and one from the
future boundary of the static patch. The discrete diffeomorphism of static time reflection
allows us to separate out even and odd (and thus past and future) pieces of these individual
operators, so each of these correlators can be broken up into sums of terms, one of which will
be a pure transition operator between past and future. In [13] it was argued that one must
gauge all reflections that are true symmetries of dS space. Static time reflection, combined
with some operation on the fields in the effective field theory to make TCP, will always
be a symmetry and should be gauged. However, we can still use relative time reflections
between different geodesics to separate out transition amplitudes from correlations between
fields purely on the future or past horizons.

These perturbative observables resemble the finite time transition amplitudes proposed
in [1]. The difference is that the very sketchy discussion in that paper was groping towards the
idea that was most fully expressed in [12]: finite area horizons are fast scramblers of quantum
information and the system returns to equilibrium in a time of order Rln (R/LP ). Note that
the factor of R in this estimate is observer dependent and refers to proper time as measured
on a trajectory that is far from the horizon. The logarithm is the log of the entropy, which is a
power of R/LP , and there is a system dependent numerical coefficient in the estimate which is
not easy to calculate for a given fast scrambling Hamiltonian. This implies that there can be
no true asymptotic observables [14], which was the intuition expressed in [1]. The formalism
of strictly perturbative quantum gravity cannot detect these non-perturbative features, which
are nonetheless clearly visible in classical gravitational physics. The simplest philosophical
explanation of that fact is Jacobson’s [15] observation that Einstein’s field equations are
the hydrodynamic equations of the area law for entropy. Hydrodynamics can sometimes be
used as a classical field theory, to be perturbatively quantized in order to reveal low energy
excitations of a gapless ground state, but it also describes the behavior of high entropy states,
whose microscopic dynamics is too complex to follow in detail. Hydrodynamics does give a
coarse grained description of departures from equilibrium and the return to the equilibrium
state. In the dynamics of horizons this is the role of the familiar quasi-normal modes.

3 The Meaning of the Static Hamiltonian

The present author, as well as many other researchers who’ve tried to come up with a
quantum theory of dS space, has spent a lot of time and print on the properties of ”the
Hamiltonian that evolves the system in static patch time”. Yet the idea of localized objects
as constrained states of a system that constantly tends to equilibrium on time scales of order
Rln (R/LP ) denies the possibility of an actual conservation law associated with this operator.
Indeed, classical geodesics, with a single exception, approach within a space-like Planck
separation of the horizon of the patch, in a time of order R. Quantum wave functions of single
particle relativistic wave equations, starting from finite time initial conditions concentrated
around the static geodesic, spread uniformly over the horizon in times of order R, up to
logarithms.
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In a previous paper [16], I proposed a general prescription for talking about time evolution
in finite causal diamonds. It is based on a Jacobsonian interpretation of a classical space-
time background as a hydrodynamic description of a quantum system, and is by definition
not background independent. The arena for quantum gravity is a bundle of Hilbert spaces
over the space of time-like geodesics of the hydrodynamic background. In each Hilbert space
one has a separate quantum system, which evolves in the proper time along that geodesic.
Nested intervals of proper time define nested causal diamonds in the space-time and we
assign a tensor factor of fixed dimension in the Hilbert space of a fiber, to each diamond
according to what will be called the Carlip-Solodukhin (CS) rule [17] [18]2. Strict locality is
imposed by insisting that the evolution operator be time dependent in a way that preserves
this tensor factorization at every time step. The CS ansatz implies that each tensor factor
Hilbert space is finite dimensional, so we have an analog of Algebraic Quantum Field Theory
(AQFT) with Type IN algebras instead of Type III1. It’s well known that sharp locality
and time independent Hamiltonians imply Type III1, so the CS rule imposes both evolution
by discrete time steps and that the Hamiltonian must be time dependent. A geometric way
of seeing this is that coordinate systems that remain inside a causal diamond [19] are never
generated by time-like Killing vectors, even when the global space-time has such isometries.

