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Autonomous wheeled-legged robots have the potential to transform logistics systems, improving operational
efficiency and adaptability in urban environments. Navigating urban environments, however, poses unique
challenges for robots, necessitating innovative solutions for locomotion and navigation. These challenges include the
need for adaptive locomotion across varied terrains and the ability to navigate efficiently around complex dynamic
obstacles. This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware
local navigation planning, and large-scale path planning within the city. Using model-free reinforcement learning
(RL) techniques and privileged learning, we develop a versatile locomotion controller. This controller achieves
efficient and robust locomotion over various rough terrains, facilitated by smooth transitions between walking and
driving modes. It is tightly integrated with a learned navigation controller through a hierarchical RL framework,
enabling effective navigation through challenging terrain and various obstacles at high speed. Our controllers are
integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation
missions conducted in Zurich, Switzerland, and Seville, Spain. These missions demonstrate the system’s robustness
and adaptability, underscoring the importance of integrated control systems in achieving seamless navigation in
complex environments. Our findings support the feasibility of wheeled-legged robots and hierarchical RL for
autonomous navigation, with implications for last-mile delivery and beyond.

INTRODUCTION

A substantial portion of the population resides in urban areas, leading
to a considerable challenge in supply-chain logistics, especially for last-
mile deliveries. The increasing traffic and demand for faster delivery
services put additional pressure on our roads. By shifting reliance
from individual motorized transportation to smart and versatile robotic
solutions, we can substantially improve the efficiency of urban delivery.
Moreover, last-mile delivery routes are not limited to streets but can
also include indoor routes, providing an efficient alternative to human
labor. To fulfill all these roles, robots must be fast and efficient on flat
ground while being able to overcome obstacles like stairs. Traditional
wheeled robots cannot surmount these obstacles effectively, and legged
systems alone are inadequate in achieving the necessary velocity and
efficiency. For instance, the ANYmal robot [1] can only operate for
a maximum of 1 hour[2, 3] at half the speed of an average human
walking (2.2 km/h on average [4]).

Wheeled-legged robots offer a comprehensive solution that ad-
dresses these requirements [5–8]. Our research focuses on developing
a wheeled-legged robot, as depicted in Figure 1, where actuated wheels
are integrated with its legs [6]. Unlike other logistics platforms, this

design empowers the robot to operate effectively over long distances,
enabling high-speed locomotion on moderate surfaces while maintain-
ing agility on challenging terrains [9, 10]. However, to fully leverage
such machines in autonomous real-world applications, it’s essential to
address several challenges including solving hybrid wheeled-legged
locomotion (hybrid locomotion), achieving smooth and efficient navi-
gation, and implementing a complete system that integrates locomotion
and navigation modules seamlessly into an autonomous application.

Firstly, hybrid locomotion remains a challenging area in legged
robotics. Existing approaches for hybrid locomotion build upon simple
heuristics to decide when to step and when to drive [10] or rely on
pre-defined gait sequences [11, 12]. Most control strategies designed
for legged robots incorporate handcrafted gait patterns [13, 14] or
motion primitives [15, 16] inspired by nature, but we cannot take
observations from biological organisms for wheeled-legged robots.
Determining an effective wheeled-legged gait for each situation is
not straightforward, as speed and efficiency heavily depend on the
direction of motion and chosen gait. For example, minimizing stepping
can lead to a lower Cost of Transport (COT) [10] for wheeled-legged
robots, but traditional methods for legged robots often do not consider
gait switching, resulting in sub-optimal outcomes when applied to
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Fig. 1. Deployments in urban environments. Our control system for the wheeled-legged robot has undergone extensive validation in various
indoor and outdoor locations. The experiments took place in Zurich, Switzerland and in Seville, Spain. (A) Locomotion challenges. (B) Naviga-
tion challenges; dynamic and static obstacles, complex terrains, and narrow space. (C) Locations in Zurich. (D) Locations in Seville.
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wheeled-legged robots. Some directly optimize for COT [17, 18]
and demonstrated improved performance with gait adaptation, but
the results are limited to indoor settings or moderate terrains with
robots mostly moving forward. To generate more complex motions
that combine driving and walking, trajectory optimization techniques
have been utilized to directly optimize gait and discover complex
behaviors such as terrain-aware gait and skidding [9, 19]. However,
these methods are computationally expensive and often rely on close-to-
optimal initialization. Additionally, some of these approaches prioritize
computational efficiency at the expense of model accuracy, such as by
neglecting the dynamics of wheels, leading to sub-optimal performance
on the real robot.

Secondly, traditional navigation planning methods often overlook
the unique characteristics of highly dynamic robots, leading to sub-
optimal navigation plans. Urban environments are mostly covered
with flat and open areas that require efficient high-speed traversal to
cover large distances. At the same time, it is bristled with obstacles
like stairs and uneven terrain. To achieve speed, efficiency, and ob-
stacle negotiation capabilities, a navigation algorithm must consider
the characteristics of dynamic hybrid locomotion. This understand-
ing is crucial for issuing commands that optimize efficiency on flat
terrain while maintaining agility when faced with obstacles. Many
existing approaches [20, 21] are based on explicit navigation costs,
such as traversability [21, 22], without considering the robot’s whole-
body states. They focus on generating kinematic navigation plans by
sampling-based planning on these estimated cost maps. As a result,
these approaches often cannot account for various dynamic charac-
teristics of the robot, such as tracking error variations depending on
terrain, commanded velocity, or gait. Consequently, they may result in
frequent turning and stepping actions that can decrease efficiency.

In addition to the previous points, the higher speed capabilities of
wheeled-legged robots introduce the need for shorter reaction times,
which raises safety concerns and calls for more responsive control
systems. State-of-the-art sampling-based planners designed for legged
robots typically take several seconds to compute a path [20]. However,
when operating at speeds of multiple meters per second, relying on
such planning methods would necessitate long foresight and could
result in collisions in dynamic environments. In dynamic environments
or situations involving human presence, ensuring safety requires faster
and more frequent decision-making capabilities than what traditional
planning methods can provide.

Lastly, attaining autonomy in robotic systems poses a substantial
engineering challenge, requiring seamless integration of various sub-
modules. Traditionally, these sub-modules are developed in isolation
with a focus on each component’s functionality. Their coordination
relies heavily on heuristic methods for inter-module communications,
and these engineered heuristics often limit smooth and robust opera-
tion. Team Cerberus, for example, undertook the development of an
autonomy system for a classic legged robot during the DARPA Subter-
ranean Challenge [2]. The project uncovered substantial insights into
operational challenges faced in real-world robotic applications. No-
tably, issues observed during the challenge included robots frequently
pausing midway through a path to re-plan or exhibiting zigzag motion
while attempting to adhere to a predetermined route. Such discontin-
uous or oscillatory behavior can compromise efficiency and hinder
the robot’s ability to respond to complex dynamic scenarios. In some
cases, navigation failure may occur when computed navigation paths
are not accurately followed [20].

In this work, we developed a large-scale autonomous navigation
system for wheeled-legged robots that enabled seamless coordination
between navigation and locomotion controls. Our approach integrated
hybrid locomotion control, which was developed using model-free
Reinforcement Learning (RL) and privileged learning [15, 23, 24],

with a navigation controller optimized through Hierarchical Reinforce-
ment Learning (HRL). Both locomotion and navigation controllers
were trained using simulated data. The controllers were integrated
into a global navigation framework designed for real-world validations
through mock-up delivery missions. Within this framework, digital
twins are employed for experiment planning and onboard localization.
Extensive testing in urban areas of Zurich, Switzerland, and Seville,
Spain demonstrated the system’s autonomy in navigating complex envi-
ronments, completing kilometer-scale missions across various terrains
and obstacles. Our learned controllers enabled adaptive gait selection,
efficient terrain negotiation, and responsive navigation that avoided
static and dynamic obstacles safely. Our practical evaluations under-
scored the potential of wheeled-legged robots for achieving efficient
and robust autonomy in real-world applications. Additional compara-
tive studies validated the advantage of our tightly integrated navigation
controller over traditional systems.

RESULTS

Movie 1 summarizes our main results.

System Overview
We first present a detailed overview of each component comprising our
autonomous navigation system. Figure 2 provides an overview of our
system.

Robot

The wheeled-legged robot used in this work is depicted in Fig. 2A.
The robot carried multiple payloads, including three Light Detection
and Ranging (LiDAR) sensors, an RGB stereo camera at the front, a
delivery box, a 5G router, and a GPS antenna. They served various
purposes such as localization, terrain mapping, and human detection,
contributing to the safety layer. We integrated an RGB camera with
high-frequency object detection capabilities because point cloud-based
terrain mapping does not capture dynamic obstacles well. This allowed
for real-time tracking of people within a range of 20 meters. We
created a buffer zone in the elevation map by adding an offset around
the detected human positions, as detailed in Local Navigation later. We
provide more technical details in Supplementary Materials.

Navigation System

Our navigation system is illustrated in Fig. 2B. Given a global navi-
gation path, represented by a sequence of graph nodes, we extracted
two waypoints, denoted as ’WP1’ and ’WP2’. Taking inspiration from
the pure-pursuit tracking algorithm [25], we set two intermediate way-
points by interpolating between the robot’s current position projected
onto the path and the subsequent graph node, with a fixed look-ahead
distance.

Our robot followed the intermediate waypoints using the low-level
controller (LLC) which is commanded by the high-level controller
(HLC), both of which are neural networks trained through RL. HLC,
fed with the waypoints as input, generated velocity targets for LLC
at 10 Hz, which aligns with the update rate of the onboard elevation
mapping [26]. LLC, in turn, generated joint position and wheel velocity
commands at 50 Hz.

