ORBITS AND INVARIANTS FOR COISOTROPY REPRESENTATIONS

DMITRI I. PANYUSHEV

ABSTRACT. For a subgroup H of a reductive group G, let $\mathfrak{m} = \mathfrak{h}^{\perp} \subset \mathfrak{g}^*$ be the cotangent space of $\{H\} \in G/H$. The linear action $(H : \mathfrak{m})$ is the *coisotropy representation*. It is known that the complexity and rank of G/H (denoted c and r, respectively) are encoded in properties of $(H : \mathfrak{m})$. We complement existing results on c, r, and $(H : \mathfrak{m})$, especially for quasiaffine varieties G/H. For instance, if the algebra of invariants $\Bbbk[\mathfrak{m}]^H$ is finitely generated, then $\mathfrak{N}_H(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$. Moreover, if G/H is affine, then $\mathfrak{N}_H(\mathfrak{m}) = \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$ if and only if c = 0. We also prove that the variety $\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$ is pure, of dimension dim $\mathfrak{m} - r$. Two other topics considered are (i) a relationship between varieties G/H of complexity at most 1 and the homological dimension of the algebra $\Bbbk[\mathfrak{m}]^H$ and (ii) the Poisson structure of $\Bbbk[\mathfrak{m}]^H$ and Poisson-commutative subalgebras $\mathcal{A} \subset \Bbbk[\mathfrak{m}]^H$ such that trdeg \mathcal{A} is maximal.

INTRODUCTION

In this article, we study invariant-theoretic properties for the coisotropy representation of a homogeneous space of a reductive group G. The ground field \Bbbk is algebraically closed and char $\Bbbk = 0$. All groups and varieties are assumed to be algebraic, and all algebraic groups are affine. If Q is a group and X is a variety, then the notation (Q : X) means that Q acts regularly on X. We also say that X is a Q-variety. Lie algebras of algebraic groups are denoted by the corresponding small gothic letters, e.g., q = Lie Q.

Throughout, *G* is a connected reductive group and $\mathfrak{g} = \text{Lie } G$. We also consider a Borel subgroup $B \subset G$, the maximal unipotent subgroup U = (B, B), and a maximal torus $T \subset B$. This yields a bunch of related objects: roots, weights, simple roots, etc. For a reductive subgroup $H \subset G$, we denote by B_H , U_H , and T_H analogous subgroups of H.

For a subgroup $H \subset G$, let $c = c_G(G/H)$ and $r = r_G(G/H)$ be the *complexity* and *rank* of the *G*-variety G/H, respectively. Then $r \leq \operatorname{rk} G$ (see Section 1 for details.) These two integers are important for invariant theory and theory of equivariant embeddings of G/H. Let $\mathfrak{m} = \mathfrak{h}^{\perp} \subset \mathfrak{g}^*$ be the cotangent space of $\{H\} \in G/H$. The linear action $(H : \mathfrak{m})$ is called the *coisotropy representation* of H (or G/H). It is shown in [12] that

• the integers c and r are closely related to properties of $(H : \mathfrak{m})$. If G/H is quasiaffine, then $\dim \mathfrak{m} - \max_{x \in \mathfrak{m}} \dim H \cdot x = 2c + r$, the stabiliser H^x is reductive for generic $x \in \mathfrak{m}$, and $\operatorname{rk} G - \operatorname{rk} H^x = r$.

²⁰²⁰ Mathematics Subject Classification. 14L30, 14R20, 14M27, 17B20.

Key words and phrases. Isotropy representation, quasiaffine homogeneous space, complexity of action.

• If c = 0 and $\mathfrak{c} \subset \mathfrak{m}$ is a *Cartan subspace*, then $\overline{H \cdot \mathfrak{c}} = \mathfrak{m}$ and there is a finite group $W \subset GL(\mathfrak{c})$ such that $\Bbbk[\mathfrak{c}]^W \simeq \Bbbk[\mathfrak{m}]^H$. Here the morphism $\pi : \mathfrak{m} \to \mathfrak{m}/\!\!/ H := \operatorname{Spec}(\Bbbk[\mathfrak{m}]^H)$ is equidimensional, and if H is connected, then $\Bbbk[\mathfrak{m}]^H$ is a polynomial ring.

