
Formalizing Pick’s Theorem in Isabelle/HOL

Sage Binder1 and Katherine Kosaian2

1 University of Iowa, Iowa City IA 52242, USA
sage-binder@uiowa.edu

2 Iowa State University, Ames IA 50011, USA
kkosaian@iastate.edu

Abstract. We formalize Pick’s theorem for finding the area of a sim-
ple polygon whose vertices are integral lattice points. We are inspired by
John Harrison’s formalization of Pick’s theorem in HOL Light, but tailor
our proof approach to avoid a primary challenge point in his formaliza-
tion, which is proving that any polygon with more than three vertices
can be split (in its interior) by a line between some two vertices. We
detail the approach we use to avoid this step and reflect on the pros and
cons of our eventual formalization strategy. We use the theorem prover
Isabelle/HOL, and our formalization involves augmenting the existing
geometry libraries in various foundational ways (e.g., by adding the def-
inition of a polygon and formalizing some key properties thereof).

Keywords: Pick’s theorem · Isabelle/HOL · formalization · geometry.

1 Introduction

Pick’s theorem is a gem of late nineteenth-century mathematics, first proved
by George Pick in 1899. It concerns simple polygons (i.e., polygons with no
self-intersections or holes) whose vertices are integral lattice points and gives a
simple-to-state relationship between a polygon’s area and the number of integral
lattice points within and on the boundary of the polygon. Pick’s theorem has a
number of interesting applications in geometry as well as in number theory [15],
but the main reason for its beloved status is arguably the elegant simplicity of
the theorem statement. Perhaps for this reason, it was included on the list of
“Top 100 Theorems” compiled by Paul and Jack Abad, and is currently tracked
in Freek Wiedijk’s corresponding list of “Formalizing 100 Theorems” [27], which
tracks which of these theorems have been formalized in (some of the major)
theorem provers. In this list, only one theorem—Fermat’s Last Theorem—has
not been formalized in any theorem prover, and most have been formalized in
multiple provers. Pick’s theorem is one of the few listed theorems which have
only been formalized in one prover, namely HOL Light (by John Harrison) [12].

We suspect that the inherent challenge in formalizing geometry has some-
thing to do with why Pick’s theorem has only been formalized in one theorem
prover. Harrison comments on this challenge in his work [12]. Informal geometric
arguments often rely on proof-by-picture intuition, and formalizing these argu-
ments involves working with abstract definitions which are often unwieldy and
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rather removed from geometric intuition. Consequently, it is not uncommon for
the geometry libraries of a theorem prover to be less well-developed than libraries
for other areas of mathematics, such as algebra and analysis.

We formalize Pick’s theorem in Isabelle/HOL [19,18]. Our work is inspired
by Harrison’s, but motivated by an interest in avoiding the challenge point of
proving that any polygon with more than three vertices can be split into two
polygons by a line between two of its vertices. Harrison identifies this step as
being particularly arduous, and comments that the proof of Pick’s theorem is
significantly simpler for convex polygons [12]. Our approach (discussed in Sect. 3)
splits the proof into the convex and non-convex cases; in the non-convex case,
we construct a path between two vertices of the polygon that lies fully outside
the polygon. In the process, we make various contributions to the Isabelle li-
braries, such as the formal definition of a polygon and properties of polygons
(formalization details are discussed in Sect. 4). Ultimately, we encounter diffi-
culties similar to those discussed by Harrison, and thus do not claim that our
approach is simpler than his (we give a retrospective analysis in the conclusion,
Sect. 5). Nevertheless, our proof is a novel formalization of Pick’s theorem, and
our treatment of the non-convex case involves various creative steps.

Isabelle/HOL, our theorem prover of choice, is well-suited to formalizing
mathematics. Our work is facilitated by Isabelle’s automated proof search, par-
ticularly Sledgehammer [21], and existing library search tools, particularly SEr-
APIS [25]. We simultaneously benefit from key results that are already formalized
in Isabelle’s libraries and suffer from the library’s foundational gaps. For exam-
ple, we use the Jordan curve theorem and a variant, called the Jordan triple
curve theorem, which are already proved in Isabelle/HOL (and, further, have
been specialized to our setting of R2). On the other hand, we did not find an
existing notion of a polygon in the libraries.

Our formalization is about 14300 lines of code, and is available on the Archive
of Formal Proofs (AFP) [3].

