THE ORDER OF THE (123, 132)-AVOIDING STACK SORT

OWEN ZHANG

Abstract

Let s be West's deterministic stack-sorting map. A well-known result (West) is that any length n permutation can be sorted with $n-1$ iterations of s. In 2020, Defant introduced the notion of highly-sorted permutations-permutations in $s^{t}\left(S_{n}\right)$ for $t \lesssim n-1$. In 2023, Choi and Choi extended this notion to generalized stack-sorting maps s_{σ}, where we relax the condition of becoming sorted to the analogous condition of becoming periodic with respect to s_{σ}. In this work, we introduce the notion of minimally-sorted permutations \mathfrak{M}_{n} as an antithesis to Defant's highly-sorted permutations, and show that $\operatorname{ord}_{s_{123,132}}\left(S_{n}\right)=$ $2\left\lfloor\frac{n-1}{2}\right\rfloor$, strengthening Berlow's 2021 classification of periodic points.

1. Introduction

Knuth's Art of Computer Programming [17] first introduced the stack-sorting machine, in which an input sequence is sorted with a single external stack structure. The elements of the sequence are passed left-to-right through the machine, with two possible operations at every state: push, moving the next input element onto the stack, and pop, removing the top element from the stack and appending it to the output.

In 1990, West [21] introduced a deterministic version of Knuth's stack-sorting machine as the stack-sorting map s, insisting that the stack must always increase from top to bottom and employ a right-greedy process: the push operation is prioritized. Since then, various studies have been motivated by Knuth's original machine and West's deterministic s, including pop-stack-sorting [1, 2, 14, 18, 19], stack-sorting Coxeter groups [14, 15], sigma-tau machines [3, 4, 5], and stack-sorting of set-partitions [16, 23].

Figure 1. West's deterministic stack-sorting map s on $\pi=2143$.
In his dissertation, West [21] proved that $s^{n-1}\left(S_{n}\right)$ contains only the identity permutation, justifying repeated applications of s as a correct and terminating sorting algorithm. A natural direction of study, then, is the characterization of t-stack-sortable permutationspermutations π such that $s^{t}(\pi)$ is sorted-for general $t \leq n-1$. Knuth [17] answered the question for $t=1$, showing that π is 1 -stack-sortable if and only if π avoids subsequences of the pattern 231, enumerating the number of such permutations of length n to be $\frac{1}{n+1}\binom{2 n}{n}$,
the $n^{\text {th }}$ Catalan number. In 1990, West 21] characterized the 2 -stack-sortable permutations, proving that π is 2 -stack-sortable if and only if π avoids subsequences of the pattern 2341 and the barred pattern $3 \overline{5} 241$. He also conjectured that the number of such permutations of length n is $\frac{2}{(n+1)(2 n+1)}\binom{3 n}{n}$, which was proven by Zeilberger [24] two years later. West [21, 22] then searched for a polynomial $P(n)$ such that 3 -stack-sortable permutations could be enumerated by $\frac{1}{P(n)}\binom{4 n}{n}$, but was unsuccessful for $\operatorname{deg}(P(n))<7$. In 2012, Úlfarsson [20] characterized 3 -stack-sortable permutations with "decorated patterns," but only in 2021, did Defant [11] discover a polynomial-time algorithm to enumerate 3 -stack-sortable permutations.

In 2020, Defant [13] first considered t-stack-sortable permutations to be duals of the t sorted permutations [12]-permutations in the image of $s^{t}\left(S_{n}\right)$, a generalization of BousquetMélou's definition [6] of sorted. Defant then defined a permutation $\pi \in S_{n}$ to be highly-sorted if π is t-sorted for some t close to n, proving that a t-sorted permutation can contain at most $\left\lfloor\frac{n-t}{2}\right\rfloor$ descents 【13].

The classical stack-sorting map s has since been generalized to $s_{\sigma}[7]$ for permutations σ, where instead of insisting that the stack increases, we insist that the stack avoids top-tobottom subsequences of the pattern σ. In 2021, Berlow [5] introduced the family of maps s_{T}, where the stack must avoid top-to-bottom subsequences of every pattern in set T (see Figure (2). In 2023, Choi and Choi [8] generalized Defant's notion of highly-sorted permutations, defining π to be highly-sorted with respect to s_{σ} if π is in the image of s_{σ}^{t} for some t close to $\operatorname{ord}_{s_{\sigma}}\left(S_{n}\right)$, where $\operatorname{ord}_{s_{\sigma}}(P)$ is the smallest integer k such that every element in $s_{\sigma}^{k}(P)$ is periodic under s_{σ}. We straightforwardly extend this definition to generalized maps s_{T}.

