
ar
X

iv
:2

40
5.

01
85

4v
1 

 [
m

at
h.

C
O

] 
 3

 M
ay

 2
02

4

THE ORDER OF THE (123, 132)-AVOIDING STACK SORT

OWEN ZHANG

Abstract. Let s be West’s deterministic stack-sorting map. A well-known result (West)
is that any length n permutation can be sorted with n− 1 iterations of s. In 2020, Defant
introduced the notion of highly-sorted permutations—permutations in st(Sn) for t / n− 1.
In 2023, Choi and Choi extended this notion to generalized stack-sorting maps sσ, where
we relax the condition of becoming sorted to the analogous condition of becoming periodic
with respect to sσ. In this work, we introduce the notion of minimally-sorted permutations
Mn as an antithesis to Defant’s highly-sorted permutations, and show that ords123,132 (Sn) =

2⌊n−1

2
⌋, strengthening Berlow’s 2021 classification of periodic points.

1. Introduction

Knuth’s Art of Computer Programming [17] first introduced the stack-sorting machine, in
which an input sequence is sorted with a single external stack structure. The elements of
the sequence are passed left-to-right through the machine, with two possible operations at
every state: push, moving the next input element onto the stack, and pop, removing the top
element from the stack and appending it to the output.

In 1990, West [21] introduced a deterministic version of Knuth’s stack-sorting machine as
the stack-sorting map s, insisting that the stack must always increase from top to bottom and
employ a right-greedy process: the push operation is prioritized. Since then, various studies
have been motivated by Knuth’s original machine and West’s deterministic s, including pop-
stack-sorting [1, 2, 14, 18, 19], stack-sorting Coxeter groups [14, 15], sigma-tau machines [3,
4, 5], and stack-sorting of set-partitions [16, 23].
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Figure 1. West’s deterministic stack-sorting map s on π = 2143.

In his dissertation, West [21] proved that sn−1(Sn) contains only the identity permutation,
justifying repeated applications of s as a correct and terminating sorting algorithm. A
natural direction of study, then, is the characterization of t-stack-sortable permutations—
permutations π such that st(π) is sorted—for general t ≤ n − 1. Knuth [17] answered the
question for t = 1, showing that π is 1-stack-sortable if and only if π avoids subsequences of
the pattern 231, enumerating the number of such permutations of length n to be 1
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the nth Catalan number. In 1990, West [21] characterized the 2-stack-sortable permutations,
proving that π is 2-stack-sortable if and only if π avoids subsequences of the pattern 2341 and
the barred pattern 35241. He also conjectured that the number of such permutations of length
n is 2

(n+1)(2n+1)

(

3n
n

)

, which was proven by Zeilberger [24] two years later. West [21, 22] then

searched for a polynomial P (n) such that 3-stack-sortable permutations could be enumerated

by 1
P (n)

(

4n
n

)

, but was unsuccessful for deg(P (n)) < 7. In 2012, Úlfarsson [20] characterized

3-stack-sortable permutations with “decorated patterns,” but only in 2021, did Defant [11]
discover a polynomial-time algorithm to enumerate 3-stack-sortable permutations.

In 2020, Defant [13] first considered t-stack-sortable permutations to be duals of the t-

sorted permutations [12]—permutations in the image of st(Sn), a generalization of Bousquet-
Mélou’s definition [6] of sorted. Defant then defined a permutation π ∈ Sn to be highly-sorted
if π is t-sorted for some t close to n, proving that a t-sorted permutation can contain at most
⌊n−t

2
⌋ descents [13].

The classical stack-sorting map s has since been generalized to sσ [7] for permutations σ,
where instead of insisting that the stack increases, we insist that the stack avoids top-to-
bottom subsequences of the pattern σ. In 2021, Berlow [5] introduced the family of maps
sT , where the stack must avoid top-to-bottom subsequences of every pattern in set T (see
Figure 2). In 2023, Choi and Choi [8] generalized Defant’s notion of highly-sorted permuta-
tions, defining π to be highly-sorted with respect to sσ if π is in the image of stσ for some t

close to ordsσ(Sn), where ordsσ(P ) is the smallest integer k such that every element in skσ(P )
is periodic under sσ. We straightforwardly extend this definition to generalized maps sT .
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Figure 2. The generalized stack-sorting map s123,132 on π = 52431.

Recently, Choi, Gan, Li, and Zhu [9] studied set partitions that require the maximum
number of sorts through an aba-avoiding stack. Similarly, we define a permutation π to
be minimally-sorted with respect to sT if ordsT (Sn) = ordsT ({π}), antithetical to Defant’s
notion of highly-sorted permutations. At the end of this work, we present two conjectures
on Mn, the minimally-sorted permutations with respect to s123,132.