More generally, if $\mathbb{k}[\mathfrak{m}]^H$ is finitely generated, then π is also well-defined and the fibre $\pi^{-1}(\pi(0)) =: \mathfrak{N}_H(\mathfrak{m})$ is the *nullcone* (in \mathfrak{m} with respect to H). The nullcone is a fibre of π of maximal dimension and if c > 0, then π is not necessarily equidimensional. It is convenient to consider the *defect* of equidimensionality (= *defect* of $\mathfrak{N}_H(\mathfrak{m})$)

$$\operatorname{def} \mathfrak{N}_H(\mathfrak{m}) = \operatorname{dim} \mathfrak{N}_H(\mathfrak{m}) - (\operatorname{dim} \mathfrak{m} - \operatorname{dim} \mathfrak{m}/\!\!/ H).$$

If *H* is reductive, then def $\mathfrak{N}_H(\mathfrak{m}) \leq c$ [15, Prop. 3.6].

In Section 2, we present new results related to the nullcones $\mathfrak{N}_H(\mathfrak{m})$ and $\mathfrak{N}_G(\mathfrak{g}^*)$, and the generalised Cartan subspace $\mathfrak{c} \subset \mathfrak{m}$.

- For any $x \in \mathfrak{m}$, we show that $\dim G \cdot x \ge 2 \dim H \cdot x$, and the equality occurs if and only if $\mathfrak{g} \cdot x \cap \mathfrak{m} = \mathfrak{h} \cdot x$. Another general property is that $\dim(\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)) = \dim \mathfrak{m} - r$ and all irreducible components of $\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$ have this dimension (Theorem 2.3).

- If G/H is quasiaffine, then one can define a generalised Cartan subspace $\mathfrak{c} \subset \mathfrak{m}$ (see Section 1) and we prove that $\operatorname{codim}_{\mathfrak{m}} \overline{H \cdot \mathfrak{c}} = c$.

- If G/H is quasiaffine and $\mathbb{k}[\mathfrak{m}]^H$ is finitely generated, then $\mathfrak{N}_H(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$. Moreover, if c = 0, then $\mathfrak{N}_H(\mathfrak{m}) = \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$ (Theorem 2.4).

- If G/H is affine, then $\mathfrak{N}_H(\mathfrak{m}) = \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$ if and only if G/H is spherical (Prop. 2.5). We also prove that if def $\mathfrak{N}_H(\mathfrak{m}) = c$, then \mathfrak{h} contains a regular semisimple element of \mathfrak{g} (Theorem 2.7). In particular, this applies to the affine homogeneous spaces with c = 0.

In Section 3, affine homogeneous spaces of the form $\tilde{\mathcal{O}} = (G \times H)/\Delta_H$ are studied. Here $H \subset G$ is reductive and Δ_H is the diagonal in $H \times H \subset G \times H = \tilde{G}$. Then $\tilde{\mathcal{O}} \simeq G$ and the isotropy representation of $\Delta_H \simeq H$ is identified with the *H*-module \mathfrak{g} . In this case, $\tilde{\mathcal{O}}$ has a group structure, $r_{\tilde{G}}(\tilde{\mathcal{O}}) = \operatorname{rk} \tilde{G}$ is maximal, and $\dim \mathfrak{N}_H(\mathfrak{g})$ can be computed via a result of R. Richardson [23]. Here we present some complements to results of Section 2.

In Section 4, we consider coisotropy representations $(H : \mathfrak{m})$ with def $\mathfrak{N}_H(\mathfrak{m}) \leq 1$. If c = 0, then π is equidimensional and $\mathfrak{m}/\!\!/H \simeq \mathbb{A}^n$. This can be regarded as an illustration to the Popov conjecture [21]. In [15], we stated a related conjecture that if H is connected reductive and c = 1, then $\mathfrak{m}/\!\!/H$ is either an affine space or a hypersurface. We verify this in two cases:

(a) for the homogeneous spaces G/H with simple G;

(b) for the homogeneous spaces $\tilde{\mathcal{O}} = (G \times H)/\Delta_H$ with $c_{\tilde{G}}(\tilde{\mathcal{O}}) = 1$, where *G* is simple. In both cases, classifications of such pairs (G, H) are known (see [13] for (a) and [2] for (b)), and we perform a case-by-case verification.

