THE ORDER OF THE (123, 132)-AVOIDING STACK SORT

OWEN ZHANG

ABSTRACT. Let s be West's deterministic stack-sorting map. A well-known result (West) is that any length n permutation can be sorted with n-1 iterations of s. In 2020, Defant introduced the notion of *highly-sorted* permutations—permutations in $s^t(S_n)$ for $t \leq n-1$. In 2023, Choi and Choi extended this notion to generalized stack-sorting maps s_{σ} , where we relax the condition of becoming sorted to the analogous condition of becoming periodic with respect to s_{σ} . In this work, we introduce the notion of *minimally-sorted* permutations \mathfrak{M}_n as an antithesis to Defant's highly-sorted permutations, and show that $\operatorname{ord}_{s_{123,132}}(S_n) = 2\lfloor \frac{n-1}{2} \rfloor$, strengthening Berlow's 2021 classification of periodic points.

1. INTRODUCTION

Knuth's Art of Computer Programming [17] first introduced the stack-sorting machine, in which an input sequence is sorted with a single external stack structure. The elements of the sequence are passed left-to-right through the machine, with two possible operations at every state: *push*, moving the next input element onto the stack, and *pop*, removing the top element from the stack and appending it to the output.

In 1990, West [21] introduced a deterministic version of Knuth's stack-sorting machine as the *stack-sorting map s*, insisting that the stack must always increase from top to bottom and employ a *right-greedy* process: the *push* operation is prioritized. Since then, various studies have been motivated by Knuth's original machine and West's deterministic s, including pop-stack-sorting [1, 2, 14, 18, 19], stack-sorting Coxeter groups [14, 15], sigma-tau machines [3, 4, 5], and stack-sorting of set-partitions [16, 23].

FIGURE 1. West's deterministic stack-sorting map s on $\pi = 2143$.

In his dissertation, West [21] proved that $s^{n-1}(S_n)$ contains only the identity permutation, justifying repeated applications of s as a correct and terminating sorting algorithm. A natural direction of study, then, is the characterization of t-stack-sortable permutations permutations π such that $s^t(\pi)$ is sorted—for general $t \leq n-1$. Knuth [17] answered the question for t = 1, showing that π is 1-stack-sortable if and only if π avoids subsequences of the pattern 231, enumerating the number of such permutations of length n to be $\frac{1}{n+1} {n \choose n}$,

OWEN ZHANG

the n^{th} Catalan number. In 1990, West [21] characterized the 2-stack-sortable permutations, proving that π is 2-stack-sortable if and only if π avoids subsequences of the pattern 2341 and the barred pattern $3\overline{5}241$. He also conjectured that the number of such permutations of length n is $\frac{2}{(n+1)(2n+1)} {3n \choose n}$, which was proven by Zeilberger [24] two years later. West [21, 22] then searched for a polynomial P(n) such that 3-stack-sortable permutations could be enumerated by $\frac{1}{P(n)} {4n \choose n}$, but was unsuccessful for deg(P(n)) < 7. In 2012, Úlfarsson [20] characterized 3-stack-sortable permutations with "decorated patterns," but only in 2021, did Defant [11] discover a polynomial-time algorithm to enumerate 3-stack-sortable permutations.

In 2020, Defant [13] first considered *t*-stack-sortable permutations to be duals of the *t*-sorted permutations [12]—permutations in the image of $s^t(S_n)$, a generalization of Bousquet-Mélou's definition [6] of sorted. Defant then defined a permutation $\pi \in S_n$ to be highly-sorted if π is *t*-sorted for some *t* close to *n*, proving that a *t*-sorted permutation can contain at most $\lfloor \frac{n-t}{2} \rfloor$ descents [13].

The classical stack-sorting map s has since been generalized to s_{σ} [7] for permutations σ , where instead of insisting that the stack increases, we insist that the stack avoids top-tobottom subsequences of the pattern σ . In 2021, Berlow [5] introduced the family of maps s_T , where the stack must avoid top-to-bottom subsequences of every pattern in set T (see Figure 2). In 2023, Choi and Choi [8] generalized Defant's notion of highly-sorted permutations, defining π to be *highly-sorted* with respect to s_{σ} if π is in the image of s_{σ}^t for some t close to $\operatorname{ord}_{s_{\sigma}}(S_n)$, where $\operatorname{ord}_{s_{\sigma}}(P)$ is the smallest integer k such that every element in $s_{\sigma}^k(P)$ is periodic under s_{σ} . We straightforwardly extend this definition to generalized maps s_T .