Figure 2. The generalized stack-sorting map $s_{123,132}$ on $\pi=52431$.
Recently, Choi, Gan, Li, and Zhu [9] studied set partitions that require the maximum number of sorts through an $a b a$-avoiding stack. Similarly, we define a permutation π to be minimally-sorted with respect to s_{T} if $\operatorname{ord}_{s_{T}}\left(S_{n}\right)=\operatorname{ord}_{s_{T}}(\{\pi\})$, antithetical to Defant's notion of highly-sorted permutations. At the end of this work, we present two conjectures on \mathfrak{M}_{n}, the minimally-sorted permutations with respect to $s_{123,132}$.

In 2021, Berlow [5] studied the periodic points of $s_{123,132}$. She defined a permutation π of length n to be half-decreasing if the subsequence $\pi_{n-1} \pi_{n-3} \cdots \pi_{(3-(n \bmod 2))}$ is the identity of length $\left\lfloor\frac{n-1}{2}\right\rfloor$. In particular, being order-isomorphic to the identity is not sufficient.
Theorem 1.1 (Berlow [5]). A permutation π is periodic under $s_{123,132}$ if and only if π is half-decreasing.

Our main result is that we find the exact value of $\operatorname{ord}_{s_{123,132}}\left(S_{n}\right)$, extending Berlow's work on periodic permutations. An analogous result for $s_{321,312}$ follows directly from Theorem 1.2,
Theorem 1.2. For all positive integers n, we have $\operatorname{ord}_{s_{123,132}}\left(S_{n}\right)=2\left\lfloor\frac{n-1}{2}\right\rfloor$.

2. Preliminaries

We say that $a \in A$ is periodic under $f: A \rightarrow B$ if there exists a positive integer k such that $f^{k}(a)=a$. For some ordered set S, we use S_{i} to denote the i th element of S.

Let $[n]$ denote $\{1,2, \cdots, n\}$ for positive integers n. A permutation, written $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, is an ordering of distinct positive integers with length len $(\pi)=n$. We say that $\pi_{1}, \pi_{2}, \cdots, \pi_{n}$ are the elements of π, and use $\pi_{[i: j]}$ to denote the subpermutation $\pi_{i}, \pi_{i+1}, \cdots, \pi_{j}$. We define $\operatorname{ind}_{\pi}(i)$, the index of i in π, to be j, where $\pi_{j}=i$. Let S_{n} be the set of permutations with elements $[n$]. The reduction of a permutation π (equivalently, the standardization [13]), is the unique permutation $\operatorname{red}(\pi) \in S_{n}$ such that $\operatorname{red}(\pi)_{i}=j$ for $1 \leq i \leq n$, where π_{i} is the j th smallest number in $\left\{\pi_{1}, \pi_{2}, \cdots, \pi_{n}\right\}$. Two permutations π and σ are order-isomorphic if $\operatorname{red}(\pi)=\operatorname{red}(\sigma)$, and we write $\pi \cong \sigma$. For instance, $\pi=57816$ and $\sigma=48917$ are orderisomorphic, since $\operatorname{red}(\pi)=\operatorname{red}(\sigma)=24513$. Given permutations π and σ, we say that π contains the pattern σ if there exists a sequence of positive integers $a_{1}<a_{2}<\cdots<a_{k}$ such that $\pi^{\prime}=\pi_{a_{1}} \pi_{a_{2}} \cdots \pi_{a_{k}} \cong \sigma$. Otherwise, we say that π avoids σ (equivalently, is σ-avoiding). For instance, $\pi=24513$ contains $\sigma=132$ since $\pi_{1} \pi_{3} \pi_{5}=253 \cong \sigma$, but avoids $\tau=321$. We use $\pi \cdot \tau$ to denote the concatenation of π and τ, and let $\operatorname{rev}(\pi)$ denote the reverse of π, namely $\pi_{n} \pi_{n-1} \cdots \pi_{1}$.