2 Related Work

In Isabelle/HOL’s Archive of Formal Proofs (AFP)3, which is a large centralized
repository of proof developments, there are 22 entries categorized under “Math-
ematical Geometry”4 (some entries with a geometric flavor are categorized else-
where, e.g. a recent formalization [14] of the Poincaré-Bendixson theorem which
required formalizing proofs-by-picture is categorized under “Analysis”). Notably,
Isabelle’s libraries already contain some results about triangles—in particular,
there is a library containing some basic properties of triangles [9], and further
results have been proved on top of this, including the intersecting chords theorem
[5], Stewart’s theorem [6], and most recently Ceva’s theorem [23]. The underlying
triangle library [9] defines a triangle as three points in a real inner product space,
but in our setting, it is more natural to define triangles (and general polygons)
3 https://www.isa-afp.org
4 https://www.isa-afp.org/topics/mathematics/geometry/
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in terms of their boundary. The formalization of Ceva’s theorem [23] contains a
notion of area for triangles, but it is defined in terms of the side lengths of the
triangle and the measure of one of the angles. In our formalization, we instead
treat area as the Lebesgue measure of the inside of a polygon. Outside of the
AFP, implementing (but not verifying) an algorithm to triangulate a polygon
was the subject of a recent master’s thesis [24].

Among theorem provers, HOL Light has particularly well-developed geome-
try libraries [13], and a portion of the geometry results formalized in Isabelle have
been ported from HOL Light, including the Jordan curve theorem (formalized
by Hales in 2007 [11] and later ported to Isabelle by Paulson), and Euler’s Poly-
hedron Formula (ported to Isabelle in 2023 by Paulson [20]). Some Euclidean
geometry is formalized in Lean’s MathLib, including properties of triangles sim-
ilar to those in Isabelle [17]; in 2022 Myers formalized the solution to a 2019
geometric IMO problem in Lean [16]. In Coq, some algorithms for triangulating
convex hulls have been formalized [2,8], and many results in Euclidean geome-
try founded on Tarski’s geometry axioms have been formalized in the GeoCoq
library [1] (which has been partially ported to Isabelle/HOL [7]).

3 Our Proof Approach

Pick’s theorem [22] says that the area of a simple polygon whose vertices are
integral lattice points is equal to the number of integral lattice points inside the
polygon, plus half the number of integral lattice points on the boundary, minus 1
(see Fig. 1). The standard proof of Pick’s theorem proceeds by (strong) induction
on the number of vertices of a polygon, and involves splitting the polygon into
two smaller polygons in the inductive step. While we largely follow this standard
proof (which is also the approach that Harrison takes), we sidestep the need to
prove that any polygon with more than three vertices can be split, so as to avoid
a number of painful challenges [12] which Harrison encountered.

Fig. 1: We visualize the five lattice points inside the polygon in green and the nine
points on the boundary in blue, and the area of the polygon is 5+9/2−1 = 8.5.

The high-level structure in our proof is as follows. Let p be a polygon. We
proceed by strong induction on the number of vertices defining p. In the base
case, we prove Pick’s theorem for triangles (polygons with three vertices). In
the inductive case, where the polygon has more than three vertices, we depart
from Harrison’s approach by splitting into two subcases: when p is convex, and
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when p is not convex. We choose to case on convexity since it is mathematically
trivial to show that a convex polygon (with more than three vertices) can be
split into two smaller polygons on which we can induct. In the non-convex case,
we use the convex hull of the polygon to find a linepath lying entirely outside the
polygon, which avoids the need to split an arbitrary non-convex polygon. This
avoids specific challenges Harrison faced in his formalization, but also presents
new challenges of a similar flavor, which we solve with a new approach.

We first discuss some preliminaries (Sect. 3.1) and then further detail our
approach (Sect. 3.2—Sect. 3.4), focusing on the novel aspects of our work, par-
ticularly the techniques we use in the non-convex case (Sect. 3.4). We present
our top-level result in Sect. 3.5.

3.1 Preliminaries

Formally stating Pick’s theorem requires a formal definition of a polygon as
well as notions of area, boundary, and inside. Auspiciously, many of the core
geometric definitions used in Harrison’s formalization of Pick’s theorem were
already present in Isabelle/HOL’s libraries.

Paths and Convex Hulls. We build on various properties from the libraries about
paths. The library definition of a path is a continuous mapping from the interval
[0, 1] into some topological space; in our setting, we care about paths in R2.
The libraries provide definitions and lemmas for simple paths,5 linepaths,6 and
joining paths together. In this paper, we frequently refer to the path image of a
given path p, which is defined in the libraries as the image of [0, 1] under p.

