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Abstract

This paper studies algorithmic decision-making in the presence of strategic individual be-
haviors, where an ML model is used to make decisions about human agents and the latter can
adapt their behavior strategically to improve their future data. Existing results on strategic
learning have largely focused on the linear setting where agents with linear labeling function
best respond to a (noisy) linear decision policy. Instead, this work focuses on general non-linear
settings where agents respond to the decision policy with only "local information" of the policy.
Moreover, we simultaneously consider objectives of maximizing decision-maker welfare (model
prediction accuracy), social welfare (agent improvement caused by strategic behaviors), and
agent welfare (the extent that ML underestimates the agents). We first generalize the agent
best response model in previous works to the non-linear setting, then reveal the compatibility of
welfare objectives. We show the three welfare can attain the optimum simultaneously only under
restrictive conditions which are challenging to achieve in non-linear settings. The theoretical
results imply that existing works solely maximizing the welfare of a subset of parties inevitably
diminish the welfare of the others. We thus claim the necessity of balancing the welfare of each
party in non-linear settings and propose an irreducible optimization algorithm suitable for general
strategic learning. Experiments on synthetic and real data validate the proposed algorithm.

1 Introduction

When machine learning (ML) models are used to automate decisions about human agents (e.g., in
lending, hiring, and college admissions), they often have the power to affect agent behavior and
reshape the population distribution. With the (partial) information of the decision policy, agents can
change their data strategically to receive favorable outcomes, e.g., they may exert efforts to genuinely
improve their labels or game the ML models by manipulating their features without changing the
labels. This phenomenon has motivated an emerging line of work on Strategic Classification (Hardt
et al., 2016), which explicitly takes the agents’ strategic behaviors into account when learning ML
models.

One challenge in strategic classification is to model the interactions between agents and the ML
decision-maker, as well as understand the impacts they each have on the other. As the inputs
of the decision system, agents inevitably affect the utility of the decision-maker. Meanwhile, the
deployed decisions can further influence agents’ future data and induce societal impacts. Thus, to
facilitate socially responsible algorithmic decision-making, we need to consider the welfare of all



parties when learning the decision system, including the welfare of the decision-maker, agent, and
society. Specifically, the decision-maker typically cares more about assigning correct labels to agents
when making decisions, while society will be better off if the decision policy can incentivize agents to
improve their actual states (labels). For the agents, it is unrealistic to assign each of them a positive
decision, but it is reasonable for agents to expect a "just" decision that does not underestimate their
actual states.

However, most existing works on strategic classification solely consider the welfare of one party. For
example, Dong et al. (2018); Braverman and Garg (2020); Jagadeesan et al. (2021); Sundaram et al.
(2021); Zhang et al. (2022); Eilat et al. (2022) only focus on decision-maker welfare by designing
accurate classifiers robust to strategic manipulation. Kleinberg and Raghavan (2020); Harris et al.
(2021); Ahmadi et al. (2022a) solely consider maximizing social welfare by designing an optimal
policy to incentivize the maximum improvement of agents. To the best of our knowledge, only a
few works consider both decision-maker welfare and social welfare (Bechavod et al., 2022; Barsotti
et al., 2022). Among them, Bechavod et al. (2022) initiate a theoretical study to understand the
relationship between the two welfare, where they identify a sufficient condition under which the
decision-maker welfare and social welfare can be optimized at the same time. However, this paper
still focuses on incentivizing agent improvement to maximize social welfare.

Moreover, most prior works limit the scope of analysis to linear settings by assuming both the
agent labeling function and the ML decision rules are linear (Dong et al., 2018; Chen et al., 2020b;
Ahmadi et al., 2021; Horowitz and Rosenfeld, 2023). This is unrealistic in real applications when
the relationship between features and labels is highly intricate and non-linear. Meanwhile, previous
works typically modeled strategic behaviors as "(noisy) best responses" to the decision policy (Hardt
et al., 2016; Jagadeesan et al., 2021; Dong et al., 2018; Chen et al., 2020b; Ahmadi et al., 2021;
Horowitz and Rosenfeld, 2023), which is not practical when the decision policy is highly complex
and agents’ knowledge about the policy (e.g., a neural network) is far from complete. It turns out
that the existing theoretical results and methods proposed under linear settings where agents "best
respond" can easily be violated in non-linear settings. Thus, there remain gaps and challenges in
developing a comprehensive framework for strategic learning under general non-linear settings.

To tackle the limitations in prior works, we study the welfare of all parties in strategic learning under
general non-linear settings where both the ground-truth labeling function and the decision policies
are complex and possibly non-linear. Importantly, we develop a generalized agent response model
that allows agents to respond to policy only based on local information/knowledge they have about
the policy. Under the proposed response model, we simultaneously consider: 1) decision-maker
welfare that measures the prediction accuracy of ML policy; 2) social welfare that indicates the level
of agent improvement; 3) agent welfare that quantifies the extent to which the policy under-estimates
the agent qualifications.

Under general non-linear settings and the proposed agent response model, we first revisit the
theoretical results in Bechavod et al. (2022) and show that those results can easily be violated under
more complex settings. We then explore the relationships between the objectives of maximizing
decision-maker, social, and agent welfare. The results show that the welfare of different parties can
only be aligned under rigorous conditions depending on the ground-truth labeling function, agents’
knowledge about the decision policy, and the realizability (i.e., whether the hypothesis class of the
decision policy includes the ground-truth labeling function). It implies that existing works that



solely maximize the welfare of a subset of parties inevitably diminish the welfare of the others. We
thus propose an algorithm to balance the welfare of all parties.

The rest of the paper is organized as follows. After briefly reviewing the related work in Sec. 2, we
formulate a general strategic learning setting in Sec. 3, where the agent response and the welfare
of the decision-maker, agent, and society are presented. In Sec. 4, we discuss how the existing
theoretical results derived under linear settings are violated under non-linear settings and provide
a comprehensive analysis of the decision-maker/agent/social welfare; we show all the conditions
when they are guaranteed to be compatible in Thm. 4.1. This demonstrates the necessity of an
"irreducible" optimization framework balancing the welfare of all parties, which we introduce in
Sec. 5. Finally, in Sec. 6, we provide comprehensive experimental results to compare the proposed
method with other benchmark algorithms on both synthetic and real datasets.

2 Related Work

Next, we briefly review the related work and discuss the differences with this paper.