Next, an element π_{i} of $\pi \in S_{n}$ is small if $\pi_{j} \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. An element π_{i} is a left-to-right minimum (equivalently, ltr-min) of π if $\pi_{i}=\min \left(\pi_{[1: i]}\right)$. Additionally, we say that π_{i} is a valley if π_{i} is a ltr-min, π_{i+1} (if $i+1 \leq n$) is not a ltr-min, and π_{i+2} (if $i+2 \leq n$) is a ltr-min. A consecutive subsequence of elements $\pi_{[i: i+j]}$ is a valley-block \bar{v} if π_{i+j} is a valley and $\operatorname{red}\left(\pi_{[1: i+j]}\right)_{[i: i+j]}=j+1, j, \cdots, 1$. We say that the valley-boundary of $\pi \in S_{n}$, denoted $\mathfrak{B}(\pi)$, is the smallest index i such that $\pi_{[i: n]}=\overline{v_{1}} \pi_{a_{1}} \overline{v_{2}} \pi_{a_{2}} \cdots \overline{v_{j}} \pi_{a_{j}}$ for valleys $\overline{v_{1}}, \cdots, \overline{v_{j}}$ and elements $\pi_{a_{1}}, \cdots, \pi_{a_{j}}$, and set $\mathfrak{B}(\pi)=n$ if no such index exists. The valley-region of π is $\pi_{[\mathfrak{B}(\pi): n]}$. For instance, given $\pi=(11,12,7,5,8,4,3,6,2,9,1,10)$, the elements $1,2,3$, and 5 are valleys and the sets $(7,5),(4,3),(2),(1)$ form 4 valley-blocks in π. Finally, $\mathfrak{B}(\pi)=3$, since $\pi_{[3: n]}=\overline{7,5}, 8, \overline{4,3}, 6, \overline{2}, 9, \overline{1}, 10$.

We conclude by noting that permutation indices will be considered modulo n for the duration of this paper. In particular, let $\pi_{i}:=\pi_{j}$, where j is the unique element of $[n]$ such that $i \equiv j(\bmod n)$.

3. Proof of the Main Result

We preface this section with two propositions, immediate from the preliminaries.
Proposition 3.1. Given $\sigma, \tau \in S_{3}$, it holds that $\left(s_{\sigma, \tau}(\pi)\right)_{n}=\pi_{1}$ for all $\pi \in S_{n}$ and $n \geq 1$.
Proposition 3.2. Let $\overline{v_{1}}, \cdots, \overline{v_{i}}$ be the valley-blocks of π from left to right, and let len $\left(v_{j}\right)=$ l_{j} for all j. Then, the permutation $\overline{v_{1}} \cdot \overline{v_{2}} \cdots \overline{v_{i}}$ is the reverse of the identity of length $\sum l_{i}$.

We now begin the proof of Theorem 1.2 with several auxiliary lemmas that demonstrate the monovariant movement of valley-blocks under $s_{123,132}$.

Lemma 3.3. For any $\pi \in S_{n}$ and ltr-min π_{i} with $i>1$, let $j \leq n$ be the largest index such that $\pi_{i}=\min \left(\pi_{[1: j]}\right)$. It holds that $s_{123,132}(\pi)_{j-1}=\pi_{i}$.

Proof. Since π_{i} is a ltr-min, just before π_{i} enters the stack, π_{1} must be the only element in the stack. After the elements $\pi_{[i+1: j]}$ have all entered the stack, π_{i} and π_{1} necessarily remain in the stack since $\pi_{i+1}, \cdots, \pi_{j}>\pi_{i}$. Additionally, since $\pi_{j+1}<\pi_{i}$, just before π_{j+1} enters the
stack, π_{j} must exit the stack. At this moment, the $j-1$ elements $\pi_{2}, \pi_{3}, \cdots, \pi_{j}$ have been the only elements to exit the stack, with π_{i} being the last, so $s_{123,132}(\pi)_{j-1}=\pi_{i}$.
Lemma 3.4. Given a valley-block $\bar{v}=\pi_{[i: i+j]}$ of π, we have $s_{123,132}(\pi)_{i+j}=\pi_{i+j}$ and $s_{123,132}(\pi)_{k-1}=\pi_{k}$ for $i \leq k<i+j$.
Proof. Just before π_{i} enters the stack, π_{1} must be the only element in the stack. Since \bar{v} consists of the $j+1$ smallest elements of $\pi_{[1: i+j]}$ in descending-order, just before any element of \bar{v} enters the stack, the previous element must exit. Hence, $k-2$ elements exit before π_{k} for $i \leq k<i+j$, and thus $s_{123,132}(\pi)_{k-1}=\pi_{k}$. Finally, by Lemma 3.3, π_{i+j} is a fixed point.