The libraries also provide convex hull results, where the convex hull of a set S
is defined as the minimal convex set containing all of S. Additionally, the libraries
provide the definition of an extreme point of a set; intuitively, for a convex hull
H of a finite set, an extreme point of H is a “corner” of H. One particularly
useful result from the libraries is the Krein-Milman-Minkowski theorem, which
states that a compact convex set is the convex hull of its extreme points [26].

Polygon Definition. The existing library did not cover the definition of a polygon,
which we develop. Our formal definition of a polygon mirrors Harrison’s [12]. We
introduce the make_polygonal_path function to build a polygonal path given a
list of vertices. This function takes as input a list of points (type (real^2) list)
and returns a function (of type real ⇒ real^2) which continuously maps the
interval [0, 1] to R2. More precisely, in Isabelle, we write the following:

fun make_polygonal_path :: "(real^2) list ⇒ (real ⇒ real^2)" where
"make_polygonal_path [] = linepath 0 0"

| "make_polygonal_path [a] = linepath a a"
| "make_polygonal_path [a,b] = linepath a b"
| "make_polygonal_path (a # b # xs) =

(linepath a b) +++ make_polygonal_path (b # xs)"

5 A path which does not intersect itself except potentially at its endpoints.
6 A straight line between two points.
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Here, on an empty list, make_polygonal_path returns a path, linepath 0 0,
whose range is the origin (as a default value). On a singleton list [a], it returns
a path whose range is the point a. On a list with two points, it returns the line
between those two points. On a list with more than two points, it recursively
uses the existing library function +++ to join together paths, ultimately returning
a path that passes through those points in the order they are input.7

We then define the predicate polygon on paths, which (intuitively) holds
for a path g iff g is a polygon. Our formal definition in Isabelle is as fol-
lows, where polygonal_path g holds iff g is in the range of make_polygonal_path,
simple_path g holds iff g is a simple path, and closed_path g holds iff g is a
closed path (i.e., it starts and ends at the same point).

definition polygon :: "(real ⇒ real^2) ⇒ bool" where
"polygon g ←→ polygonal_path g ∧ simple_path g ∧ closed_path g"

The Frontier, Interior, and Inside. We make frequent use of the (standard math-
ematical notions of) interior and frontier (boundary) of a subset S of a topo-
logical space (in our setting, R2). We also make use of the relative interior ; the
relative interior of a set S is the set of all x ∈ S such that there exists an open
set U such that x ∈ U ∩ aff(S) ⊆ S, where aff(S) is the affine hull of S. In
our formalization, we mainly care about the relative interior of the image of a
linepath, which is simply the image of the linepath minus the endpoints. All of
these concepts are already formalized in Isabelle’s standard libraries.

Pick’s theorem is a statement about the area of the “inside” of a polygon. To
establish this notion of inside, we use the Jordan curve theorem (and a variant
thereof) from the libraries, which proves that every simple closed curve has an
inside and an outside that satisfy some intuitively obvious properties: 1) they
are disjoint from each other and from the image of the curve, 2) any point in
the plane is either inside the curve, outside the curve, or on the curve, and 3)
the image of the curve is the frontier of both its inside and its outside.

Splitting a Polygon. Our proof of Pick’s theorem relies heavily on (strong) in-
duction and involves splitting a polygon into two smaller polygons. We define
a good linepath of a polygon p to be a line between two different vertices of p
which lies entirely inside p, except for its endpoints (which are on the frontier
of p). We generalize this notion to a good polygonal path of p, where we replace
the linepath with a simple polygonal path. In Fig. 2, we illustrate how a good
linepath and a good polygonal path split a polygon into two smaller pieces.

Our definitions of good linepath and good polygonal path are designed to
satisfy the hypotheses of the Jordan triple curve theorem, a variant of the Jordan
curve theorem which has been formalized in the libraries. Intuitively, the Jordan
triple curve theorem makes rigorous the notion of splitting a shape into two
disjoint shapes whose union is the original shape.

7 Note that the +++ function introduces a particular parameterization of a path; we
comment on this parameterization and challenges it introduces in Sect. 4.1.
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Fig. 2: Splitting a polygon with a good linepath and a good polygonal path.