2.1 Strategic Learning

Hardt et al. (2016) was the first to formulate strategic classification as a Stackelberg game where
the decision-maker publishes a policy first following which agents best respond. A large line of
subsequent research has focused on designing accurate classifiers robust to strategic behaviors. For
example, Ben-Porat and Tennenholtz (2017); Chen et al. (2020a); Tang et al. (2021) designed robust
linear regression predictors for strategic classification, while Dong et al. (2018) proposed an online
learning algorithm for the problem. Levanon and Rosenfeld (2021) designed a protocol for the
decision maker to learn agent best response when the decision policy is non-linear, but it assumes
agents are perfectly aware of the complex classifiers deployed on them. Braverman and Garg (2020);
Jagadeesan et al. (2021) relaxed the assumption that the best responses of agents are deterministic
and studied how the decision policy is affected by randomness. Sundaram et al. (2021) provided
theoretical results on PAC learning under the strategic setting, while Levanon and Rosenfeld (2022);
Horowitz and Rosenfeld (2023) proposed a new loss function and algorithms for linear strategic
classification. Miller et al. (2020); Shavit et al. (2020); Alon et al. (2020) focused on causal strategic
learning where features are divided into "causal" and "non-causal" ones. However, all these works
study strategic classification under linear settings and the primary goal is to maximize decision-maker
welfare. In contrast, our work considers the welfare of not only the decision-maker but also the agent
and society. Another line of work related to strategic learning is Performative Prediction (Perdomo
et al., 2020) which is a model to capture general model-dependent distribution shifts. Although this
framework can model strategic learning settings when the decision policy is strongly convex, it is
highly abstract and hard to interpret when considering the welfare of different parties. We refer to
Hardt and Mendler-Diinner (2023) as a comprehensive survey for Performative Prediction.

2.2 Promote Social Welfare in Strategic Learning

Although the definition of social welfare is sometimes subtle (Florio, 2014), social welfare is often
regarded as the improvement of ground truth qualifications of agents in strategic learning settings
and we need to consider how decision rules impact social welfare by shaping agent best response. A



rich line of works are proposed to design mechanisms to incentivize agents to improve(Liu et al.,
2019; Rosenfeld et al., 2020; Shavit et al., 2020; Alon et al., 2020; Zhang et al., 2020; Chen et al.,
2020a; Kleinberg and Raghavan, 2020; Bechavod et al., 2021; Ahmadi et al., 2022a,b; Raab and Liu,
2021). The first prominent work was done by Kleinberg and Raghavan (2020), where they studied
the conditions under which a linear mechanism exists to incentivize agents to improve their features
instead of manipulating them. Specifically, they assume each agent has an effort budget and can
choose to invest any amount of effort on either improvement or manipulation, and the mechanism
aims to incentivize agents to invest all available efforts in improvement. Harris et al. (2021) designed
a more advanced stateful mechanism considering the accumulative effects of improvement behaviors.
They stated that improvement can accumulate over time and benefit agents in the long term, while
manipulation cannot accumulate state to state. On the contrary, Estornell et al. (2021) considered
using an audit mechanism to disincentivize manipulation which instead incentivize improvement.
Besides mechanism design, Rosenfeld et al. (2020) studied incentivizing improvement in machine
learning algorithms by adding a look-ahead regularization term to favor improvement. Chen et al.
(2020a) divided the features into immutable, improvable, and manipulable features and explored
linear classifiers that can prevent manipulation and encourage improvement. Jin et al. (2022) also
focused on incentivizing improvement and proposed a subsidy mechanism to induce improvement
actions and improve social well-being metrics. Bechavod et al. (2021) demonstrated the ability
of strategic decision-makers to distinguish features influencing the label of individuals under an
online setting. Ahmadi et al. (2022a) proposed a linear model where strategic manipulation and
improvement are both present. Barsotti et al. (2022) conducted several empirical experiments when
improvement and manipulation are possible and both actions incur a linear deterministic cost.

The works closest to ours are Bechavod et al. (2022); Rosenfeld et al. (2020). Bechavod et al. (2022)
provided analytical results of maximizing total improvement without harming anyone’s current
qualification, but they assumed both the ground truth and the decision rule are linear. Rosenfeld
et al. (2020) aimed to maximize accuracy while punishing the classifier only if it brings the negative
externality in non-linear settings. However, solely punishing negative externality is far from ideal.
Our work goes further by analyzing the relationships between the welfare of different parties and
providing an optimization algorithm to balance the welfare.

2.3 Welfare-Aware Machine Learning

The early work on welfare-aware machine learning typically considers balancing social welfare and
another competing objective such as fairness or profit. For example, Ensign et al. (2018) focused
on long-term social welfare when myopically maximizing efficiency in criminal inspection practice
creates a runaway feedback loop. Liu et al. (2020); Zhang et al. (2020); Guldogan et al. (2022)
showed that instant fairness constraints may harm social welfare in the long run since the agent
population may react to the classifier unexpectedly. Rolf et al. (2020) proposed a framework to
analyze the Pareto-optimal policy balancing the prediction profit and a possibly competing welfare
metric, but it assumed a simplified setting where the welfare of admitting any agent is constant,
which is not the case in strategic learning.



3 Problem Formulation

Consider a population of strategic agents with features X = (X1, ..., X4), dom(X) C R?, and label
Y € {0,1} that indicates agent qualification for certain tasks (with “0" being unqualified and “1"
qualified). Denote Px as the probability density function of X, and assume labeling function
h(z) := P(Y = 1|X = z) is continuous. The agents are subject to certain algorithmic decisions
D(z): R? — {0,1} (with “1" being positive and “0" negative), which are made by a decision-maker
using a scoring function f(z) := P(D(x) = 1|X = z). Unlike many studies in strategic classification
that assume f € F is a linear function, we allow F to be non-linear. Moreover, it is possible that
hypothesis class F does not include h.

3.1 Information level and generalized agent response

We consider practical settings where the decisions deployed on agents have downstream effects and
can reshape the agent’s future data. We assume agents are honest so that their future labels also
change accordingly based on the fixed labeling function h(z). Given a function f, we define agent
best response to f adhering to previous works on strategic learning (Hardt et al., 2016; Dong et al.,
2018; Ahmadi et al., 2021) as follows.

Definition 3.1 (Agent best response to a function). Assume an agent with feature z will incur cost
¢(x,x’) by moving her feature from x to /. Then we say the agent best responds to function f if
she changes her features from z to z* = arg max,/{f(z') — c(x,2")}.

It is worth noting that most existing works in strategic learning assume agents either best respond
to the exact f (e.g., Hardt et al. (2016); Horowitz and Rosenfeld (2023); Dong et al. (2018); Ahmadi
et al. (2021)) or noisy f with additive noise (e.g., Levanon and Rosenfeld (2022); Jagadeesan et al.
(2021)). However, the best response model in Def. 3.1 requires the agents to know the exact values
of f(a) for all 2/ in the feature domain, which is a rather strong requirement and unlikely holds in
practice, especially when policy f € F is complex (e.g., logistic regression /neural networks). Instead,
it may be more reasonable to assume agents only have "local information" about the policy f, i.e.,
agents with features x only have some information about f at x and they know how to improve their
qualifications based on their current standings (Zhang et al., 2022; Raab and Liu, 2021). To formalize
this, we define the agent’s information level and the resulting agent response in Def. 3.2.