Next, we show that $s_{123,132}$ preserves the elements in the valley-region of π.
Lemma 3.5. Suppose $\pi_{[:: j]}$ and $\pi_{[j+2: k]}$ are two valley-blocks of π. Then, $s_{123,132}(\pi)_{j-1}=\pi_{j+1}$.
Proof. Right before π_{j} enters the stack, the only element remaining must be π_{1}. Now, since $\pi_{j+1}>\pi_{j}$, the stack will read $\pi_{j+1} \pi_{j} \pi_{1}$ top to bottom just after π_{j+1} enters. Finally, since π_{j+2} is also a ltr-min, just before it enters, π_{j+1} and π_{j} must have left the stack. Hence, every element in $\pi_{[1: j]}$ exits the stack before π_{j+1} except π_{1} and π_{j}, yielding $s(\pi)_{j-1}=\pi_{j+1}$.
Lemma 3.6. If π_{i} is in the valley-region of π, then π_{i} is also in the valley-region of $s_{123,132}(\pi)$.
Proof. Let $\pi_{[\mathfrak{B}(\pi): n]}=\overline{v_{1}} \pi_{a_{1}} \overline{v_{2}} \cdots \overline{v_{j}} \pi_{a_{j}}$, the valley-region of π, and let len $\left(\overline{v_{i}}\right)=l_{i}$ for $1 \leq$ $i \leq j$. Then, by Lemma 3.3 and Lemma [3.4, we have that $s_{123,132}(\pi)$ ends with the suffix $\left(v_{1\left[1: l_{1}-1\right]}\right) \cdot \pi_{b_{1}} \cdot\left(v_{1\left[l_{1}\right]} \cdot v_{2\left[1: l_{2}-1\right]}\right) \cdot \pi_{b_{2}} \cdot\left(v_{2\left[l_{2}\right]} \cdot v_{3\left[1: l_{3}-1\right]}\right) \cdots\left(v_{j-1\left[l_{j-1}\right]} \cdot v_{j[1]}\right) \cdot \pi_{b_{j-1}} \cdot\left(v_{j\left[l_{j}\right]}\right) \cdot \pi_{b_{j}}$ for some elements $\pi_{b_{1}}, \pi_{b_{2}}, \cdots, \pi_{b_{j}}$. By Proposition [3.2, this suffix is of the form $\overline{w_{1}} \pi_{b_{c_{1}}} \overline{w_{2}} \pi_{b_{c_{2}}} \cdots \overline{w_{k}} \pi_{b_{c_{k}}}$, where $\pi_{b_{c_{1}}}, \cdots, \pi_{b_{c_{k}}}$ are the elements of $\left\{\pi_{b_{1}}, \cdots, \pi_{b_{j}}\right\}$ that are not ltr-mins. Hence, this suffix is fully contained in the valley-region of $s_{123,132}(\pi)$. However, it also contains all the elements in valley-blocks in $\pi_{[\mathfrak{B}(\pi): n]}$, and all the elements in between valley-blocks in $\pi_{[\mathfrak{B}(\pi): n]}$ by Lemma 3.5, which fully encompass all of elements in the valley-block, finishing the proof.
Lemma 3.7. Let $\pi_{i}=\min \left(\pi_{[1: \mathfrak{B}(\pi)-1]}\right)$. If π_{i} is small, then π_{i} is in the valley-region of $s_{123,132}(\pi)$.
Proof. If $i=1$, then the claim follows from Proposition 3.1. Otherwise, just before π_{i} enters the stack, π_{1} must be the only element remaining in the stack, since π_{i} is a ltr-minimum. Then, after $\pi_{i+1}, \cdots, \pi_{\mathfrak{B}(\pi)-1}$ have all entered the stack, π_{i} will remain in the stack. However, when $\pi_{\mathfrak{B}(\pi)}$ enters the stack, π_{i} will necessarily leave, since $\pi_{\mathfrak{B}}$ is part of a valley-block to the right of π_{i}, so $\pi_{\mathfrak{B}(\pi)}<\pi_{i}$. Thus, since every other element in $\pi_{1}, \cdots, \pi_{\mathfrak{B}(\pi)-1}$ was popped out before π_{i}, except for π_{1}, we have $s(\pi)_{\mathfrak{B}(\pi)-2}=\pi_{i}$. However, since $\pi_{i}=\min \left(\pi_{1}, \cdots, \pi_{\mathfrak{B}(\pi)-1}\right)$, the proof of Lemma 3.6 shows that π_{i} is in the valley-region of $s_{123,132}(\pi)$.