We set up a lemma called pick_union, which states that if a polygon p splits
into polygons q1 and q2 (either by a good linepath or a good polygonal path),
and Pick’s theorem holds for any two of p, q1 and q2, then Pick’s theorem holds
for the remaining polygon. From the Jordan triple curve theorem, we easily have
that the areas of the insides of q1 and q2 sum to the area of p, and we only have
to account for the vertices on the splitting path.

3.2 The Triangle Case

To formalize the base case of our induction, which amounts to formalizing Pick’s
theorem for triangles, we follow steps similar to Harrison [12] and induct on
I + B, where I is the number of integral lattice points inside p, and B is the
number of integral lattice points on the boundary of p.

The base case is where I+B = 3, which in particular means I = 0 and B = 3.
We prove that every such “elementary triangle” has area 1/2 in a similar fashion
to Harrison: we first show that any linear transformation L : R2 → R2 such that
L(Z2) = Z2 has determinant ±1, then show that every elementary triangle is
the image of the unit triangle under one of these linear transformations (modulo
translation), where the unit triangle is the convex hull of {(0, 0), (0, 1), (1, 0)}.
As the unit triangle has area 1/2, so does every elementary triangle, since linear
transformations with determinant ±1 preserve area.

In the inductive step, we have I + B ≥ 4. Then either I ≥ 1 or B ≥ 4. If
I ≥ 1, we split the triangle into three smaller triangles; otherwise, if B ≥ 4,
we split the triangle into two smaller triangles. In the case where we split into
two triangles, we show that the splitting linepath is a good linepath and apply
pick_union. In the case where we split into three triangles, we apply pick_union
twice to reconstruct the inductive result on the three smaller triangles into the
result for the bigger triangle. The second application of pick_union requires
“adjoining” two polygons whose boundary intersection is not just a linepath, but
a polygonal path of two linepaths (Fig. 3). We make use of our generalization of
pick_union to polygonal path splits to prove this.

3.3 The Convex Case

In the case when p is convex (and not a triangle), we find a good linepath with
which we can split p into two smaller polygons to apply our inductive hypoth-
esis. Mathematically, it is obvious that a convex polygon with more than three
vertices has a good linepath—the line between any two non-adjacent vertices is
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Fig. 3: Applying pick_union twice.

a good linepath. Formally, however, this fact is not immediate, and we outline
our approach here.

Let A be the convex hull of the path image of p. Since p is a convex polygon,
its inside is the interior of A, and its path image is the frontier of A. To find a
good linepath, we first apply the fact that if a linepath ℓ between two vertices
of p has a non-empty intersection with the interior of A, then ℓ is in fact a
good linepath. This is a consequence of the following general property of subsets
of convex sets: if B is convex and A ⊆ B, then the relative interior of A is a
subset of the relative interior of B. This reduces the problem to simply finding
a linepath which intersects the interior of A. To do this, we case on the number
of extreme points E of the convex hull. As p is a polygon, we have E ≥ 3.

If E = 3, then there is a vertex d of p which is not an extreme point of A (as
we are not in the base case, p has at least four vertices). We then identify the
extreme point of A which is not on the same linepath as d, and take the linepath
between d and this point; this linepath is a good linepath (illustrated in Fig. 4).

If E > 3, we take three distinct extreme points of A, call them a, b, c, and
show that one of the linepaths of T = make_polygonal_path [a, b, c, a] is a good
linepath. For this, it is enough to show that T intersects the interior of A. The
argument is as follows. Since we are in the E > 3 case, the inside of T is a
strict subset of the interior of A. So, we can obtain points x inside T and y in
the interior of A but outside T . As the linepath from x to y intersects both the
inside and outside of T , it must intersect T at some point z (see Fig. 4); this is
a simple corollary of a lemma from the formalization of the Poincaré-Bendixson
theorem [14]. Since both x and y are in the interior of A, and the interior of A
is convex, we conclude that z is in the interior of A, as desired.

Having shown that p has a good linepath, we use it to split p and apply our in-
ductive hypothesis to the two resulting polygons (this works because each of our
smaller polygons has fewer vertices than our original polygon by construction),
then apply pick_union. This proves Pick’s theorem for convex polygons.

