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ORBITS AND INVARIANTS FOR COISOTROPY REPRESENTATIONS

DMITRI I. PANYUSHEV

ABSTRACT. For a subgroup H of a reductive group G, let m = h⊥ ⊂ g∗ be the cotangent

space of {H} ∈ G/H . The linear action (H : m) is the coisotropy representation. It is known

that the complexity and rank of G/H (denoted c and r, respectively) are encoded in prop-

erties of (H : m). We complement existing results on c, r, and (H : m), especially for

quasiaffine varieties G/H . For instance, if the algebra of invariants k[m]H is finitely gener-

ated, then NH(m) ⊂ m ∩NG(g
∗). Moreover, if G/H is affine, then NH(m) = m ∩NG(g

∗) if

and only if c = 0. We also prove that the variety m∩NG(g
∗) is pure, of dimension dimm−r.

Two other topics considered are (i) a relationship between varieties G/H of complexity at

most 1 and the homological dimension of the algebra k[m]H and (ii) the Poisson structure

of k[m]H and Poisson-commutative subalgebras A ⊂ k[m]H such that trdegA is maximal.

INTRODUCTION

In this article, we study invariant-theoretic properties for the coisotropy representation of

a homogeneous space of a reductive group G. The ground field k is algebraically closed

and char k = 0. All groups and varieties are assumed to be algebraic, and all algebraic

groups are affine. If Q is a group and X is a variety, then the notation (Q : X) means that

Q acts regularly on X . We also say that X is a Q-variety. Lie algebras of algebraic groups

are denoted by the corresponding small gothic letters, e.g., q = LieQ.

Throughout, G is a connected reductive group and g = LieG. We also consider a Borel

subgroup B ⊂ G, the maximal unipotent subgroup U = (B,B), and a maximal torus

T ⊂ B. This yields a bunch of related objects: roots, weights, simple roots, etc. For a

reductive subgroup H ⊂ G, we denote by BH , UH , and TH analogous subgroups of H .

For a subgroup H ⊂ G, let c = cG(G/H) and r = rG(G/H) be the complexity and rank

of the G-variety G/H , respectively. Then r 6 rkG (see Section 1 for details.) These two

integers are important for invariant theory and theory of equivariant embeddings ofG/H .

Let m = h⊥ ⊂ g∗ be the cotangent space of {H} ∈ G/H . The linear action (H : m) is called

the coisotropy representation of H (or G/H). It is shown in [12] that

• the integers c and r are closely related to properties of (H : m). If G/H is quasiaffine,

then dimm − maxx∈m dimH·x = 2c + r, the stabiliser Hx is reductive for generic x ∈ m,

and rkG− rkHx = r.
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2 D. PANYUSHEV

• If c = 0 and c ⊂ m is a Cartan subspace, then H·c = m and there is a finite group

W ⊂ GL(c) such that k[c]W ≃ k[m]H . Here the morphism π : m → m//H := Spec (k[m]H) is

equidimensional, and if H is connected, then k[m]H is a polynomial ring.

More generally, if k[m]H is finitely generated, then π is also well-defined and the fibre

π−1(π(0)) =: NH(m) is the nullcone (in m with respect to H). The nullcone is a fibre of

π of maximal dimension and if c > 0, then π is not necessarily equidimensional. It is

convenient to consider the defect of equidimensionality (= defect of NH(m))

defNH(m) = dimNH(m)− (dimm− dimm//H).

If H is reductive, then defNH(m) 6 c [15, Prop. 3.6].

In Section 2, we present new results related to the nullcones NH(m) and NG(g
∗), and

the generalised Cartan subspace c ⊂ m.

– For any x ∈ m, we show that dimG·x > 2 dimH·x, and the equality occurs if and

only if g·x ∩m = h·x. Another general property is that dim
(
m ∩NG(g

∗)
)
= dimm− r and

all irreducible components of m ∩NG(g
∗) have this dimension (Theorem 2.3).

– If G/H is quasiaffine, then one can define a generalised Cartan subspace c ⊂ m (see

Section 1) and we prove that codim mH·c = c.

– If G/H is quasiaffine and k[m]H is finitely generated, then NH(m) ⊂ m ∩NG(g
∗). More-

over, if c = 0, then NH(m) = m ∩NG(g
∗) (Theorem 2.4).

– If G/H is affine, then NH(m) = m ∩NG(g
∗) if and only if G/H is spherical (Prop. 2.5).

We also prove that if defNH(m) = c, then h contains a regular semisimple element of g

(Theorem 2.7). In particular, this applies to the affine homogeneous spaces with c = 0.

In Section 3, affine homogeneous spaces of the form Õ = (G×H)/∆H are studied. Here

H ⊂ G is reductive and ∆H is the diagonal in H ×H ⊂ G×H = G̃. Then Õ ≃ G and the

isotropy representation of ∆H ≃ H is identified with the H-module g. In this case, Õ has

a group structure, rG̃(Õ) = rk G̃ is maximal, and dimNH(g) can be computed via a result

of R. Richardson [23]. Here we present some complements to results of Section 2.

In Section 4, we consider coisotropy representations (H : m) with defNH(m) 6 1. If

c = 0, then π is equidimensional and m//H ≃ An. This can be regarded as an illustration

to the Popov conjecture [21]. In [15], we stated a related conjecture that if H is connected

reductive and c = 1, then m//H is either an affine space or a hypersurface. We verify this

in two cases:

(a) for the homogeneous spaces G/H with simple G;

(b) for the homogeneous spaces Õ = (G×H)/∆H with cG̃(Õ) = 1, where G is simple.

In both cases, classifications of such pairs (G,H) are known (see [13] for (a) and [2] for

(b)), and we perform a case-by-case verification.

In Section 5, H is reductive and the natural Poisson bracket { , } on the affine variety

m//H is considered. Let Z be the Poisson centre of (k[m]H , { , }). Then there is the natural
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morphism f : m → SpecZ. Using results of F. Knop [5], we prove that f is equidimen-

sional and f−1(0) = m ∩NG(g
∗).

It is shown that if a subalgebra A ⊂ k[m]H is Poisson-commutative, then trdegA 6 c+r.

We conjecture that there is always such a subalgebra with trdegA = c + r. Some partial

results towards this conjecture are described.

Our basic reference for Invariant Theory is [31].

Data availability and conflict of interest statement.

This article has no associated data. There is no conflict of interest.

1. GENERALITIES ON GROUP ACTIONS AND COISOTROPY REPRESENTATIONS

Let k[X ] denote the algebra of regular functions on a variety X . If X is irreducible, then

k(X) is the field of rational functions on X . If X is acted upon by Q, then k[X ]Q and

k(X)Q are the subalgebra and subfield of invariant functions, respectively. The identity

component of Q is denoted by Qo. For x ∈ X , let Qx denote the stabiliser of x in Q. Then

qx = LieQx. A stabiliser Qx is said to be generic, if there is a dense open subset Ω ⊂ X such

that Qy is Q-conjugate to Qx for all y ∈ Ω. We say that a property (P) holds for almost all

points of X , if there is a dense open subset X0 ⊂ X such that (P) holds for all x ∈ X0.

1.1. Complexity and rank. Let X be an irreducible G-variety. Then

– the complexity of X is cG(X) = dimX −maxx∈X dimB·x,

– the rank of X is rG(X) = maxx∈X dimB·x−maxx∈X dimU ·x.

By the Rosenlicht theorem (see e.g. [31, § 2.3]), we also have

cG(X) = trdeg k(X)B and cG(X) + rG(X) = trdeg k(X)U .