In Section 5, *H* is reductive and the natural Poisson bracket $\{,\}$ on the affine variety $\mathfrak{m}/\!\!/ H$ is considered. Let \mathfrak{Z} be the Poisson centre of $(\mathbb{k}[\mathfrak{m}]^H, \{,\})$. Then there is the natural

morphism $f : \mathfrak{m} \to \text{Spec } \mathfrak{Z}$. Using results of F. Knop [5], we prove that f is equidimensional and $f^{-1}(0) = \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$.

It is shown that if a subalgebra $\mathcal{A} \subset \Bbbk[\mathfrak{m}]^H$ is Poisson-commutative, then $\operatorname{trdeg} \mathcal{A} \leq c+r$. We conjecture that there is always such a subalgebra with $\operatorname{trdeg} \mathcal{A} = c+r$. Some partial results towards this conjecture are described.

Our basic reference for Invariant Theory is [31].

Data availability and conflict of interest statement.

This article has no associated data. There is no conflict of interest.

1. GENERALITIES ON GROUP ACTIONS AND COISOTROPY REPRESENTATIONS

Let $\Bbbk[X]$ denote the algebra of regular functions on a variety X. If X is irreducible, then $\Bbbk[X]$ is the field of rational functions on X. If X is acted upon by Q, then $\Bbbk[X]^Q$ and $\Bbbk(X)^Q$ are the subalgebra and subfield of invariant functions, respectively. The identity component of Q is denoted by Q^o . For $x \in X$, let Q^x denote the *stabiliser* of x in Q. Then $\mathfrak{q}^x = \operatorname{Lie} Q^x$. A stabiliser Q^x is said to be *generic*, if there is a dense open subset $\Omega \subset X$ such that Q^y is Q-conjugate to Q^x for all $y \in \Omega$. We say that a property (**P**) holds for *almost all points of* X, if there is a dense open subset $X_0 \subset X$ such that (**P**) holds for all $x \in X_0$.

1.1. **Complexity and rank.** Let *X* be an irreducible *G*-variety. Then

- the *complexity* of X is $c_G(X) = \dim X \max_{x \in X} \dim B \cdot x$,
- the rank of X is $r_G(X) = \max_{x \in X} \dim B \cdot x \max_{x \in X} \dim U \cdot x$.

By the Rosenlicht theorem (see e.g. [31, §2.3]), we also have

$$c_G(X) = \operatorname{trdeg} k(X)^B$$
 and $c_G(X) + r_G(X) = \operatorname{trdeg} k(X)^U$.

An alternate approach to the rank uses the weights of *B*-semi-invariants in $\Bbbk(X)$. For quasiaffine varieties, this boils down to the following. Write $\mathfrak{X}_+ = \mathfrak{X}_+(G)$ for the set of dominant weights of *G* with respect to (B, T). Let V_{λ} denote a simple *G*-module with highest weight $\lambda \in \mathfrak{X}_+$. Let $\Bbbk[X] = \bigoplus_{\lambda \in \mathfrak{X}_+} \Bbbk[X]_{(\lambda)}$ be the sum of *G*-isotypic components, where $\Bbbk[X]_{(0)} = \Bbbk[X]^G$. Then

$$\Gamma_X = \{\lambda \in \mathfrak{X}_+ \mid \Bbbk[X]_{(\lambda)} \neq 0\}$$

is the *rank monoid* of X and $r_G(X) = \dim_{\mathbb{Q}}(\mathbb{Q}\Gamma_X)$. Clearly $r \leq \operatorname{rk} \mathfrak{g}$. If $c_G(X) = 0$, then X is said to be a *spherical* G-variety. If $\Bbbk[X]^G = \Bbbk$, then $\dim \Bbbk[X]_{(\lambda)} < \infty$ for all λ and $m_{\lambda}(X) := \dim \Bbbk[X]_{(\lambda)} / \dim \mathsf{V}_{\lambda}$ is the *multiplicity* of V_{λ} in $\Bbbk[X]$ (= the multiplicity of λ in Γ_X).