Definition 3.2 (Information level and agent response). Agents with features = and informa-
tion level K know the gradient of f at = [z1,...,24] up to the K* order (the agents know
{Vf(x),V2f(z),..., VE f(2)} if all these gradients exist). Let QZ be the Taylor expansion of f at z
up to the K order, i.e.,
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When f is only k < K times differentiable, Qﬁ; simply uses all existing gradient information. Then
the agents with information level K will respond to f by first estimating f using Qg, and then best
responding to Q?;.



Def. 3.2 specifies the information level of agents and how they respond to the decision policy using
all the information available at the locality. A lower level of K is more interpretable in practice. For
example, agents with information level K = 1 use the first-order gradient of f to calculate a linear
approximation, which means they only know the most effective direction to improve their current
feature values. In contrast, agents with information level K = 2 also know how this effective direction
to improve will change (i.e., the second-order gradient that reveals the curvature of f).

It is worth noting that the agent response under K = 1 is also similar to Rosenfeld et al. (2020)
where agents respond to the decision policy by moving toward the direction of the local first-order
gradient, and Dean et al. (2023) where the agents aim to reduce their risk based on the available
information at the current state. Moreover, Def. 3.2 can also be regarded as a generalization of the
previous models where agents best respond to the exact decision policy under the linear setting.
To illustrate this, assume the agents have an information level K > 1 and the linear policy is
f(z) = BTz, then they will estimate f using Q%(2') = f(z) + Vf(z) - (2/ — 2) = BT4', which is the
same as f. However, for complex f, agents with information level K may no longer best respond to
f. Prop. 3.3 illustrates the necessary and sufficient conditions for an agent to best respond.

Proposition 3.3. An agent with information level K can best respond to f if and only if f is a
polynomial with an order smaller than or equal to K.

Prop. 3.3 shows that agents with only local information of policy can only best respond to f
that is polynomial in feature vector X. In practical applications, f often does not belong to the
polynomial function class (e.g., a neural network with Sigmoid activation may have infinite order
gradients, and the one with Relu activation may be a piece-wise function), making it unlikely for
agents to best respond to f. Note that although Def. 3.2 specifies the agents to best respond to Qf;
which is an approximation of actual policy f using the "local information" at x, we also present a
protocol in Alg. 2 to learn a more general response function z* = Ay (z, I (f, x)) from population
dynamics where ¢ are learnable parameters and Iy (f,z) is all information available for agents with
information level K and feature x. This protocol can learn a rich set of responses when the agents
have information level K and use their information to respond to f strategically.

3.2 Welfare of different parties

In this paper, we jointly consider the welfare of the decision-maker, agents, and society. Before
exploring their relations, we first introduce the definition of each below.

Decision-maker welfare. It is defined as the utility the decision maker immediately receives from
the deployed decisions, without considering the downstream effects and agent response. Formally, for
agents with data (x,y), we define the utility the decision-maker receives from making the decision
D(z) as u(D(x),y). Then the decision-maker welfare is just the expected utility over the population,
ie.,

DW(f) = By ynpyy [u(D(2), y)].

When u(D(z),y) = 1(D(x) = y), decision-maker welfare defined above reduces to the prediction accu-
racy P(D(X) =Y). In Sec. 5 and 6, we focus on the special case with DW(f) = E; ypy, [1(D(z) =
y)], but the results and analysis can be extended to other utility functions.



Social welfare. It evaluates the impact of the agent response on population qualifications. We
consider two types of social welfare commonly studied in strategic learning: agent improvement and
agent safety. Specifically, agent improvement is defined as:

IMP(f) = Ezopy [h(2¥) — h(2)].

It measures the increase in the overall population qualification caused by the agent best response.
This notion has been theoretically and empirically studied under linear settings, e.g., (Kleinberg and
Raghavan, 2020; Bechavod et al., 2022).

For agent safety, we define it as:
SF(f) = Egnpy [min {h(z*) — h(z),0}].

It illustrates whether there are agents suffering from deteriorating qualifications after they best
respond. This notion has been studied in (Bechavod et al., 2022) and was interpreted as "do no
harm" constraint, i.e., the deployed decisions should avoid adversely impacting agents. (Rosenfeld
et al., 2020) has shown that agent safety can not be automatically guaranteed even under linear
settings, and they proposed an algorithm to ensure safety in general settings. However, they did not
consider agent improvement which we believe is an equally important measure of social welfare.

Agent welfare. Previous literature rarely discussed the welfare of agents. The closest notion was
social burden (Milli et al., 2019) defined as the minimum cost a positively-labeled user must pay to
obtain a positive decision, where the authors assume agents can only “game" the decision-maker
without improving their true qualifications. Since the agents can always strive to improve in our
setting, their efforts are not necessarily a “burden". Thus, we propose a definition of agent welfare
which measures the extent to which the agent qualification is under-estimated by the decision-maker,
ie.,

AW(f) = Eympy [min { f(x) - h(z),0}].

When the policy underestimates the agent’s true potential (f(z) < h(x)), the agent may be treated
unfairly by the deployed decision (i.e., when a qualified agent gets a negative decision). We thus use
AW(f) to measure agent welfare.

4 Welfare Analysis

This section explores the relationships between the decision-maker, social, and agent welfare intro-
duced in Sec. 3. Among all prior works, (Bechavod et al., 2022) provides a theoretical analysis of
social and decision-maker welfare under linear settings. In this section, we first revisit the results in
(Bechavod et al., 2022) and show that they may not be applicable to non-linear settings. Then, we
examine the relationships between three types of welfare under general settings.

4.1 Beyond the linear setting

Bechavod et al. (2022) considered linear settings when both the labeling function h and decision
policy f are linear and revealed that decision-maker welfare (DW(f)) and social welfare (IMP(f))
can attain the optimum simultaneously when the decision maker deploys f = h and agents best
respond to f. However, under general non-linear settings, the compatibility of welfare is rarely



achieved and we present the necessary and sufficient conditions to guarantee the alignment of all
welfare in Thm. 4.1.

Theorem 4.1 (Alignment of all welfare). Suppose agents have information level K, then decision-
maker welfare, social welfare, and agent welfare can attain maximum simultaneously regardless of
the feature distribution Px and cost function c(x,x') if and only if h is polynomial in X with order
smaller than or equal to K and h € F.