FIGURE 2. The generalized stack-sorting map $s_{123,132}$ on $\pi = 52431$.

Recently, Choi, Gan, Li, and Zhu [9] studied set partitions that require the maximum number of sorts through an *aba*-avoiding stack. Similarly, we define a permutation π to be *minimally-sorted* with respect to s_T if $\operatorname{ord}_{s_T}(S_n) = \operatorname{ord}_{s_T}(\{\pi\})$, antithetical to Defant's notion of highly-sorted permutations. At the end of this work, we present two conjectures on \mathfrak{M}_n , the minimally-sorted permutations with respect to $s_{123,132}$.

In 2021, Berlow [5] studied the periodic points of $s_{123,132}$. She defined a permutation π of length n to be *half-decreasing* if the subsequence $\pi_{n-1}\pi_{n-3}\cdots\pi_{(3-(n \mod 2))}$ is the identity of length $\lfloor \frac{n-1}{2} \rfloor$. In particular, being order-isomorphic to the identity is not sufficient.

Theorem 1.1 (Berlow [5]). A permutation π is periodic under $s_{123,132}$ if and only if π is half-decreasing.

Our main result is that we find the exact value of $\operatorname{ord}_{s_{123,132}}(S_n)$, extending Berlow's work on periodic permutations. An analogous result for $s_{321,312}$ follows directly from Theorem 1.2.

Theorem 1.2. For all positive integers n, we have $\operatorname{ord}_{s_{123,132}}(S_n) = 2\lfloor \frac{n-1}{2} \rfloor$.

2. Preliminaries

We say that $a \in A$ is *periodic* under $f : A \to B$ if there exists a positive integer k such that $f^k(a) = a$. For some ordered set S, we use S_i to denote the *i*th element of S.

Let [n] denote $\{1, 2, \dots, n\}$ for positive integers n. A permutation, written $\pi = \pi_1 \pi_2 \cdots \pi_n$, is an ordering of distinct positive integers with $length \ len(\pi) = n$. We say that $\pi_1, \pi_2, \dots, \pi_n$ are the elements of π , and use $\pi_{[i:j]}$ to denote the subpermutation $\pi_i, \pi_{i+1}, \dots, \pi_j$. We define $\operatorname{ind}_{\pi}(i)$, the index of i in π , to be j, where $\pi_j = i$. Let S_n be the set of permutations with elements [n]. The reduction of a permutation π (equivalently, the standardization [13]), is the unique permutation $\operatorname{red}(\pi) \in S_n$ such that $\operatorname{red}(\pi)_i = j$ for $1 \leq i \leq n$, where π_i is the jth smallest number in $\{\pi_1, \pi_2, \dots, \pi_n\}$. Two permutations π and σ are order-isomorphic if $\operatorname{red}(\pi) = \operatorname{red}(\sigma)$, and we write $\pi \cong \sigma$. For instance, $\pi = 57816$ and $\sigma = 48917$ are orderisomorphic, since $\operatorname{red}(\pi) = \operatorname{red}(\sigma) = 24513$. Given permutations π and σ , we say that π contains the pattern σ if there exists a sequence of positive integers $a_1 < a_2 < \cdots < a_k$ such that $\pi' = \pi_{a_1} \pi_{a_2} \cdots \pi_{a_k} \cong \sigma$. Otherwise, we say that π avoids σ (equivalently, is σ -avoiding). For instance, $\pi = 24513$ contains $\sigma = 132$ since $\pi_1 \pi_3 \pi_5 = 253 \cong \sigma$, but avoids $\tau = 321$. We use $\pi \cdot \tau$ to denote the concatenation of π and τ , and let $\operatorname{rev}(\pi)$ denote the reverse of π , namely $\pi_n \pi_{n-1} \cdots \pi_1$.