In QFT, the modular operator ∆⋄ = e−K of a causal diamond is a positive operator in
the Hilbert space which is not a member of the algebra of operators localized in the diamond.
The modular flow

a→ eiKtae−iKt, (3.1)

for a ∈ A⋄ is an outer automorphism of the local algebra. One reason the modular operator
is interesting is that the operator

U(t, δ) = eiK(t)e−iK(t+δ), (3.2)

generates an evolution on the operator algebra of a diamond corresponding to a proper
time interval [−T, t+ δ] along some geodesic, which, when δ ≪ t+ T , maps the subalgebra
localized in the subregion of that diamond not contained in the diamond corresponding to
the interval [−T, t], into itself. That is, we can think of U(t, δ) as an infinitestimal time
evolution operator on time slices interpolating between nested diamond boundaries.

According to the CS ansatz, local algebras are finite dimensional, so K is an operator in
the local algebra. CS (as generalized by [20]) argue that it is the L0 generator of a cutoff
1+1 dimensional CFT, with central charge proportional to the diamond area, so that Cardy’s
formula matches the area law. This ansatz also predicts a fluctuation formula

⟨(K − ⟨K⟩)2⟩ = ⟨K⟩, (3.3)

that was shown to be valid for Ryu-Takayanagi diamonds in every AdS/CFT model in the
Einstein-Hilbert limit [23] [21] [22]. Our remark about modular operators in QFT motivates

2In order for the notion of tensor factor to be well defined for non-positive c.c., we must restrict the proper
time intervals to diamonds of finite area. Afterwards we can take the infinite area limit with care. In the
AdS case this would mean renormalization of a holographic tensor network description to give a continuum
field theory on the boundary. For zero c.c. it means determining the non-perturbative Hilbert space on
which the scattering operator acts, a problem that I consider incompletely resolved even in high dimension.
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the definition of discrete time evolution between nested causal diamonds with Planck time
separated future tips as3

Uin(t, 0) = eiL0(t)e−iL0(t+L+P ). (3.4)

This is an operator that unitarily embeds the Hilbert space of the smaller diamond into the
larger one. It must be supplemented by an operator Uout(t, 0) which operates on the tensor
complement of the diamond Hilbert space in the full Hilbert space of the geodesic.

The fundamental unproven conjecture of this approach to quantum gravity is that Uout(t, 0)
can be consistently determined for all trajectories and all times by imposing The Quantum
Principle of Relativity (QPR), which plays the role of a connection on this bundle of Hilbert
spaces. Each pair of diamonds along each pair of trajectories, has an overlap, which contains
a maximal area causal diamond. The QPR states that the dynamics and initial conditions
on all fibers of the Hilbert bundle must be chosen in such a way that the density matrix on
any overlap, as computed along one trajectory, has the same entanglement spectrum as that
computed along the second trajectory. These conditions are easy to state, but it has proven
hard to develop a formalism that makes them easy to satisfy. It’s unclear whether this is a
consequence of the incompetence of the small number of developers of the formalism or the
intrinsic difficulty of the problem.

Within this formalism, we can now begin to understand the meaning of the static Hamil-
tonian in the causal patch of dS space. The Hilbert space along any geodesic is finite
dimensional and the density matrix representing the empty causal patch is the CS density
matrix with central charge determined by the Gibbons-Hawking entropy. States with total
energy E localized ”near” the geodesic lie in a subspace whose projector has expectation
value e−2πER in the CS density matrix. As emphasized in [7], this is valid for all states with
ER ≫ 1, but only for an order one entropy of states with ER ∼ 1. Most of the states with
ER ∼ 1 can neither be described in terms of QFT, nor as meta-stable black holes at rest at
the origin. The description of dS space in terms of fermion matrix models [24] (updated to
fermionic matrix CS-CFTs in [16]) views these constrained subspaces (for space-time dimen-
sion d = 4) as subspaces in which E×R blocks of fermion bilinears are set to zero, leading to
decoupling of the diagonal blocks in a single trace Hamiltonian. The static geodesic proper
time scale for equilibration of those frozen variables is CR ln (ER)4, so we can understand
why E appears to be conserved in the classical limit (R/LP ) → ∞, and also why it becomes
a true asymptotic symmetry in the R → ∞ limit of Minkowski space. E defined in this way
is not a conserved quantum number in dS space.