Thm. 4.1 can be proved based on Prop. 3.3. Intuitively, decision-maker welfare and agent welfare
are guaranteed to be maximized when f is accurate, while agents are only guaranteed to gain the
largest improvement under an accurate f if they have a perfect understanding of f. When Thm. 4.1
is not satisfied, the welfare of different parties is incompatible under the non-linear settings; we use
two examples to illustrate this below.

1.0
] V

0.6 1
0.4 A
0.2 - — f for IMP — h
’ — fforDW - agents (SF > 0)
0.0 — ffor AW -~ agents (SF < 0)

00 02 04 06 08 10
X

Figure 1: Illustration of the optimal linear policies and agent response when h (the blue curve) is
quadratic and f is linear. There are four agents with features below 0.5 (green solid circle) and one
agent with the feature above 0.5 (black solid circle). We observe that (i) the red line maximizes
agent improvement IMP(f) but it is unsafe by only encouraging the green agents to improve while
the black agent’s qualification deteriorates. The green/black arrows and the hollow circles show how
agent response improves/worsens their qualifications; (ii) the black line aims to maximize DW(f) by
running a least square regression with respect to ground truth h, which is different from the red line;
(iii) Neither the red nor the black line maximizes the agent welfare AW(f); only predictors above
h(z) (e.g., constant predictor f(x) =1 shown by green line) achieves the optimal AW(f).

Example 4.2 (Quadratic labeling function with linear policy). Consider a hiring scenario where
a company needs to assess each applicant’s fitness for a position. Each applicant has a feature
X € [0, 1] demonstrating his/her ability (e.g., coding ability for a junior software engineer position).
Suppose the labeling function h(x) = —4z - (x — 1) is quadratic with maximum taken at z = 0.5,
which implies that an applicant’s fitness will decrease if the ability is too low ("underqualified") or
too high ("overqualified")!. Under the quadratic labeling function, if the decision-maker can only
select a decision policy f from a linear hypothesis class F (i.e., violating the requirement that h € F
in Thm. 4.1), then the optimal policies maximizing decision-maker welfare and agent improvement
are completely different, i.e., DW(f) and IMP(f) cannot be maximized simultaneously. Moreover,
agent safety SF(f) is also not guaranteed. To illustrate this, consider the example in Fig. 1 with five

"Overqualified" means an applicant has skills significantly exceeding the requirement. In this case, he/she may fit
more senior positions or desire a much higher salary than this position can offer.



agents: four green agents with features below 0.5 and a black one above 0.5, then the policy that
maximizes IMP(f) can cause the qualification of black agent to deteriorate and lead to negative
agent safety SF(f) < 0.

Example 4.3 (Quadratic labeling function and policy). Under the same setting of Example 4.2,
instead of restricting f to be linear, let the decision-maker deploy f(x) = h(z) = —4z - (x — 1).
Obviously, f maximizes both the decision-maker welfare and agent welfare. However, it can hurt
social welfare. Consider an example shown in Fig. 2 where all agents have the same feature x = 0.4
and information level K = 1 (violating the information level requirement of Thm. 4.1). Their
cost function is ¢(z,2') = 4 - (z — 2/)%. Since Vf(z) = —8z + 4 = 3.68, agents derive Q(2/) =
f(x)+3.68- (' —x) = 3.68-2" — 0.512. Then agent post-response feature will be 2* = z+ :3'8& = 0.86.
As a result, the agent qualification becomes h(z*) = h(0.86) = 0.4816 < h(0.4) = 0.96, which is
worse than the initial qualification, i.e., agent safety is not optimal by deploying f = h.
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Figure 2: Violation of agent safety SF(f) when f = h is quadratic (the blue curve): All agents
have the same feature value concentrating on X = 0.4 (the solid black circle). If applying the
ground truth as the decision policy, all agents will respond by moving to * = 0.86 (the hollow black
circle). Although the policy maximizes AW(f) and DW(f), all agents become less qualified after
they respond, harming the social welfare. Both IMP(f) and SF(f) are smaller than 0.

Examples 4.2 and 4.3 illustrate the potential conflict between decision-maker, social, and agent
welfare and verify Thm. 4.1. Even for simple quadratic settings, the results under the linear setting
in Bechavod et al. (2022) no longer hold, and simultaneously maximizing three types of welfare can
be impossible. In the following sections, we further analyze the relationships between each pair of
welfare in general non-linear settings.

4.2 Compatibility analysis of each welfare pair

Sec. 4.1 provides the necessary and sufficient condition for the alignment of all welfare. A natural
question is whether there exist scenarios under which different pairs of welfare are compatible and
can be simultaneously maximized. This section answers this question and explores the relationships
between the welfare of every two parties in general settings.



4.2.1 Decision-maker welfare & agent welfare

We first examine the relationships between decision-maker welfare DW(f) and agent welfare AW(f),
the following result shows that the two can be maximized under the same f.

Proposition 4.4. Under the realizability assumption that h € F, decision-maker welfare and agent
welfare are compatible and can attain the optimum simultaneously.

Note that agent welfare AW(f) = 0 as long as f(x) > h(z) holds for all z. When h € F, the
decision-maker can simply deploy f = h to assign each agent the correct outcome; this ensures
optimal welfare for both parties.

4.2.2 Decision-maker welfare & social welfare

Unlike compatibility results in Sec 4.2.1, the decision-maker welfare and either element of social
welfare (i.e., agent improvement IMP(f) or agent safety SF(f)) in general are not compatible, and
their compatibility needs all conditions in Thm. 4.1 to be satisfied.

Proposition 4.5. The decision-maker welfare and social welfare are guaranteed to attain the optimum
simultaneously regardless of the feature distribution Px and the cost function c(z,z") if and only if
Thm. 4.1 holds.

As illustrated in Example 4.2, each pair of welfare may be incompatible when h ¢ F. Intuitively,
since the decision-maker cannot deploy f = h, it cannot make accurate decisions and provide a
correct direction for agents to improve. Similarly, Example 4.3 shows the incompatibility when F is
non-linear. Although the decision-maker can deploy f = h to attain the optimal DW, the agents may
fail to improve because their limited information level produces incorrect estimations of f. When F
is non-linear, the gradient V f(z) is no longer a constant, and agents with K = 1 will respond in the
wrong directions.

4.2.3 Agent improvement & agent safety

While Prop. 4.5 holds for both measures (i.e., agent improvement IMP(f) and agent safety SF(f))
of social welfare, the two in general are not compatible (as shown in Example 4.3). However, we can
identify the necessary and sufficient conditions under which IMP(f) and SF(f) attain the maximum
simultaneously in general non-linear settings.