The primary technical contribution of this work lies in the develop-
ment of our HLC. This controller addresses local navigation planning
and path-following control together, which traditionally necessitated
separate modules.

Locomotion controller (LLC)

We have developed a robust and versatile locomotion controller for
wheeled-legged robots by leveraging model-free RL. Our LLC is
driven by a Recurrent Neural Network (RNN)-based policy and builds

https://youtu.be/vJXQG2_85V0
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Fig. 2. System overview. (A) Our wheeled-legged quadrupedal
robot is equipped with various payloads for onboard terrain mapping,
obstacle detection, and localization. (B) Overview of the navigation
system. The system is driven by two neural network policies oper-
ating at different levels. The high-level navigation policy observes
two waypoints (WP 1 and WP 2) and generates target velocity com-
mands for the locomotion policy. The low-level locomotion policy
then controls joint actuators and follows the velocity commands. (C)
Our training environment is designed to dynamically generate new
navigation paths for each episode, optimizing the learning process.
By leveraging pre-generated obstacle-free paths, we enhance the nav-
igation capabilities of our system.

upon the perceptive locomotion controller by Miki et al. [16]. We
applied modifications to the observation and action space to improve
robustness and removed the engineered motion primitives (CPG in
[16]). Technical details are given in Materials and Methods.

With minimal dependence on human intuition, we achieved a lo-
comotion controller capable of making decisions regarding the gait
and transitioning between walking and driving modes. The locomotion
controller is trained in simulation environments thorugh privileged
learning [15, 23, 24]. During the training, an agent utilizes additional
information that is only available during the training phase to enhance
the model’s performance. We employed the robot’s motion information
including velocity and acceleration, terrain properties, and noiseless
exteroceptive measurements as privileged information. During deploy-
ment, the final policy only relied on raw measurements from Inertial
Measurement Unit (IMU), joint encoders, and onboard terrain elevation
mapping. Similarly to the approach presented by Ji et al. [27], we used
the raw IMU and encoder measurements instead of using conventional
state estimator. This reduces the use of heuristics for noise filtering
and eliminates the need for accurate state estimation for orientation
and velocity estimates. This approach resulted in enhanced robustness
when operating on challenging terrains, resulting in fewer failure points
in terms of locomotion control.

Mobility-aware navigation controller (HLC)

The HLC replaces the traditional navigation setup comprising path
planning, path following, and inter-module communication layers [2].
Instead of explicitly planning future poses and computing reference
velocities, our HLC directly computes the velocity targets at a high
frequency.

The HLC processes multiple input modalities including the hidden
state of LLC policy, terrain height values around the robot, and a se-
quence of previously visited positions with corresponding visitation
times. Instead of using standard proprioceptive observations, HLC ac-
cesses the belief state of LLC. This latent state captures environmental
information such as terrain properties and disturbances, as supported
by [15, 16]. Additionally, HLC processes 20 previously visited po-
sitions recorded at 50 cm intervals. They span the distance of up to
10 m, approximately the usual waypoint spacing. The history allows
HLC to make informed decisions based on the robot’s prior navigation
experience.

Our HLC was trained in the simulation environment depicted in
Fig. 2C. In every episode, new obstacle-free paths were generated, and
two waypoints were sampled along the path at random intervals.

Training Environment

We have adopted the concept of “Navigation Graph" from computer
games [28, 29] to provide solvable yet challenging navigation problems
to the agent during training (see Fig. 2). The simulation environment
was crafted using a procedural content generation algorithm called
Wave Function Collapse (WFC) [30], and a graph outlining feasible
paths and safe areas was constructed with the terrain. The training
environment offered diverse navigation challenges, including detours,
dynamic obstacles, rough terrains, and narrow passages. As detailed
in the Materials and Methods, we combined different obstacles in a
controlled manner and rewarded RL agents for following the shortest
path towards the goal point during training. This approach yielded
improved performance compared to policies trained with randomly
placed obstacles and goals.

Kilometer-Scale Autonomous Deployments
We conducted autonomous navigation missions in different urban envi-
ronments. These experiments took place in Zurich, Switzerland, and
Seville, Spain. The capability of our system is summarized in Movie

https://youtu.be/vJXQG2_85V0
https://youtu.be/vJXQG2_85V0
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Fig. 3. Large scale autonomous navigation experiment at Glattpark, Zurich. (A) Our city navigation workflow begins with offline prepara-
tion, involving scanning the test area using a handheld laser scanner and constructing a navigation graph. (B) The robot autonomously navigated
the urban environment to reach 13 predetermined goal points, selected in an arbitrary order. (B-i, ii) Path planning within the city was facilitated
by the pre-generated navigation graph. (B-iii) Moving speed and mechanical cost of transport compared to a normal legged robot (ANYmal-C).

https://youtu.be/vJXQG2_85V0
https://youtu.be/vJXQG2_85V0
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1. Additionally, we show one full mission in Movie S1 to demonstrate
the scale of each experiment.

Fig. 3 summarizes our mock-up delivery mission conducted in
Glattpark, Zurich. Our robot covered a total distance of 8.3 km with
minimal human intervention.

We first show our workflow in Fig. 3A. To begin, we employed a
handheld laser scanner to capture dense color point clouds of the ex-
perimental area. The scanning process took approximately 90 minutes
to cover a 245 m x 345 m urban area. Subsequently, we georeferenced
the point cloud, and the data was converted into a mesh representation,
facilitating the creation of a navigation graph and the placement of
goal points by a human expert (see Fig. 3A-iii and Fig. 3B-ii). The
purpose of the navigation graph is to provide topological guidance and
to indicate social preferences, like avoiding landscaping and private
property.

During the robot’s deployment, it localizes itself with respect to
the pre-scanned reference point cloud using its LiDAR, IMU, and
joint encoder readings. With this setup, the robot can be provided
with a single GPS goal, and it autonomously navigates toward the
target location. Selected goal points are sent to the robot via mobile
network and the reference path is computed onboard using a shortest-
path algorithm [31]. The resulting path is converted into robot-relative
coordinates for our navigation policy using LiDAR-localization in the
pre-scanned point cloud map. Note that the point cloud is purely for
localization and is not otherwise used for navigation [32]. We have
found this localization method to be more robust among high-rise
buildings than a GPS-based approach.

Fig. 3B-i illustrates the paths traversed by our robot during mul-
tiple long-distance experiments, each lasting more than 30 minutes.
Throughout these experiments, we manually selected 13 distant goal
points to maximize coverage of the experimental area. This setup
required the robot to navigate diverse obstacles in order to reach each
goal point successfully.

Fig. 3B-iii presents histograms of the speed and mechanical COT
while the robot was in motion. We define mechanical COT as

COTmech = ∑
all joints

[τθ̇]+/(mg|vb
xy|) , (1)

where τ denotes joint torque, θ̇ is joint speed, mg is the total weight,
and |vb

xy| is the horizontal speed of the robot’s base. This quantity
represents positive mechanical power exerted by the actuator per unit
weight and unit locomotion speed [6, 15].

Our robot achieved an average speed of 1.68 m/s with a mechanical
COT of 0.16. In comparison, we provide data on the average speed
and COT of one ANYmal robot which primarily traversed flat and
urban terrains during the DARPA Subterranean challenge [2]. The data
is from ANYmal 4 in [33]. Our robot demonstrated three times the
speed with a 53% lower COT. Note that we only compared the output
mechanical power. Other major factors contributing to energy loss,
such as heat loss and mechanical loss from the actuators’ transmission,
also come into play during constant walking motions, thus potentially
reducing overall efficiency.

The improvement is mainly attributed to the driving mode, which
evenly distributes weight across all four legs, keeping leg joints rela-
tively static. Constant stepping led to concentrated loads on fewer legs,
requiring higher joint torques and speeds. During driving, joint actua-
tors contributed almost zero mechanical COT (≈ 0.01). Compared to
a typical ANYmal robot during locomotion, our robot’s wheels exerted
approximately 1.2 times the total mechanical power while achieving
an average locomotion speed 3.4 times higher. Upon evaluating the
average ∑ τ2 solely for leg joints, our robot exhibited a 16 % lower
value, despite being both heavier (≈12 kg) and faster. This quantity is
directly related to the heat loss [34, 35].

Fig. 4. Challenges in the populated urban environment. (A) The
urban environment presents various obstacles. Some have to be
avoided, such as pedestrians or poles, and others can be traversed,
such as stairs or steps. (B) We had to intervene and stop the mission
in these three cases.

Fig. 4 shows the major challenges encountered by our robot, in-
cluding pedestrians, various obstacles, and non-flat terrains. Our robot
demonstrated the capability to navigate around pedestrians in various
situations, even on slopes or stairs, as depicted in Movie 1 and Movie
S1.

Additionally, our robot could avoid thin obstacles, such as the pole
shown in the first image of Fig. 4A-ii, as well as various discrete
terrains like steps and stairs.

Because HLC and LLC are trained to minimize COTmech and ∑ τ2,
the robot mostly drove on flat terrain. However, when encountering
uneven surfaces, the robot switched to a stepping gait. Importantly, this
gait switching is learned without handcrafted heuristics like Central
Pattern Generator (CPG) or predefined gait sequences. Furthermore,
our controller demonstrated robustness in handling various surfaces, in-
cluding grass, sand, or gravel, which can be attributed to the privileged
training of the LLC [15].

We intervened during the mission in three circumstances, presented
in Fig. 4B. Firstly, there were instances where children were in the
robot’s path. Although our navigation module would have most likely
safely navigated around children, as it did for adults, we prioritized
safety and stopped the robot proactively.