An alternate approach to the rank uses the weights of B-semi-invariants in k(X). For

quasiaffine varieties, this boils down to the following. Write X+ = X+(G) for the set of

dominant weights of G with respect to (B, T ). Let Vλ denote a simple G-module with

highest weight λ ∈ X+. Let k[X ] =
⊕

λ∈X+
k[X ](λ) be the sum of G-isotypic components,

where k[X ](0) = k[X ]G. Then

ΓX = {λ ∈ X+ | k[X ](λ) 6= 0}

is the rank monoid of X and rG(X) = dimQ(QΓX). Clearly r 6 rk g. If cG(X) = 0, then

X is said to be a spherical G-variety. If k[X ]G = k, then dim k[X ](λ) < ∞ for all λ and

mλ(X) := dim k[X ](λ)/ dimVλ is the multiplicity of Vλ in k[X ] (= the multiplicity of λ in

ΓX).
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1.2. The coisotropy representation. Let H be an algebraic subgroup of G with LieH = h.

Then g/h ≃ T{H}(G/H) is an H-module and the linear action (H : g/h) is the isotropy

representation of H . Set m = h⊥ = {ξ ∈ g∗ | ξ|h = 0}. Then m ≃ (g/h)∗ as H-module and

the linear action (H : m) is the coisotropy representation of H . If necessary, we identify g

and g∗ using a non-degenerate G-invariant bilinear form Ψ on g and regard m as subspace

of g.

Recall that, for a reductive G, G/H is affine if and only if H is reductive. Another

equivalent condition is that the form Ψ is non-degenerate on h. In this case, m ≃ g/h and

g ≃ h ⊕ m as H-module. Then the linear action (H : m) will be referred to as the isotropy

representation of H .

We always assume that the G-action on G/H has a finite kernel. This is tantamount

to saying that H contains no infinite normal subgroups of G. This condition is always

satisfied, if G is simple. If G/H is spherical, then H is said to be a spherical subgroup of G.

For simplicity, we write c and r for the complexity and rank of the homogeneous space

G/H .

Theorem 1.1 ( [12], [16, Ch. 2]). If G/H is quasiaffine, then

(1) There is a generic stabiliser for (H : m), say S, which is reductive;

(2) dimG+ dimS − 2 dimH = dimm−maxx∈m dimH·x = 2c+ r;

(3) rkG− rkS = r.

The theory developed in [12] (and presented with more details in [16]) contains much

more results. We mention those that will be needed later. Let us assume that B and T are

fixed. Then the choice of H (up to conjugacy in G) and S (up to conjugacy in H) is at our

disposal. It was proved that H and S can be chosen such that

(P1) ZG(t)
′ ⊂ S ⊂ ZG(t) for some t ∈ t = LieT . Hence T ⊂ NG(S) and S/So is abelian;

(P2) b ∩ s is a Borel subalgebra of s and B ∩ S is a generic stabiliser for (B : G/H);

(P3) u ∩ s is the nilradical of b ∩ s and U ∩ S is a generic stabiliser for (U : G/H);

(P4) t ∩ s is a Cartan subalgebra of s;

(P5) B·S = P is a parabolic subgroup and P ∩H = S.

Whenever the algebra k[m]H is finitely generated, we consider the following objects:

• the categorical quotient m//H := Spec (k[m]H);

• the quotient morphism π = πH,m : m → m//H induced by the inclusion k[m]H →֒ k[m];

• the nullcone NH(m) := π−1(π(0)) ⊂ m.

Example 1.1. Let σ ∈ Aut(g) be an involution and g = g0 ⊕ g1 the sum of ±1-eigenspaces

of σ. If G0 is the connected subgroup of G with LieG0 = g0, then G/G0 is affine and

cG(G/G0) = 0. We say thatG/G0 is a symmetric variety andG0 is a symmetric subgroup ofG.

The isotropy representation (G0 : g1) has thoroughly been studied by Kostant–Rallis [4].
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For instance, they proved that k[g1]
G0 is a polynomial algebra, dim g1//G0 = rG(G/G0),

and πG0,g1 : g1 → g1//G0 is equidimensional, i.e., all fibres have the same dimension.

For any quasiaffine G/H , we introduced in [12] a certain subspace c ⊂ m, which is

useful in the study of the linear action (H : m). Let us recall the general construction of c.

The definitions of the complexity and rank of G/H imply that

dimG/H − max
x∈G/H

dimB·x = c & dimG/H − max
x∈G/H

dimU ·x = c+ r.

Without loss of generality, we may assume that x = {H} is generic in both senses and

properties (P1)-(P5) are satisfied. Then codim g(b + h) = c, codim g(u+ h) = c + r, and we

set

c = (b+ h)⊥ = u⊥ ∩m & c̃ = (u+ h)⊥ = b⊥ ∩m.

Then dim c = c+ r and dim c̃ = c. It follows that dim c 6 dimm−maxx∈m dimH·x = 2c+ r,

and the equality occurs if and only if c = 0. Upon identification of g and g∗, we have

c = b ∩m and c̃ = u ∩m.

Consider the projection pt : b = t ⊕ u → t and set t1 = pt(c) ⊂ t. Then dim t1 = r. If

c = 0, then c̃ = {0} and pt maps c isomorphically to t1. In this case, c contains no nilpotent

elements of g. Moreover, the following holds.

Theorem 1.2 ([12, Section 3.2]). For c = 0, the subspace c ⊂ m has the following properties:

(1) the H-saturation of c is dense in m, i.e., H·c = m;

(2) almost all elements of c have the same stabiliser in H , which is just S;

(3) there is a finite group W ⊂ GL(c) such that the restriction homomorphism k[m] → k[c]

induces an isomorphism k[m]H
∼

−→ k[c]W .

It follows from (1) and (2) that, for almost all x ∈ c, the stabiliser Hx is generic, while (3)

implies that k[m]H is finitely generated and π : m → m//H is equidimensional. The common

dimension of fibres equals dimm−dimm//H = dimm−r. Furthermore, if H is connected,

then W is a reflection group and k[m]H is a polynomial ring, i.e., m//H ≃ Ar is an affine

space, see [12, Cor. 5].

If c = 0, then c resembles a Cartan subspace for the isotropy representation a symmetric

variety G/G0. For this reason, a subspace c satisfying properties of Theorem 1.2 was

christened in [12] a Cartan subspace (of m).

Thus, Theorem 1.2 shows that many good properties of the symmetric variety G/G0

and (G0 : g1) are retained for quasiaffine spherical homogeneous spaces.

For an arbitrary quasiaffine G/H , we shall say that c = u⊥ ∩m, as above, is a generalised

Cartan subspace of m. If G/H is not spherical, then c does not satisfy properties (1) and (3)

of Theorem 1.2 (cf. also Theorem 2.2 below).
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Remarks. 1) In [12], the generalised Cartan subspace is denoted by z. Here we follow

the notation of [16, Chapter 2].

2) Above results on the complexity, rank, and coisotropy representations are also ob-

tained by Knop [5] via different methods. Our approach in [12, 16] is based on the study

of ‘doubled actions’ (which is not discussed here), while Knop considers the cotangent

bundles and moment map.

The nullcone NH(m) is a fibre of π of maximal dimension [31, § 5.2]. The action (H : m)

is said to be equidimensional, if the quotient morphism π : m → m//H is equidimensional.

The defect of equidimensionality of π (= of NH(m)) is introduced in [15, Section 3] as the

difference between dimNH(m) and dimension of generic fibres of π, i.e.,

defNH(m) = dimNH(m)− (dimm− dimm//H).

Therefore, π is equidimensional if and only if defNH(m) = 0.

If H is reductive, then NH(m) = {x ∈ m | H·x ∋ 0} and the representation (H :

m) is orthogonal. The latter implies that the action (H : m) is stable [9] and therefore

dimm//H = 2c + r. Then dimNH(m) > dimm − (2c + r). On the other hand, there is an

upper bound on dimension of the nullcone for the self-dual representations of reductive

groups [25, Prop. 2.10]. In our case, this shows that

(1.1) dimNH(m) 6 dimUH +
1

2
(dimm− dimmTH ) =

1

2
(dim g− dim gTH ).