By Lemma 3.6, elements never leave the valley-region, and by Lemma 3.7, a small element is always added to the valley-region every iteration, implying the following result.
Corollary 3.8. For any $\pi \in s_{123,132}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left(S_{n}\right)$, it holds that $i \geq \mathfrak{B}(\pi)$ for all small elements π_{i}.
Corollary 3.8 gives a characterization of the $\left\lfloor\frac{n-1}{2}\right\rfloor$-sorted permutations under a $s_{123,132}$ map. We continue by showing that these permutations become periodic with at most $\left\lfloor\frac{n-1}{2}\right\rfloor$ further passes.
Lemma 3.9. For $\pi \in S_{n}$ and small element i, if $\pi_{n-2 i+2}=i$ and i is in the valley-region of π, then $s_{123,132}(\pi)_{n-2 i+1}=i$.

Proof. Suppose for the sake of contradiction that $\pi_{n-2 i+2}$ is directly in between two valleyblocks, so that $\pi_{[j: n-2 i+1]}$ is a valley-block for some $j \leq n-2 i$. By definition, $\pi_{n-2 i+1}$ is a valley, and by Lemma 3.3, $s^{k}(\pi)_{n-2 i+1}=\pi_{n-2 i+1}$ for all k. But this contradicts Theorem 1.1, since we have $s^{k}(\pi)_{n-2 i+1} \neq \pi_{n-2 i+2}=i$. Now, suppose that $\pi_{n-2 i+2}$ is itself a valley. This similarly contradicts Theorem 1.1, since we have $s^{k}(\pi)_{n-2 i+2}=\pi_{n-2 i+2}$ for all k by Lemma 3.3,

Since $\pi_{n-2 i+2}$ is in the valley-region of π, the only remaining possibility is that $\pi_{n-2 i+2}$ is part of a valley-block but not a valley. Hence, by Lemma 3.6, we have $s_{123,132}(\pi)_{n-2 i+1}=i$, as desired.

Lemma 3.10. For all positive integers $i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ and $\pi \in S_{n}$, the permutation $\sigma_{n-1} \sigma_{n-3} \cdots \sigma_{n-2 i+1}$ is the identity of length i, where $\sigma=s_{123,132}^{i+\left\lfloor\frac{n-1}{2}\right\rfloor}(\pi)$.

Proof. We induct on i. The base case $i=1$ is immediate - in particular, $s_{123,132}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(\pi)_{n-1}=1$, which becomes a fixed element by Lemma 3.3, since otherwise $\mathfrak{B}(\pi)=n$ which contradicts Corollary 3.8.

Now suppose that for some $1<j \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, it holds that for all π and $i<j$, the permutation $\sigma_{n-1} \sigma_{n-3} \cdots \sigma_{n-2 i+1}$ is the identity of length i, where $\sigma=s_{123,132}^{i+\left\lfloor\frac{n-1}{2}\right\rfloor}(\pi)$. First, we note that by Lemma 3.4 and Lemma3.5, if an element π_{i} is in the valley-region of π, we have $s_{123,132}(\pi)_{x}=$ π_{i} for some $x \in\{i-2, i-1, i\}$. Next, consider some $\pi \in S_{n}$, and let $\mathfrak{Z}=\left\{\operatorname{ind}_{s_{123,132}^{k}(\pi)}(j) \mid\right.$ $\left.\left\lfloor\frac{n-1}{2}\right\rfloor \leq k \leq\left\lfloor\frac{n-1}{2}\right\rfloor+j\right\}$. By Lemma [3.3, if $\mathfrak{Z}_{l}-\mathfrak{Z}_{l+1}=0$ for some $l \leq j$, we must have $s_{123,132}^{\left\lfloor\frac{n-1}{2}\right\rfloor+l}(\pi)_{n-2 j+1}=j$, or equivalently $\mathfrak{Z}_{l} \leq n-2 j+1$. Similarly, if $\mathfrak{Z}_{l}-\mathfrak{Z}_{l+1}=1$, we have by Lemma 3.4 and Lemma 3.5 that the element j must be in a valley-block (but not a valley) of $s_{123,132}^{\left.\frac{\lfloor n-1}{2}\right\rfloor+l-1}(\pi)$, so by the inductive hypothesis, $\mathfrak{Z}_{l} \leq n-j-l+2$. Otherwise, $\mathfrak{Z}_{l}-\mathfrak{Z}_{l+1}=2$, so we conclude recursively that $\mathfrak{Z}_{j+1} \leq n-2 j+1$. But combining Lemma 3.3, Lemma 3.9, and the fact that $\mathfrak{Z}_{l}-\mathfrak{Z}_{l+1} \leq 2$ for all l, we derive $\mathfrak{Z}_{j+1}=n-2 j+1$, or equivalently $s_{123,132}^{\left\lfloor\frac{n-1}{2}\right\rfloor+j}(\pi)_{n-2 j+1}=j$. Hence, for all π and $i<j+1$, the permutation $\sigma_{n-1} \sigma_{n-3} \cdots \sigma_{n-2 i+1}$ is the identity of length i, where $\sigma=s_{123,132}^{i+\left\lfloor\frac{n-1}{2}\right\rfloor}(\pi)$, completing the induction.