Secondly, we encountered situations where the waypoints were
located within untraversable regions. For instance, tall grass had grown
on a trail between the creation of the navigation graph and the robot de-
ployment, obstructing the path. Consequently, it presented an obstacle
in the local height map used for navigation. The robot safely stopped
in front of the tall grass and we manually triggered global re-planning
to go around the obstruction.

Lastly, we encountered challenges with localization in geometri-
cally degenerate environments, such as long corridors. This meant that

https://youtu.be/vJXQG2_85V0
https://youtu.be/vg_NRWGm270?list=PLE-BQwvVGf8GOIzjIAeuY6qCVgDGTr5jh
https://youtu.be/vJXQG2_85V0
https://youtu.be/vg_NRWGm270?list=PLE-BQwvVGf8GOIzjIAeuY6qCVgDGTr5jh
https://youtu.be/vg_NRWGm270?list=PLE-BQwvVGf8GOIzjIAeuY6qCVgDGTr5jh
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Fig. 5. Obstacle negotiation. (A) Our robot navigates around blocked routes by actively exploring the area and finding alternative paths. (B)
Safe traversal of a narrow space. (C) Our robot exhibits two different ways to traverse the complex obstacle. (C, D) Our robot shows an asym-
metric understanding of traversability, being able to traverse higher steps when going down. (D) We ensure safety around humans by incorporat-
ing additional human detection and overriding height scan values.
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the reference path became invalid and provided infeasible, potentially
hazardous waypoints. Our robot’s controller was able to operate safely
by relying on onboard local terrain mapping but was unable to reach
the goal point until localization was recovered.

Local Navigation
In Fig. 5, we present example scenarios that best show the local navi-
gation capability of our system. The sequence of these scenarios can
be viewed in Movie S2.

In the first case (Fig. 5A), we show the exploratory behavior when
the robot encountered a blocked path. The robot reversed and moved
along the wall, searching for an opening until it found the stairs leading
to the final waypoint. The robot’s explicit position memory enabled it
to reason about its previously visited positions and navigate through
the complex obstacle.

Fig. 5B shows our robot’s ability to navigate narrow corridors.
It safely maneuvered through two doors with a human standing in
between, where the gap was as wide as the robot’s width. The robot
navigated through the narrow space without collision even though
human detection was not enabled in this deployment. This example
showcases the precision and real-time trajectory adjustment of our
navigation controller, making it suitable for environments with limited
space and tight passageways.

We conducted a test with a complex obstacle depicted in Fig. 5C-
1. The obstacle consisted of a small staircase on one side and a step
with variable height ranging from 0 to 50 cm on the other side. When
a waypoint was provided above the step, our robot showcased two
different approaches.

Initially, when faced with the obstracted route, the robot drove
backward and began exploring. During this phase, it could either find
the stairs to climb up or continue exploring to find a lower step height.
In the second case, after driving along the step, the robot discovered
a viable height of approximately 20 cm. This example shows the
effectiveness of our hierarchical controller, seamlessly adapting its gait
based on the terrain, and exhibiting versatility in navigating complex
paths.

We observed that HLC has an asymmetric understanding of
traversability when going up and down the step (Fig. 5D). Specifi-
cally, the robot was able to traverse higher steps when descending,
indicating that it has a more advanced understanding of the terrain
compared to cost-map approaches for traversability estimation [21, 26].
Traditional methods often use symmetric traversability maps that are in-
dependent of motion direction, whereas our approach makes decisions
based on the current terrain, the robot’s state, and the characteristics of
the low-level controller.

In Fig. 5E, we visualize our strategy for augmenting the static, local
elevation map with dynamic obstacles. We employed camera-based
human detection to introduce a height offset within a radius of 50 cm
around individuals. As the robot encountered a person moving along
its path, HLC, trained to handle dynamic obstacles of various sizes,
maintained a constant distance from the person, enabling the robot to
safely overtake.

Hybrid Locomotion
We evaluated our LLC over various real-world terrains to observe
emerging gaits and assess its robustness. We provide highlights of our
locomotion experiments in Movie S3. The LLC adapts gaits depending
on the command velocity and terrain. We tested the policy on various
real-world terrains, as illustrated in Fig. 6. Our previous Model Predic-
tive Control (MPC)-based controller [10] lacks robustness and cannot
operate in the environments depicted in Fig. 6. Additionally, our con-
troller reached the peak speed of 5.0 m/s on flat terrain. The hardware
limit allows for a maximum speed of 6.3 m/s, which is determined by

the maximum joint speed of 45 rad/s multiplied by the wheel radius of
0.14 m.

Fig. 6A presents distinct behaviors depending on the terrain. When
traversing a large discrete obstacle (Fig. 6-i), the robot displayed an
asymmetric gait combining creeping [36] and driving. When climb-
ing stairs or steep hills, the robot trotted like a normal point-foot
quadruped [16] (Fig. 6-ii and Fig. 6-iii). Conversely, the robot drove
over the bumpy terrain where the height deviations were comparable to
the wheel’s radius (Fig. 6-iv). The policy adjusted the reach of each leg
to keep the main body stable and kept the wheels in contact with the
terrain, acting as an active suspension. The gait pattern varied depend-
ing on the terrain conditions, such as slope or friction. Additionally,
the policy adjusted the main body’s height based on the situation. For
instance, when descending a slope, the policy lowered the body height
to enhance stability and prevent tipping over (Fig. 6-v).

In Fig.6B, we present two scenarios involving high discrete ob-
stacles. In Fig. 6B-i, we commanded our LLC to drive down a table
approximately 60 cm high. As the front legs descended, the robot
stretched down its front legs and crouched the hind legs to maintain
a level main body. Once the front legs made contact with the ground,
the front wheels rolled forward to regain balance. In Fig. 6B-ii, we
show our robot traversing a block of approximately 40 cm high. In the
middle of the block (ii-2), all the wheels were in the air. Then the robot
crawled forward with its knees until one of the wheels regained contact.
This example shows the advantage of using model-free RL [37].

Quantitative evaluation of the locomotion performance is presented
in Fig.6C. In Fig. 6C-i, we present the maximum traversable height of
the step depending on the command speed. Our robot could traverse
higher steps when descending compared to ascending. This observation
aligns with the results shown in Fig.5CD, where our HLC avoided high
steps to avoid knee collision and ensure safety. In Fig. 6C-ii, we tested
LLC on slopes with a fixed friction coefficient of 0.7 in simulation. The
robot was commanded with a fixed linear velocity to ascend the slope,
and success was determined by its ability to climb up for 2 meters. We
observed that the stepping behavior, as depicted in Fig. 6A-iii, emerged
only on steep slopes with command speeds over 0.5 m/s. With the
stepping gait, the robot was able to climb steeper slopes. This analysis
demonstrates the complex characteristics of our LLC in terms of gait
patterns and traversability. Conventional model-based planning and
path-following approaches would struggle to identify and adapt to such
complexities.

Comparison to a Conventional Navigation Approach
We compared our approach with the conventional sampling-based
navigation planner by Wellhausen et al. [4]. This local navigation
planner, used by the Cerberus team in the Subterranean Challenge [2],
is designed for normal legged robots. For both methods, we used the
same LLC.

We conducted experiments in a point-goal navigation setup, as
depicted in Fig.5A. The area was scanned with a laser scanner to create
a simulation environment, shown in Fig.7A, with fixed start and goal
points.

Fig. 7B illustrates the field of view of our HLC and the baseline. To
accommodate the limitations during physical deployment, we limited
the range of the map to 3.5 meters in both x and y directions. This
decision was particularly important when the robot moved at high
speeds, reaching up to 2 m/s. Using a larger map slowed down the
elevation mapping update and resulted in high delay and un-updated
regions in the map.

Fig. 7C presents the trajectories of both approaches that success-
fully reached the goal. Our approach explored the environment until
it discovered the staircase. The baseline could also solve the prob-
lem when occluded regions were assumed traversable. However, the

https://youtu.be/hMu1CT0Y-Js?list=PLE-BQwvVGf8GOIzjIAeuY6qCVgDGTr5jh
https://youtu.be/eEsd10cirqM?list=PLE-BQwvVGf8GOIzjIAeuY6qCVgDGTr5jh
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Fig. 6. Locomotion behaviors in different situations. (A) Gaits on different terrains. The robot is moving from left to right following target
velocity commands given by the joystick (up to 2 m/s). The plots show the wheel contact sequences for each terrain. (B) Motion sequences over
two extreme obstacles. (i) The robot underwent a full flight phase during the drop while maintaining stability. (ii) When traversing high obstacles,
the robot sometimes leveraged other body parts such as its knees. (C) (i) The maximum step height and (ii) the maximum terrain slope traversed
by our locomotion controller with a given command velocity, when ascending and descending.
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Fig. 7. Comparison to a conventional approach in a point-goal navigation setup. (A) Experimental setup. A goal point is given across the
complex obstacle comprising stairs and a wall. The robot is initialized with uniformly sampled yaw angles between -π/4 to π/4, facing the goal
point. (B) Field of views of our approach and the baseline. (C) Trajectories of the two methods. Our method displays two distinct trajectories
depending on the initial exploration direction. (D) Failure cases. (D-i) Our controller got stuck when the exploration path became longer than its
memory capacity. (D-ii) Without memory, our approach often fell into local minima. (D-iii) Baseline suffered from overconfidence in occlusion
and delays in replanning. (D-iv) The high pose tracking error of the path-following controller of the baseline led to frequent collisions. (E)
Quantitative evaluation of performance. The experiments were repeated 10 times per method. (E-i, ii) Failure and collision rates out of the 10
trials. (E-iii) Planning time comparison. The error bar denotes one standard deviation. Plus signs indicate outliers. (E-iv) Histograms of tracking
errors during the experiments. The baseline approach shows two high peaks.
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baseline consistently collided due to the delay issue, which will be
explained below.