Theorem 1.3 ([15, Proposition 3.6]). If H is reductive, then defNH(m) 6 c.

Outline of the proof. 1o. If r = rk g, then S is finite and dimG/H = dimm = dimB + c.

Hence dimNH(m) > dimm− dimm//H = dimH = dimU − c. On the other hand,

(1.2) dimNH(m) 6 1
2
(dim g− dim gTH )6 dimU.

2o. If r < rk g, then LieS 6= 0 and one can use the Luna–Richardson theorem [10, Theo-

rem 4.2]. This provides a (rather technical) reduction to part 1o. �

Remark 1.1. The relations dimH = dimU − c and dimm = dimB+ c hold only if S is finite.

In general, one has dimH = dimU + dimBS − c and dimm = dimB − dimBS + c.

1.3. Homogeneous spaces of complexity at most 1. The Luna–Vust theory of equivariant

embeddings of homogeneous spaces (1983) implies that a reasonably complete theory can

be developed for homogeneous spaces of complexity 6 1. For a modern account of that

theory and related topics, we refer to [28].

As is already mentioned, if h is a fixed point subalgebra for an involution of g, then

cG(G/H) = 0. All connected spherical reductive subgroups H of simple algebraic groups

G have been found by M. Krämer [8]. Then M. Brion and I. Mikityuk (independently)

found all connected spherical reductive subgroups of the semisimple algebraic groups,

see e.g. tables in [30, Ch. I, § 3.6].
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The study of quasiaffine homogeneous spaces of complexity 1 was initiated in [13],

where a classification of the pairs (G,H) such that G simple, H is connected reductive,

and cG(G/H) = 1 is also obtained. (See also [16, Chapter 3].)

2. NEW RESULTS FOR COISOTROPY REPRESENTATIONS

For the symmetric varieties (see Example 1.1), one has dimG·x = 2dimG0·x for any x ∈

g1 [4, Prop. 5]. For quasiaffine spherical G/H , this equality holds generically, i.e., there is

a dense open subset Ω ⊂ m such that dimG·x = 2dimH·x for all x ∈ Ω [12, Theorem 5].

Then H·x is a Lagrangian subvariety of the symplectic variety G·x ⊂ g∗ for all x ∈ Ω. The

following observation is a slight extension of [12, Proposition 1].

Lemma 2.1. (i) For any algebraic subgroup H ⊂ G and x ∈ m = h⊥, one has

dimG·x = dimH·x+ dim([g, x] ∩m) > 2 dimH·x.

(ii) dimG·x = 2dimH·x⇐⇒ [g, x] ∩m = [h, x].

Proof. We have ([g, x] ∩m)⊥ = ([g, x])⊥ + m⊥ = gx + h. Hence

dim([g, x] ∩m) = dim g− dim gx − dim h+ dim(gx ∩ h) = dimG·x− dimH·x.

It is also clear that [g, x] ∩m ⊃ [h, x]. �

In the setting of symmetric varieties (Example 1.1), the relation [g, x] ∩ g1 = [g0, x] for all

x ∈ g1 readily follows from the presence of involution σ.

Recall that c = m ∩ u⊥ = m ∩ b is a generalised Cartan subspace, c̃ = c ∩ u, and t1 =

pt(c) ⊂ t. The following is a generalisation of Theorem 1.2(1).

Theorem 2.2. Let G/H be a quasiaffine homogeneous space and c ⊂ m a generalised Cartan

subspace. Then codim mH·c = cG(G/H) = c.

Proof. 1. We assume that properties (P1)-(P5) are satisfied for S,B, and H . Then l = s⊕ t1

is a Levi subalgebra of p = LieP . Moreover, by [12, Lemma 3], one has gy = l for almost

all y ∈ t1. Let n denote the nilradical of p and n− the opposite nilradical, i.e., g = p ⊕ n−.

Then c = m ∩ b = m ∩ (n⊕ t1) and c̃ = m ∩ u = m ∩ n.

2. By part 1, we have c⊥ = m⊥ + (n ⊕ t1)
⊥ = h + (s ⊕ n) = h + n. For almost all y ∈ c,

gy is a Levi subalgebra of p (see Step 1 in [16, Theorem 2.2.6]). Therefore ([g, y] ∩ c)⊥ =

gy + c⊥ = h+ (gy + n) = h+ p. Hence

(2.1) [g, y] ∩ c = (h+ p)⊥ = m ∩ n = c̃ and dim([g, y] ∩ c) = c.

3. Let us prove that [h, y] ∩ c = {0} for almost all y ∈ c. (For c = 0, this follows

from (2.1), and this was already used in [12, 16] for proving Theorem 1.2(1).) By part 2,

[g, y] ∩ c = c̃ ⊂ n. Therefore, it suffices to prove that [h, y] ∩ n = {0}. Actually, we shall

show that [h, y] ∩ p = {0}.
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Since h∩ p = s, we can write h = s⊕ ĥ, where ĥ∩ p = {0}. Then every nonzero element

of ĥ has a nonzero component in n− w.r.t. the sum g = p ⊕ n−. Write y = y′ + y′′, where

y′ ∈ t1 and y′′ ∈ n, i.e., pt(y) = y′. Let us say that y′ ∈ t1 is generic, if gy
′

= l. Take a nonzero

x = xs + x̂ ∈ h, where xs ∈ s and x̂ ∈ ĥ. Write x̂ = xp + x−, where xp ∈ p and x− ∈ n−. If

x̂ 6= 0, then x− 6= 0 as well. We have

[x, y] = [x̂, y] = [xp, y] + [x−, y]

and here [xp, y] ∈ p. Since y′ is a generic element of t1, there is n ∈ N = exp(n) such

that n·y = y′. Then n·[x−, y] = [n·x−, y
′]. Again, since y′ is generic, the last bracket has a

nonzero component in n−. Therefore, the same holds for [x−, y] = n−1·[n·x−, y′].

Thus, we proved that [h, y] ∩ p = {0} for almost all y ∈ c and thereby [h, y] ∩ c = {0}.

4. Since [h, y] ∩ c = {0} for almost all y ∈ c, the intersection H·y ∩ c is finite. Hence

dimH·c = dimH·y + dim c = dimH − dimS + (c+ r)

= dimm− (2c+ r) + (c+ r) = dimm− c. �

Theorem 2.3. For any homogeneous space G/H , we have

(1) dim
(
m ∩NG(g

∗)
)
= dimm − r and all irreducible components of m ∩NG(g

∗) have this

dimension.

(2) The intersection m ∩NG(g
∗) is proper if and only if r = rk g.

Proof. (1) To use some results of F. Knop [5], we need more notation. Let T ∗
O ≃ G ×H m

be the cotangent bundle of O = G/H and Φ̃ : T ∗
O → g∗ the associated moment map. Let

M̃O = G·m denote the closure of the image of Φ̃ in g∗. Finally, MO is the spectrum of the

integral closure of k[M̃O] in k[T ∗
O]. This yields the commutative diagram of morphisms

(2.2) T ∗
O

ψ

""❊
❊

❊

❊

❊

❊

❊

❊

❊

Φ
//

ψ̃

44

Φ̃

%%

MO
τ̃

//

πM

��

M̃O
�

� i
//

π
M̃

��

g∗

πg∗

��

MO//G
τ

// M̃O//G
�

�

// g∗//G

where the vertical arrows are quotient morphisms and Φ̃ = τ̃ ◦ Φ see [5, Sect. 6]. By

construction, τ̃ is finite and onto. Then so is τ . It is proved in [5] that

• MO//G is an affine space, see Satz 6.6(b);

• ψ is equidimensional and onto, see Satz 6.6(c);

• dimMO//G = r, see Satz 7.1.
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Then ψ̃ = τ ◦ ψ is equidimensional and onto, too. Hence, for 0̄ = πM̃(0), we obtain

dim ψ̃−1(0̄) = dim T ∗
O − r = 2dimm− r. Note that π−1

M̃
(0̄) = G·m ∩NG(g

∗). Hence

ψ̃−1(0̄) = Φ̃−1(G·m ∩NG(g
∗)) = G×H (m ∩NG(g

∗)).