When R/LP is large, and E describes long lived excitations, we should also be able to
have an approximate notion of localization of energy in the static r coordinate, corresponding
to the fact that the perturbative observables carry the label r denoting the closest approach
to the origin of the geodesic that defined the gauge invariant observable.

The formalism of [16] provides two complementary ways to talk about localization of
energy. It describes the static diamond in eternal dS space as a time symmetric nested
sequence of diamonds, as shown in Figure 1.

Localized excitations are sequences of constrained states on the variables in each of those

3We use notation for the initial point in proper time appropriate to a cosmological space-time. The
modifications necessary for a time symmetric situation are straightforward.

4The constant C depends on the details of the fast scrambling Hamiltonian, and is not easy to calculate.
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Figure 1: A Time Symmetric Nested Cover of the Causal Patch by Causal Diamonds. The
Time Separations Are Planck Scale

diamonds and the existence of those constraints defines a correlated set of angular coordinates
on the nested holoscreens. These should be identified with gravitational Wilson lines in the
effective field theory, following the geodesics that described the gauge invariant field theory
observables5 . So the localization of states in the r coordinate should be enforced by imposing
the QPR on time evolution. Constraints must be imposed on the ”out” Hilbert space of the
description of the system along one geodesic fiber of the Hilbert bundle, to match those

5Those readers worried about the usual quantum fluctuations of ”particle trajectories” in field theory,
should recall that above three dimensions particles are inevitably accompanied by jets of soft gravitons.
The constraints of [24] [25] [16] can be thought of as ”jet isolation criteria” that separate the soft gravitons
accompanying hard momentum fluxes from the more uniformly distributed [26] [27] states that populate
most of the boundary of all causal diamonds. The microscopic description of these states by bulk QFT is
incorrect if one believes the C-S ansatz, although QFT is perfectly adequate for calculating inclusive cross
sections, which ignore everything but the total energy pumped into these states in Minkowski space.
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Figure 2: A Time Symmetric Nested Cover of the Causal Patch by Causal Diamonds With
Natural Timeslicing for Redshift Distance Relations

imposed on the ”in” Hilbert space of a different geodesic whose closest approach to the
original of the first static patch is at r.

In order to describe these constrained states consistently with the QPR, the Hamiltonian
Hin(t)+Hout(t) in a given fiber, which describes propagation along the geodesic at the origin
of the static patch, must involve a sum of terms, which depend on the initial conditions on the
past boundary of the patch. These determine, in terms of the ”gravitational Wilson lines” ,
how many such terms there are, and their relative normalizations. The ansatz that has been
proposed is that the extra terms just sit in the appropriate diagonal blocks of the matrix
Hamiltonian and consist of a constant denoting the energy of the excitation and a copy of
the full matrix Hamiltonian, scaled down to the smaller block. The overall normalization
of these terms is determined by the ”redshift-distance relation” in the coordinate system
sketched in Figure 2.

The non-constant term in the Hamiltonian of a block is responsible for the emission and
absorption of soft particles from the excitation. These correspond to processes in which the
block spontaneously breaks up into a smaller block and a larger one and reverts to generic
size.

For each value of proper time along the geodesic, the terms in the Hamiltonian are
distributed between Hin(t) and Hout(t) according to the configuration of the gravitational
Wilson lines. By analogy with Jacobson’s identification of the background solution of Ein-
stein’s equations as the hydrodynamic flow of an underlying quantum system, we can view
the gravitational Wilson lines as the hydrodynamic trace of the propagation of localized
excitations through the bulk. The fundamental microscopic definition of this process is the
evolution of certain constrained states and we must construct the Hamiltonian of the con-
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strained subspace in order to match the hydrodynamic information. An interesting feature
of this ansatz is that we see the necessity for choosing a set of gravitational Wilson lines
to describe a scattering event whose microscopic description will involve jets of soft parti-
cles collimated along those lines, surrounded by isolation zones separating the jets from a
holographic ensemble of near horizon states with ”energies” of order 1/R.