3.4 The Non-Convex Case

We start our discussion of the non-convex case by giving some high-level geo-
metric intuition, and then discuss the details of formalizing this intuition. When
p is not convex, we let A be the convex hull of the path image of p, and use A to
find a linepath ℓ between two vertices of p that is fully outside p. In particular,
we construct a sublist pocket_path_vts = [a, x1, . . . , xm, b] of the vertices of p,
where a and b are on the frontier of A and each xi is in the interior of A. To
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a b c
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yz
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b
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d

e
f

g

h

Fig. 4: Finding a good linepath in a convex polygon with more than three vertices,
when the convex hull has three extreme points (left) and more than three extreme
points (right). Note that even though the polygon on the left is geometrically a
triangle, it is formally a quadrilateral, as it has four vertices (a, b, c, and d).

simplify our construction, we assume WLOG that this sublist begins at the first
vertex of p.8 Then we let ℓ be the linepath from b to a.

Drawing ℓ creates a “filled” polygon which is the union of our original polygon
and a missing piece of the convex hull, which we call a pocket. This pocket is
itself a polygon, formed by the vertex list [a, x1, . . . , xm, b, a]. Ultimately, then,
the construction produces two polygons that satisfy our inductive hypothesis:
the pocket and the “filled” polygon. Moreover, pocket_path_vts forms a good
polygonal path which splits the filled polygon into the pocket and the original
polygon, which we use to apply pick_union. Fig. 5 visualizes an example.

v1

v2
v3

v4

v5

v6

v7

v8

v9
v10

v11

v12

v13

Fig. 5: The blue polygon is p, the orange polygon is a pocket, and the
orange linepath from v1 to v6 is ℓ, the “filling linepath”. The vertex list
[v1, v6, v7, . . . , v13, v1] generates the filled polygon. Dotted orange lines visual-
ize the other pockets.

To formalize this argument, we first show that the filled shape, which we
call filled, is a polygon; as a corollary of this we obtain that the pocket, which

8 Mathematically, this WLOG assumption is immediate; formally, this requires rotat-
ing the vertices of a polygon, which changes its parametrization. Showing that the
new parametrization is a simple path is involved; we discuss this in Sect. 4.1.
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we call pocket, is a polygon. Second, we show that pocket_path_vts is a good
polygonal path (and that it splits filled into p and pocket).

Showing that filled is a polygon. When determining how to formalize
that ℓ intersects p only at a and b (which is sufficient to show that filled is a
polygon), we found it useful to draw various examples where this does not hold,
to understand how each violates the properties of our construction; Fig. 6 shows
some examples. We orient the figures so that the “filling linepath” ℓ is horizontal,
as our formalization assumes WLOG that ℓ lies on the x-axis.

a
b

x1 x2

(a) Contradicts that b is
on the frontier of A.

a b

x1 x2

(b) Contradicts that x1

and x2 are in the interior
of A.

a b

x1 x2

(c) Contradicts that p is
simple.

a b
x1

x3

(d) Contradicts that b is
on the frontier of A.

a bx2

(e) Contradicts that x2 is
in the interior of A.

a b

x1

x3

(f) Contradicts that p is
simple.

Fig. 6: Examples of ℓ intersecting p at a point other than an endpoint of ℓ.

Organizing the various possible contradictory situations illustrated in Fig. 6
into a collection of formal lemmas was challenging. We first preclude the Fig. 6b
and Fig. 6e cases by showing that no xi can have the smallest or largest y-
coordinate. We then show that no point on p can have negative y-coordinate,
which rules out the cases in Fig. 6a, Fig. 6d, and Fig. 6f. Finally, in the Fig. 6c
case, we show that p is not simple, a contradiction.

To show that no xi can have the smallest or largest y-coordinate, we simply
show that any point on p which has smallest or largest y-coordinate is on the
frontier of A. This precludes the cases in Fig. 6b and Fig. 6e. Moreover, we obtain
some vertex yr which has smaller y-coordinate than every xi, and some vertex
ys which has larger y-coordinate than every xi, which we will use to rule out the
other cases.

To show that no point on p can have negative y-coordinate, we assume for
contradiction that yr has negative y-coordinate. Assuming WLOG that r < s,
we consider where the subpath of p from yr to ys intersects the x-axis. We first
prove that neither pocket_path nor the subpath can intersect the x-axis at a
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point not lying on ℓ, as such an intersection would put a or b in the interior of A.
This precludes the cases Fig. 6a and Fig. 6d, leaving us with the cases in Fig. 6c
and Fig. 6f.