In 2021, Berlow [5] studied the periodic points of s123,132. She defined a permutation π of
length n to be half-decreasing if the subsequence πn−1πn−3 · · ·π(3−(n mod 2)) is the identity of
length ⌊n−1

2
⌋. In particular, being order-isomorphic to the identity is not sufficient.

Theorem 1.1 (Berlow [5]). A permutation π is periodic under s123,132 if and only if π is
half-decreasing.

Our main result is that we find the exact value of ords123,132(Sn), extending Berlow’s work
on periodic permutations. An analogous result for s321,312 follows directly from Theorem 1.2.

Theorem 1.2. For all positive integers n, we have ords123,132(Sn) = 2⌊n−1
2
⌋.
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2. Preliminaries

We say that a ∈ A is periodic under f : A → B if there exists a positive integer k such
that fk(a) = a. For some ordered set S, we use Si to denote the ith element of S.

Let [n] denote {1, 2, · · · , n} for positive integers n. A permutation, written π = π1π2 · · ·πn,

is an ordering of distinct positive integers with length len(π) = n. We say that π1, π2, · · · , πn

are the elements of π, and use π[i:j] to denote the subpermutation πi, πi+1, · · · , πj . We define
indπ(i), the index of i in π, to be j, where πj = i. Let Sn be the set of permutations with
elements [n]. The reduction of a permutation π (equivalently, the standardization [13]), is
the unique permutation red(π) ∈ Sn such that red(π)i = j for 1 ≤ i ≤ n, where πi is the
jth smallest number in {π1, π2, · · · , πn}. Two permutations π and σ are order-isomorphic if
red(π) = red(σ), and we write π ∼= σ. For instance, π = 57816 and σ = 48917 are order-
isomorphic, since red(π) = red(σ) = 24513. Given permutations π and σ, we say that π

contains the pattern σ if there exists a sequence of positive integers a1 < a2 < · · · < ak such
that π′ = πa1πa2 · · ·πak

∼= σ. Otherwise, we say that π avoids σ (equivalently, is σ-avoiding).
For instance, π = 24513 contains σ = 132 since π1π3π5 = 253 ∼= σ, but avoids τ = 321. We
use π · τ to denote the concatenation of π and τ, and let rev(π) denote the reverse of π,
namely πnπn−1 · · ·π1.

Next, an element πi of π ∈ Sn is small if πj ≤ ⌊n−1
2
⌋. An element πi is a left-to-right

minimum (equivalently, ltr-min) of π if πi = min(π[1:i]). Additionally, we say that πi is a
valley if πi is a ltr-min, πi+1 (if i + 1 ≤ n) is not a ltr-min, and πi+2 (if i + 2 ≤ n) is a
ltr-min. A consecutive subsequence of elements π[i:i+j] is a valley-block v if πi+j is a valley
and red(π[1:i+j])[i:i+j] = j + 1, j, · · · , 1. We say that the valley-boundary of π ∈ Sn, denoted
B(π), is the smallest index i such that π[i:n] = v1πa1v2πa2 · · · vjπaj for valleys v1, · · · , vj and
elements πa1 , · · · , πaj , and set B(π) = n if no such index exists. The valley-region of π is
π[B(π):n]. For instance, given π = (11, 12, 7, 5, 8, 4, 3, 6, 2, 9, 1, 10), the elements 1, 2, 3, and 5
are valleys and the sets (7, 5), (4, 3), (2), (1) form 4 valley-blocks in π. Finally, B(π) = 3,
since π[3:n] = 7, 5, 8, 4, 3, 6, 2, 9, 1, 10.

We conclude by noting that permutation indices will be considered modulo n for the
duration of this paper. In particular, let πi := πj, where j is the unique element of [n] such
that i ≡ j (mod n).

3. Proof of the Main Result

We preface this section with two propositions, immediate from the preliminaries.

Proposition 3.1. Given σ, τ ∈ S3, it holds that (sσ,τ (π))n = π1 for all π ∈ Sn and n ≥ 1.

Proposition 3.2. Let v1, · · · , vi be the valley-blocks of π from left to right, and let len(vj) =
lj for all j. Then, the permutation v1 · v2 · · · · vi is the reverse of the identity of length

∑

li.

We now begin the proof of Theorem 1.2 with several auxiliary lemmas that demonstrate
the monovariant movement of valley-blocks under s123,132.