Therefore, dim(m ∩ NG(g
∗)) = 2 dimm − r − dimG/H = dimm − r and all irreducible

components have this dimension, as required.

(2) By definition, the intersection of m and NG(g
∗) in g∗ is proper if and only if

dim
(
m ∩NG(g

∗)
)
= dimm+ dimNG(g

∗)− dim g = dimm− rk g. �

If H is reductive, then NH(m) = {m ∈ m | H·m ∋ 0}. Therefore, NH(m) ⊂ m ∩NG(g
∗).

As we prove below, this inclusion actually holds in a more general situation.

Theorem 2.4. Suppose that G/H be quasi-affine and k[m]H is finitely generated. Then

(i) NH(m) ⊂ m ∩NG(g
∗);

(ii) if c = 0, then NH(m) = m ∩NG(g
∗).

Proof. (i) Consider a version of the commutative diagram (2.2) :

(2.3) NH(m) �
�

// m
�

�

j
//

πm

��

G×Hm
Φ̃

//

ψ̃

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

��

G·m

π
M̃

��

�

�

// g∗

m//H
∼

// (G×Hm)//G
f

// G·m//G

Here G·m = M̃O and j is the embedding of m as fibre of {H} ∈ G/H . As above, all

vertical arrows are quotient morphisms. Since k[m]H is finitely generated, we get two

new objects in the lower row. Using the path through πm, we see that NH(m) maps into

0̄ = πM̃(0) ∈ G·m//G. On the other hand, using the path through j and ψ̃, we see that

j(NH(m)) ⊂ ψ̃−1(0̄) = G×H

(
m ∩NG(g

∗)
)
, i.e., NH(m) ⊂ m ∩NG(g

∗).

(ii) Here we use a fragment of the previous diagram:

m
�

�

Φ̃◦j
//

πm
��

G·m

π
M̃

��

m//H
f

// G·m//G

If c = 0, then dimm//H = dimG·m//G = r. Since ψ̃ is equidimensional, the same is true for

f . The affine varieties m//H and G·m//G are conical, hence f is finite and πm(0) = f−1(0̄).

Therefore, NH(m) = G·m ∩NG(g
∗) ∩m = NG(g

∗) ∩m. �

Remark 2.1. (a) There is an alternate proof of Theorem 2.4(ii) that exploits properties of

the Cartan subspace c = b ∩ m. In the spherical case, the projection pt : b → t maps c
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isomorphically onto t1 and one proves that G·t1 = G·c = G·m. Then the finiteness of the

morphism f : m//H → G·m//G is obtained without using the equidimensional map ψ̃.

(b) For the symmetric varieties, the equality NG0
(g1) = g1 ∩NG(g) is proved in [4].

For the affine homogeneous spaces, one can strengthen Theorem 2.4 as follows.

Proposition 2.5. If G/H is affine, then

(i) dimm− 2c− r 6 dimNH(m) 6 dimm− c− r;

(ii) NH(m) = m ∩NG(g
∗) if and only if G/H is spherical.

Proof. (i) The first inequality means that dimNH(m) > dimm−dimm//H . By Theorem 1.3,

if G/H is affine, then

defNH(m) = dimNH(m)− (dimm− (2c+ r)) 6 c.

Hence the second inequality.

(ii) It follows from part (i) and Theorem 2.3 that dimNH(m) < dim
(
m ∩NG(g

∗)
)

unless

c = 0. �

Remark 2.2. The equality in the first place in Proposition 2.5(i) is equivalent to that π is

equidimensional, while the equality in the second place means that dimNH(m) = c, i.e.,

it is maximal possible. Hence, for c = 0, both properties hold (as we already know). For

c = 1 exactly one property takes place, i.e., either π is equidimensional, or defNH(m) = 1.

Let us say that a reductive subgroup H ⊂ G is s-regular, if h contains a regular semisim-

ple element of g.

Proposition 2.6. Suppose that G/H is affine and So is a torus. If defNH(m) = c, then H is

s-regular.

Proof. If So is a torus, then dimH = dimU + dimS − c (see Remark 1.1) and dimm −

dimm//H = dimH − dimS. Then

defNH(m) = dimNH(m)− dimH + dimS = dimNH(m)− dimU + c.

If defNH(m) = c, then dimNH(m) = dimU . By Eq. (1.2), this means that dim gTH = rk g,

i.e., TH contains a regular semisimple element of G. �

In particular, Proposition 2.6 asserts that if c = 0 and So is a torus, then H is s-regular.

However, it is easily seen that if a symmetric subgroupG0 does not contain infinite normal

subgroups of G (e.g. if G is simple), then it is s-regular regardless of the structure of S.

This suggests that the condition on S in Proposition 2.6 is superfluous.

Theorem 2.7. If G/H is affine and defNH(m) = c, then H is s-regular.
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Proof. By Proposition 2.6, it suffices to handle the case in which r < rk g, i.e., rkS > 0.

Let NA(B) (resp. ZA(B)) denote the normaliser (resp. centraliser) of the group B in

A. Since S is contained between a Levi subgroup of G and its commutant, there is a

connected reductive group K ⊂ G such that NG(S)
o = So·K and So ∩ K is finite. Then

rkK = rkG− rkS = r. Since NG(S)
o = ZG(S)

o·So, one also has ZG(S)
o = K·Z(So), where

Z(So) is the centre of So. For Lie algebras, this means that zg(s) = k⊕ z(s).

As S ⊂ H , we have NH(S)
o = So·(K ∩ H)o and K ∩ H is reductive. The linear action

(K ∩H : mS) is the coisotropy representation of the affine homogeneous space K/K ∩H ,

and it follows from the construction that it’s generic stabiliser is finite.

By the Luna–Richardson theorem [10, Theorem 4.2], the restriction homomorphism

k[m] → k[mS ], f 7→ f |mS , induces an isomorphism k[m]H
∼

−→ k[mS ]NH (S). Hence

k[mS ]NH(S)0 = k[mS ]K∩H is a finite k[m]H -module and NH(m) ∩ mS = NK∩H(m
S). It is

also known that

– cK(K/K ∩H) = cG(G/H) = c, see [14, 1.9] and

– defNH(m) 6 defNK∩H(m
S) [15, Lemma 3.4].

It then follows from Theorem 1.3 that defNK∩H(m
S) = c. Therefore, Proposition 2.6 ap-

plies to K/K ∩ H and we conclude that k ∩ h contains regular semisimple elements of k.

Let tS be a Cartan subalgebra of s. (Then tS ⊂ h.) Let tK be a Cartan subalgebra of k such

that tK ∩h contains a regular semisimple element of k. Since K and So commute and their

intersection is finite, tS ⊕ tK =: t̃ is a Cartan subalgebra of g. Let x ∈ tS be a sufficiently

general semisimple element of s. Then zg(x) = zg(tS) ⊃ zg(s) = k ⊕ z(s). Consequently,

zg(tS) = tS+ k̃ for a reductive Lie algebra k̃ ⊃ [k, k]. However, since s contains a commutant

of a Levi subalgebra of g, it is not hard to prove that k̃ = [k, k]. In other words,

[zg(tS), zg(tS)] = [zg(s), zg(s)] = [k, k].

Therefore, if x ∈ tS is sufficiently general and y ∈ tK ∩ h is regular in k, then x+ y ∈ h is a

regular semisimple element of g. �

Corollary 2.8. If G/H is an affine spherical homogeneous space, then H is s-regular.

Remark 2.3. (1) If G/H is quasiaffine but not affine, then the condition c = 0 does not

guarantee that H is s-regular. For instance, take H = U .

(2) It can happen that c = 1, S is finite, and H is s-regular, but defNH(m) = 0 < 1. For

instance, take G = SO2n+1 and H = SLn.