In the Fig. 6f case, the subpath and pocket_path intersect the x-axis only
on ℓ, and here we show that the subpath must intersect pocket_path (which
contradicts that p is simple). For this, we construct an axis-parallel rectangle
whose lower edge lies on the x-axis, and whose width and height are large enough
so that the entire pocket path and subpath are inside the rectangle. Then, we
delete the points lying between a and b on the bottom edge of the rectangle and
replace the resulting gap by pocket_path (illustrated in Fig. 7); we let R be the
resulting closed, simple path. We show that yr is outside R, and that ys is inside
R, and this yields (via a lemma from the Poincaré-Bendixson formalization [14])
that the subpath intersects R. However, by the construction of R, the subpath
can neither intersect the side edges nor the top edge of R, nor can it intersect the
two axis-parallel bottom edges of R. Thus, the only remaining part of R which
it can intersect is pocket_path, as desired.

a b r1

r2r3

r4

z

yr

ys

Fig. 7: If the subpath and pocket_path intersect the x-axis only on ℓ, then the
subpath intersects pocket_path.

Formalizing that yr is outside R and ys is inside R in the above argument
is itself a challenge. The construction of R makes this pictorially obvious, but
formally, we only know the abstract facts about the inside and outside of R
given by the Jordan curve theorem (see Sect. 3.1). Working with the abstract
definitions, we show that yr is in the unbounded component of R2 \R (i.e., yr is
outside R) by constructing an infinite ray beginning at yr which never intersects
R (a downward vertical ray suffices). To obtain that ys is inside R, we take a
sufficiently small ϵ-ball around the point on R directly above ys, and (using a
library result) obtain a point z which is both in this ϵ-ball and inside R. We
then show that z cannot be above the upper edge of R (if it were, it would be
outside R, which we show by taking an upward vertical ray). Finally, we take
the linepath from z to ys and show that this linepath cannot intersect R; then,
as z is inside R, so is ys. These proof techniques are illustrated in Fig. 7.
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So, yr cannot have negative y-coordinate, which establishes that every point
on p has non-negative y-coordinate. Then, since ℓ lies on the x-axis, ℓ lies on the
frontier of A. Thus, pocket_path does not intersect ℓ at a point other than its
endpoints, precluding the Fig. 6f case.9

The case in Fig. 6c is the only remaining case. We assume for contradiction
that ℓ minus its endpoints intersects p, and with a bit of work, we can assume in
particular that yr lies on ℓ. So, we have a subpath (from yr to ys) of p which starts
at a point on ℓ and ends at a point above all points on pocket_path, illustrated
in Fig. 8. We can then show that this subpath necessarily crosses pocket_path
using some of our prior proof techniques (compare Fig. 7).

a
b

r1r2

yr

ys

Fig. 8: If all points on p are non-negative, we have a subpath of p which starts
on ℓ and ends at a point above all points of p, and thus p intersects itself.

Showing that pocket_path is a good polygonal path of filled. From the
previous result, we have that pocket_path intersects filled only at a and b,
and so pocket_path (minus a and b) is either entirely inside or entirely outside
filled.10 Thus, to show that pocket_path is inside filled, it suffices to find only
a single point on pocket_path which is inside filled.

We first obtain a point z which is inside both pocket and filled. While it
is intuitively clear that the inside of pocket is a subset of the inside of filled,
showing this formally requires some machinery. We take an ϵ-ball around a point
on ℓ, and obtain points z and z′ in the ϵ-ball where z is inside pocket and z′ is
inside filled ; this is illustrated in Fig. 9. We ensure that ϵ is small enough so
that the linepath from z to z′ does not intersect filled, and this shows that z
is inside filled.

So, we have that z is inside both pocket and filled, and we take a ray r
starting at z, constructed so that r intersects pocket_path at a point y before its
first intersection with filled at a point x. As r starts inside filled, all points on
r prior to x are inside filled, and thus y is inside filled and on pocket_path. As

9 This implies that pocket is a polygon, which is used later in the proof that
pocket_path is a good polygonal path.

10 As we now have that filled is a polygon, we can refer to its inside and outside.
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we know that pocket_path is simple and intersects filled only at a and b, the ex-
istence of y suffices to show that pocket_path is a good polygonal path of filled.

a
b

zz′
y

x

Fig. 9: The ray r, shown in orange, intersects pocket_path at y before its first
intersection with filled at x.