Fig.7D presents failure cases. Our approach sometimes got stuck
after exploring a wide open area (Fig.7D-i). The position memory
became full and the agent did not explore further. Additionally, we
trained our approach without memory to validate the importance of po-
sitional memory. The memoryless policy exhibited repetitive behaviors
and struggled to escape local minima (Fig. 7D-ii).

The baseline method faced two challenges: occlusion handling
and tracking error of the locomotion controller. Although several
heuristics could help mitigate the occlusion problem, the baseline
method’s ability to handle changing situations was limited due to the
delay in re-planning. Concerning the second issue, most existing
methods assume perfect tracking; however, the actual locomotion
controller experienced delays and tracking errors. Fig. 7D-iv illustrates
this issue, where distant pose targets led to high-velocity commands
and overshoot. The robot could not accurately track the next waypoint
and collided. This problem becomes more pronounced when dealing
with fast-moving robots on rough terrain.

In the quantitative analysis shown in Fig. 7E-i, Our approach with
full memory showed the lowest failure rate. Our method without mem-
ory exhibited the highest failure rate. The comparison of the failure rate
highlights the advantage of exploratory behavior in partially observ-
able scenarios. Unlike the sampling-based baseline, which is limited
to exploring within the provided map, our method enabled the robot to
dynamically explore new areas, resulting in a higher success rate. Fur-
thermore, the results obtained from ’Ours without memory’ emphasize
the importance of the memory mechanism in facilitating effective ex-
ploration in static environments. Notably, only our approach achieved
collision-free trajectories (Fig. 7E-ii). This is attributed to the accurate
steering capability of our HLC, which respects the capabilities of the
locomotion policy.

Another benefit of our approach lies in its computational efficiency
(Fig. 7E-iii). From updating observations to inferring the neural net-
work, our high-level controller took 0.34 ms on average. In contrast,
depending on the complexity of the environment, the baseline some-
times required more than a second to update the navigation plan on a
desktop machine (AMD Ryzen 9 3950X, GeForce RTX 2080).

The baseline’s high failure rate could also be attributed to the imper-
fect path following. In Fig. 7E-iv, a histogram illustrates the tracking
error distributions of both approaches. The average tracking errors for
our approach and the baseline were 0.24 m/s and 0.45 m/s, respectively.
The baseline exhibited a peak at high tracking error in the histogram,
which occurs when there are discrete changes in the command veloc-
ity or when the robot is commanded too close to obstacles, causing
LLC to refuse to follow the command. In contrast, our high-level
controller, trained in conjunction with the low-level controller, demon-
strates evenly-distributed tracking error statistics with consistently low
tracking error.

DISCUSSION

The presented wheeled-legged robot system demonstrates substantial
advancements in achieving autonomy and robustness in complex urban
environments. The integration of mobility-aware navigation planning
and hybrid locomotion contributes to the system’s ability to navigate
challenging terrain and obstacles while ensuring efficient and fast
navigation.

Our experiments validated the effectiveness of the proposed sys-
tem in real-world scenarios. Our wheeled-legged robot completed
kilometer-scale autonomous missions in urban environments with min-
imal human intervention. It navigated through various obstacles such
as stairs, irregular steps, natural terrain, and pedestrians.

Our results demonstrate several notable advantages over conven-
tional navigation planning approaches. Firstly, our hierarchical con-
troller actively explores areas beyond its current perception. Unlike
traditional sampling-based approaches, our method enables the robot
to dynamically explore new areas, improving the success rate. The
integration of memory allows the robot to reason about previously vis-
ited positions, enhancing its decision-making capabilities in complex
environments.

Another major advantage of our approach is its responsiveness. The
controller dynamically reacts to unperceived obstacles and effectively
navigates through urban environments with pedestrians, continuously
adapting to changing situations. The incorporation of real-time data
and fast computation enables the robot to leverage up-to-date informa-
tion, enhancing its ability to navigate challenging terrains and avoid
obstacles.

Moreover, the presented hybrid locomotion controller exhibits ro-
bustness and versatility in traversing various rough terrain. The adap-
tive gaits observed in our experiments, such as the asymmetric gait for
large discrete obstacles, wheel-based locomotion for bumpy terrain,
and trotting gait for stairs and steep hills, demonstrate the controller’s
capability to efficiently traverse diverse terrains.

However, there are still important aspects to consider for future
improvements. One such aspect is the incorporation of semantic in-
formation into our system. Currently, our system primarily relies on
geometric information for navigation, with minimal utilization of se-
mantic information (to adjust the height map for human safety). More
advanced scene understanding, such as pavement detection or visual
traversability estimation [38], will allow the robot to make more in-
formed decisions during navigation. This is exemplified by the work
of Sorokin et al. [39], where they suggest enhancing a robot’s ability
to visually differentiate terrains, leading to safer urban navigation.

Another important requirement is fast perception with a wide field
of view. Our HLC relies on a limited field of view of up to three meters
to the front of the robot. This is inherently limited by using elevation
mapping [26]. Our system’s perception capabilities, although effective
for the demonstrated scenarios, may present limitations for faster mis-
sions or in environments with high uncertainty. Our robot hardware is
capable of locomotion up to 6.2 m/s, but we couldn’t demonstrate the
maximum speed during autonomous deployment due to the delayed
and limited mapping. Removing terrain elevation mapping and relying
on the fast raw sensory stream would be a promising direction for
future improvement.

In conclusion, the presented wheeled-legged robot system demon-
strates the potential for achieving robust autonomy in complex and
dynamic urban environments using data-driven approaches. Although
challenges remain, such as improving perception capabilities or reduc-
ing human labor in map creation, our research paves the way for future
advancements in the field of wheeled-legged robots and autonomous
urban applications.

Overall, our research contributes to the growing body of knowl-
edge on wheeled-legged robots and autonomous navigation in urban
environments. The presented system’s robustness, adaptability, and
efficiency hold great promise for transforming last-mile delivery and
addressing the challenges of urban mobility.

MATERIALS AND METHODS

Our main objective, as depicted in Figure 2B, was to develop a robust
control system that enables the robot to navigate along a predefined
global path consisting of a sequence of waypoints spaced approximately
2 m to 20 m apart. The global path can be generated using a graph
planner [40] or defined manually. It is important to note that although
the global planning aspect is essential for the overall navigation process,
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it is outside the scope of this work.
Due to space constraints, a comprehensive validation of our method

is presented in Supplementary Materials.

Overview of the Approach
Inspired by the existing literature [41, 42], in which hierarchical de-
composition of complex tasks enables faster learning and higher per-
formance, we employed HRL to extend our previous learning-based
velocity tracking controller [16] to waypoint tracking navigation. In
this section, we present an overview of our method, starting with the
definition of the hierarchical structure.

Defining Hierarchy

To tackle the waypoint tracking navigation problem, we adopted the
two-level HRL framework by [43]. Various hierarchical structures
have been explored in the literature.

Initially, we considered an end-to-end strategy as done by Rudin et
al. [44]. This method trains a unified policy to simultaneously manage
locomotion and navigation tasks, without any hierarchical structure.

An alternative explored in the literature involves a two-level hierar-
chy, where a high-level policy directs the low-level policy by issuing
latent sub-goals at a lower freqency. Using learned latent sub-goals
for HRL [45, 46] offers simplicity and flexibility. There is no need to
explicitly define intermediate goals, and the task assignment within the
hierarchy is learned.

Our approach instead adopted an explicitly defined sub-goal within
a two-level hierarchy. In our setup, the low-level policy focused on
locomotion tasks, and the high-level policy focused on navigation by
commanding target base velocities to the low-level policy. We opt for
explicitly defining sub-goals for practical reasons.

Though the first two approaches could have provided simpler imple-
mentations, our decision to explicitly separate the control tasks enabled
the independent development of the controllers. This separation not
only simplified collaborative development efforts, allowing teams to
work simultaneously on distinct system aspects, but also aligned with
common practices in legged robotics. Consequently, this approach
facilitated the reuse of pre-trained low-level policies across a range of
high-level applications, enhancing the system’s versatility and adapt-
ability.

Despite our high-level policy primarily outputing base velocity
commands, we also explored commanding gait patterns similarly to
Tsounis et al. [47]. The experiment is described in Supplementary
Materials.

Training Procedure

We trained a low-level policy and a high-level policy sequentially. The
low-level policy training involved two stages: teacher policy training
followed by student policy training. Then the high-level policy was
trained using the trained low-level student policy.

We began by training the teacher policy for the low-level locomo-
tion policy. The teacher policy was trained to follow random veloc-
ity targets (and optionally gait parameters) on rough terrains using
a Proximal Policy Optimization (PPO) algorithm [48]. In this step,
privileged information, including the robot’s motion, terrain properties,
and noiseless exteroceptive measurements, was utilized to enhance the
locomotion performance and convergence of the policy.

Subsequently, the deployable student policy was trained. Unlike
the teacher policy, the student policy receives a sequence of noisy and
biased IMU measurements, joint states, and noisy height scans as input,
instead of directly accessing privileged information. Through imitation
learning from the teacher policy and leveraging an RNN encoder [16],
the student policy was trained to extract features from the temporal
data necessary for robust locomotion.

The trained student low-level policy was then regarded as a fixed
component, and a high-level navigation policy was trained using a
PPO algorithm, The training data was collected in our custom-built
simulation environment. This approach is further explained in the next
section.