1.2. The coisotropy representation. Let *H* be an algebraic subgroup of *G* with Lie $H = \mathfrak{h}$. Then $\mathfrak{g}/\mathfrak{h} \simeq T_{\{H\}}(G/H)$ is an *H*-module and the linear action $(H : \mathfrak{g}/\mathfrak{h})$ is the *isotropy representation* of *H*. Set $\mathfrak{m} = \mathfrak{h}^{\perp} = \{\xi \in \mathfrak{g}^* \mid \xi|_{\mathfrak{h}} = 0\}$. Then $\mathfrak{m} \simeq (\mathfrak{g}/\mathfrak{h})^*$ as *H*-module and the linear action $(H : \mathfrak{m})$ is the *coisotropy representation* of *H*. If necessary, we identify \mathfrak{g} and \mathfrak{g}^* using a non-degenerate *G*-invariant bilinear form Ψ on \mathfrak{g} and regard \mathfrak{m} as subspace of \mathfrak{g} .

Recall that, for a reductive G, G/H is affine if and only if H is reductive. Another equivalent condition is that the form Ψ is non-degenerate on \mathfrak{h} . In this case, $\mathfrak{m} \simeq \mathfrak{g}/\mathfrak{h}$ and $\mathfrak{g} \simeq \mathfrak{h} \oplus \mathfrak{m}$ as H-module. Then the linear action $(H : \mathfrak{m})$ will be referred to as the *isotropy representation* of H.

We always assume that the *G*-action on G/H has a finite kernel. This is tantamount to saying that *H* contains no infinite normal subgroups of *G*. This condition is always satisfied, if *G* is simple. If G/H is spherical, then *H* is said to be a *spherical* subgroup of *G*. For simplicity, we write *c* and *r* for the complexity and rank of the homogeneous space G/H.

Theorem 1.1 ([12], [16, Ch. 2]). *If G*/*H is quasiaffine, then*

- (1) There is a generic stabiliser for $(H : \mathfrak{m})$, say S, which is reductive;
- (2) dim G + dim S 2 dim H = dim \mathfrak{m} max_{$x \in \mathfrak{m}$} dim $H \cdot x = 2c + r$;
- (3) $\operatorname{rk} G \operatorname{rk} S = r$.

The theory developed in [12] (and presented with more details in [16]) contains much more results. We mention those that will be needed later. Let us assume that B and T are fixed. Then the choice of H (up to conjugacy in G) and S (up to conjugacy in H) is at our disposal. It was proved that H and S can be chosen such that

- (\mathcal{P}_1) $Z_G(t)' \subset S \subset Z_G(t)$ for some $t \in \mathfrak{t} = \text{Lie } T$. Hence $T \subset N_G(S)$ and S/S^o is abelian;
- (\mathcal{P}_2) $\mathfrak{b} \cap \mathfrak{s}$ is a Borel subalgebra of \mathfrak{s} and $B \cap S$ is a generic stabiliser for (B : G/H);
- (\mathcal{P}_3) $\mathfrak{u} \cap \mathfrak{s}$ is the nilradical of $\mathfrak{b} \cap \mathfrak{s}$ and $U \cap S$ is a generic stabiliser for (U : G/H);
- (\mathcal{P}_4) $\mathfrak{t} \cap \mathfrak{s}$ is a Cartan subalgebra of \mathfrak{s} ;
- (\mathfrak{P}_5) $B \cdot S = P$ is a parabolic subgroup and $P \cap H = S$.

Whenever the algebra $\mathbb{k}[\mathfrak{m}]^H$ is finitely generated, we consider the following objects:

- the categorical quotient $\mathfrak{m}/\!\!/ H := \operatorname{Spec}(\mathbb{k}[\mathfrak{m}]^H);$
- the *quotient morphism* $\pi = \pi_{H,\mathfrak{m}} : \mathfrak{m} \to \mathfrak{m}/\!\!/ H$ induced by the inclusion $\Bbbk[\mathfrak{m}]^H \hookrightarrow \Bbbk[\mathfrak{m}];$
- the nullcone $\mathfrak{N}_H(\mathfrak{m}) := \pi^{-1}(\pi(0)) \subset \mathfrak{m}$.