In particular, any $\pi \in s_{123,132}^{2\left\lfloor\frac{n-1}{2}\right\rfloor}\left(S_{n}\right)$ is half-decreasing, which implies the following by Theorem 1.1 .

Corollary 3.11. For all positive integers n, we have $\operatorname{ord}_{s_{123,132}}\left(S_{n}\right) \leq 2\left\lfloor\frac{n-1}{2}\right\rfloor$.
Finally, we present a family of minimally-sorted permutations to show that precisely $2\left\lfloor\frac{n-1}{2}\right\rfloor$ iterations are required to sort all of S_{n}. Define

$$
\gamma_{n}=\left(\frac{n+1}{2}, 2,3, \cdots, \frac{n-1}{2}, \frac{n+3}{2}, \cdots, n-2,1, n-1, n\right)
$$

for odd $n \geq 5$ and $\gamma_{n}=\gamma_{n-1} \cdot n$ for even $n \geq 6$. It is immediate that $\operatorname{ord}_{s_{123,132}}([n])=2\left\lfloor\frac{n-1}{2}\right\rfloor$ for $n \leq 4$. Hence, we consider $n \geq 5$. Let δ_{n} denote the permutation $\operatorname{rev}\left(\left(\gamma_{n}\right)_{[2: n-3]}\right)$ when n is odd and $\operatorname{rev}\left(\left(\gamma_{n}\right)_{[2: n-4]}\right)$ when n is even.
Lemma 3.12. For positive integers $n \geq 5$ and $k \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, we have $s_{123,132}^{k}\left(\gamma_{n}\right)_{[1: n-2 k-2]}=$ $\left(\delta_{n}\right)_{[k: n-k-3]}$ for odd n and $s_{123,132}^{k}\left(\gamma_{n}\right)_{[1: n-2 k-3]}=\left(\delta_{n}\right)_{[k: n-k-4]}$ for even n. Furthermore, $\zeta_{n-1} \zeta_{n-3} \cdots \zeta_{n-2 k+1}$ is the identity permutation of length k, where $\zeta=s_{123,132}^{k}\left(\gamma_{n}\right)$.

n	γ_{n}
5	$(3,2,1,4,5)$
6	$(3,2,1,4,5,6)$
7	$(4,2,3,5,1,6,7)$
8	$(4,2,3,5,1,6,7,8)$
9	$(5,2,3,4,6,7,1,8,9)$

Table 1. The first few γ_{n} for $n \geq 5$.
Proof. We induct on k. For brevity, we will prove the lemma for when n is odd-the proof for even n is directly analogous. For the base case $k=1$, we have $s_{123,132}\left(\gamma_{n}\right)_{n}=\left(\gamma_{n}\right)_{1}=\frac{n+1}{2}$ by Proposition [3.1. Since $\left(\gamma_{n}\right)_{[2: n-3]}$ is strictly increasing, these elements are popped out in reverse order just before 1 enters the stack. Hence, $s_{123,132}\left(\gamma_{n}\right)_{[1: n-4]}=\delta_{n}=\left(\delta_{n}\right)_{[1: n-4]}$. Finally, $s_{123,132}\left(\gamma_{n}\right)_{n-1}=1$ by Lemma 3.3, completing the base case.