3. ON A CLASS OF AFFINE HOMOGENEOUS SPACES

For a reductive subgroup H ⊂ G, we set G̃ = G × H and H̃ = ∆H = H × H ⊂ G̃. Then

Õ = G̃/H̃ is an affine homogeneous space of the reductive group G̃, which is isomorphic
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to G. The transitive G̃-action on G is given by the formula (g, h) ◦ s = gsh−1, where

(g, h) ∈ G̃ and s ∈ G. Then the space of the coisotropy representation of H̃ is

m̃ = h̃⊥ = {(ξ, η) ∈ g∗ × h∗ | ξ|h = −η}.

We shall identify the H̃-module m̃ with the H-module g∗ via the projection to the first

factor in g̃∗ = g∗ × h∗. If we use the isomorphisms g∗ ≃ g and h∗ ≃ h, and the sum

g = h⊕m = h⊕ h⊥, then

(3.1) m̃ = (m× {0})⊕ {(x,−x) | x ∈ h} ⊂ g× h.

The multiplicities in the algebra k[G̃/H̃] are closely related to the multiplicities in the

branching rule G ↓ H . Let λ̃ = (λ, µ) be a dominant weight of G̃, where λ ∈ X+(G) and

µ ∈ X+(H). Write Ṽλ̃ = Vλ⊗Wµ for a simple G̃-module. Letmλ̃(Õ) denote the multiplicity

of Ṽλ̃ in k[Õ], i.e., the multiplicity of λ̃ in the rank monoid Γ̃ = ΓÕ. Then mλ̃(Õ) equals the

multiplicity of Wµ in V∗
λ|H , see [2]. It was also shown therein that if cG̃(Õ) 6 1, then one

can explicitly describe all the multiplicities and the branching rule.

Set c̃ = cG̃(Õ), r̃ = rG̃(Õ). By [2, Section 3] one has c̃ = cG(G/BH) and

(3.2) r̃ = rk G̃ = rkG+ rkH.

If H does not contain infinite normal subgroups of G (in particular, H is a proper sub-

group of G), then there is a more practical formula

(3.3) c̃ = dimU − dimBH .

Note that if H = G, then Õ = G × G/∆G is a spherical homogeneous space of G × G,

i.e., c̃ = 0. That is, the constraint on H is necessary for (3.3) to be valid. Whenever we

consider the homogeneous space Õ = G̃/H̃, it is also assumed that H does not contain

infinite normal subgroups of G and thereby (3.3) holds.

We have here the quotient morphism π̃ : m̃ ≃ g → g//H ≃ m̃//H̃ and the nullcone

π̃−1(π̃(0)) = NH̃(m̃) ≃ NH(g). It follows from (3.2) and (3.3) that

(3.4) dim g//H = 2c̃+ r̃ = dim g− dim h = dimm.

Proposition 3.1. All irreducible components of the nullcone NH(g) have the same dimension,

which is equal to dimUH + 1
2
(dim g− dim gTH ).

Proof. Since the H-module g contains h as a summand, all roots of h occur as H-weights

in g. Moreover, g is a self-dual H-module. Therefore, g satisfies the conditions (C.1) and

(C.3) considered by Richardson in [23], and his Theorem 7.3 applies here. �

The point of this result is that the upper bound on dimension of the nullcone given in [25],

cf. Eq. (1.1), provides now the exact value. Properties of G̃/H̃ are better than those of
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arbitrary affine homogeneous spaces G/H , because r̃G̃(G̃/H̃) = rk G̃ and dimNH(g) is

known. Preceding formulae also show that

defNH(g) =
1

2
(dim g− dim gTH )− dimBH 6 dimU − dimBH = c̃,

which illustrates to the easy part of Theorem 1.3. Since gTH contains a Cartan subalgebra

of g and dimNH(g) > dim g− dim g//H = dimH , Proposition 3.1 implies that

(3.5) dimBH 6 1
2
(dim g− dim gTH ) 6 dimU.

Here the equality in the first place is equivalent to that dimNH(g) = dimH , i.e., π̃ is

equidimensional. Whereas the equality in the second place is equivalent to that gTH is a

Cartan subalgebra of g, i.e., H is s-regular. It is easily seen that H is s-regular in G if and

only if H̃ is s-regular in G̃.

Comparing equations (3.3) and (3.5) shows that

• if c̃ = 0, then H is s-regular and π̃ is equidimensional;

• for c̃ = 1, exactly one of these two properties is satisfied.

However, for homogeneous spaces G̃/H̃ and the isotropy representation (H : g), there is

a more precise assertion for any c̃ > 0.

Theorem 3.2. Suppose that g is simple, c̃ > 0, and h 6= 0. Then the first inequality in (3.5) is

always strict, i.e., π̃ cannot be equidimensional. In particular, if c̃ = 1, then H is s-regular and

defNH(g) = 1.

Proof. Without loss of generality, we may assume that H is connected. Let x ∈ h be a

semisimple element such that Hx = TH . The orbit H·x ⊂ g is closed and, since g = h⊕m,

the slice representation at x equals (TH : tH ⊕ m). Here tH is a trivial TH-module. The

property of being equidimensional is inheritable, see [31, § 8.2]. Therefore, if (H : g) is

equidimensional, then so are (TH : tH ⊕m) and (TH : m).

Assume that π̃ is equidimensional, i.e., dimBH = 1
2
(dim g − dim gTH ). Then we have

dimU = 1
2
(dim g− dim gTH ) + c̃ and hence

(3.6) dim gTH = rk g+ 2c̃.

Take a 1-parameter subgroup λ : k× → TH such that mTH = mλ(k×). Then

m = m+ ⊕mTH ⊕m−,

where m+ (resp. m−) is the sum of weight spaces mν such that (λ, ν) > 0 (resp. (λ, ν) < 0).

Since m is a self-dual H-module, the TH -weights in m+ and m− are opposite to each other.

As gTH = tH ⊕ mTH , it follows from (3.6) that dimmTH = rk g− rk h + 2c̃. Then using (3.2)

and (3.4), we obtain dimm = rk g + rk h+ 2c̃ and dimm+ = dimm− = rk h.
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The equidimensional representations of tori are described by Wehlau [32]. For the self-

dual representations, his description implies that the nonzero weights in m+ are linearly

independent. Therefore, the nonzero TH-weights in m+ (and in m−) are of multiplicity 1.

As the same is true for the TH -weights in h, we obtain the following conditions:

(♦1) the multiplicity of any nonzero TH-weight in g is 6 2;

(♦2) the number of weights with multiplicity 2 is at most 2rk h = dim(m+ ⊕m−).

Let us prove that (♦1) and (♦2) cannot be satisfied if h 6= {0}. By (3.6), l = gTH is not

abelian. Without loss of generality, we may assume that l is a standard Levi subalgebra

w.r.t. T ⊂ B, i.e., l is determined by the set of simple roots α such that α|tH = 0.

(a) Assume that [l, l] has a simple factor of rank > 2. Then there is a chain of simple

roots α1, α2, β in the Dynkin diagram of g such that αi|tH = 0 (i = 1, 2) and β|tH 6= 0. Then

β, β + α2, β + α2 + α1 have the same (nonzero) restriction to tH , which contradicts (♦1).

(b) Assume that [l, l] ≃ kA1 and k > 2. Take simple roots α1, α2 in [l, l] such that the

simple roots between them, say β1, . . . , βr, do not belong to [l, l]. If β =
∑r

i=1 βi, then the

roots β, β + α1, β + α2 yield a TH-weight of multiplicity > 3, which again contradicts (♦1).

(c) Assume that [l, l] ≃ A1. Then c̃ = 1, generic elements of tH are subregular in g, and

there is a unique root α ∈ Π such that α|tH = 0. Each pair of roots of the form {µ, µ + α}

gives rise to a TH -weight in g of multiplicity 2.