In addition to the previous three stages, an optional phase of alter-
nating training could be conducted for both policies to enhance their
coordination and potentially improve motion smoothness. However,
our experiments showed only marginal enhancements from this, and
therefore, we did not conduct any further fine-tuning.

Graph-guided Navigation Learning

Navigation graphs, commonly employed in computer games for au-
tonomously navigating characters in synthetic environments [28, 29],
played a crucial role in our navigation learning approach. Inspired
by game development, we utilized pre-generated navigation graphs
to define initial states, assign feasible paths, and design the reward
function during the training of our high-level policy.

World Generation

Our automatic terrain generation method, illustrated in Fig. 8, es-
tablishes connectivity between different areas of the terrain (tiles),
resulting in a navigation graph across the training environment.. For
example, tiles with stairs in x-direction are exclusively connected to
floor tiles along the x-axis.

To generate diverse and realistic terrain layouts, we utilized the
WFC algorithm. This algorithm automatically combines various ter-
rain features such as stairs, floors, and other obstacles. The output
of the WFC algorithm provided both the composed terrain and the
connectivity information between the tiles.

The WFC algorithm divides an input tile map (referred to as "Ex-
ample" in Fig. 8B) into smaller chunks and rearranges them to create
new N by N patterns. This procedural generation approach enabled us
to generate a wide variety of navigation worlds with different styles of
corridors, rooms, and obstacles.

We defined three types of tiles: Stair, Floor 0, and Floor 1. We
provided their relationship to the WFC algorithm along with example
images. The WFC algorithm calculates the probability of each tile type
and determines the connectivity to neighboring tile types. By randomly
generating tile maps based on these probabilities, we composed the
existing tiles, resulting in varied and realistic training environments.
The parameters for the parameterized floor and stairs were selected
during the low-level policy training using the terrain filtering algorithm
by Lee et al. [15]. See Supplementary Materials for details.

Using Navigation Graphs for RL

We employed Dijkstra’s algorithm [31] to find a path between two
randomly selected nodes within the graph. Along the graph edge, we
sampled two waypoints by interpolating between the robot’s current
position projected onto the path and the subsequent graph node, with a
fixed look-ahead distance. The distance was sampled uniformly from
[5.0, 20.0] m every episode. At the end of each path, we included the
last node twice as two waypoints. This approach ensured that the agent
has clear instructions on the desired trajectory and endpoint.

During the initial training phase, a positive reward was given when
the agents moves along the planned path on the graph. The reward
gradually diminished, and we let the policy train with a sparse reward
at the end. The reward function was defined as follows.

rh,dense :=

{
1.0 |ewp1 | < 0.75
clip(v · êwp1 , 0.0, vthres)/vthres otherwise

(2)
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Fig. 8. Procedural generation of the navigation world. (A) Filtered parameterized terrain during low-level policy training. (B-i) Generating
new tile maps and connectivity graph using the Wave Function Collapse algorithm. (B-ii) Created height map terrain with filtered floor features
and stair parameters. (B-iii) Randomly generated navigation path between two nodes provides waypoints during training. Dynamic obstacles
(white boxes) are added randomly.

where ewp1 = wp1 − probot and vthres = 0.5. probot and wp1 denote
the positions of the robot and the nearest waypoint, respectively.

This reward mechanism encouraged the agent to follow a shortest
distance on the navigation graph, minimizing the geodesic distance to
the final goal. The path entailed detours, rather than simply moving
straight towards a waypoint. This approach challenged agents with
paths that incorporate tight gaps and sharp turns, thereby pushing their
capabilities.

Dynamic Obstacles

In addition to the static structure generated by the WFC algorithm,
we introduced dynamic obstacles during the training. The dynamic
obstacles were randomly placed within the environment and moved
towards the robot.

The dynamic obstacles are shown by white boxes in Fig. 8B-iii.
Their number, positions, and velocities were randomly generated each
episode. These obstacles moved towards the robot at speeds ranging
from 0.1 m/s and 0.5 m/s.

High-level Policy Details
This section is focused on detailing the Markov Decision Process
(MDP) governing the high-level policy (πhi), encompassing observa-
tions and actions. Detailed information about the reward function can
be found in supplementary section S3.

Observation

The observation space of πhi contains four different modalities.
Firstly, πhi observed exterceptive measurements from terrain map-

ping for obstacle avoidance. The exteroceptive observation followed
the definition by Miki et al.[16]. We sampled height values around
the robot from the robot-centric elevation map [26]. Due to limited
memory and computational resources onboard, the robot’s field of view
was restricted to 3 meters to the front and 1.5 meters in other directions.
We prioritized shifting the scan pattern towards the front due to the
farther perception range afforded by the forward-facing RGB camera.
In addition, the exteroceptive observation included two previous scans
taken at 0.1 s and 0.2 s before to account for the dynamic environments.

Secondly, πhi observed the hidden states of the locomotion con-
troller instead of estimated robot states such as gravity vector or twist.
Using the hidden state of the RNN locomotion policy improved the
robustness of our system. This will be explained in detail in Low-level
Policy Details.

To facilitate exploration, we used an additional position buffer. We
recorded the visited positions in the world frame at regular intervals

of 0.5 meters, along with the corresponding visitation time. The time
information included how many time steps the robot stayed in each
position. The most recent 20 positions and their respective time infor-
mation were provided to the policy in the robot frame.

Lastly, two waypoints were observed. πhi observed a short history
of two previously given waypoints and three previous outputs of πhi.
This history of waypoints and actions assisted the policy in making a
smoother trajectory.

Exploration Bonus

During training, we encouraged the exploration using the explicit
position buffer. This was achieved through an exploration bonus added
tp the reward function. The exploration bonus, denoted as rexp, was
calculated as the sum of costs C(st, wp1

t , pi
bu f ) over the positions in

the buffer Pbu f .
The cost function C(probot, wp1, pi

bu f ) was defined as

C(probot, wp1, pi
bu f ) :=

{
0.0 |probot − wp1| < 0.75
−ni

bu f |probot − pi
bu f | < 1.0

. (3)

Here, probot represents the position of the robot, wp1 denotes the first
waypoint, pi

bu f represents the i-th position saved in the position buffer,

and ni
bu f corresponds to the number of visits for the i-th position in

the position buffer.
In essence, if the robot is not close to the first waypoint and is

near a position saved in the position buffer, the agent incurs a penalty
proportional to the number of time steps it stayed in that position.
This penalty encouraged the agent to explore new areas and prioritize
progress towards the first waypoint.

Bounded Action Space

Instead of the commonly used Gaussian action distribution, we used
Beta Distribution to represent a bounded action space for the πhi, as
introduced by Chou et al. [49]. This offered several benefits. Firstly, it
allowed us to define hard limits on the outputs, enhancing safety and
interpretability. Additionally, working with a bounded action space
made it easier to regularize the motion and control the behavior of the
agent.

Specifically, we defined the bounds of HLC’s commands as fol-
lows: vx ∈ [−1.0, 2.0] m/s, vy ∈ [−0.75, 0.75] m/s, and ωz ∈
[−1.25, 1.25] rad/s. The shift in the vx range encouraged the pol-
icy to consistently face forward during locomotion, aligning with the
orientation of the RGB camera mounted on the robot. We provided
additional details in Supplementary Materials.
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Network Architecture

We employed a combination of architectures tailored for specific input
types. For position history, we utilized one dimensional Convolutional
Neural Network (CNN) layers followed by max pooling, similar to
PointNet [50], enabling permutation-invariant processing of spatial
information. The height scan around the robot was processed using
a 3-layer two dimensional CNN layers followed by an Multi Layer
Perceptron (MLP) layer. Other inputs and the output were processed
by plain MLP layers commonly used for non-spatial data. For the beta
distribution parameters, we used the Sigmoid function at the output
layer.

Low-level Policy Details

The MDP for the low-level teacher policy inherited from Miki et
al. [16], with modification to observation and action spaces. The
reward function and the details on the privileged training are provided
in Supplementary Materials.

The low-level policy was trained to achieve velocity tracking on
random rough terrains. These terrains, designed by Miki et al.[16],
are illustrated in Fig.8A. Each terrain type was generated by two to
three parameters. During training, we applied the parameter filtering
algorithm by Lee et al. [15].

The low-level policy is commanded by linear velocity in the x and
y direction, as well as yaw rate. Linear x velocity is uniformly sampled
from [-2.5, 2.5] m/s, y velocity from [-1.2, 1.2] m/s, and yaw rate from
[-1.5, 1.5] rad/s. In each episode, a new command is sampled, with a
0.005 probability of random resampling.

Observation

The observation includes three types of information: A sequence of
both exteroceptive and proprioceptive measurements, alongside the
velocity command.

For the exteroceptive perception, we sampled height values around
the robot’s wheels from a circular pattern, the same as Miki et al. [16].

The proprioception included measurements obtained from body
IMU and joint encoders. These measurements convey information
about the robot’s body acceleration, angular velocities, joint angles,
and joint velocities.

As previously discussed, instead of relying on estimated pose and
twist by a model-based state estimator as done in several existing
works [16, 34, 51], we directly used IMU measurements consisting of
linear acceleration and angular velocity. This shift was motivated by
the observation that conventional state estimators often result in high
errors in case of wheel slippage or discrete height changes. In Movie
S4, we show a failure case of a locomotion controller due to the state
estimation error.

The command was provided as a 3-dimensional vector, including
the target base horizontal velocity and target base yaw rate.

Privileged Observation

Privileged observation was only used for teacher policy training. It
included noiseless joint states, foot contact state, terrain normal at each
foot, foot contact force, robot velocity, and gravity vector in the robot’s
base frame [16].