Next, an element π_i of $\pi \in S_n$ is small if $\pi_j \leq \lfloor \frac{n-1}{2} \rfloor$. An element π_i is a left-to-right minimum (equivalently, ltr-min) of π if $\pi_i = \min(\pi_{[1:i]})$. Additionally, we say that π_i is a valley if π_i is a ltr-min, π_{i+1} (if $i+1 \leq n$) is not a ltr-min, and π_{i+2} (if $i+2 \leq n$) is a ltr-min. A consecutive subsequence of elements $\pi_{[i:i+j]}$ is a valley-block \overline{v} if π_{i+j} is a valley and red $(\pi_{[1:i+j]})_{[i:i+j]} = j+1, j, \cdots, 1$. We say that the valley-boundary of $\pi \in S_n$, denoted $\mathfrak{B}(\pi)$, is the smallest index i such that $\pi_{[i:n]} = \overline{v_1}\pi_{a_1}\overline{v_2}\pi_{a_2}\cdots\overline{v_j}\pi_{a_j}$ for valleys $\overline{v_1}, \cdots, \overline{v_j}$ and elements $\pi_{a_1}, \cdots, \pi_{a_j}$, and set $\mathfrak{B}(\pi) = n$ if no such index exists. The valley-region of π is $\pi_{[\mathfrak{B}(\pi):n]}$. For instance, given $\pi = (11, 12, 7, 5, 8, 4, 3, 6, 2, 9, 1, 10)$, the elements 1, 2, 3, and 5 are valleys and the sets (7, 5), (4, 3), (2), (1) form 4 valley-blocks in π . Finally, $\mathfrak{B}(\pi) = 3$, since $\pi_{[3:n]} = \overline{7, 5}, 8, \overline{4, 3}, 6, \overline{2}, 9, \overline{1}, 10$.

We conclude by noting that permutation indices will be considered modulo n for the duration of this paper. In particular, let $\pi_i := \pi_j$, where j is the unique element of [n] such that $i \equiv j \pmod{n}$.

3. Proof of the Main Result

We preface this section with two propositions, immediate from the preliminaries.

Proposition 3.1. Given $\sigma, \tau \in S_3$, it holds that $(s_{\sigma,\tau}(\pi))_n = \pi_1$ for all $\pi \in S_n$ and $n \ge 1$.

Proposition 3.2. Let $\overline{v_1}, \dots, \overline{v_i}$ be the valley-blocks of π from left to right, and let $len(v_j) = l_j$ for all j. Then, the permutation $\overline{v_1} \cdot \overline{v_2} \cdots \overline{v_i}$ is the reverse of the identity of length $\sum l_i$.

We now begin the proof of Theorem 1.2 with several auxiliary lemmas that demonstrate the monovariant movement of valley-blocks under $s_{123,132}$.

Lemma 3.3. For any $\pi \in S_n$ and ltr-min π_i with i > 1, let $j \le n$ be the largest index such that $\pi_i = \min(\pi_{[1:j]})$. It holds that $s_{123,132}(\pi)_{j-1} = \pi_i$.

Proof. Since π_i is a ltr-min, just before π_i enters the stack, π_1 must be the only element in the stack. After the elements $\pi_{[i+1:j]}$ have all entered the stack, π_i and π_1 necessarily remain in the stack since $\pi_{i+1}, \dots, \pi_j > \pi_i$. Additionally, since $\pi_{j+1} < \pi_i$, just before π_{j+1} enters the

stack, π_j must exit the stack. At this moment, the j-1 elements $\pi_2, \pi_3, \dots, \pi_j$ have been the only elements to exit the stack, with π_i being the last, so $s_{123,132}(\pi)_{j-1} = \pi_i$.

Lemma 3.4. Given a valley-block $\bar{v} = \pi_{[i:i+j]}$ of π , we have $s_{123,132}(\pi)_{i+j} = \pi_{i+j}$ and $s_{123,132}(\pi)_{k-1} = \pi_k$ for $i \leq k < i+j$.