Example 1.1. Let $\sigma \in Aut(\mathfrak{g})$ be an involution and $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ the sum of ± 1 -eigenspaces of σ . If G_0 is the connected subgroup of G with Lie $G_0 = \mathfrak{g}_0$, then G/G_0 is affine and $c_G(G/G_0) = 0$. We say that G/G_0 is a *symmetric variety* and G_0 is a *symmetric subgroup* of G. The isotropy representation ($G_0 : \mathfrak{g}_1$) has thoroughly been studied by Kostant–Rallis [4]. For instance, they proved that $\mathbb{k}[\mathfrak{g}_1]^{G_0}$ is a polynomial algebra, $\dim \mathfrak{g}_1/\!\!/G_0 = r_G(G/G_0)$, and $\pi_{G_0,\mathfrak{g}_1} : \mathfrak{g}_1 \to \mathfrak{g}_1/\!\!/G_0$ is *equidimensional*, i.e., all fibres have the same dimension.

For any quasiaffine G/H, we introduced in [12] a certain subspace $\mathfrak{c} \subset \mathfrak{m}$, which is useful in the study of the linear action $(H : \mathfrak{m})$. Let us recall the general construction of \mathfrak{c} . The definitions of the complexity and rank of G/H imply that

$$\dim G/H - \max_{x \in G/H} \dim B \cdot x = c \quad \& \quad \dim G/H - \max_{x \in G/H} \dim U \cdot x = c + r.$$

Without loss of generality, we may assume that $x = \{H\}$ is generic in both senses and properties (\mathcal{P}_1) - (\mathcal{P}_5) are satisfied. Then $\operatorname{codim}_{\mathfrak{g}}(\mathfrak{b} + \mathfrak{h}) = c$, $\operatorname{codim}_{\mathfrak{g}}(\mathfrak{u} + \mathfrak{h}) = c + r$, and we set

$$\mathfrak{c} = (\mathfrak{b} + \mathfrak{h})^{\perp} = \mathfrak{u}^{\perp} \cap \mathfrak{m} \quad \& \quad \widetilde{\mathfrak{c}} = (\mathfrak{u} + \mathfrak{h})^{\perp} = \mathfrak{b}^{\perp} \cap \mathfrak{m}.$$

Then dim $\mathfrak{c} = c + r$ and dim $\tilde{\mathfrak{c}} = c$. It follows that dim $\mathfrak{c} \leq \dim \mathfrak{m} - \max_{x \in \mathfrak{m}} \dim H \cdot x = 2c + r$, and the equality occurs if and only if c = 0. Upon identification of \mathfrak{g} and \mathfrak{g}^* , we have $\mathfrak{c} = \mathfrak{b} \cap \mathfrak{m}$ and $\tilde{\mathfrak{c}} = \mathfrak{u} \cap \mathfrak{m}$.

Consider the projection $p_t : \mathfrak{b} = \mathfrak{t} \oplus \mathfrak{u} \to \mathfrak{t}$ and set $\mathfrak{t}_1 = p_t(\mathfrak{c}) \subset \mathfrak{t}$. Then $\dim \mathfrak{t}_1 = r$. If c = 0, then $\tilde{\mathfrak{c}} = \{0\}$ and p_t maps \mathfrak{c} isomorphically to \mathfrak{t}_1 . In this case, \mathfrak{c} contains no nilpotent elements of \mathfrak{g} . Moreover, the following holds.

Theorem 1.2 ([12, Section 3.2]). *For* c = 0, *the subspace* $\mathfrak{c} \subset \mathfrak{m}$ *has the following properties:*

- (1) the *H*-saturation of \mathfrak{c} is dense in \mathfrak{m} , i.e., $\overline{H \cdot \mathfrak{c}} = \mathfrak{m}$;
- (2) almost all elements of c have the same stabiliser in H, which is just S;
- (3) there is a finite group W ⊂ GL(c) such that the restriction homomorphism k[m] → k[c] induces an isomorphism k[m]^H ~ k[c]^W.