Action

The low-level policy’s action is a 16-dimensional vector consisting
of joint position commands (12 joints) and wheel velocity commands
(4). The joint position and velocity commands were given to the PD
controller of each actuator. For a more detailed explanation of the
simulation of the actuators, we refer the readers to Supplementary
Materials.

In contrast to our prior work [16], we discarded the use of the CPG
in the action space to remove any engineered bias in the motion. A
detailed comparative study of various action spaces is provided in
Supplementary Materials.

Network Architecture

The low-level teacher policy was implemented as a plain three-layer
MLP, and the low-level student policy was based on the Gated Recur-
rent Unit (GRU) architecture by Miki et al. [16].

Statistical Analysis

Statistical analyses were performed using Python. For all the results,
we computed mean and standard deviation over the full trajectory using
Numpy library. The box plot in Fig. 7 is generated using Matplotlib
library. We collected data at 400 Hz using either onboard state esti-
mator or ground truth from simulation. A low-pass filter with cutoff
frequency of 5 Hz is applied to the state measurements to reduce high-
frequency noise. The heat map in Fig. 3 is generated by counting the
visitation every 1 m based on the point cloud localization. For the COT
comparison in Kilometer-Scale Autonomous Deployments, we only
considered the data points where the linear speed is higher than 0.2 m/s.
For the tracking error histogram in Fig. 7, we used data points with
command speed higher than 0.5 m/s.
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SUPPLEMENTARY MATERIALS

Nomenclature
ˆ(·) normalized vector

(·)des desired quantity
v linear velocity of the robot in world frame

vB linear velocity of the robot in B frame
pA position of A in world frame

wp1 first waypoint position
wp2 second waypoint position
Pbu f the position buffer
pi

bu f the i-th position saved in the position buffer

ni
bu f The number of visits for the i-th position saved in the

position buffer
ω angular velocity
τ joint torque
q joint position

ψ yaw angle
r f linear position of a foot
eg gravity vector

Ic,body index set of body contacts
Ic,wheel index set of wheel contacts
|·| cardinality of a set or l1 norm
||·|| l2 norm

Implementation Details
In this section, we add some implementation details that are necessary
to enable kilometer-scale autonomous deployments and a successful
sim-to-real transfer.

Localization

Using Open3D SLAM [32], we localize based on the data of the Velo-
dyne VLP-16 LiDAR mounted on top of the robot in a known point
cloud map generated with the Leica BLK2GO reality capture device.
Notably, Open3D SLAM only uses well-known algorithms, such as
Iterative Closest Point (ICP), in their core form. The Open3D library
is used as a backend for 3D data processing. For this work, we adapted
Open3D SLAM to use odometry from IMU and joint encoder data as
prior for scan-to-map matching. We expect this high-frequency odome-
try source to contribute to the systems robustness because scan-to-scan
matching might fail at higher speeds or in degenerate environments.

Global Planning

For global navigation, we also rely on well-established methods and
libraries. Leveraging the reality capture data, we manually design a
sparse navigation graph offline as shown in Fig. 3. During deployment
we compute the shortest path from the robot’s current position to the
goal position with Dijkstra using the networkX [52] Python library.

Waypoint Selection

The global path obtained from the navigation graph can contain nodes
that are tens of meters apart although the high-level policy was trained
with waypoints that are at most 20 m apart. To resolve this issue, we
introduce a simple waypoint selection method called "anchor pursuit",
inspired by the "pure pursuit" path following algorithm. If the next
path nodes is less than 3 m from the current robot position, we select
it as a waypoint. In case it is farther, we instead project the robot
position onto the path and select a waypoint with a 3 m lookahead
distance. This ensures that the nodes or so-called anchor points are al-
ways approached and the robot doesn’t take undesired shortcuts around
these core waypoints of the global path. Also note that this is different
from interpolating the global path at fixed distances and sequentially

approaching these sub-waypoints since with "anchor pursuit" the sub-
waypoints are moving forward with the robot. This allows for greater
freedom in circumnavigating obstacles, since interpolated waypoints
do not need to be followed exactly. In future work, one could add exte-
roceptive information such as semantically segmented images [53], to
generate more sophisticated refined paths for the hierarchical controller
or even incorporate this capability into the high-level policy itself.

Local Terrain Mapping

To obtain the extereoceptive observations on real hardware, we use
a GPU-accelerated geometric terrain mapping approach [26], which
provides a local elevation map around the robot based on the data of the
two Robosense RS-Bpearl dome LiDARs mounted at the front and rear
of the robot. The points for the foot scan for the locomotion policy and
the base scan for the navigation policy are extracted from the elevation
map. Removing the local terrain mapping and directly providing the
raw extereoceptive data, such as depth images [54] or point clouds, is
subject to future work and can help to reduce processing delays.

Human Detection

For human detection, we use the Stereolabs ZED 2i stereo camera.
Their software development kit provides a "Spatial Object Detection"
feature, which detects humans and provides an estimate of the human’s
position in the camera frame. As shown in Fig. 5B, this position is
used to augment the foot and base scans with a safety margin around
the human.

Modeling Actuators

For successful sim-to-real transfer, it is crucial to simulate the dynamics
of the joint actuators. The non-linear characteristics of robotic actuators
such as joint friction, delay, and backlash are very difficult to model
with simple analytic models. Instead of modeling the whole actuator,
we used neural network models to simulate the complex dynamics
efficiently.

The joint actuators are fully simulated by an actuator network [34],
which is trained with accurate torque measurements from Series Elastic
Actuator (SEA)s. Wheel actuators are pseudo-direct drives and we do
not have access to accurate torque measurements. Instead, we learn
the mapping from velocity command and a history of past velocity
readings to the motor current, which is

It = f (ϕ̇target|ϕ̇t−1, ϕ̇t−2, · · · ), (4)

using a neural network. Then, the torque is computed by

τt = Kτ ∗ GR ∗ It (5)

where Kτ is the torque constant and GR is the gear ratio. Additionally,
we simulated joint friction such that

τt = Kτ ∗ GR ∗ It + τf riction. (6)

The friction is modeled by two terms. Coulomb friction

τf riction,C = −C1ϕ̇ (7)

and the stick friction

τf riction,S = −C2sgn(ϕ̇) (8)

with randomized constants C1 and C2. C1 and C2. The constants were
included in the privileged observation.
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Reward Functions
In this section, we provide a detailed explanation on the reward function
for each agent. We categorize the reward functions into three groups.
high-level policy reward (rh), low-level policy reward (rl) for following
the commands given by the πhi, and the regularization reward (rr)
which consists of constraint-related objectives and regularization terms.

The main objective of the πhi is defined by rh, and the πlo focuses
on the low-level control, such as pose control, balancing, and loco-
motion control, by maximizing the discounted sum of rl . rr defines
additional sub-objectives such as joint velocity penalty, torque min-
imization, or action smoothness. Such regularization objectives are
often introduced for robotic applications to avoid damaging hardware
or to facilitate sim-to-real transfer. In RL, it is done by adding rr to the
reward functions [15, 27, 51].

The low-level policy is trained using rl + rr, and the high-level
policy is trained using rh + wl · (rl + rr) with a constant scale wl . We
chose the value of wl such that the expected sum of rh and rl + rr are
at a similar magnitude. This makes rh generate smooth and low-effort
trajectories that respect the capability of the low-level policy.

High-level Policy Rewards

The high-level reward (rh) is defined as a linear combination of func-
tions below.

A goal reaching reward is defined as a sparse reward for reaching
the first waypoint (wp1):

rh,goal :=

{
1.0 |probot − wp1| < 0.75
0.0 otherwise

. (9)

In addition to the sparse reward, we used a dense reward to accelearate
learning at the beginning:

rh,dense :=

{
1.0 |ewp1 | < 0.75
clip(v · êwp1 , 0.0, vthres)/vthres otherwise

(10)

where ewp1 = probot − wp1 and vthres = 0.5.
An exploration bonus as explained in the main text:

rh,exp := ∑
Pbu f

C(st, wp1
t , pi

bu f ), (11)

where

C(probot, wp1, pi
bu f ) :=

{
0.0 |probot − wp1| < 0.75
−ni

bu f |probot − pi
bu f | < 1.0

. (12)

Additionally, we defined a near-goal stability reward. This reward
motivates the robot to stay still near the goal point. This reward is a part
of regularization reward, but this is only active during the high-level
policy training:

rh,stability :=

{
exp (−2.0||v||2) |probot − wp1| < 0.75
0.0 otherwise

. (13)

Low-level Policy Rewards

rl is modified from the reward terms by Miki et al. [16]. rl is defined
with the linear combination of the following reward terms.

The linear velocity tracking reward encourages the policy to follow
a desired horizontal velocity (velocity in xy plane) command:

rlv :=

{
2.0 exp(−2.0 · ||vbody

xy ||2), if |vdes| < 0.05

exp(−2.0||vbody
xy − vdes||2) + vdes · vbody

xy , otherwise
,

(14)

where vdes ∈ R2 is the desired horizontal velocity.
We also defined a reward to encourage the policy to follow a desired

yaw velocity command:

rav := exp(−2.0(ωbody
z − ωdes)

2). (15)

As we aim for stable base motions, we defined a penalty for the body
velocity in directions not part of the command:

rbm := −1.25(vbody
z )2 − 0.4|ωbody

x | − 0.4|ωB
y |. (16)

We also penalized the angle between the z-axis of the world and the
z-axis of the robot’s body to maintain level body pose:

rori = arccos(Rb(3, 3))2, (17)

where Rb(3, 3) is the last element of the rotation matrix representation
of the body orientation. We also motivated the policy to keep the height
of the robot’s base above the ground (hbase) around 0.55 m with the
tolerance of 0.05 m:

rh = max(0.0, |hbase − 0.55| − 0.05). (18)

Regularization Rewards

We used various regularization rewards. We penalized the joint torques
to prevent damaging joint actuators during deployment and to reduce
energy consumption (τ ∝ electric current):

rτ := −∑i∈joints||τi||2. (19)

we also penalized joint velocity and acceleration to avoid vibrations:

rs = −ck

12

∑
i=1

(q̇i
2 + 0.01q̈i

2), (20)

where q̇i and q̈i are the joint velocity and acceleration, respectively.
The magnitude of the first and second order finite difference deriva-

tives of the target joint positions are penalized such that the generated
joint trajectories become smoother:

rs = −ck

12

∑
i=1

((qi,t,des − qi,t−1,des)
2 +(qi,t,des − 2qi,t−1,des + qi,t−2,des)

2),

(21)
where qi,t,des is the joint target position of joint i at time step t.