Proof. Just before π_i enters the stack, π_1 must be the only element in the stack. Since \overline{v} consists of the j + 1 smallest elements of $\pi_{[1:i+j]}$ in descending-order, just before any element of \overline{v} enters the stack, the previous element must exit. Hence, k-2 elements exit before π_k for $i \leq k < i+j$, and thus $s_{123,132}(\pi)_{k-1} = \pi_k$. Finally, by Lemma 3.3, π_{i+j} is a fixed point. \Box

Next, we show that $s_{123,132}$ preserves the elements in the valley-region of π .

Lemma 3.5. Suppose $\pi_{[i:j]}$ and $\pi_{[j+2:k]}$ are two valley-blocks of π . Then, $s_{123,132}(\pi)_{j-1} = \pi_{j+1}$.

Proof. Right before π_j enters the stack, the only element remaining must be π_1 . Now, since $\pi_{j+1} > \pi_j$, the stack will read $\pi_{j+1}\pi_j\pi_1$ top to bottom just after π_{j+1} enters. Finally, since π_{j+2} is also a ltr-min, just before it enters, π_{j+1} and π_j must have left the stack. Hence, every element in $\pi_{[1:j]}$ exits the stack before π_{j+1} except π_1 and π_j , yielding $s(\pi)_{j-1} = \pi_{j+1}$.

Lemma 3.6. If π_i is in the valley-region of π , then π_i is also in the valley-region of $s_{123,132}(\pi)$.

Proof. Let $\pi_{[\mathfrak{B}(\pi):n]} = \overline{v_1}\pi_{a_1}\overline{v_2}\cdots\overline{v_j}\pi_{a_j}$, the valley-region of π , and let $\operatorname{len}(\overline{v_i}) = l_i$ for $1 \leq i \leq j$. Then, by Lemma 3.3 and Lemma 3.4, we have that $s_{123,132}(\pi)$ ends with the suffix $(v_{1[1:l_1-1]})\cdot\pi_{b_1}\cdot(v_{1[l_1]}\cdot v_{2[1:l_2-1]})\cdot\pi_{b_2}\cdot(v_{2[l_2]}\cdot v_{3[1:l_3-1]})\cdots(v_{j-1[l_{j-1}]}\cdot v_{j[1]})\cdot\pi_{b_{j-1}}\cdot(v_{j[l_j]})\cdot\pi_{b_j}$ for some elements $\pi_{b_1}, \pi_{b_2}, \cdots, \pi_{b_j}$. By Proposition 3.2, this suffix is of the form $\overline{w_1}\pi_{b_{c_1}}\overline{w_2}\pi_{b_{c_2}}\cdots\overline{w_k}\pi_{b_{c_k}}$, where $\pi_{b_{c_1}}, \cdots, \pi_{b_{c_k}}$ are the elements of $\{\pi_{b_1}, \cdots, \pi_{b_j}\}$ that are not ltr-mins. Hence, this suffix is fully contained in the valley-region of $s_{123,132}(\pi)$. However, it also contains all the elements in valley-blocks in $\pi_{[\mathfrak{B}(\pi):n]}$, and all the elements in between valley-blocks in $\pi_{[\mathfrak{B}(\pi):n]}$ by Lemma 3.5, which fully encompass all of elements in the valley-block, finishing the proof. \Box

Lemma 3.7. Let $\pi_i = \min(\pi_{[1:\mathfrak{B}(\pi)-1]})$. If π_i is small, then π_i is in the valley-region of $s_{123,132}(\pi)$.

Proof. If i = 1, then the claim follows from Proposition 3.1. Otherwise, just before π_i enters the stack, π_1 must be the only element remaining in the stack, since π_i is a ltr-minimum. Then, after $\pi_{i+1}, \dots, \pi_{\mathfrak{B}(\pi)-1}$ have all entered the stack, π_i will remain in the stack. However, when $\pi_{\mathfrak{B}(\pi)}$ enters the stack, π_i will necessarily leave, since $\pi_{\mathfrak{B}}$ is part of a valley-block to the right of π_i , so $\pi_{\mathfrak{B}(\pi)} < \pi_i$. Thus, since every other element in $\pi_1, \dots, \pi_{\mathfrak{B}(\pi)-1}$ was popped out before π_i , except for π_1 , we have $s(\pi)_{\mathfrak{B}(\pi)-2} = \pi_i$. However, since $\pi_i = \min(\pi_1, \dots, \pi_{\mathfrak{B}(\pi)-1})$, the proof of Lemma 3.6 shows that π_i is in the valley-region of $s_{123,132}(\pi)$.