• If there are roots of different length and α is short, then one can find a triple of roots

µ, µ+ α, µ+ 2α, which again provides a TH -weight of multiplicity > 3.

• For α long, the number of pairs of positive roots {µ, µ+ α} equals h∗−2, where h∗ is

the dual Coxeter number of g, see [17, Section 1]. Then the total number of such pairs equals

2(h∗ − 2) and (♦2) means that 2rk h > 2(h∗ − 2). Since h∗ − 1 > rk g, one must have

h∗ − 2 6 rk h < rk g 6 h∗ − 1.

Hence rk g = h∗ − 1 and rk h = rk g− 1. The equality rk g = h∗ − 1 holds only for An and

Cn, and we look more carefully at these two series. Since c̃ = 1 and rk h = rk g − 1, we

obtain using (3.4) that

dim h = dim g− rk g− rk h− 2c̃ = dim g− 2rk g− 1.

g = sln+1: Here dim h = n2 − 1 and hence h = sln is the only possibility. But the

subgroup SLn ⊂ SLn+1 is s-regular, if n > 2, i.e., if h 6= 0.

g = sp2n: Here dim h = 2n2 − n− 1 > dim sp2n−2, and this case is also impossible.

Thus, the assumption that π̃ is equidimensional leads to a contradiction. �

Remark 3.1. This result is specific for homogeneous spaces of the form (G ×H)/∆H . For

arbitrary affine homogeneous spaces G/H , it can happen that c = 1, but π : m → m//H
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is equidimensional and H is not s-regular. For instance, take (G,H) = (Sp2n, Sp2n−2) or

(SO2n+1, SO2n−1) with n > 2.

3.1. More on the nullcone for π̃. For G̃ = G×H and G̃/H̃ ≃ G, we have

NH̃(m̃) ⊂ NG̃(g̃) ∩ m̃ and NG̃(g̃) = NG(g)×NH(h) ⊂ g× h.

Using (3.1), one readily verifies that under the isomorphism m̃ ≃ g the variety NG̃(g̃)∩m̃

is identified with NG(g) ∩
(
NH(h) × m

)
⊂ g. Since r̃ = rk g̃, translating Theorem 2.3,

Theorem 2.4, and Proposition 2.5 into this setting, we obtain

Theorem 3.3. If c̃ = 0, then NH(g) = NG(g) ∩ (NH(h)×m). For arbitrary c̃ > 0, we have

• dimNH(g) 6 dim h+ c̃ = dim Ũ = dimU + dimUH ;

• dim(NG(g) ∩ (NH(h)×m)) = dim h+ 2c̃ = dim g− rk g− rk h;

• the intersection NG(g) ∩ (NH(h)×m) is proper.

Moreover, if dimNH(g) = dim h+ c̃, i.e., defNH(g) = c̃, then H is s-regular in G.

3.2. Homogeneous spaces G̃/H̃ of complexity 6 1.

The pairs (G,H) such that cG̃(G̃/H̃) = 0 can be characterised by a number of equivalent

properties. An extensive list of such properties is given and discussed in [18, Section 3.2].

In particular, (G,H) is a strong Gelfand pair, which means that any simple G-module Vλ
is a multiplicity free H-module. A classification of strong Gelfand pairs (in the category

of compact Lie groups) is obtained by Manfred Krämer in [7].

If G is simple, then the (very short) list of strong Gelfand pairs consists of two series:

(sln, gln−1), n > 2, and (son, son−1), n > 5.

See also comments in [2, Section 4] and other details in [18, Section 3.2].

Remark 3.2. For a symmetric variety G/G0 with simple G, it is proved in [3] that

π̃ : g → g//G0 is equidimensional ⇐⇒ (g, g0) is either (sln, gln−1) or (son, son−1).

Since these two series gives rise to the only spherical homogeneous spaces G̃/H̃ , our

Theorem 3.2 generalises that result of [3].

The list of pairs (G,H) such thatG is simple, H is connected, and c̃ = 1 is obtained in [2,

Section 4]. For the reader convenience, we recall it in Table 1.

TABLE 1. The pairs (G,H) with simple G and c̃ = 1

} 1 2 3 4 5 6 7 8

G SLn+1 Sp6 Spin7 G2 SL3 SL3 Sp4 SL4

H SLn Sp4×SL2 G2 SL3 SO3 T SL2·k× (SL2)
2·k×
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For } 6, T = T2 is a maximal torus of SL3, and } 7 represents actually two different

pairs. Here H is a Levi subgroup of Sp4, and there are two non-conjugate Levi subgroups

corresponding to either the long or the short simple root of Sp4. In Section 4, these two

cases will be referred to as 7(l) and 7(s), respectively.

4. THE DEFECT OF THE NULL-CONE AND INVARIANTS

Let G → GL(V) be a linear representation of a connected reductive group G. In [21],

V. Popov conjectured that if G is semisimple and π : V → V//G is equidimensional, then

V//G is an affine space, i.e, k[V]G is a polynomial algebra. Afterwards, this conjecture was

extended to arbitrary connected reductive groups. Using our terminology, the conjecture

can be stated as follows:

If G is a connected reductive group and defNG(V) = 0, then V//G is an affine space.

There had been a good few classification work related to this conjecture. To the best of

my knowledge, it is verified in the following cases:

• G is simple, V is irreducible (V.L. Popov, 1976 [21]);

• G is simple, V is reducible (O.M. Adamovich, 1980);

• G is semisimple, V is irreducible (P. Littelmann, 1989);

• G is a torus (E.B. Vinberg (oral lecture at MSU) 1983; D. Wehlau, 1992 [32]);

• G is a product of two simple factors, with some exceptions (D. Wehlau, 1993 [33]).

An interesting approach to an a priori proof of the Popov conjecture is presented in [29].

More information on this conjecture and other references can be found in [31, § 8.7].

Some time ago, I stated a similar conjecture on non-equidimensional representations.

Let edV//G denote the embedding dimension of V//G, i.e., the minimal number of generators

of k[V]G. Then hdV//G := edV//G− dimV//G is the homological dimension of V//G, see [22].

Conjecture 4.1 ([15, Conj. 3.5]). Suppose that G is connected, V is a self-dual G-module, and

defNG(V) = 1. Then V//G is either an affine space or a hypersurface, i.e., hdV//G 6 1.

The assumption on self-duality is essential here, see Example in [15, p. 94]. This conjec-

ture is proved for tori [15, Prop. 3.10] and G = SL2 [15, Example 3.12(1)].

The isotropy representation of a reductive subgroup H ⊂ G is orthogonal and the

complexity of G/H provides an upper bound on defNH(m), see Theorem 1.3. Therefore,

Conjecture 4.1 can be specialised to the following

Conjecture 4.2. If H is connected reductive and cG(G/H) = 1, then hdm//H 6 1.

As a support to Conjecture 4.2, we prove below two theorems. Before stating these

theorems, we describe our general approach. If H is simple and H ⊂ GL(V), then we use

various classification results on the structure of V//H :
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• when V//H ≃ AN [1, 24];

• when V//H is a complete intersection, especially a hypersurface [26, 27];

• when H = SL2 and hd (V//SL2) 6 3 [22, Theorem 4].

If H is not simple, then we work with consecutive quotients, using factors of H . Suppose

that H = H1×H2 is a product of reductive groups. Then one has the quotient morphisms

(4.1) m
π1−→ m//H1

π2−→ (m//H1)//H2 = m//H.

In all cases below, we can choose H1 such that hd (m//H1) 6 2, hence m//H1 is a complete

intersection. (In most cases, we actually obtain hd (m//H1) 6 1.) This yields an embed-

ding m//H1 →֒ V2 into an H2-module V2 such that codim V2
(m//H1) 6 2. Then using the

equations of m//H1 in V2, we describe m//H as a subvariety of V2//H2. This allows us to

handle the second step in (4.1) and prove that hd (m//H) 6 1.