We enforced soft position constraints in the joint space. To avoid
the knee joint flipping in the opposite direction, we give a penalty for
exceeding a threshold:

rjc,i =

{
−(qi − qi,th)

2, if qi > qi,th

0.0 otherwise
, (22)

rjc =
12

∑
i=1

rjc,i, (23)

where qi,th is a threshold value for the ith joint. We only set thresholds
for the knee joint.

Contacts with the environment were penalized except for the
wheels:

rbc := −|Ic,body\Ic,wheel |. (24)

Not terminating was densely rewarded:

rh,surv := 1.0 while not terminated. (25)
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Comparison to Related Works and Validation of Our Method
In this section, we present a survey of relevant research concerning
the development of navigation policies for mobile robots using RL.
Focused on the works based on model-free RL, we extract essential
design choices and conduct a comparative analysis with our approach.

It’s noteworthy that alternative methodologies also exist, including
those based on offline RL or model-based RL [55–57]. For instance,
Kahn et al. [55, 56] showed outdoor navigation using an offline-trained
dynamics model combined with a sampling-based planner. However,
we maintain our focus on the model-free approach and local navigation
setup (up to 20 m distance to goal) because we aim to develop a highly
responsive control policy with a high control rate and minimal onboard
planning as described in the introduction.

Key Design Choices in Existing Literature

Upon reviewing the existing literature, we have identified several criti-
cal factors that contribute to enhancing the navigation performance of
a learned agent.

Firstly, modularity and abstraction were stressed in many exist-
ing works. Navigation problems are often addressed by decomposing
them into sub-problems and then tackling each using specialized sub-
modules. This modular approach, exemplified by hierarchical control
systems, streamlines the developmental process as evidenced in exist-
ing studies [42, 46, 58]. In the context of HRL, separating low-level
locomotion and high-level navigation on different time scales benefits
exploration and performance [41, 46], with higher-level agents operat-
ing at a slower frequency. The temporal abstraction by design enhances
exploration and improves final performance in some cases. Further-
more, integrating pre-trained perception modules has shown to enhance
the navigation proficiency in complex settings, as demonstrated in the
investigations carried out by Müller et al.[53] and Hoeller et al.[59].

Our approach aligns with this paradigm. HLC operates at a slower
frequency and utilizes the pre-trained RNN encoder from the LLC as
a state representation. Our experiment below shows the importance
of the former in navigation performance, although the latter plays
a crucial role in robust robot deployment, especially on challenging
terrains (depicted in Move S4).

Secondly, many existing works utilize expert demonstrations, of-
ten sourced from either executing a sampling-based planner [60] or
human demonstrations [61, 62]. Imitation learning is a widely adopted
approach for autonomous driving and navigation domains, offering
accelerated learning and enhanced performance.

In our case, even though we could generate expert demonstrations
using a sampling-based planner [20], we refrained from this approach
due to its high computational overhead. Instead, we opted to leverage
pre-generated paths from our simulation environment and trained a
high-level policy to adhere to them via path sampling and dense reward.

Thirdly, memory, whether explicit or implicit, plays an important
role in point-goal navigation. Literature frequently incorporates explicit
memory mechanisms [63, 64] or employs RNN architectures to address
this need [59, 65, 66]. Extensive analysis by Wijmans et al. [67]
highlights the contribution of memory in successfully accomplishing
navigation tasks.

Similarly, we incorporate memory, albeit in a simplified manner.
Tailoring our approach to real-world requirements, we designed our
formulation to employ simple models (for example, MLP or shallow
CNN) and interpretable states. Rather than depending on generic,
navigation-agnostic RNN structures, we integrate explicit information
about visited positions and times.

Lastly, dense reward-shaping is a prevalent strategy due to the
inherent difficulty in training sparse reward formulations. Notably,
dense reward functions are frequently employed to incentivize policy
progression or to penalize collision occurrences [42, 68, 69]. Some

works define the dense reward functions based on the geodesic distance,
which is the shortest obstacle-free path to the goal [58, 60, 65].

In our approach, we leverage dense rewards only during the initial
training phase. This is because the dense rewards based on the shortest
obstacle-free path do not account for dynamic obstacles or intricate
environmental dynamics such as varying friction and disturbances.

Though it’s not mentioned above, similarly to locomotion research,
the sim-to-real approach is widely adopted. Using large amounts of
synthetic data improves training efficiency and robustness, owing to
the large amount of data collected from diverse simulated scenarios.

We have integrated the above principles from the literature into
our approach. Our HRL formulation follows the task decomposition
appearing in the literature, and our simulation environment is designed
based on the insights from points above.

Validation of Our Approach

We proceed to conduct a comparative analysis between our approach
and the baselines defined below. The first two baselines aim to validate
the effectiveness of our graph-guided navigation learning approach,
whereas the subsequent baselines are derived from existing literature.
These subsequent baselines are meant to isolate and identify the distinct
contributions of each component within our approach.

We first compared with a policy trained without path sampling.
This baseline evaluates the advantage of using pre-generated, obstacle-
free paths to generate waypoints during training. Even though it is
trained in an environment identical to ours, the goals are uniformly dis-
tributed across the terrain without accounting for obstacles or ensuring
a feasible path.

Then we compared ours to a policy trained in the environment
without WFC Features. This baseline evaluates the importance of
providing various navigation challenges during the training. Instead of
using terrain features generated by WFC, this baseline is trained over
rough terrains with randomly placed obstacles.

To evaluate the role of memory in our approach, we trained a
memoryless baseline. This baseline does not incorporate position
history, aligning it with the reactive policies presented by Jain et al.[42]
and Pfeiffer et al.[60]. It is trained in the same environment as ours.

We also evaluated the influence of the temporal abstraction to the
navigagion performance. This baseline evaluates the importance of
temporal abstraction for the navigation task. We train a high-level
policy with the same control frequency as the low-level locomotion
policy (50 Hz).

Lastly, an end-to-end baseline. This baseline assesses the advan-
tages of the hierarchical decomposition of the task. It is a single policy
directly outputting joint control commands, trained to pursue way-
points. The policy is trained with rh + rl , without the velocity tracking
rewards. This formulation is in line with the work of Yang et al.[70]
and Rudin et al.[44].

We conduct evaluations based on the methodology proposed by
Anderson et al. [71], employing the Success weighted by Path Length
(SPL). The SPL is given by:

1
N

N

∑
i=1

Si
li

max(pi, li)
(26)

where li corresponds to the shortest path distance between the starting
position and the goal in episode i, pi represents the actual path length
traversed by the robot, and Si is a binary indicator denoting the success
of episode i. In our experiment, we compute li as the shortest distance
on the navigation graph.

We evaluated the SPL and success rate for different path lengths (li),
as shown in Table S1. This was done using 1,000 randomly generated
terrains, with randomly sampled paths ranging from 5 to 20 m. A
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Policies
SPL (Success Rate) by Path Length

5 to 10 m 10 to 20 m

Ours 0.897 (0.901) 0.689 (0.763)

Baseline 1. No path sampling 0.858 (0.840) 0.497 (0.559)

Baseline 2. No WFC features 0.865 (0.871) 0.302 (0.305)

Baseline 3. Memoryless 0.873 (0.897) 0.526 (0.573)

Baseline 4. No temporal abstraction 0.798 (0.823) 0.370 (0.397)

Baseline 5. End-to-end 0.304 (0.318) 0.045 (0.046)

Table S1. Performance comparison between different navigation
policies. Values in the parenthesis indicate success rates. Each value
represents an average taken from 1000 randomly generated terrains
and paths.

waypoint is given at the path’s endpoint. An episode is considered
successful when the robot approaches the waypoint within 50 cm in
60 s.

We begin by validating our graph-guided navigation learning ap-
proach with baselines 1 and 2. Both baselines show degraded perfor-
mance for the distant goals. When a policy is trained to track arbitrary
goals (baseline 1), we observed that the policy becomes overly con-
servative with distant goals. This is due to the high occurrence of
infeasible goals, leading to increased failures during training. With-
out WFC-generated terrain features during training (baseline 2), the
randomly generated environment fails to provide a policy with diverse
challenges like tight spaces and transitioning terrains. Consequently,
baseline 2 exhibits limited performance when navigating complex en-
vironments. Results from these baselines underscore the importance of
a well-structured training environment that offers quality training data.