Next, suppose $s_{123,132}^{k}\left(\gamma_{n}\right)_{[1: n-2 k-2]}=\left(\delta_{n}\right)_{[k: n-k-3]}$ for some k and $\zeta_{n-1} \zeta_{n-3} \cdots \zeta_{n-2 k+1}$ is the identity of length k where $\zeta=s_{123,132}^{k}\left(\gamma_{n}\right)$. By Proposition 3.1, we have $s_{123,132}^{k+1}\left(\gamma_{n}\right)_{n}=$ $s_{123,132}^{k}\left(\gamma_{n}\right)_{1}$, and since $s_{123,132}^{k}\left(\gamma_{n}\right)_{[1: n-2 k-2]}$ is strictly decreasing, it follows that these elements will exit the stack in the same order, giving $s_{123,132}^{k+1}\left(\gamma_{n}\right)_{[1: n-2 k-4]}=\left(\delta_{n}\right)_{[k+1: n-k-4]}$ by the inductive hypothesis. Finally, by Lemma 3.3, we have $s_{123,132}^{k+1}\left(\gamma_{n}\right)_{n-2 k-1}=k+1$, completing the induction.
Lemma 3.13. For all positive integers n, we have $\operatorname{ord}_{s_{123,132}}\left(S_{n}\right) \geq 2\left\lfloor\frac{n-1}{2}\right\rfloor$.
Proof. It follows from Lemma 3.12 that $s_{123,132}^{\left\lfloor\frac{n-1}{2}\right\rfloor-1}\left(\gamma_{n}\right)_{1}=\left\lfloor\frac{n-1}{2}\right\rfloor$. By Proposition 3.1 and Lemma 3.5, we have ind $s_{s_{123,132}\left(\gamma_{n}\right)}\left(\left\lfloor\frac{n-1}{2}\right\rfloor\right)=n-2\left(k-\left\lfloor\frac{n-1}{2}\right\rfloor\right)$ for $k \geq\left\lfloor\frac{n-1}{2}\right\rfloor$. Hence, $k=2\left\lfloor\frac{n-1}{2}\right\rfloor$ is the minimal k such that $s_{123,132}^{k}\left(\gamma_{n}\right)$ is half-decreasing, giving us the desired bound.

Finally, we conclude that exactly $2\left\lfloor\frac{n-1}{2}\right\rfloor$ iterations are required to sort S_{n}.
Proof of Theorem 1.2. Corollary 3.11 and Lemma3.13 directly $\operatorname{imply}^{\operatorname{ord}}{ }_{s_{123,132}}\left(S_{n}\right)=2\left\lfloor\frac{n-1}{2}\right\rfloor$.

4. Future Directions

To study Defant's notion of highly-sorted permutations and our newly-introduced notion of minimally-sorted permutations, characterizing the periodic permutations under generalized stack-sorting maps is a prerequisite. We state a conjecture on the periodic points of other $s_{\sigma, \tau}$ stack-sorting maps for three pairs of (σ, τ), and restate a conjecture from Berlow.
Conjecture 4.1. For $(\sigma, \tau)=(123,213),(132,312),(231,321)$, the map $s_{\sigma, \tau}$ is a bijection from S_{n} to itself, and all permutations are periodic.
Conjecture 4.2 (Berlow [5]). For $(\sigma, \tau)=(213,231),(132,213),(231,312)$, the only periodic points of $s_{\sigma, \tau}$ are the identity permutation and its inverse.

Recall that \mathfrak{M}_{n} is the set of minimally-sorted permutations under $s_{123,132}$. We conjecture several properties of elements in \mathfrak{M}_{n}. However, these conditions are not sufficient for $n \geq 7$.

Conjecture 4.3. For $\pi \in \mathfrak{M}_{n}$, the following conditions hold true:

- $\pi_{1} \geq\left\lfloor\frac{n+1}{2}\right\rfloor$.
- For odd $n: \pi_{n-2}=1$ and $\pi_{n-1}, \pi_{n} \geq\left\lfloor\frac{n+1}{2}\right\rfloor$.
- For even $n: \pi_{n-3}=1$ and $\pi_{n-2}, \pi_{n-1}, \pi_{n} \geq\left\lfloor\frac{n+1}{2}\right\rfloor$.