To describe m asH-module, we need some notation. The fundamental weights ofH are

denoted by {ϕi} and ε stands for the basic character of one-dimensional torus k× = T1.

The fundamental weights for the second (resp. third) simple factor of H are marked with

prime (resp. double prime). The unique fundamental weight of SL2 is denoted by ϕ.

Write 11 for the trivial one-dimensional representation.

As in [24, 25, 27], the simple H-module Wλ is identified with its highest weight λ, using

the multiplicative notation for λ in terms of the fundamental weights. For instance, we

write ϕjϕk + 3ϕ2
i in place of Wϕj+ϕk

+ 3W2ϕi
. Finally, λ∗ is a dual H-module to λ.

Theorem 4.3. If G is simple and cG(G/H) = 1, then

• either m//H is an affine space and defNH(m) = 0;

• or m//H is a hypersurface and defNH(m) = 1.

(Hence an a priori conceivable case, where m//H ≃ An and defNH(m) = 1, does not occur.)

Proof. The list of such pairs (G,H) consists of 17 items, and we refer to their numbering

in [13, Table 1] (see also Table 1 in [16]). The output is that k]m]H is a polynomial algebra

for } 1, 4–9, 13, 16,1̇7. For the other cases, k]m]H is a hypersurface.

Let us provide some details to our computations. If H is simple, then the pairs with a

polynomial algebra k]m]H can be picked from the list of ”coregular representations” of H

obtained by Schwarz [24] and Adamovich–Golovina [1]. This applies to } 4–8, 13, 16–17.

Moreover, for all these cases, one also has defNH(m) = 0, see [25].

For } 1, we have (G,H) = (SL2n, SLn × SLn) and m = ϕ1ϕ
′
1 + (ϕ1ϕ

′
1)

∗ + 11. Here

one can use the fact that Ĥ = (SLn)
2·T1 is a symmetric subgroup of G, with isotropy

representation m̂ = ϕ1ϕ
′
1ε+ (ϕ1ϕ

′
1ε)

∗, and hence k[m̂]Ĥ is a polynomial algebra.

For } 9, we have (G,H) = (Cn,Cn−2 ×A1 × A1), n > 3, and m = ϕ1ϕ
′ + ϕ1ϕ

′′ + ϕ′ϕ′′.

Here m|Cn−2
= 4ϕ1 + 411. If n > 4, then (4ϕ1)//Cn−2 ≃ A6, and it is isomorphic to
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ϕ′ϕ′′ + 211 as A1 × A1-module. Hence m//Cn−2 ≃ ϕ′ϕ′′ + 211 + ϕ′ϕ′′. It is easily seen

that (2ϕ′ϕ′′)//A1 × A1 ≃ A3 (it is also } 1 with n = 2). Therefore, m//H ≃ A5. By [25],

(Cn−2, 4ϕ1) is equidimensional if and only if n > 5. Then both quotient morphisms

m → m//Cn−2 → (m//Cn−2)//(A1 × A1) = m//H

are equidimensional. This already shows that m//H is an affine space for n > 4 and,

moreover, (H : m) is equidimensional, if n > 5. Some other ad hoc methods allow us to

handle the case with n = 3 and prove the equidimensionality for n = 4.

The other cases, where H is semisimple, are Sp4 ⊃ SL2 (} 14) and B5 ⊃ B3 ×A1 (} 12).

– In } 14, the SL2-module m equals ϕ6 (binary forms of degree 6), and it is a classical

fact from XIX century that ϕ6//SL2 is a hypersurface, cf. also [22, Theorem 4].

– In } 12, m = ϕ3ϕ
′2 + ϕ1 as B3 × A1-module. Then m = 3ϕ3 + ϕ1 as B3-module and

m//B3 ≃ A10. Using explicit multi-degrees of basic B3-invariants, see } 6 in [1, Table 3],

one sees that m//B3 ≃ ϕ′2 + ϕ′4 + 211 as A1-module, and therefore (m//B3)//A1 = m//H is a

hypersurface.

Consider an item, where H is not semisimple. For } 11, we have (G,H) = (B4,G2·T1)

and m = ϕ1ε+ϕ1+ϕ1ε
−1. Then m = 3ϕ1 as G2-module and (3ϕ1)//G2 ≃ A7. Using explicit

multi-degrees of basic G2-invariants, cf. } 1 in [1, Table 4], we obtain that the T1-weights

on A7 are ε2, ε, ε−1, ε−2, 1, 1, 1. Hence A7//T1 = m//H is a hypersurface. �

Remark 4.1. I would like to fix some misprints and omissions in [13, Table 1].

• In } 1, the group H has to be SLn × SLn;

• the summand 11 has to be added to m in } 3, 6. One also has r = 4 in } 3.

• for } 12, the right formula for m is given above.

A similar approach works for affine homogeneous spaces G̃/H̃ with c̃ = 1.

Theorem 4.4. If G is simple and c̃ = cG̃(G̃/H̃) = 1, then g//H is a hypersurface.

Proof. We check the assertion for all items in Table 1. The H-modules g are given below.

The underlined summands give rise to the adjoint representation of H .

1. sln+1 = ϕ1ϕn−1 + ϕ1 + ϕn−1 + 11 as SLn-module.

2. sp6 = ϕ2
1 + ϕ1ϕ

′ + ϕ′2 as Sp4 × SL2-module.

3. so7 = ϕ1 + ϕ2 as G2-module.

4. G2 = ϕ1ϕ2 + ϕ1 + ϕ2 as SL3-module.

5. sl3 = ϕ2 + ϕ4 as SL2-module (we use the isomorphism sl2 ≃ so3).

6. sl3 = (ε+ µ+ εµ) + (ε+ µ+ εµ)∗ + 211 as T2-module.

7(s). sp4 = ϕ2ε2 + ϕ2 + ϕ2ε−2 + 11 as SL2·T1-module.

7(l). sp4 = ϕ2 + ϕε+ ϕε−1 + ε2 + ε−2 + 11 as SL2·T1-module.
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8. sl4 = ϕϕ′ε+ ϕϕ′ε−1 + ϕ2 + ϕ′2 + 11 as (SL2 × SL2)·T1-module.

◮ Items 1, 3–5 are representations admitting a finite coregular extension in the sense of

Shmel’kin [26], and he proves that here g//H is an (explicitly described) hypersurface.

◮ Items 7(l, s) can be handled in a similar way, and we provide details for one of them.

– In the s-case, we have sp4 = 3ϕ2+11 as SL2-module, and (3ϕ2)//SL2 is a hypersurface,

see [22, Theorem 4]. We skip below the trivial H-module 11. It is not hard to write explic-

itly down the basic invariants for (SL2 : 3ϕ2). Let F denote the basic invariant of degree

2 for the adjoint representation (SL2 : ϕ
2), i.e., F (v) = (v, v) for v ∈ ϕ2. If (v1, v2, v3) ∈ 3ϕ2,

then the basic SL2-invariants are: Fij , 1 6 i 6 j 6 3, and F̃ , where Fij(v1, v2, v3) = (vi, vj)

and F̃ = det[v1, v2, v3]. The basic relation is

(4.2) det
(
(Fij)

3
i,j=1

)
= F̃ 2,

where F = (Fij)
3
i,j=1 is the symmetric 3 by 3 matrix. If t·(v1, v2, v3) = (t−2v1, v2, t

2v3)

for t ∈ T1, then F13, F22, F̃ are already T1-invariants, but t·F11 = t4F11, t·F12 = t2F12,

t·F23 = t−2F23, and t·F33 = t−4F33. Therefore, the other SL2·T1-invariants are:

x1 = F11F33, y1 = F12F23, z1 = F11F
2
23, z2 = F33F

2
12.

Thus, we get seven generators and yet another relation

(4.3) x1y
2
1 = z1z2.

Expressing the det
(
F
)

via these SL2·T1-invariants, we rewrite (4.2) as

x1F22 + 2y1F13 + F 2
13F22 + z1 + z2 = F̃ 2.