We then evaluate each component of our navigation policy. As
given in Table S1, our approach shows higher SPL and success rates
compared to the ablated baselines. When the memory is removed,
the baseline 3 showed approximately 16 % lower SPL for the distant
goals (beyond 10 m). The baseline 3 still shows more than 50 % suc-
cess thanks to its explorative behavior, depicted in Fig. 7D-ii. The
limited influence on performance can be attributed to our focus on
local navigation. However, in scenarios that demand extensive mem-
ory capabilities, as demonstrated in [65], this component becomes
more important. Baselines 4 and 5 results show the importance of
the hierarchical decomposition of the problem. Baseline 4, lacking
temporal abstraction, and baseline 5, omitting problem sub-division
(modularity), both encounter increased difficulty in solving complex
navigation tasks with distant goals. Regarding baseline 5, the need
to address rough-terrain locomotion and point-goal navigation within
a single MDP introduces challenges in terms of reward shaping. To
achieve better results, extra engineering efforts would be necessary.

In conclusion, we have validated our approach across different train-
ing environments and MDP formulations from existing literature. The
analysis shows that each individual component is important in enhanc-
ing navigation performance. Our approach effectively incorporates key
concepts from existing literature. In particular, our terrain generation
and learning strategy substantially contribute to the final performance.

Comparison of Different Architectures

We explored two other approaches to learning gait-switching behavior.
Firstly, we experimented with the hierarchical gait selection. In this

design, High-level policy outputs desired foot contact states per foot
(either 1 or 0) in addition to the velocity command. Low-level policy
learns gait following and velocity tracking. The low-level policy is first

A

B High-level velocity commanding policy

LF
RF
LH
RH

C High-level velocity and gait commanding policy

LF
RF
LH
RH

D End-to-End baseline (single policy with CPG action space)

LF
RF
LH
RH

time (s)

Fig. S1. Different controllers during collision avoidance On flat
terrain with an obstacle, the waypoint is given behind the obstacle.
(A) Motion sequence of our controller. (B-D) Foot contact sequences
of different approaches. The robot faces the obstacle at around 2.0 s.

trained with known gait patterns like trot, pace, and static walk, and
then trained alternatingly with the high-level policy.

For the low-level policy, we introduced an additional gait-tracking
reward, defined as

rgait := 0.1 · ∑
i∈0,1,2,3

1( f c(i) = f c(i)g), (27)

where f c(i) denotes the desired contact state of the i-th foot and f c(i)g
is the target contact state given by the high-level policy.

Secondly, a CPG-based baseline [15, 16]. This is an end-to-end
approach, with single policy. Trained with rh + rr. We used the same
action space as Miki et al. [16]. The gait frequency and duty factor
are fixed to 1.0 Hz and 0.5, respectively, and the initial phases are
randomized.

We conducted an experiment where the robot is commanded toward
a waypoint behind a 1 m × 1 m obstacle. The experimental setup and
motion sequences are shown in Fig.S1.

Hierarchical controllers only stepped when faced with the obstacle
(Fig.S1C and Fig.S1D).They exhibited similar behaviors with different
gait frequencies and timing. On the other hand, the baseline showed
regular stepping and continued stepping even when it is not necessary.
This is mainly due to the fixed CPG that limits the exploration of
different walking patterns. In [15] and [16], the gait frequency is
manually set to 0 when no stepping is desired.

Our final design removed the gait selection for simplicity, but both
resulted in similar performance and gait-switching behavior.

The hierarchical gait selection approach follows the traditional
separation of locomotion and gait planning [9, 13, 72]. The modular
design simplifies the locomotion control problem with a fixed gait and
allows for individual gait analysis [73]. To learn gait patterns, we used
a learned action space that maps the output of the high-level policy to
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a distribution of gait parameters [74–76]. The generative model was
trained with known gait parameters [6, 13].

Learned Action Space for Gait-generating High-level Policy

For the gait commanding high-level policy, we had to implement a
special action space. Exploring the space of gait parameters with the
commonly used Gaussian distribution can be inefficient because not
all the real-valued vectors can represent feasible gaits, and the feasible
parameters can be sparsely distributed. To improve exploration and
accelerate learning, we use a learned gait generator as the action space
of the high-level policy.

Existing works have proposed using generative models such as
Variational Autoencoder (VAE)s [75, 76] or a normalizing flow [74] to
transform the action distribution into a different, possibly multi-modal,
distribution. Wenxuan et al. [75] and Allshire et al. [76] proposed to
pre-train generative models with existing motion data for higher sample
efficiency.

Similarly, we construct a learned latent action space with a Real-
NVP model [74] that generates gait patterns from a Beta distribution.
We chose RealNVP instead of VAE [77] because the RealNVP can be
updated during the RL update by policy gradient thanks to its invert-
ibility [74, 78].

We construct a stochastic policy π(a|s) by two neural network
modules in series. Firstly, an MLP outputs parameters for the Beta dis-
tribution that serves as a base distribution. Then follows an invertible
normalizing flow layer to get a = fψ(z), where z ∼ N (µθ(s), σθ(s)).
fψ denotes a RealNVP. We can directly use the RealNVP policy in-
stead of Gaussian policies within RL algorithms since it is possible to
compute the log-likelihood of the action by

log
(
π(a|s)

)
= log

(
pz( f−1

ψ (a))
)
+ log

( ∣∣∣∣∣det

(
∂ f−1

ψ (a)

∂aT

)∣∣∣∣∣
)

.

(28)
The RealNVP layers are pre-trained to generate gait parameters

from a uniform distribution. It is trained by minimizing the log-
likelihood:

Ex

{
− log

(
pz( f−1

ψ (x))
)
− log

( ∣∣∣det
(
∂ f−1

ψ (x)/∂xT)∣∣∣)} , (29)

where x is sampled uniformly from known gait parameters.

Filtering Terrain Parameters
To ensure that the low-level policy training focuses on traversable
terrain, we employ the adaptive terrain curriculum method introduced
by Lee et al. [15]. This selection process specifically targets the low-
level policy training phase.

Using a genetic algorithm based on the Minimal Criterion
(MC) [79], we avoid terrain parameters that are either too difficult
or too easy for the agents. The fitness function, denoted as f (cT , π),
is defined as follows:

f (cT , π) =

{
E{ν(st | cT )} if tl < E{ν(st | cT )} < th

0.0 otherwise
.

(30)
Here, cT denotes the terrain parameter being evaluated, and π

represents the policy being trained. The expected value Eν(st | cT )
is computed over the trajectories generated by the policy during each
iteration, where ν(st | cT ) is a score function reflecting the successful
traversal of a sampled terrain at state st. In our case, ν(st) is set to 1.0
if the velocity tracking error is less than 20% of the command speed.

The threshold parameters tl and th define the MC, ensuring that
terrain parameters with a success rate between tl and th are selected. In
other words, terrain parameters that fall within this success rate range
are considered feasible for training.

These selected terrain parameters are then reused to generate tile
maps for the subsequent high-level policy training, ensuring that the
high-level policy is trained on feasible terrain environments suitable
for navigation.

The concept of dynamic task generation and open-ended learning,
demonstrated by the Open-Ended Learning Team at DeepMind [80],
further supports the effectiveness of this approach. The automatic gen-
eration of new solvable problems enhances the agent’s generalization
capabilities.

Privileged Training
We follow the privileged learning method proposed by Lee et al. [15]
for robust Sim-to-Real transfer. The policy trained by RL serve as
"teacher policy". It uses the is the ground-truth state st from simulation
which includes privileged information xt. xt includes ground friction
coefficient or ground reaction forces, which are not directly observable
in the real world.

A recurrent "student policy" network is trained in a supervised
fashion without xt. The student policy imitates the teacher and learns
to construct an internal representation of the world from a sequence
of the noisy real-world observations. A policy trained in this way has
proven to be more adaptive and robust in real-world settings with high
disturbances and noisy observations [15, 16, 81].

We employ the DAgger [82] algorithm for imitation learning. We
collect trajectories using the low-level student policy and label target
actions using the teacher policy. The loss function is defined as

L := E(st ,ot)∼D
{
(πteacher(st)− πstudent(ot, ht))

2
}

, (31)

where ot denotes the observation and ht denotes the hidden state of the
student policy. ot is a noisy version of st \ xt.

Bounded Action Space
We employ the Beta Distribution for the action space of HLC [49].
The beta distribution is a continuous probability distribution defined
on the interval [0, 1], characterized by two shape parameters, α (alpha)
and β (beta). These parameters determine the shape and probabilities
associated with different outcomes.

The probability density function (PDF) of the beta distribution is
given by the formula f (x; α, β) = xα−1(1 − x)β−1/B(α, β), where
x represents the random variable representing the probability, and
B(α, β) is the beta function. The expected value (mean) of the beta
distribution is given by E[X] = α/(α + β), and the shape parameters
α and β determine the variance of the distribution. Higher values of
α + β lead to lower variance.

We modify the parameterization of the beta distribution to define
the bounded action space for our high-level policy. Instead of directly
outputting the α and β parameters from πhi, we design our policy to
directly output the mean and the sum of α and β. More specifically,
let a1 and a2 be the outputs of the high-level policy πhi(st), we have
α = a1 · a2 and β = a2 − (a1 · a2). This design choice eliminates the
need for additional computing of the mean after inference.
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Parameter Value

discount factor 0.99

KL-d target 0.01

clip range 0.2

entropy coefficient 0.001

max. episode length (s) 10.0

dt (s) 0.02

batch size 500000

num. minibatches 20

num. epochs 4

learning rate adaptive∗

Table S2. Hyperparameters for LLC teacher policy training. (∗)
Follows the implementation by Rudin et al. [51].

Parameter Value

discount factor 0.991

KL-d target 0.01

clip range 0.2

entropy coefficient 0.001

max. episode length (s) 15.0

dt (s) 0.1

batch size 150000

num. minibatches 10

num. epochs 5

learning rate adaptive

Table S3. Hyperparameters for HLC training.