3.5 Top-Level Result

Putting all the pieces together yields the following top-level result.

theorem pick:
assumes "polygon p" "p = make_polygonal_path vts" "all_integral vts"
assumes "I = card {x. integral_vec x ∧ x ∈ path_inside p}"
assumes "B = card {x. integral_vec x ∧ x ∈ path_image p}"
shows "measure lebesgue (path_inside p) = I + B/2 - 1"

This theorem states that if p is a polygon with vertex list vts where all of the
vertices in vts are integral lattice points (assumption all_integral vts), and if
I is the cardinality of the set of integral points inside p and B is the cardinality of
the set of integral lattice points on the boundary of p, then the area of p (given by
the Lebesgue measure of its path inside, using Isabelle/HOL’s standard library
definitions measure and lebesgue) is I + B/2 - 1, as claimed by Pick’s theorem.

4 Formalization Details

Having outlined our proof approach, we turn to some further details of our
formalization, including challenges we faced and library extensions we contribute.

4.1 Polygon Properties

Linepath Characterization of Polygonal Paths. In the Isabelle libraries, a
path is a map from the unit interval [0, 1] into some topological space. The library
definition of joining two paths p1 and p2 together, +++, assigns the first half of the
unit interval to p1, and the second half to p2. We construct polygons by repeated
application of this +++ operation (see Sect. 3.1). This has the effect that the
first linepath in a polygonal path corresponds to the interval [0, 1

2 ], the second
linepath to [ 12 ,

3
4 ], the third linepath to [ 34 ,

7
8 ], and so forth; the last linepath
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corresponds to [ 2
n−1−1
2n−1 , 1], where n is the number of vertices in the polygonal

path (see Fig. 10). Harrison also used this parametrization in his work [12]. Using
+++ in this way allows us to directly apply library lemmas about joining paths,
but we found this parametrization unwieldy to work with in practice.

v0 v1 v2 v3 v4 v5

1
2

1
4

1
8

1
16

1
16

Fig. 10: Paramaterization of a polygonal path with six vertices.

For example, suppose p = make_polygonal_path [a, b, c, d, a] is a polygon.
Then we might expect

p′ = (make_polygonal_path [a, b, c]) +++ (make_polygonal_path [c, d, a])

to also form a polygon. While we can show that p′ is simple and has the same
path image as p, p′ is (unintuitively) not a polygon because of its parametriza-
tion. We also encounter challenges when proving that if vts generates a simple
polygonal path p, then so does any sublist of length at least two of vts. While
library lemmas establish that a subpath of a simple path is simple, our polygon
parametrization means that a sublist does not necessarily generate a subpath.

To mitigate such challenges, we ultimately formalized a collection of lem-
mas that translate between the parametrization of a polygonal path p and the
parametrization of its constituent linepaths: given t ∈ [0, 1], we obtain t′ ∈ [0, 1]
where p(t) = ℓ(t′) and ℓ is a linepath of p. Though not overly mathematically
complex, this translation was somewhat tedious to formalize and apply.

Polygon Vertex Rotation. We often found it convenient to assume WLOG
that a property which holds for some vertex in a polygon holds for the first ver-
tex. Intuitively, if p = make_polygonal_path [a, b, c, d, a] is a polygon, then it
is “essentially” the same polygon as p′ = make_polygonal_path [b, c, d, a, b].
Though p and p′ are different curves, they have the same path image and are ge-
ometrically the same. However, it was non-trivial to formalize that p is a polygon
iff p′ is a polygon because they are parametrized differently (this was our original
impetus to formalize the aforementioned parametrization translation between a
polygonal path and its linepaths).

In Isabelle, we formalize rotation on the vertex list of a polygon in the func-
tion rotate_polygon_vertices and prove the following crucial properties to es-
tablish that rotating a polygon yields a polygon with the same path image.

lemma rotation_is_polygon:
assumes "polygon p" "p = make_polygonal_path vts"
assumes "vts’ = rotate_polygon_vertices vts i"
shows "polygon (make_polygonal_path vts’)" and

"path_image (make_polygonal_path vts’) = path_image p"
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4.2 Unit Geometry

In the base case of our induction to prove Pick’s theorem for triangles, we must
show that the area of the unit triangle is 1/2 (see Sect. 3.2). While the formula
for the area of a triangle is a grade-school fact, we formally treat the area of a
polygon as the Lebesgue measure of its inside, which is not entirely straightfor-
ward to work with (given the abstractness of the Lebesgue measure and ‘inside’
definitions). We use existing library results to show that the area of a unit square
is 1,11 and then show that the unit square can be split into the unit triangle and
its diagonal mirror. As the unit triangle and its mirror have the same area, and
their areas sum to 1, they each must have area 1/2. Formalizing this involved
concretely characterizing the abstract ‘inside’ of the unit triangle and unit square
(for example, we prove that the unit triangle is the set of points (x, y) where
0 ≤ x, 0 ≤ y, and x+ y ≤ 1) and matching between the various definitions (e.g.,
the interior of the convex hull of three points is the same as the path inside of the
polygon formed by the three points), a task which overall proves more intricate
and finicky than grade-school intuition would suggest.