By Lemma 3.6, elements never leave the valley-region, and by Lemma 3.7, a small element is always added to the valley-region every iteration, implying the following result.

Corollary 3.8. For any $\pi \in s_{123,132}^{\lfloor \frac{n-1}{2} \rfloor}(S_n)$, it holds that $i \geq \mathfrak{B}(\pi)$ for all small elements π_i .

Corollary 3.8 gives a characterization of the $\lfloor \frac{n-1}{2} \rfloor$ -sorted permutations under a $s_{123,132}$ map. We continue by showing that these permutations become periodic with at most $\lfloor \frac{n-1}{2} \rfloor$ further passes.

Lemma 3.9. For $\pi \in S_n$ and small element *i*, if $\pi_{n-2i+2} = i$ and *i* is in the valley-region of π , then $s_{123,132}(\pi)_{n-2i+1} = i$.

Proof. Suppose for the sake of contradiction that π_{n-2i+2} is directly in between two valleyblocks, so that $\pi_{[j:n-2i+1]}$ is a valley-block for some $j \leq n-2i$. By definition, π_{n-2i+1} is a valley, and by Lemma 3.3, $s^k(\pi)_{n-2i+1} = \pi_{n-2i+1}$ for all k. But this contradicts Theorem 1.1, since we have $s^k(\pi)_{n-2i+1} \neq \pi_{n-2i+2} = i$. Now, suppose that π_{n-2i+2} is itself a valley. This similarly contradicts Theorem 1.1, since we have $s^k(\pi)_{n-2i+2} = \pi_{n-2i+2}$ for all k by Lemma 3.3.

Since π_{n-2i+2} is in the valley-region of π , the only remaining possibility is that π_{n-2i+2} is part of a valley-block but not a valley. Hence, by Lemma 3.6, we have $s_{123,132}(\pi)_{n-2i+1} = i$, as desired.

Lemma 3.10. For all positive integers $i \leq \lfloor \frac{n-1}{2} \rfloor$ and $\pi \in S_n$, the permutation $\sigma_{n-1}\sigma_{n-3}\cdots\sigma_{n-2i+1}$ is the identity of length i, where $\sigma = s_{123,132}^{i+\lfloor \frac{n-1}{2} \rfloor}(\pi)$.

Proof. We induct on *i*. The base case i = 1 is immediate—in particular, $s_{123,132}^{\lfloor \frac{n-1}{2} \rfloor}(\pi)_{n-1} = 1$, which becomes a fixed element by Lemma 3.3, since otherwise $\mathfrak{B}(\pi) = n$ which contradicts Corollary 3.8.