It follows from (1) and (2) that, for almost all $x \in c$, the stabiliser H^x is generic, while (3) implies that $\mathbb{k}[\mathfrak{m}]^H$ is finitely generated and $\pi : \mathfrak{m} \to \mathfrak{m}/\!\!/ H$ is *equidimensional*. The common dimension of fibres equals $\dim \mathfrak{m} - \dim \mathfrak{m}/\!\!/ H = \dim \mathfrak{m} - r$. Furthermore, if H is connected, then W is a reflection group and $\mathbb{k}[\mathfrak{m}]^H$ is a polynomial ring, i.e., $\mathfrak{m}/\!\!/ H \simeq \mathbb{A}^r$ is an affine space, see [12, Cor. 5].

If c = 0, then \mathfrak{c} resembles a Cartan subspace for the isotropy representation a symmetric variety G/G_0 . For this reason, a subspace \mathfrak{c} satisfying properties of Theorem 1.2 was christened in [12] a *Cartan subspace* (of \mathfrak{m}).

Thus, Theorem 1.2 shows that many good properties of the symmetric variety G/G_0 and $(G_0 : \mathfrak{g}_1)$ are retained for quasiaffine spherical homogeneous spaces.

For an arbitrary quasiaffine G/H, we shall say that $\mathfrak{c} = \mathfrak{u}^{\perp} \cap \mathfrak{m}$, as above, is a *generalised Cartan subspace* of \mathfrak{m} . If G/H is not spherical, then \mathfrak{c} does not satisfy properties (1) and (3) of Theorem 1.2 (cf. also Theorem 2.2 below).

Remarks. 1) In [12], the generalised Cartan subspace is denoted by *z*. Here we follow the notation of [16, Chapter 2].

2) Above results on the complexity, rank, and coisotropy representations are also obtained by Knop [5] via different methods. Our approach in [12, 16] is based on the study of 'doubled actions' (which is not discussed here), while Knop considers the cotangent bundles and moment map.

The nullcone $\mathfrak{N}_H(\mathfrak{m})$ is a fibre of π of maximal dimension [31, §5.2]. The action $(H : \mathfrak{m})$ is said to be *equidimensional*, if the quotient morphism $\pi : \mathfrak{m} \to \mathfrak{m}/\!\!/H$ is equidimensional. The *defect* of equidimensionality of π (= of $\mathfrak{N}_H(\mathfrak{m})$) is introduced in [15, Section 3] as the difference between dim $\mathfrak{N}_H(\mathfrak{m})$ and dimension of generic fibres of π , i.e.,

 $\operatorname{def} \mathfrak{N}_H(\mathfrak{m}) = \operatorname{dim} \mathfrak{N}_H(\mathfrak{m}) - (\operatorname{dim} \mathfrak{m} - \operatorname{dim} \mathfrak{m}/\!\!/ H).$

Therefore, π is equidimensional if and only if def $\mathfrak{N}_H(\mathfrak{m}) = 0$.

If *H* is reductive, then $\mathfrak{N}_H(\mathfrak{m}) = \{x \in \mathfrak{m} \mid \overline{H \cdot x} \ni 0\}$ and the representation $(H : \mathfrak{m})$ is orthogonal. The latter implies that the action $(H : \mathfrak{m})$ is stable [9] and therefore $\dim \mathfrak{m}/\!\!/H = 2c + r$. Then $\dim \mathfrak{N}_H(\mathfrak{m}) \ge \dim \mathfrak{m} - (2c + r)$. On the other hand, there is an upper bound on dimension of the nullcone for the self-dual representations of reductive groups [25, Prop. 2.10]. In our case, this shows that

(1.1)
$$\dim \mathfrak{N}_{H}(\mathfrak{m}) \leqslant \dim U_{H} + \frac{1}{2} (\dim \mathfrak{m} - \dim \mathfrak{m}^{T_{H}}) = \frac{1}{2} (\dim \mathfrak{g} - \dim \mathfrak{g}^{T_{H}}).$$

Theorem 1.3 ([15, Proposition 3.6]). *If H is reductive, then* def $\mathfrak{N}_H(\mathfrak{m}) \leq c$.