Therefore, either z1 or z2 can be excluded from the minimal generating system of k[m]H .

Afterwards, (4.3) yields the relation for the remaining six invariants.

– In the l-case, sp4 = ϕ2+2ϕ+311 as SL2-module, and (ϕ2+2ϕ)//SL2 is a hypersurface,

too. The rest is similar to the s-case.

◮ } 6 is easy and left to the reader.

◮ } 8 is a slice representation for } 2. Therefore, using the monotonicity results for

homological dimension of algebras of invariants [22, Theorem 2], it suffices to handle } 2.

◮ } 2 is the most difficult case, and we only give some hints. Here sp6 = ϕ2
1+2ϕ1+311 as

Sp4-module. The representation (Sp4 : ϕ
2
1+2ϕ1) is a slice for (SL4 : ϕ̃

2
1+ϕ̃2+2ϕ̃∗

1 = Ṽ ) (use

v ∈ ϕ̃2 such that (SL4)
v = Sp4) and hd (Ṽ //SL4) = 2 [27, Table 9]. Therefore, (ϕ2

1+2ϕ1)//Sp4

is a complete intersection and hd (ϕ2
1 + 2ϕ1)//Sp4 6 2 [22]. The subsequent argument is

similar in spirit with that in case 7(s), but much more elaborated. We also need the fact

that, for the truncated Sp4×SL2-module ϕ2
1+ϕ1ϕ

′ = V ⊂ sp6, the quotient V//(Sp4×SL2)

is an affine space of dimension 5 [33]. �
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5. COISOTROPY REPRESENTATIONS AND RELATED POISSON STRUCTURES

In this section, G/H is affine, and we think of m as a subspace of g∗. The cotangent bundle

T ∗
G/H = G ×H m is a symplectic G-variety, hence the algebra k[T ∗

G/H ] is equipped with

the associated Poisson bracket { , }. This bracket restricts to the algebra of G-invariants

k[T ∗
G/H ]

G ≃ k[m]H , which makes m//H a Poisson variety. Recall that dimm//H = 2c+ r.

The Poisson bracket (k[m]H , { , }) has the following explicit description, see e.g. [30,

Ch. II, § 1.8]. The algebra of regular functions k[m] is also the symmetric algebra of g/h ≃

m∗, hence k[m]H = S(g/h)H . Let f1, f2 ∈ S(g/h)H and α ∈ (g/h)∗ = m ⊂ g∗. Then

(5.1) {f1, f2}(α) = 〈α, [dαf1,dαf2]〉.

The commutator on the right-hand side of this formula is understood as the commutator

in g of any representatives of the cosets dαf1,dαf2 ∈ g/h, because the result does not

depend on the choice of these representatives in g (if f1 and f2 are H-invariants!). Note

that if h = gσ for an involution σ, then the right-hand side in (5.1) is identically zero. That

is, for the symmetric variety G/H , the Poisson bracket vanishes on k[T ∗
G/H ]

G. Let rk { , }

denote the rank of the Poisson bracket, i.e., the maximal dimension of symplectic leaves in

m//H . It follows from [30, Ch. II, § 3, Theorem 2] that in our case rk { , } = 2c.

Let (P, { , }P) be an affine Poisson variety. A subalgebra A of k[P] is said to be Poisson-

commutative, if {A,A} = 0. As is well-known, if A is Poisson-commutative, then

trdegA 6 dimP−
1

2
rk{ , }P.

Therefore, we arrive at the following conclusion.

Lemma 5.1. If A is a Poisson-commutative subalgebra of k[m]H , then trdegA 6 c+ r.

Conjecture 5.2. For any affine homogeneous space G/H , there is a Poisson-commutative subal-

gebra A ⊂ k[m]H such that trdegA = c+ r.

Let Z denote the Poisson centre of (k[m]H , { , }). By [5, Section 7], Z is a polynomial ring

and trdegZ = r. Some stronger results can also be found in [6, Section 9].

Example 5.1. For c = 0, one has Z = k[m]H , and there is nothing to prove. For c = 1,

trdeg k[m]H = trdegZ + 2 and one can take any f ∈ k[m]H that is not algebraic over Z.

Then the subalgebra generated by Z and f is Poisson-commutative and its transcendence

degree equals r + 1, as required. Thus, Conjecture 5.2 is true, if c 6 1.

By [5, Theorem 7.6], one has Z = k[MO]
G and the morphism T ∗

G/H → SpecZ is given

by the map ψ in (2.2). Therefore, using commutative diagrams (2.2) and (2.3), we get the

chain morphisms

m
πm−→ m//H −→ SpecZ =MO//G

τ
−→ G·m//G,
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where τ is finite, the morphisms f : m → SpecZ and f̃ : m → G·m//G = M̃O//G are

equidimensional, and f̃
−1
(0̄) = f−1(0̄) = NG(g

∗) ∩m.

5.1. The case of G̃/H̃. For the homogeneous spaces of the form G̃/H̃ = (G×H)/∆H , one

can say more. Recall that r̃ = rk g+rk h, c̃ = dimU−dimBH , and m̃ ≃ g∗. Here Lemma 5.1

says that if A ⊂ k[g∗]H = S(g)H is Poisson-commutative, then

(5.2) trdegA 6 c̃+ r̃ =
1

2
(dim g− dim h+ rk g+ rk h).

In this setting, the existence of A such that trdegA = c̃ + r̃ has been proved for several

classes of reductive subalgebras h :

• h = gσ is a symmetric subalgebra [19, Theorem 2.7];

• h = gθ, where ϑ is an automorphism of g of finite order > 3 [20, Theorem 3.10]. Here

one also needs the condition that a certain contraction of g associated with ϑ, denoted g(0),

has the same index as g. It should be noted, however, that this condition has been verified

in many cases, and it is likely that this condition always holds.

• h is the centraliser of a semisimple element of g [11, Lemma 2.1], i.e., h is a Levi

subalgebra of g.

Note also that if h ⊂ g has a non-trivial centre, then, for any r such that [h, h] ⊂ r ⊂ h, we

have dim h−rk h = dim r−rk r. Therefore, if a Poisson-commutative subalgebra A ⊂ S(g)h

has the maximal transcendence degree, then it follows from (5.2) that A has the maximal

transcendence degree as subalgebra of the larger Poisson algebra S(g)r.

Remark. An advantage of this case is that k[m̃] = S(g) is a Poisson algebra. Therefore,

one can construct ‘large’ Poisson-commutative subalgebras in S(g)H using compatible

Poisson brackets and Mishchenko-Fomenko subalgebras of S(g), see [11, 19, 20]. But for

an arbitrary affine G/H , the algebra k[m] does not possess a natural Poisson structure.

5.2. A more general setting. Let R ⊂ Q be arbitrary connected affine algebraic groups.

Then Q×R/∆R ≃ Q is an affine homogeneous space of Q×R and the coisotropy repre-

sentation of R ≃ ∆R is isomorphic to (R : q∗). Here we are led to consider Poisson-

commutative subalgebras of the Poisson algebra S(q)R = S(q)r.

Our luck is that this problem (without connection to coisotropy representations) has

been considered in [11], where an upper bound on trdegA similar to (5.2) is given. The

only difference is that the rank of a Lie algebra has to be replaced with the index. (Recall

that rk q = ind q whenever q is reductive.) That is, if A ⊂ S(q)r and {A,A} = 0, then

(5.3) trdegA 6
1

2
(dim q− dim r+ ind q+ ind r),
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see [11, Prop. 1.1]. It is also shown in [11] that if r = qξ is the stabiliser of ξ ∈ q∗ under

the coadjoint representation of q and ind qξ = ind q, then this bound is achieved in many

cases. In particular, if q is reductive, then this happens for any ξ.

However, results of [5] do not apply in this setting, unless both groups Q and R are

reductive.
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