Theorem 4.6 (Maximize agent improvement while ensuring safety). Suppose the agents have
information level K and respond to f based on Def. 3.2. Let f* € argmaxyscr IMP(f) be any policy
that mazximizes the agent improvement, and let Qg* be the estimation of f* for agents with feature
vector x. Then any f* is guaranteed to be safe (i.e., SF(f*) = 0) regardless of the feature distribution
Px and the cost function c(z,x") if and only if either of the following scenarios holds: (i) Thm. 4.1

f*
holds; (ii) For each agent with feature vector x, we have: 8% . aa%t > 0 holds almost everywhere in

T =[Z1,...,2q] € dom(X).

It is trivial to see scenario (i) in Thm. 4.6 is a sufficient condition (it ensures the compatibility of
three welfare). For scenario (i), it implies that for any arbitrary agent with feature z, the f* will
result in an estimation Q{k, under which each agent changes her features in directions to improve
the qualification.
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4.2.4 Social welfare & agent welfare

Finally, we discuss the relationship between social welfare and agent welfare. Since agent welfare is
optimal only when f(z) > h(x) always holds, f satisfying such a constraint generally cannot maximize
social welfare. In Example 4.2, a policy that maximizes agent improvement may underestimate
certain agents’ qualifications and lead to AW(f) < 0. Nonetheless, we can still find the necessary
and sufficient conditions under which IMP(f) and SF(f) are compatible, as presented below.

Theorem 4.7 (Maximize social welfare and agent welfare). Suppose the agents have information level
K and respond to f based on Def. 3.2. Denote F' as {f : f € F and f(x) > h(x),Vx € dom(z)}
be the set of policies maximizing the agent welfare. Then for any f* € argmaxyer IMP(f), f* is
guaranteed to also maximize AW(f) regardless of the feature distribution Px and the cost function
c(x,2’) if and only if either of the following scenarios holds: (i) Thm. 4.1 holds; (ii) 3f' € F' and
constant C' € RT to let QJ;;/ = Q;’;* + C hold almost everywhere in dom(z).

Again, scenario (i) in Thm. 4.7 is a sufficient condition, while scenario (ii) means that the decision-
maker can find a classifier that induces perfect agent welfare while simultaneously giving the agents
the same information as f*. Note that Qiﬂ = Qg* + C does not necessarily imply f' = f* + C
when agents have a limited information level K. For example, when agents have K = 2, we can
have f* =e¢* —x — 1 and f' = %2 + 0.5, where f* belongs to the exponential function family but f’
belongs to the quadratic function family.

To conclude, only decision-maker welfare and agent welfare can be maximized at the same time
relatively easily, other pairs of welfare need strong conditions to align under the general settings.
Even the two notions in social welfare (i.e., agent improvement and safety) can easily contradict
each other, and the decision-maker welfare and social welfare need the most restrictive conditions
(which is exactly Thm. 4.1) to be aligned. These results highlight the difficulties of balancing the
welfare of different parties in general non-linear settings, which further motivates the “irreducible"
optimization framework we will introduce in Sec. 5.

5 Welfare-Aware Optimization

In this section, we present our algorithm that balances the welfare of all parties in general settings.
We formulate this welfare-aware learning problem under the strategic setting as a regularized
optimization where each welfare violation is represented by a loss term. Formally, we write the
optimization problem as follows.

?Iéi}:l{f])w + A - lswWF + A2 - wa} (2)

where fpw, fswr, aw are the losses corresponding to decision-maker welfare, social welfare, and
agent welfare, respectively. The hyper-parameters A1, Ao > 0 balance the trade-off between the
welfare of three parties. Given training dataset {(x;,v;)}Y,, the decision-maker first learns h and
then calculates each loss as follows:

e /pw: we may use common loss functions such as cross-entropy loss, 0-1 loss, etc., and quan-
tify /pw as the average loss over the dataset. In experiments (Sec. 6), we adopt {pw =

& Xiny — (wilog (f(x:)) + (1 — i) log (1~ f()))-
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Algorithm 1: Strategic Welfare-Aware Optimization (STWF)
Input: Training set S, Agent response function Ag, Agent information level K
Parameters: Total number of epochs n, batch size B, learning rate 7, hyperparameters A1, Ao,
initial parameters 6 for f
Output: Deployed classifier f € F
1: Train ground truth model h € H with S
2: fort € {1,...n} do
3 forke{l,...%} do

4: Calculate ?B = f@(XB)

5: Calculate the post-response features of agents: X5 = A, (XB, I(f,x))
6: Calculate the outcomes after responses: Y5 = h(X})

7 Calculate fpw, fswr, LaAw

8: Compute L = fpw + A1 - lswr + A2 - Law

9: Update@z@—y-g—g

10: Return 6

e /gwr: since both agent improvement and agent safety indicate the social welfare. We define
lswr = livp + UsF, where finvp s the loss associated with agent improvement and {gg measures
the violation of agent safety. In experiments (Sec. 6), we also present empirical results when
Lswr only includes one of the two losses. Specifically, the two losses are defined as follows.

— fivp: it aims to penalize f when it induces less agent improvement. We can write it as
the cross entropy loss over h(z}) (i.e., the qualification after agent response) and 1 (i.e.,
perfectly qualified). Formally, fmvp = + Zfil —log(h(x})).

— flgg: it penalizes the model whenever the agent qualification deteriorates after the response.
Formally, {sp = + > wvedgsp —108(h(z")) where the set Asp = {z;|h(z]) < h(z;)} includes
all agents with deteriorated qualifications.

e /aw: it focuses on agent welfare and penalizes f whenever the model underestimates the actual
qualification of the agent. Formally, {aw = %ZﬂﬂEAAW —log(f(z)) where the set A w =
{zi|f(x;) < h(x;)} includes all agents that are underestimated by the model.

The optimization (2) can be solved using gradient-based algorithms, as long as the gradient of losses
with respect to the model parameter (denoted as ) exists. Since f,h are continuous, gradients
already exist for /pw and faw. For fgwy, because it is a function of post-response feature X*,
we need gradients to exist for X* as well. If we already know how agents respond to the model
(i.e., X* as a function of f illustrated in Def. 3.2), then we only need gradients to exist for V f(x)
with respect to 6 (i.e., Hessian of f). Thus, the objective (2) can be easily optimized if V f(z) is
continuous in @, which is a relatively mild requirement and has also been used in previous literature
(Rosenfeld et al., 2020). The complete algorithm for StraTegic WelFare-Aware optimization (STWF)
is shown in Alg. 1.