Now suppose that for some $1 < j \leq \lfloor \frac{n-1}{2} \rfloor$, it holds that for all π and i < j, the permutation $\sigma_{n-1}\sigma_{n-3}\cdots\sigma_{n-2i+1}$ is the identity of length i, where $\sigma = s_{123,132}^{i+\lfloor \frac{n-1}{2} \rfloor}(\pi)$. First, we note that by Lemma 3.4 and Lemma 3.5, if an element π_i is in the valley-region of π , we have $s_{123,132}(\pi)_x = \pi_i$ for some $x \in \{i-2, i-1, i\}$. Next, consider some $\pi \in S_n$, and let $\mathfrak{Z} = \{\inf_{s_{123,132}^k}(\pi)(j) \mid \lfloor \frac{n-1}{2} \rfloor \leq k \leq \lfloor \frac{n-1}{2} \rfloor + j\}$. By Lemma 3.3, if $\mathfrak{Z}_l - \mathfrak{Z}_{l+1} = 0$ for some $l \leq j$, we must have $s_{123,132}^{\lfloor \frac{n-1}{2} \rfloor + l}(\pi)_{n-2j+1} = j$, or equivalently $\mathfrak{Z}_l \leq n-2j+1$. Similarly, if $\mathfrak{Z}_l - \mathfrak{Z}_{l+1} = 1$, we have by Lemma 3.4 and Lemma 3.5 that the element j must be in a valley-block (but not a valley) of $s_{123,132}^{\lfloor \frac{n-1}{2} \rfloor + l^{-1}}(\pi)$, so by the inductive hypothesis, $\mathfrak{Z}_l \leq n-j-l+2$. Otherwise, $\mathfrak{Z}_l - \mathfrak{Z}_{l+1} = 2$, so we conclude recursively that $\mathfrak{Z}_{j+1} \leq n-2j+1$. But combining Lemma 3.3, Lemma 3.9, and the fact that $\mathfrak{Z}_l - \mathfrak{Z}_{l+1} \leq 2$ for all l, we derive $\mathfrak{Z}_{j+1} = n-2j+1$, or equivalently $s_{123,132}^{\lfloor \frac{n-1}{2} \rfloor + j}(\pi)_{n-2j+1} = j$. Hence, for all π and i < j+1, the permutation $\sigma_{n-1}\sigma_{n-3}\cdots\sigma_{n-2i+1}$ is the identity of length i, where $\sigma = s_{123,132}^{\lfloor \frac{n-1}{2} \rfloor}(\pi)$, completing the induction.

In particular, any $\pi \in s_{123,132}^{2\lfloor \frac{n-1}{2} \rfloor}(S_n)$ is half-decreasing, which implies the following by Theorem 1.1.

Corollary 3.11. For all positive integers n, we have $\operatorname{ord}_{s_{123,132}}(S_n) \leq 2\lfloor \frac{n-1}{2} \rfloor$.

Finally, we present a family of minimally-sorted permutations to show that precisely $2\lfloor \frac{n-1}{2} \rfloor$ iterations are required to sort all of S_n . Define

$$\gamma_n = \left(\frac{n+1}{2}, 2, 3, \cdots, \frac{n-1}{2}, \frac{n+3}{2}, \cdots, n-2, 1, n-1, n\right)$$

for odd $n \ge 5$ and $\gamma_n = \gamma_{n-1} \cdot n$ for even $n \ge 6$. It is immediate that $\operatorname{ord}_{s_{123,132}}([n]) = 2\lfloor \frac{n-1}{2} \rfloor$ for $n \le 4$. Hence, we consider $n \ge 5$. Let δ_n denote the permutation $\operatorname{rev}((\gamma_n)_{[2:n-3]})$ when n is odd and $\operatorname{rev}((\gamma_n)_{[2:n-4]})$ when n is even.

Lemma 3.12. For positive integers $n \geq 5$ and $k \leq \lfloor \frac{n-1}{2} \rfloor$, we have $s_{123,132}^k(\gamma_n)_{[1:n-2k-2]} = (\delta_n)_{[k:n-k-3]}$ for odd n and $s_{123,132}^k(\gamma_n)_{[1:n-2k-3]} = (\delta_n)_{[k:n-k-4]}$ for even n. Furthermore, $\zeta_{n-1}\zeta_{n-3}\cdots\zeta_{n-2k+1}$ is the identity permutation of length k, where $\zeta = s_{123,132}^k(\gamma_n)$.

n	γ_n
5	(3, 2, 1, 4, 5)
6	(3, 2, 1, 4, 5, 6)
7	(4, 2, 3, 5, 1, 6, 7)
8	(4, 2, 3, 5, 1, 6, 7, 8)
9	(5, 2, 3, 4, 6, 7, 1, 8, 9)

TABLE 1. The first few γ_n for $n \geq 5$.

Proof. We induct on k. For brevity, we will prove the lemma for when n is odd—the proof for even n is directly analogous. For the base case k = 1, we have $s_{123,132}(\gamma_n)_n = (\gamma_n)_1 = \frac{n+1}{2}$ by Proposition 3.1. Since $(\gamma_n)_{[2:n-3]}$ is strictly increasing, these elements are popped out in reverse order just before 1 enters the stack. Hence, $s_{123,132}(\gamma_n)_{[1:n-4]} = \delta_n = (\delta_n)_{[1:n-4]}$. Finally, $s_{123,132}(\gamma_n)_{n-1} = 1$ by Lemma 3.3, completing the base case.