Lemma 3.3. For any π ∈ Sn and ltr-min πi with i > 1, let j ≤ n be the largest index such
that πi = min(π[1:j]). It holds that s123,132(π)j−1 = πi.

Proof. Since πi is a ltr-min, just before πi enters the stack, π1 must be the only element in
the stack. After the elements π[i+1:j] have all entered the stack, πi and π1 necessarily remain
in the stack since πi+1, · · · , πj > πi. Additionally, since πj+1 < πi, just before πj+1 enters the
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stack, πj must exit the stack. At this moment, the j − 1 elements π2, π3, · · · , πj have been
the only elements to exit the stack, with πi being the last, so s123,132(π)j−1 = πi. �

Lemma 3.4. Given a valley-block v̄ = π[i:i+j] of π, we have s123,132(π)i+j = πi+j and
s123,132(π)k−1 = πk for i ≤ k < i+ j.

Proof. Just before πi enters the stack, π1 must be the only element in the stack. Since v

consists of the j+1 smallest elements of π[1:i+j] in descending-order, just before any element
of v enters the stack, the previous element must exit. Hence, k−2 elements exit before πk for
i ≤ k < i+ j, and thus s123,132(π)k−1 = πk. Finally, by Lemma 3.3, πi+j is a fixed point. �

Next, we show that s123,132 preserves the elements in the valley-region of π.

Lemma 3.5. Suppose π[i:j] and π[j+2:k] are two valley-blocks of π. Then, s123,132(π)j−1 = πj+1.

Proof. Right before πj enters the stack, the only element remaining must be π1. Now, since
πj+1 > πj , the stack will read πj+1πjπ1 top to bottom just after πj+1 enters. Finally, since
πj+2 is also a ltr-min, just before it enters, πj+1 and πj must have left the stack. Hence, every
element in π[1:j] exits the stack before πj+1 except π1 and πj , yielding s(π)j−1 = πj+1. �

Lemma 3.6. If πi is in the valley-region of π, then πi is also in the valley-region of s123,132(π).

Proof. Let π[B(π):n] = v1πa1v2 · · · vjπaj , the valley-region of π, and let len(vi) = li for 1 ≤
i ≤ j. Then, by Lemma 3.3 and Lemma 3.4, we have that s123,132(π) ends with the suffix
(v1[1:l1−1])·πb1 ·(v1[l1] ·v2[1:l2−1])·πb2 ·(v2[l2] ·v3[1:l3−1]) · · · (vj−1[lj−1]

·vj [1])·πbj−1
·(vj [lj ])·πbj for some

elements πb1 , πb2 , · · · , πbj . By Proposition 3.2, this suffix is of the form w1πbc1
w2πbc2

· · ·wkπbck
,

where πbc1
, · · · , πbck

are the elements of {πb1 , · · · , πbj} that are not ltr-mins. Hence, this suffix
is fully contained in the valley-region of s123,132(π). However, it also contains all the elements
in valley-blocks in π[B(π):n], and all the elements in between valley-blocks in π[B(π):n] by
Lemma 3.5, which fully encompass all of elements in the valley-block, finishing the proof. �

Lemma 3.7. Let πi = min(π[1:B(π)−1]). If πi is small, then πi is in the valley-region of
s123,132(π).

Proof. If i = 1, then the claim follows from Proposition 3.1. Otherwise, just before πi enters
the stack, π1 must be the only element remaining in the stack, since πi is a ltr-minimum.
Then, after πi+1, · · · , πB(π)−1 have all entered the stack, πi will remain in the stack. However,
when πB(π) enters the stack, πi will necessarily leave, since πB is part of a valley-block to the
right of πi, so πB(π) < πi. Thus, since every other element in π1, · · · , πB(π)−1 was popped out
before πi, except for π1, we have s(π)B(π)−2 = πi. However, since πi = min(π1, · · · , πB(π)−1),
the proof of Lemma 3.6 shows that πi is in the valley-region of s123,132(π). �

By Lemma 3.6, elements never leave the valley-region, and by Lemma 3.7, a small element
is always added to the valley-region every iteration, implying the following result.

Corollary 3.8. For any π ∈ s
⌊n−1

2
⌋

123,132(Sn), it holds that i ≥ B(π) for all small elements πi.

Corollary 3.8 gives a characterization of the ⌊n−1
2
⌋-sorted permutations under a s123,132

map. We continue by showing that these permutations become periodic with at most ⌊n−1
2
⌋

further passes.