In [16] we provided a complete ansatz for Hin(t) and conjectured that Hout(t) would then
be determined by the QPR. The QPR is particularly powerful for eternal dS space, because
Hin(t) has to be identical for every geodesic in the system, and only the boundary conditions
defined by the Wilson lines distinguish one geodesic from another. The unsolved problem
in this approach to quantum gravity is a definition of Hout(t) that will solve the conditions
imposed by the QPR. The lesson from string theory is that this is likely to be difficult. Most
low energy effective field theories of gravitation do not come from consistent string models
with either asymptotically flat or AdS boundary conditions. We have no reason to expect
that consistent models of dS space are any easier to find, especially since the R/LP → ∞
limit of such a model is likely to lead to a consistent model of quantum gravity in Minkowski
space.

In [25] we showed that the matrix form of Hin(t) naturally led to the right parametric
form of the Newtonian gravitational law for the leading long distance interaction between
a pair of localized excitations in a causal diamond of size r. The interaction is generated
causally, by excitation and de-excitation of the frozen q-bits connecting the small blocks
of the matrix to the large block of excitations on the diamond boundary. We also argued
that the QPR implied that there would be ”time ordered Feynman diagram” like exchange
interactions. In the case of graviton graviton scattering, in a Lorentz covariant theory, we
know that these two contributions exactly cancel when the graviton momenta are parallel.
One can see that this will not happen in general in these matrix models, so satisfying the
QPR constraints is indeed a non-trivial unsolved problem.

4 Conclusions

We have argued, following [9] that a quantum theory of dS space should not be invariant
under any of the classical isometries of the space-time, which are instead merely gauge
transformations. We’ve proposed a heuristic identification of perturbative gauge invariant
observables in terms of correlation functions of operators on the boundary of a single dS
static patch, invariant under rotations. The operators are labeled by radial geodesics, local
scalar densities in the effective field theory, and a discrete quantum number distinguishing
past from future static time. A more rigorous investigation of the BRST cohomology of
perturbative quantum gravity in dS space should be done to verify this conjecture.

We then argued that the hypothesis [5] [6] that the Hilbert space of the quantum theory
is finite dimensional, particularly when combined with the fast scrambling conjecture [12],
implies that none of these perturbative observables survives in the actual quantum theory.
Rather, as first suggested in [1] they correspond to finite time transition amplitudes for
constrained out of equilibrium states, which return to the empty dS equilibrium in a time of
order Rln (R/LP ).

Finally we discussed the holographic space-time formalism [28], which has taken on a
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new form in [16], and in which the ”static Hamiltonian” could be given an approximate
meaning as an operator in certain constrained meta-stable states of the system. As it stands,
the HST formalism describes the final equilibrium state of dS space as evolving under a
time independent Hamiltonian. The eigenvalues of this Hamiltonian do not correspond to
any energy measured by local detectors. Local energies are related to the dimensions of
constrained subspaces to which localized states belong, and the times that it takes them to
return to equilibrium6. The energies of near horizon states are all of order R−1 and typical
level spacings are of order e−π(R/LP )2R−1 . One suspects that there is a lot of freedom to
add random time dependence into this model without appreciable effect on the physics of
localized excitations. [16] proposed a particular Thirring interaction between a set of cutoff
two dimensional fermion fields ψa as a candidate for the CS L0 generator. The label a runs
over the spinor spherical harmonics Ya(Ω) on the two sphere, with an angular momentum
cutoff determined by the CS relation between the central charge of the near horizon CFT
and π(R/LP )

2. Define the field

ψ(z,Ω) =
amax∑

ψa(z)Ya(Ω). (4.1)

Then the local 2d interaction density of the Thirring model is

Lint(z) = g

∫
d2Ω[ψ̄(z,Ω)γmψ(z,Ω)ψ̄(z,Ω)γmσ3ψ(z,Ω)]. (4.2)

When discussing time evolution in diamonds much smaller than the dS radius, the Hamilto-
nian is time dependent because we’re constantly adding degrees of freedom to the ”in” part
of the system. Since the evolution is discrete, this must stop at some finite time when the
Hilbert space reaches its maximum dimension, but we can still allow the Thirring coupling
g to vary with time. Once we’ve given up the mistaken idea that we must impose the global
isometry of the static patch as a global symmetry of the system, there is no reason not to do
so. It seems clear that there are a large number of choices of time evolution which will not
disturb the conclusion that detectors near the origin will experience ”thermal physics at the
fixed dS temperature”, despite the time dependence of the underlying holographic variables.
From a philosophical point of view, this kind of time dependent Hamiltonian solves the silly
problem of ”Boltzmann Brains”.