Learning agent response function Ag. Note that while Sec. 3 introduces agent response
following Def. 3.2, our algorithm does not have this requirement; In practice, agent behavior can be
more complicated, and we can consider a general learnable response function z* = Ag(x, I(f, x)).
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Note that Levanon and Rosenfeld (2021) proposed a concave optimization protocol to learn a response
function linear in any representation space of agents’ features. However, their design implicitly
assumes the agents have the perfect knowledge of the representation mapping function used by the
decision-maker so that they respond based on their representations, which is unrealistic. Here, we
avoid this by only assuming the response is a parameterized function of agents’ features x and the
information up to level K, i.e., * = Ay(x, I(f,x)) where ¢ are parameters for some models such
as neural networks and Iy (f,z) is all available information for agents with information level K and
feature x. With this assumption, we provide Alg. 2 as a general protocol to learn ¢. Then we can
plug the learned Ay into STWF (Alg. 1) to optimize the welfare.

Algorithm 2: AgentResponse

Input: Experimental training set S containing n samples {z;,y;}7_;, IV arbitrary classifiers
{fi}X,, ground-truth model h, agent information level K

Parameters: initial parameters ¢ for the agent response function Ay(z, It(f, x))

Output: Parameters ¢
1: Sy {}
2: fori € {1,... N} do
3:  Impose f; on S and obtain z* where z* is the post-response feature vector
40 S« {{zj, Ix(fi,xj),2*}} {build up the new training set for agent response}
5 S=§5_1US;
6: Train Ay with S
7: Return ¢

Alg. 2 requires a population for controlled experiments. As pointed out by Miller et al. (2020), we
can never understand the agent response without the controlled trials. Though the availability of
controlled experiments has been assumed in most literature on performative prediction (Perdomo
et al., 2020; Izzo et al., 2021), it may be costly to conduct the experiments in practice.

6 Experiments

We conduct comprehensive experiments on one synthetic and two real-world datasets to validate
STWF. We first illustrate the trade-offs for each pair of welfare and examine how they can be balanced
by adjusting A1, Ao in Alg. 1. Then, we compare STWF with previous algorithms that only consider
the welfare of a subset of parties. Since many of the existing algorithms also consider fairness across
agents from different groups, we also evaluate the unfairness induced by our algorithm in addition
to decision-maker, agent, and social welfare. We use a three-layer ReLU neural network to learn
labeling function h and logistic regression to train the policy f, and D(z) = 1(z > 0.5). For each
parameter setting, we perform 20 independent runs of the experiments with different random seeds
and report the average.

6.1 Datasets

Next, we introduce the data used in the experiments. For all datasets, 80% of the data is used for
training.
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Figure 3: Effects of adjusting A1, Ay on the welfare of each party: synthetic data (left plot), German
Credit data (middle plot), ACSIncome-CA data (right plot).

e Synthetic data. It has two features X = (Xi, X2) and a sensitive attribute Z € {0,1} for
demographic groups. Let (X|Z = z) be multivariate Gaussian random variables with different
means and variances conditioned on Z. Labeling function h(x) is a quadratic function in both
x1, 2, and the label Y = 1(h(X) > 0.5). We generate 10000 independent samples with 20%
of them having Z = 1 and the rest Z = 0. We assume all agents have the same cost function
c(z,2") =5 |2 — x|

ACSIncome-CA data (Ding et al., 2021). It contains income-related data for California
residents. Let label Y be whether an agent’s annual income is higher than 50K USD and let the
sensitive attribute Z be sex. We randomly select 20000 samples from the data of year 2018. We
assume all agents have the same effort budget c(z,2') = ||z’ — z||2.

German Credit data (Dua and Graff, 2017). It has 1000 samples and the label Y is whether the
agent’s credit risk is high or low. We adopt the data preprocessed by (Jiang and Nachum, 2020)
where age serves as the sensitive attribute to split agents into two groups. We assume the agents
are able to improve the following features: existing account status, credit history, credit
amount, saving account, present employment, installment rate, guarantors, residence.
We assume all agents have the same effort budget c(z,z’) = ||2' — %

6.2 Balance the Welfare with Different A\, A\,

We first validate STWF and show that adjusting the hyper-parameters A1, Ao effectively balances
the welfare of different parties. The results in Fig. 3 are as expected, where social welfare SWF(f)
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increases in A; and agent welfare AW(f) increases in Ay. This shows the effectiveness of using our
algorithm to adjust the allocation of welfare under different situations. As we analyzed in Sec. 4,
under the general non-linear setting, each pair of welfare possibly conflicts with each other. Fig. 3
validates this and it demonstrates the trade-offs between different welfare pairs on two datasets.
Specifically, for the synthetic data, increasing social welfare slightly conflicts with decision-maker
welfare, while increasing agent welfare drastically conflicts with the decision-maker welfare. But the
trade-off between social welfare and agent welfare is not obvious. For the German Credit dataset,
increasing soctal welfare seems to slightly conflict with both agent welfare and decision-maker welfare,
while increasing agent welfare has an obvious trade-off with decision-maker welfare. Conversely, for
the ACSIncome-CA dataset, increasing social welfare only sacrifices agent welfare, but increasing
agent welfare incurs conflicts with both other welfare.

6.3 Comparison with Previous Algorithms

Since STWF is the first optimization protocol that simultaneously considers the welfare of the decision-
maker, agent, and society, there exists no algorithm that we can directly compare with. Nonetheless,
we can adapt existing algorithms that only consider the welfare of a subset of parties to our setting,
and compare them with STWF.

Specifically, we compare STWF with four algorithms:

e Empirical Risk Minimization (ERM): It only considers decision-maker welfare by minimizing
the predictive loss on agent current data.

e Safety (SAFE) (Rosenfeld et al., 2020): It considers both decision-maker welfare and agent safety.
The goal is to train an accurate model without hurting agent qualification.

e Equal Improvement (EI) (Guldogan et al., 2022): It considers agent improvement by equalizing
the probability of unqualified agents becoming qualified from different groups, as opposed to
maximizing agent improvement considered in our work.

e Bounded Effort (BE) (Heidari et al., 2019): It considers agent improvement by equalizing the
proportion of new agents becoming qualified after the best response. The difference between BE
and EI is a bit subtle, where we show details in Tab. 1.

Note that both EI and BE focus on fairness across different groups. To comprehensively compare
different algorithms, we also evaluate the unfairness induced by each algorithm. Specifically,
we consider both fairness notions with and without considering agent behavior, including Equal
Improvability (El), Bounded Effort (BE), Demographic Parity (DP), and Equal Opportunity (EO),
which are defined in Tab. 1. We run all experiments on a MacBook Pro with Apple M1 Pro chips,
memory of 16GB, and Python 3.9.13. In all experiments of Sec. 6.3, we use the ADAM optimizer.
Except ERM, we first perform hyper-parameter selections for all algorithms, e.g., we select A1, Ay of
STWF by grid searching with cross-validation. For STWF, we perform cross-validation on 7 different
seeds to select the learning rate from {0.001,0.01,0.1} and Aj, A2 € {0,0.5,1,1.5,2}. For EI, BE and
SAFE, we choose the hyperparameters in the same way as the previous works (Guldogan et al., 2022;
Rosenfeld et al., 2020; Heidari et al., 2019). Specifically, A (the strength of the regularization) is 0.1
for all these algorithms.
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Table 1: Fairness notions used in our experiments.