Outline of the proof. 1°. If $r = \operatorname{rk} \mathfrak{g}$, then *S* is finite and $\dim G/H = \dim \mathfrak{m} = \dim B + c$. Hence $\dim \mathfrak{N}_H(\mathfrak{m}) \ge \dim \mathfrak{m} - \dim \mathfrak{m}/\!\!/ H = \dim H = \dim U - c$. On the other hand,

(1.2)
$$\dim \mathfrak{N}_H(\mathfrak{m}) \leq \frac{1}{2} (\dim \mathfrak{g} - \dim \mathfrak{g}^{T_H}) \leq \dim U.$$

2°. If $r < \operatorname{rk} \mathfrak{g}$, then Lie $S \neq 0$ and one can use the Luna–Richardson theorem [10, Theorem 4.2]. This provides a (rather technical) reduction to part 1°.

Remark 1.1. The relations dim $H = \dim U - c$ and dim $\mathfrak{m} = \dim B + c$ hold only if S is finite. In general, one has dim $H = \dim U + \dim B_S - c$ and dim $\mathfrak{m} = \dim B - \dim B_S + c$.

1.3. Homogeneous spaces of complexity at most 1. The Luna–Vust theory of equivariant embeddings of homogeneous spaces (1983) implies that a reasonably complete theory can be developed for homogeneous spaces of complexity ≤ 1 . For a modern account of that theory and related topics, we refer to [28].

As is already mentioned, if \mathfrak{h} is a fixed point subalgebra for an involution of \mathfrak{g} , then $c_G(G/H) = 0$. All connected spherical reductive subgroups H of **simple** algebraic groups G have been found by M. Krämer [8]. Then M. Brion and I. Mikityuk (independently) found all connected spherical reductive subgroups of the **semisimple** algebraic groups, see e.g. tables in [30, Ch. I, §3.6].

The study of quasiaffine homogeneous spaces of complexity 1 was initiated in [13], where a classification of the pairs (G, H) such that G simple, H is connected reductive, and $c_G(G/H) = 1$ is also obtained. (See also [16, Chapter 3].)

2. New results for coisotropy representations

For the symmetric varieties (see Example 1.1), one has $\dim G \cdot x = 2 \dim G_0 \cdot x$ for **any** $x \in \mathfrak{g}_1$ [4, Prop. 5]. For quasiaffine spherical G/H, this equality holds generically, i.e., there is a dense open subset $\Omega \subset \mathfrak{m}$ such that $\dim G \cdot x = 2 \dim H \cdot x$ for all $x \in \Omega$ [12, Theorem 5]. Then $H \cdot x$ is a Lagrangian subvariety of the symplectic variety $G \cdot x \subset \mathfrak{g}^*$ for all $x \in \Omega$. The following observation is a slight extension of [12, Proposition 1].

Lemma 2.1. (i) For any algebraic subgroup $H \subset G$ and $x \in \mathfrak{m} = \mathfrak{h}^{\perp}$, one has $\dim G \cdot x = \dim H \cdot x + \dim([\mathfrak{g}, x] \cap \mathfrak{m}) \ge 2 \dim H \cdot x.$

(ii) dim $G \cdot x = 2 \dim H \cdot x \iff [\mathfrak{g}, x] \cap \mathfrak{m} = [\mathfrak{h}, x].$

Proof. We have $([\mathfrak{g}, x] \cap \mathfrak{m})^{\perp} = ([\mathfrak{g}, x])^{\perp} + \mathfrak{m}^{\perp} = \mathfrak{g}^x + \mathfrak{h}$. Hence

$$\dim([\mathfrak{g}, x] \cap \mathfrak{m}) = \dim \mathfrak{g} - \dim \mathfrak{g}^x - \dim \mathfrak{h} + \dim(\mathfrak{g}^x \cap \mathfrak{h}) = \dim G \cdot x - \dim H \cdot x.$$

It is also clear that $[\mathfrak{g}, x] \cap \mathfrak{m} \supset [\mathfrak{h}, x]$.

In the setting of symmetric varieties (Example 1.1), the relation $[\mathfrak{g}, x] \cap \mathfrak{g}_1 = [\mathfrak{g}_0, x]$ for all $x \in \mathfrak{g}_1$ readily follows from the presence of involution σ .

Recall that $\mathfrak{c} = \mathfrak{m} \cap \mathfrak{u}^{\perp} = \mathfrak{m} \cap \mathfrak{b}$ is a generalised Cartan subspace, $\tilde{\mathfrak{c}} = \mathfrak{c} \cap \mathfrak{u}$, and $\mathfrak{t}_1 = p_{\mathfrak{t}}(\mathfrak{c}) \subset \mathfrak{t}$. The following is a generalisation of Theorem 1.2(1).