Next, suppose $s_{123,132}^k(\gamma_n)_{[1:n-2k-2]} = (\delta_n)_{[k:n-k-3]}$ for some k and $\zeta_{n-1}\zeta_{n-3}\cdots\zeta_{n-2k+1}$ is the identity of length k where $\zeta = s_{123,132}^k(\gamma_n)$. By Proposition 3.1, we have $s_{123,132}^{k+1}(\gamma_n)_n = s_{123,132}^k(\gamma_n)_{1}$, and since $s_{123,132}^k(\gamma_n)_{[1:n-2k-2]}$ is strictly decreasing, it follows that these elements will exit the stack in the same order, giving $s_{123,132}^{k+1}(\gamma_n)_{[1:n-2k-4]} = (\delta_n)_{[k+1:n-k-4]}$ by the inductive hypothesis. Finally, by Lemma 3.3, we have $s_{123,132}^{k+1}(\gamma_n)_{n-2k-1} = k+1$, completing the induction.

Lemma 3.13. For all positive integers n, we have $\operatorname{ord}_{s_{123,132}}(S_n) \ge 2\lfloor \frac{n-1}{2} \rfloor$.

Proof. It follows from Lemma 3.12 that $s_{123,132}^{\lfloor \frac{n-1}{2} \rfloor - 1}(\gamma_n)_1 = \lfloor \frac{n-1}{2} \rfloor$. By Proposition 3.1 and Lemma 3.5, we have $\operatorname{ind}_{s_{123,132}^k(\gamma_n)}(\lfloor \frac{n-1}{2} \rfloor) = n - 2(k - \lfloor \frac{n-1}{2} \rfloor)$ for $k \ge \lfloor \frac{n-1}{2} \rfloor$. Hence, $k = 2\lfloor \frac{n-1}{2} \rfloor$ is the minimal k such that $s_{123,132}^k(\gamma_n)$ is half-decreasing, giving us the desired bound. \Box

Finally, we conclude that exactly $2\lfloor \frac{n-1}{2} \rfloor$ iterations are required to sort S_n .

Proof of Theorem 1.2. Corollary 3.11 and Lemma 3.13 directly imply $\operatorname{ord}_{s_{123,132}}(S_n) = 2\lfloor \frac{n-1}{2} \rfloor$.

4. FUTURE DIRECTIONS

To study Defant's notion of highly-sorted permutations and our newly-introduced notion of minimally-sorted permutations, characterizing the periodic permutations under generalized stack-sorting maps is a prerequisite. We state a conjecture on the periodic points of other $s_{\sigma,\tau}$ stack-sorting maps for three pairs of (σ, τ) , and restate a conjecture from Berlow.

Conjecture 4.1. For $(\sigma, \tau) = (123, 213), (132, 312), (231, 321)$, the map $s_{\sigma,\tau}$ is a bijection from S_n to itself, and all permutations are periodic.

Conjecture 4.2 (Berlow [5]). For $(\sigma, \tau) = (213, 231), (132, 213), (231, 312)$, the only periodic points of $s_{\sigma,\tau}$ are the identity permutation and its inverse.

Recall that \mathfrak{M}_n is the set of minimally-sorted permutations under $s_{123,132}$. We conjecture several properties of elements in \mathfrak{M}_n . However, these conditions are not sufficient for $n \geq 7$.

Conjecture 4.3. For $\pi \in \mathfrak{M}_n$, the following conditions hold true:

• $\pi_1 \geq \lfloor \frac{n+1}{2} \rfloor$.

- For odd n: π_{n-2} = 1 and π_{n-1}, π_n ≥ ⌊ n+1/2 ⌋.
 For even n: π_{n-3} = 1 and π_{n-2}, π_{n-1}, π_n ≥ ⌊ n+1/2 ⌋.

Next, an enumerative conjecture on \mathfrak{M}_n , computationally verified for $n \leq 6$.

Conjecture 4.4. For all positive integers n, we have $|\mathfrak{M}_{2n}| = (n+1)|\mathfrak{M}_{2n-1}|$.