Lemma 3.9. For π ∈ Sn and small element i, if πn−2i+2 = i and i is in the valley-region of
π, then s123,132(π)n−2i+1 = i.
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Proof. Suppose for the sake of contradiction that πn−2i+2 is directly in between two valley-
blocks, so that π[j:n−2i+1] is a valley-block for some j ≤ n−2i. By definition, πn−2i+1 is a valley,
and by Lemma 3.3, sk(π)n−2i+1 = πn−2i+1 for all k. But this contradicts Theorem 1.1, since
we have sk(π)n−2i+1 6= πn−2i+2 = i. Now, suppose that πn−2i+2 is itself a valley. This similarly
contradicts Theorem 1.1, since we have sk(π)n−2i+2 = πn−2i+2 for all k by Lemma 3.3.

Since πn−2i+2 is in the valley-region of π, the only remaining possibility is that πn−2i+2 is
part of a valley-block but not a valley. Hence, by Lemma 3.6, we have s123,132(π)n−2i+1 = i,

as desired. �

Lemma 3.10. For all positive integers i ≤ ⌊n−1
2
⌋ and π ∈ Sn, the permutation

σn−1σn−3 · · ·σn−2i+1 is the identity of length i, where σ = s
i+⌊n−1

2
⌋

123,132 (π).

Proof. We induct on i. The base case i = 1 is immediate—in particular, s
⌊n−1

2
⌋

123,132(π)n−1 = 1,
which becomes a fixed element by Lemma 3.3, since otherwise B(π) = n which contradicts
Corollary 3.8.

Now suppose that for some 1 < j ≤ ⌊n−1
2
⌋, it holds that for all π and i < j, the permutation

σn−1σn−3 · · ·σn−2i+1 is the identity of length i, where σ = s
i+⌊n−1

2
⌋

123,132 (π). First, we note that by
Lemma 3.4 and Lemma 3.5, if an element πi is in the valley-region of π, we have s123,132(π)x =
πi for some x ∈ {i − 2, i− 1, i}. Next, consider some π ∈ Sn, and let Z = {indsk

123,132(π)
(j) |

⌊n−1
2
⌋ ≤ k ≤ ⌊n−1

2
⌋ + j}. By Lemma 3.3, if Zl − Zl+1 = 0 for some l ≤ j, we must have

s
⌊n−1

2
⌋+l

123,132 (π)n−2j+1 = j, or equivalently Zl ≤ n− 2j+1. Similarly, if Zl −Zl+1 = 1, we have by
Lemma 3.4 and Lemma 3.5 that the element j must be in a valley-block (but not a valley)

of s
⌊n−1

2
⌋+l−1

123,132 (π), so by the inductive hypothesis, Zl ≤ n− j− l+2. Otherwise, Zl −Zl+1 = 2,
so we conclude recursively that Zj+1 ≤ n− 2j + 1. But combining Lemma 3.3, Lemma 3.9,
and the fact that Zl − Zl+1 ≤ 2 for all l, we derive Zj+1 = n − 2j + 1, or equivalently

s
⌊n−1

2
⌋+j

123,132 (π)n−2j+1 = j. Hence, for all π and i < j + 1, the permutation σn−1σn−3 · · ·σn−2i+1

is the identity of length i, where σ = s
i+⌊n−1

2
⌋

123,132 (π), completing the induction.
�

In particular, any π ∈ s
2⌊n−1

2
⌋

123,132(Sn) is half-decreasing, which implies the following by The-
orem 1.1.

Corollary 3.11. For all positive integers n, we have ords123,132(Sn) ≤ 2⌊n−1
2
⌋.

Finally, we present a family of minimally-sorted permutations to show that precisely
2⌊n−1

2
⌋ iterations are required to sort all of Sn. Define

γn =

(

n+ 1

2
, 2, 3, · · · ,

n− 1

2
,
n + 3

2
, · · · , n− 2, 1, n− 1, n

)

for odd n ≥ 5 and γn = γn−1 ·n for even n ≥ 6. It is immediate that ords123,132([n]) = 2⌊n−1
2
⌋

for n ≤ 4. Hence, we consider n ≥ 5. Let δn denote the permutation rev((γn)[2:n−3]) when n

is odd and rev((γn)[2:n−4]) when n is even.