We conclude by discussing an aspect of the universe we inhabit, which knowledgeable
readers may find disturbing in light of the preceding discussion. That universe appears to
be approaching an asymptotically dS future with R ∼ 1061LP . If it indeed has a positive
cosmological constant of the indicated magnitude, then in about 100 times its current age
of ∼ 13 billion years, all we will see in the sky is the local group of galaxies. The time scale
for the disappearance of everything else into the cosmological horizon is consistent with the
fast scrambling estimate, but the local group will persist until it collapses into a black hole
and radiates its quantum information back to the horizon. The time scale for this is much
longer than the scrambling time.

The answer to this conundrum is that the local group of galaxies is not traveling on a static
geodesic [29]. Its trajectory is complex, perturbed by its interaction with everything else in

6These are proper times as measured by a detector at the origin.
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the universe and it is constantly emitting radiation, both electromagnetic and gravitational,
so neither its energy or angular momentum are conserved on any long time scale. The
trajectory of its center of mass is a collective coordinate of the huge quantum system made
up of its constituents. It is a completely decoherent classical variable, and the local group has
many collective variables with similar properties. The persistence of semi-classical physics in
dS space, for detectors in the local group, depends only on the continued existence of these
variables.

In summary, if a more careful BRST analysis confirms our heuristic picture of pertur-
bative quantum gravity observables in dS space, then the additional assumptions of a finite
dimensional Hilbert space and fast scrambling imply that there are NO asymptotic observ-
ables, as first suggested in [1] [14]. Instead, in a model of eternal dS space, there would be
finite time transition amplitudes, for time scales at most of order R ln (R/LP ), very similar
to the actual amplitudes we measure in real world laboratories as stand ins for the S matrix
elements of quantum field theory.

For time scales longer than the scrambling time, the existence of detectors and sensible
measurements of quantum systems in dS space depends on the existence of large complex
bound states like star clusters and the details of what can be measured will, to some extent,
depend on the individual structure in which the detector is embedded. There does not seem
to be much use for a model of the detector as an isolated elementary system traveling on
a geodesic in a static patch. If it’s truly elementary, its wave function will spread over the
horizon in less than a scrambling time. If it’s a black hole, it has no useful pointer variables
with which to make complex measurements. Only a complicated, uncollapsed gravitational
bound state has the resources to host a measuring device. Such a system will not travel on
a geodesic, and will constantly emit radiation.

In [16] we presented a formulation of quantum gravity in which the entire dS group acts
on a bundle of Hilbert spaces, with the stabilizer subgroup of a geodesic acting on the Hilbert
space of a particular fiber. The question we have addressed in this paper is whether that
second action has anything to do with measurements of observable energies and angular
correlations in real world physics. The answer as far as energy is concerned is definitely no.
The energies that we measure in scattering experiments near a static geodesic are related
to the number of constraints on the holographic variables, rather than to eigenvalues of
their asymptotic Hamiltonian. We’ve even speculated that it would be possible to give the
Hamiltonian in the asymptotic finite dimensional Hilbert space a sufficiently mild random
time dependence, without affecting any local measurement.

On the other hand the finite time transition amplitudes which we believe are the only
true local observables in dS space do depend on relative angles, and if we lived in an eternal
dS space they would be exactly rotationally invariant functions of relative angles, as a conse-
quence of the underlying isometry. In the real Big Bang universe we inhabit, this symmetry
is preserved and evident in the statistics of the microwave sky. Those statistical fluctuations
also exhibit an approximate dS symmetry that is related to the properties of the very early
universe, and logically distinct from the isometry of our apparent asymptotic future.
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