Finally, we conclude with an enumerative conjecture on $Sort_{t,n}(123, 132)$, the set of length *n* permutations that are *t*-stack-sortable under $s_{123,132}$.

Conjecture 4.5. For any positive integer t and $n \ge 2t + 1$, we have:

- $|\operatorname{Sort}_{t,n}(123, 132)| = \frac{n+3}{2} |\operatorname{Sort}_{t,n-2}(123, 132)|$ if n is odd. $|\operatorname{Sort}_{t,n}(123, 132)| = \frac{n+4}{2} |\operatorname{Sort}_{t,n-2}(123, 132)|$ if n is even.

Acknowledgements

The author thanks Yunseo Choi for suggesting the problem and giving helpful advice on the presentation of the paper.

References

- |1| M. D. Atkinson and J.-R. Sack. Pop-stacks in parallel. Inform. Process. Lett. 70 (1999), 63-67.
- [2]D. Avis and M. Newborn. On pop-stacks in series. Utilitas Math. 19 (1981), 129–140.
- [3]C. Bao et al. On a conjecture on pattern-avoiding machines (2023). arXiv: 2308.09344 [math-co].
- J. L. Baril et al. Catalan and Schröder permutations sortable by two restricted stacks. [4]Inform. Process. Lett. 171 (2021), 106–138.
- K. Berlow. Restricted stacks as functions. *Discrete Math.* 344 (2021). 5
- [6]M. Bousquet-Mélou. Sorted and/or sortable permutations. Discrete Math. 225 (2000), 25 - 50.
- [7] G. Cerbai, A. Claesson, and L. Ferrari. Stack sorting with restricted stacks. J. Combin. Theory. Ser. A 173 (2020).
- Y. Choi and Y. Choi. Highly Sorted Permutations with Respect to a 312-avoiding [8] Stack. Enumer. Comb. Appl. 3 (2023).
- Y. Choi et al. On the set partitions that require maximum sorts through the abaavoiding stack (2024). arXiv: 2403.05113 [math-co].
- A. Claesson, M. Dukes, and E. Steingrímsson. Permutations sortable by n-4 passes 10 through a stack. Ann. Combin. 14 (2010), 45–51.
- C. Defant. 3-Stack-Sortable permutations and beyond. S'em. Lothar. Combin. 85 |11| (2021).
- C. Defant. Descents in t-sorted permutations. J. Comb. 11 (2020), 511–526. |12|
- [13]C. Defant. Highly Sorted Permutations and Bell Numbers. Enumer. Comb. Appl. (2020).
- C. Defant. Pop-stack-sorting for Coxeter Groups. Comb. Theory 2 (2022). |14|
- [15]C. Defant. Stack-sorting for Coxeter Groups. Comb. Theory 2 (2022).
- [16]C. Defant and N. Kravitz. Foot-Sorting for socks (2022). arXiv: 2211.02021 [math-co].
- [17]D. E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley (1968).
- [18] L. Pudwell. Two-stack-sorting with pop stacks. Australas. J. Combin. 74 (2019), 179– 195.

REFERENCES

- [19] R. Smith and V. Vatter. A stack and a pop stack in series. Australas. J. Combin. 58 (2014), 157–171.
- [20] H. Ulfarsson. Describing West-3-Stack-Sortable permutations with permutation patterns. S'em. Lothar. Combin. 67 (2012).
- [21] J. West. Permutations with restricted subsequences and stack-sortable permutations. *MIT Ph.D. Thesis* (1990).
- [22] J. West. Sorting twice through a stack. Theoret. Comput. Sci. 117 (1993), 303–313. ISSN: 0304-3975.
- [23] J. Xia. Deterministic stack-sorting for set partitions (2023). arXiv: 2309.14644 [math-co].
- [24] D. Zeilberger. A proof of Julian West's conjecture that the number of two-stack-sortable permutations of length n is $\frac{2}{(n+1)(2n+1)} {3n \choose n}$. Discrete Math 102 (1992), 85–92.

O. ZHANG, YALE UNIVERSITY, NEW HAVEN, CT *Email address*: owen.zhang.oz37@yale.edu