Notion Definition

Equal Improvability (EI) P(f(z*)>0.5| f(z)<0.5,Z =2 =P (f(z*)>0.5| f(z)<0.5)
Bounded Effort (BE) P(f(z*)>0.5,f(x) <05 | Z=2)=P(f(z*) >0.5, f(z) <0.5)
Demographic Parity (DP) P(f(z)>05|Z==z2)=P(f(x) >0.5)

Equal Opportunity (EO) P(f(z)>05|Y=1,Z=2)=P(f(z) >05|Y =1)

Table 2: Comparisons of welfare between STWF and other benchmark algorithms where the largest
values are boldfaced.

ALGORITHMS
DATASET METRIC ERM STWF SAFE EI BE
TOTAL 0.76 £ 0.08 1.08 +-.0.16 0.74 4+ 0.09 0.76 +0.08 0.754+0.10
SYNTHETIC DW 0.71 +£0.05 0.75 + 0.08 0.71 +£0.05 0.71 +0.06 0.71 £ 0.05
SWF 0.09 + 0.05 0.33 £0.08 0.07 & 0.06 0.09 +0.05 0.08 +0.07
AW —0.05 +0.02 —0.003 +£0.03 —0.04 +0.03 —0.05 +0.02 —0.04 +£0.04
TOTAL 0.710 £0.10 0.704 + .0.14 0.703 £0.11 0.707 £0.11 0.706 £+ 0.11
CERMAN DW 0.781 +0.10 0.736 £0.13 0.779 £0.10 0.780 £ 0.10 0.777 £0.10
CREDIT SWF 0.030 £ 0.03 0.022 £ 0.04 0.030 £ 0.04 0.031 £ 0.04 0.030 £ 0.04
AW —0.1004+£0.00 —-0.05240.00 —0.09940.00 —0.10040.00 0.100 4= 0.00
TOTAL 0.74 £+ 0.06 0.95 £ .0.15 0.74 +0.04 0.74 + 0.06 0.73 +0.08
DW 0.76 £ 0.03 0.76 £+ 0.05 0.76 +0.03 0.76 +0.13 0.76 & 0.05
ACSINCOME-
CA SWF 0.12 4 0.05 0.41 £0.10 0.12 4+ 0.05 0.12 4+ 0.04 0.12 4+ 0.05
AW —0.14 +0.00 —0.21 +£0.00 —0.14 £ 0.00 —0.14 £ 0.00 —0.15+0.00
6.3.1 Comparison of welfare.

Tab. 2 summarizes the performances of all algorithms, where STWF produces the largest total welfare
on the synthetic dataset and the ACSIncome-CA dataset. For the German Credit dataset, all
algorithms produce similar welfare, while the ERM has a slight advantage. More clearly, as shown
in the left plot from Fig. 4a to Fig. 4c, STWF gains a large advantage, demonstrating the potential
benefits of training ML model in a welfare-aware manner. Meanwhile, although STWF does not
have a similar advantage on the German Credit dataset, it produces a much more balanced welfare
allocation, suggesting the ability of STWF to take care of each party under the strategic learning
setting. However, since we select A1, Ao only based on the sum of the welfare, it is possible to sacrifice
the welfare of some specific parties (e.g., agent welfare in the ACSincome-CA dataset). This can be
solved by further adjusting A1, Ao based on other selection criteria.

Besides, we also illustrate that safety is not automatically guaranteed if we only aim to maximize
agent improvement in the synthetic dataset. Specifically, if we let Lgywr = Ly p, we can visualize
the safety in Fig. 5. It is obvious that only when Lgp is added into Lgy r will the decision rule
become perfectly safe as A; increases.

6.3.2 Improve welfare does not ensure fairness.

The middle plot and the right plot of Fig. 4 compare the unfairness of different algorithms. Although
STWF has the highest welfare among all algorithms, it does not ensure fairness. These results further
shed light on a thought-provoking question: how likely is it for a fairness-aware algorithm to “harm"

16



0.35 1
1.04 B DW B DP fairness B El fairness
SWF 0.4 B EO fairness 0.30 1 B BE fairness
0.81 5 AW
B TOTAL @ 03 @ 0.25
506 g € 0.20 {
© o o
2 0.4+ €024 ‘€ 0.151
5 5
0.10 4
0.29
0.14
0.05 1
0.01
T N ™ T T 0.0- 0.00 —"= - _—r- -
ERM STWF  SAFE El BE ERM STWF SAFE El BE ERM STWF SAFE El BE
model model model

a) Comparisons under the synthetic dataset.

0.8 0.08 0.08 -
L} B DP fairness
064 SWF 1 EO fairness
. i AW 0.06 A 0.06 -
§ TOTAL 9 @
o
] £ 0.04 £ 0.041
= € €
0.24 E E
0.02 4 0.02 4 n
0.04 B El fairness
B BE fairness
™ ™ T T 0.00 - 0.00 -+
ERM STWF  SAFE El ERM STWF SAFE El BE ERM STWF SAFE El BE
model model model

(b) Comparisons under the German Credit dataset.

1.0 -
B DP fairness

B EO fairness

0.07 4 B El fairess

0.84 B BE fairness

1 AW 0.08
0.6 7 B TOTAL
0] £ 0061
0.2 0.04 1
0.0 0.02

-0.24

0.06
2 0.05
i

IS

£ 0.04
s

welfare
unfairness

‘€
S 0.031

N

0.02
0.01 4

- 0.00 -
ERM STWF SAFE EI ERM STWF SAFE El BE ERM STWF SAFE El BE
model model model

=3

(¢) Comparisons under the ACSincome-CA dataset.

Figure 4: Comparisons of welfare (left plot) and unfairness (middle & right plot) for different
algorithms.

each party’s welfare under the strategic setting? Recent literature on fairness (Guldogan et al., 2022;
Heidari et al., 2019) already began to consider “agent improvement" when strategic behaviors are
present. However, it remains an intriguing direction to consider fairness and welfare together.