Next, an enumerative conjecture on \mathfrak{M}_{n}, computationally verified for $n \leq 6$.
Conjecture 4.4. For all positive integers n, we have $\left|\mathfrak{M}_{2 n}\right|=(n+1)\left|\mathfrak{M}_{2 n-1}\right|$.
Finally, we conclude with an enumerative conjecture on $\operatorname{Sort}_{t, n}(123,132)$, the set of length n permutations that are t-stack-sortable under $s_{123,132}$.
Conjecture 4.5. For any positive integer t and $n \geq 2 t+1$, we have:

- $\left|\operatorname{Sort}_{t, n}(123,132)\right|=\frac{n+3}{2}\left|\operatorname{Sort}_{t, n-2}(123,132)\right|$ if n is odd.
- $\left|\operatorname{Sort}_{t, n}(123,132)\right|=\frac{n+4}{2}\left|\operatorname{Sort}_{t, n-2}(123,132)\right|$ if n is even.

Acknowledgements

The author thanks Yunseo Choi for suggesting the problem and giving helpful advice on the presentation of the paper.

References

[1] M. D. Atkinson and J.-R. Sack. Pop-stacks in parallel. Inform. Process. Lett. 70 (1999), 63-67.
[2] D. Avis and M. Newborn. On pop-stacks in series. Utilitas Math. 19 (1981), 129-140.
[3] C. Bao et al. On a conjecture on pattern-avoiding machines (2023). arXiv: 2308.09344 [math-co].
[4] J. L. Baril et al. Catalan and Schröder permutations sortable by two restricted stacks. Inform. Process. Lett. 171 (2021), 106-138.
[5] K. Berlow. Restricted stacks as functions. Discrete Math. 344 (2021).
[6] M. Bousquet-Mélou. Sorted and/or sortable permutations. Discrete Math. 225 (2000), 25-50.
[7] G. Cerbai, A. Claesson, and L. Ferrari. Stack sorting with restricted stacks. J. Combin. Theory. Ser. A 173 (2020).
[8] Y. Choi and Y. Choi. Highly Sorted Permutations with Respect to a 312-avoiding Stack. Enumer. Comb. Appl. 3 (2023).
[9] Y. Choi et al. On the set partitions that require maximum sorts through the abaavoiding stack (2024). arXiv: 2403.05113 [math-co].
[10] A. Claesson, M. Dukes, and E. Steingrímsson. Permutations sortable by $n-4$ passes through a stack. Ann. Combin. 14 (2010), 45-51.
[11] C. Defant. 3-Stack-Sortable permutations and beyond. S'em. Lothar. Combin. 85 (2021).
[12] C. Defant. Descents in t-sorted permutations. J. Comb. 11 (2020), 511-526.
[13] C. Defant. Highly Sorted Permutations and Bell Numbers. Enumer. Comb. Appl. (2020).
[14] C. Defant. Pop-stack-sorting for Coxeter Groups. Comb. Theory 2 (2022).
[15] C. Defant. Stack-sorting for Coxeter Groups. Comb. Theory 2 (2022).
[16] C. Defant and N. Kravitz. Foot-Sorting for socks (2022). arXiv: 2211.02021 [math-co].
[17] D. E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley (1968).
[18] L. Pudwell. Two-stack-sorting with pop stacks. Australas. J. Combin. 74 (2019), 179195.
[19] R. Smith and V. Vatter. A stack and a pop stack in series. Australas. J. Combin. 58 (2014), 157-171.
[20] H. Ulfarsson. Describing West-3-Stack-Sortable permutations with permutation patterns. S'em. Lothar. Combin. 67 (2012).
[21] J. West. Permutations with restricted subsequences and stack-sortable permutations. MIT Ph.D. Thesis (1990).
[22] J. West. Sorting twice through a stack. Theoret. Comput. Sci. 117 (1993), 303-313. ISSN: 0304-3975.
[23] J. Xia. Deterministic stack-sorting for set partitions (2023). arXiv: 2309.14644 [math-co].
[24] D. Zeilberger. A proof of Julian West's conjecture that the number of two-stack-sortable permutations of length n is $\frac{2}{(n+1)(2 n+1)}\binom{3 n}{n}$. Discrete Math 102 (1992), 85-92.
O. Zhang, Yale University, New Haven, CT

Email address: owen.zhang.oz37@yale.edu