4.3 Convex Hull Properties

In the course of our formalization, we need to prove a variety of general results
relating convex hulls to polygons. This can be tricky, since a polygon is a mapping
with specific properties, whereas a convex hull is simply a set of points. For
example, if we take the convex hull of a polygon (which is the same as taking
the convex hull of the vertices of the polygon), then geometrically the result can
clearly be characterized as a polygon. In generality, the missing result is that the
convex hull of any finite set of points can be alternatively characterized by the
path inside of some polygon. Formally establishing this connection is nontrivial;
in our proof approach, we formalize a significant step towards this by showing
that filling in a pocket of the convex hull yields a polygon.

We additionally contribute other results that augment the existing library
support for convex hulls. For example, we prove that if all of the vertices of a
polygon are on the frontier of its convex hull, then the polygon itself is convex.
In contrapositive, this yields that for a non-convex polygon, some vertex is in the
interior of its convex hull, which we use to show that a non-convex polygon has
a pocket. While geometrically obvious in a proof-by-picture fashion, the formal
proof was more detailed and involved relating the notions of convex hulls, affine
hulls, and half planes; in particular, we show that if a linepath is not on the
frontier of the convex hull, it “cuts” the convex hull, which then forces a self-
intersection in the polygonal path. This notion of “cutting” is different than
that afforded by the Jordan triple curve theorem, and its formalization involved
characterizing certain intersections of a convex hull with an affine hull of two
points, as well as classifying the frontier of half plane as an affine hull.
11 Intuitively, the Lebesgue measure of open rectangles is “hard-coded” in the definition;

showing that the area of the unit square is 1 essentially amounts to showing that
the unit square (defined as a convex hull of its four corners) is [0, 1]× [0, 1].
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5 Conclusion and Future Work

Our formalization of Pick’s theorem, the second in any theorem prover, involves
both creative strategies to formalize pictorial arguments and considerable fun-
damental library extensions. The other existing formalization of Pick’s theorem,
by John Harrison in HOL Light [12], emphasizes the surprisingly involved nature
of formalizing geometry. While we succeeded in avoiding a particularly thorny
part of Harrison’s proof by formalizing a less common approach to proving Pick’s
theorem, we do not claim that our formalization is overall simpler. Ultimately,
we resonate with many of the difficulties Harrison describes. Describing the step
to verify the existence of a good linepath in a polygon, Harrison writes “. . . we
found it quite hard work reasoning about obvious facts like ‘this point and that
point are on opposite sides of the line’.” [12, p. 12]. We encountered a similar
difficulty in our formalization, particularly in the piece of our proof that avoided
this very step (the non-convex case, Sect. 3.4).

While we believe there are inherent challenges in formalizing geometry, a
retrospective analysis also reveals portions of our formalization that were po-
tentially unnecessarily painful. In particular, the difficulties we faced with the
parametrization induced by our polygon construction could have potentially (ret-
rospectively) been avoided by using a polygon definition along the following lines:
P ⊆ R2 is a polygon iff (1) P is the path image of some (potentially non-simple)
polygonal path, and (2) P is the path image of some simple path. Note that
this definition treats a polygon as a subset of R2, not a mapping from [0, 1] into
R2. This definition lets us find separate witnesses of the “polygonal-ness” and
“simple-ness” of a polygon, which may avoid the problems we encountered in
showing that certain vertex transformations of polygons, such as polygon vertex
rotation or taking sublists, yield simple polygonal paths.

In addition to exploring potential simplifications of our formalization, there
are some interesting possible extensions of our work. Our formalization takes the
first step towards showing that any polygon can be made convex by removing
some of its vertices (i.e., by filling in its pockets). Further, our formal treatment
of pockets opens up the possibility of verifying other theorems about pockets,
such as the Erdös-Nagy theorem, which states that any polygon can be made
convex by successively picking a pocket and flipping it across the face it shares
with the convex hull [10]. We are also interested in other theorems related to
area and geometry, e.g. the Shoelace theorem (alternately called the Surveyor’s
Formula) [4], and in connecting our work to some of the pre-existing Isabelle
results like Ceva’s theorem (which used a different definition of area) [23].
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