7 Conclusions and Societal Impacts

To facilitate socially responsible decision-making on strategic human agents in practice, our work is
the first to consider the welfare of all parties in strategic learning under non-linear settings and the
agents have specific information levels and respond to the decision policy by first estimating the
decision policy and then best respond to the estimated policy. We formally studied the relationships
between decision-maker welfare, social welfare, and agent welfare and revealed that it is non-trivial
to balance the welfare of each party. Thus, we then proposed STWF, the first welfare-aware algorithm
for general strategic learning problems.

Although our algorithm can effectively balance the welfare of different parties, it relies on the accurate
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Figure 5: Comparisons of safety under the synthetic dataset.

estimation of agent’s response. In practice, the agent’s behavior can be highly complex. With
incorrect estimations of agents’ behavior, our algorithm may fail and lead to unexpected outcomes.
Thus, it is worthwhile for future work to collect real data from human feedback, and learn agent
response function. Additionally, our experiments demonstrate that welfare and fairness may not
imply each other, making it necessary to consider both notions theoretically to further promote
trustworthy machine learning.
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A  Proofs

A.1 Proof of Prop. 3.3

Proof. (i) Proof of the necessity: The fact that agents are guaranteed to best respond means they
can estimate f perfectly. Since the agents have information level K, they will estimate f(x) by the
Taylor expansion of f(x) at x using gradients up to the K** order and this results in a polynomial
function with order at most K as specified in Eqn. (3). Note that if the gradient of any order does
not exist, the Taylor expansion will definitely not yield a correct estimation of f.
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(ii) Proof of sufficiency: When f is a polynomial function with order k& > K, the agents with
information level K are guaranteed to know all levels of gradients of f which are non-zero. Then the
agents can construct f perfectly according to Eqn. (3), then the agent response according to Def.
3.2 is indeed the best response. O

A.2 Proof of Thm. 4.1

Proof. 1. Proof of the necessity: Since the maximization of the decision-maker welfare regardless of
Px needs f = h (otherwise, one can always take the point mass on the point that f misidentifies
as the new feature distribution and f is no longer the one maximizing the decision-maker welfare),
then h € F is needed. Then the agents need to best respond to f to ensure the maximization of
social welfare . If there is an arbitrary agent who does not best respond to f = h, this means she
misses the largest possible improvement and the overall maximization of social welfare is failed.
Thus, according to Prop. 3.3, h itself must be a polynomial of X with at most order K to guarantee
agents to best respond.

2. Proof of sufficiency: When h is a polynomial with order at most K and h € F, the decision-maker
can directly deploy h = f to ensure the maximization of all welfare.

O

A.3 Proof of Prop. 4.5

Proof. 1. Proof of the necessity: Since the maximization of the decision-maker welfare needs f = h,
then h € F is needed. Then the agents need to best respond to f to ensure the maximization of
social welfare. If there is an arbitrary agent who does not best respond to f = h, this means she
misses the largest possible improvement and the overall maximization of social welfare is failed.
Thus, according to Prop. 3.3, h itself must be a polynomial of X with at most order K to guarantee
agents to best respond.
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2. Proof of sufficiency: Thm. 4.1 is already a sufficient condition to guarantee the compatibility of
decision-maker welfare and social welfare. O

A.4 Proof of Thm. 4.6

Proof. 1. Proof of the necessity: When (i) does not hold, f* is not equal to h and the agents cannot
perfectly estimate f* with Qg*. Therefore, if (ii) does not hold, this means there must exist a
cost function ¢(z,z’), under which we can find a region A C dom(X) where Q} increases while h
decreases inside A. Thus, if we specify a cost function and an agent to satisfy the requirement that

the agent can only change her features within A, then f* is unsafe, and we prove that either (i) or
(ii) should at least hold.

2. Proof of the sufficiency: (i) is already a sufficient condition. Then for (ii), we know for each
dimension 1, Q]; improves at the same direction as h and only the magnitude differs. This means
agents will never be misguided by QJ:; , thereby ensuring the safety. O

A.5 Proof of Thm. 4.7

Proof. 1. Proof of the necessity: When (i) does not hold, f* is not equal to h and the agents cannot
perfectly estimate f* with Q£ . Therefore, if (ii) also does not hold, this means any classifier f’

maximizing the agent welfare does not let the agents get an estimation Qﬁ;l only differing in constant
to Qimp, Which is the estimation for f*. Thus, we can find a region A C dom(X) where Q£ where

the maxy QJ;;* — ming QJ;;* does not equal to max 4 Qg/ — ming QJ,;/. Then if we find an agent and a
cost function to let the agent can only modify her features within A, her improvement under f’ will
be different from her improvement under f*, which means f’ cannot maximize social welfare.

2. Proof of the sufficiency: (i) is already a sufficient condition. Then for (ii), we know Qf induces
the same amount of improvement as Q;{f , which completes the proof.

O

B Plots with error bars

We provide the error bar version of the previous figures as follows (Fig. 6, Fig. 7).
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(a) Dynamics of welfare while increasing A\ and keeping Ay = 0 in Eqn.(2).
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(b) Dynamics of welfare while increasing Ao and keeping Ay = 0 in Eqn.(2).

Figure 6: Error bar version of Fig. 3

24



welfare

welfare

welfare

1.2 B DP fairness 0.4 B El fairness
1.0 SWF B EO fairess N BE fairness
: AW
0.8 B TOTAL " P 0.34
4 4]
0.6 £ % 02
& € %47
0.4 s E
0.2 0.1
0.01
0.0 st T o - s
ERM SAFE €l ERM  STWF  SAFE El BE ERM  STWF  SAFE El BE
model model model
(a) Comparisons under the synthetic dataset.
1.04 ]
n DW 1 B DP fairness 0.08 B Elfairmess
0.8 4 0.10 B EO fairness B BE fairness
[ ] AW
4 0.06 q
0.6 B TOTAL o 0.08 a
g g
q £ 0.061 £
0.4 5 5 0.041
€ €
0.2 5 0.04 5
0.02 4
0.0 0.02 4
0.2
0.00 - 0.00 -
ERM  STWF  SAFE €l BE ERM  STWF  SAFE El BE ERM  STWF  SAFE El BE
model model model
(b) Comparisons under the ACSincome-CA dataset.
0.8 . .
bw B DP fairness B Elfairness
SWE 0.08{ W EO fairmess 0.08 B BE fairness
0.6 AW
§ TOTAL Iy ¢ 0.06
@ 0.06 - o
0.4 2 g
© © 0.04 4
€ 0.04 €
0.24 S s
0.02 4
0.0 . . 0.02
: 0.00 A
™ T 0.00 - N N ™ ™ ™
ERM STWF SAFE El BE ERM STWF SAFE El BE ERM STWF SAFE El BE
model model model

(¢) Comparisons under the German Credit dataset.

Figure 7: Error bar version of Fig. 4.
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