Lemma 3.12. For positive integers n ≥ 5 and k ≤ ⌊n−1
2
⌋, we have sk123,132(γn)[1:n−2k−2] =

(δn)[k:n−k−3] for odd n and sk123,132(γn)[1:n−2k−3] = (δn)[k:n−k−4] for even n. Furthermore,

ζn−1ζn−3 · · · ζn−2k+1 is the identity permutation of length k, where ζ = sk123,132(γn).
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n γn
5 (3, 2, 1, 4, 5)
6 (3, 2, 1, 4, 5, 6)
7 (4, 2, 3, 5, 1, 6, 7)
8 (4, 2, 3, 5, 1, 6, 7, 8)
9 (5, 2, 3, 4, 6, 7, 1, 8, 9)

Table 1. The first few γn for n ≥ 5.

Proof. We induct on k. For brevity, we will prove the lemma for when n is odd—the proof
for even n is directly analogous. For the base case k = 1, we have s123,132(γn)n = (γn)1 =

n+1
2

by Proposition 3.1. Since (γn)[2:n−3] is strictly increasing, these elements are popped out
in reverse order just before 1 enters the stack. Hence, s123,132(γn)[1:n−4] = δn = (δn)[1:n−4].

Finally, s123,132(γn)n−1 = 1 by Lemma 3.3, completing the base case.
Next, suppose sk123,132(γn)[1:n−2k−2] = (δn)[k:n−k−3] for some k and ζn−1ζn−3 · · · ζn−2k+1 is

the identity of length k where ζ = sk123,132(γn). By Proposition 3.1, we have sk+1
123,132(γn)n =

sk123,132(γn)1, and since sk123,132(γn)[1:n−2k−2] is strictly decreasing, it follows that these elements

will exit the stack in the same order, giving sk+1
123,132(γn)[1:n−2k−4] = (δn)[k+1:n−k−4] by the

inductive hypothesis. Finally, by Lemma 3.3, we have sk+1
123,132(γn)n−2k−1 = k+1, completing

the induction. �

Lemma 3.13. For all positive integers n, we have ords123,132(Sn) ≥ 2⌊n−1
2
⌋.

Proof. It follows from Lemma 3.12 that s
⌊n−1

2
⌋−1

123,132 (γn)1 = ⌊n−1
2
⌋. By Proposition 3.1 and

Lemma 3.5, we have indsk
123,132(γn)

(⌊n−1
2
⌋) = n−2(k−⌊n−1

2
⌋) for k ≥ ⌊n−1

2
⌋. Hence, k = 2⌊n−1

2
⌋

is the minimal k such that sk123,132(γn) is half-decreasing, giving us the desired bound. �

Finally, we conclude that exactly 2⌊n−1
2
⌋ iterations are required to sort Sn.

Proof of Theorem 1.2. Corollary 3.11 and Lemma 3.13 directly imply ords123,132(Sn) = 2⌊n−1
2
⌋.
�

4. Future Directions

To study Defant’s notion of highly-sorted permutations and our newly-introduced notion of
minimally-sorted permutations, characterizing the periodic permutations under generalized
stack-sorting maps is a prerequisite. We state a conjecture on the periodic points of other
sσ,τ stack-sorting maps for three pairs of (σ, τ), and restate a conjecture from Berlow.

Conjecture 4.1. For (σ, τ) = (123, 213), (132, 312), (231, 321), the map sσ,τ is a bijection
from Sn to itself, and all permutations are periodic.

Conjecture 4.2 (Berlow [5]). For (σ, τ) = (213, 231), (132, 213), (231, 312), the only periodic
points of sσ,τ are the identity permutation and its inverse.

Recall that Mn is the set of minimally-sorted permutations under s123,132. We conjecture
several properties of elements in Mn. However, these conditions are not sufficient for n ≥ 7.

Conjecture 4.3. For π ∈ Mn, the following conditions hold true:

• π1 ≥ ⌊n+1
2
⌋.
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• For odd n: πn−2 = 1 and πn−1, πn ≥ ⌊n+1
2
⌋.

• For even n: πn−3 = 1 and πn−2, πn−1, πn ≥ ⌊n+1
2
⌋.

Next, an enumerative conjecture on Mn, computationally verified for n ≤ 6.

Conjecture 4.4. For all positive integers n, we have |M2n| = (n + 1)|M2n−1|.

Finally, we conclude with an enumerative conjecture on Sortt,n(123, 132), the set of length
n permutations that are t-stack-sortable under s123,132.

Conjecture 4.5. For any positive integer t and n ≥ 2t+ 1, we have:

• |Sortt,n(123, 132)| =
n+3
2
|Sortt,n−2(123, 132)| if n is odd.

• |Sortt,n(123, 132)| =
n+4
2
|Sortt,n−2(123, 132)| if n is even.
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