Theorem 2.2. Let G/H be a quasiaffine homogeneous space and $\mathfrak{c} \subset \mathfrak{m}$ a generalised Cartan subspace. Then $\operatorname{codim}_{\mathfrak{m}}\overline{H\cdot\mathfrak{c}} = c_G(G/H) = c$.

Proof. 1. We assume that properties (\mathcal{P}_1) - (\mathcal{P}_5) are satisfied for S, B, and H. Then $\mathfrak{l} = \mathfrak{s} \oplus \mathfrak{t}_1$ is a Levi subalgebra of $\mathfrak{p} = \text{Lie } P$. Moreover, by [12, Lemma 3], one has $\mathfrak{g}^y = \mathfrak{l}$ for almost all $y \in \mathfrak{t}_1$. Let \mathfrak{n} denote the nilradical of \mathfrak{p} and \mathfrak{n}_- the opposite nilradical, i.e., $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{n}_-$. Then $\mathfrak{c} = \mathfrak{m} \cap \mathfrak{b} = \mathfrak{m} \cap (\mathfrak{n} \oplus \mathfrak{t}_1)$ and $\tilde{\mathfrak{c}} = \mathfrak{m} \cap \mathfrak{u} = \mathfrak{m} \cap \mathfrak{n}$.

2. By part 1, we have $\mathfrak{c}^{\perp} = \mathfrak{m}^{\perp} + (\mathfrak{n} \oplus \mathfrak{t}_1)^{\perp} = \mathfrak{h} + (\mathfrak{s} \oplus \mathfrak{n}) = \mathfrak{h} + \mathfrak{n}$. For almost all $y \in \mathfrak{c}$, \mathfrak{g}^y is a Levi subalgebra of \mathfrak{p} (see Step 1 in [16, Theorem 2.2.6]). Therefore $([\mathfrak{g}, y] \cap \mathfrak{c})^{\perp} = \mathfrak{g}^y + \mathfrak{c}^{\perp} = \mathfrak{h} + (\mathfrak{g}^y + \mathfrak{n}) = \mathfrak{h} + \mathfrak{p}$. Hence

(2.1)
$$[\mathfrak{g}, y] \cap \mathfrak{c} = (\mathfrak{h} + \mathfrak{p})^{\perp} = \mathfrak{m} \cap \mathfrak{n} = \tilde{\mathfrak{c}} \text{ and } \dim([\mathfrak{g}, y] \cap \mathfrak{c}) = c$$

3. Let us prove that $[\mathfrak{h}, y] \cap \mathfrak{c} = \{0\}$ for almost all $y \in \mathfrak{c}$. (For c = 0, this follows from (2.1), and this was already used in [12, 16] for proving Theorem 1.2(1).) By part 2, $[\mathfrak{g}, y] \cap \mathfrak{c} = \tilde{\mathfrak{c}} \subset \mathfrak{n}$. Therefore, it suffices to prove that $[\mathfrak{h}, y] \cap \mathfrak{n} = \{0\}$. Actually, we shall show that $[\mathfrak{h}, y] \cap \mathfrak{p} = \{0\}$.

Since $\mathfrak{h} \cap \mathfrak{p} = \mathfrak{s}$, we can write $\mathfrak{h} = \mathfrak{s} \oplus \hat{\mathfrak{h}}$, where $\hat{\mathfrak{h}} \cap \mathfrak{p} = \{0\}$. Then every nonzero element of $\hat{\mathfrak{h}}$ has a nonzero component in \mathfrak{n}_- w.r.t. the sum $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{n}_-$. Write y = y' + y'', where $y' \in \mathfrak{t}_1$ and $y'' \in \mathfrak{n}$, i.e., $p_{\mathfrak{t}}(y) = y'$. Let us say that $y' \in \mathfrak{t}_1$ is generic, if $\mathfrak{g}^{y'} = \mathfrak{l}$. Take a nonzero $x = x_{\mathfrak{s}} + \hat{x} \in \mathfrak{h}$, where $x_{\mathfrak{s}} \in \mathfrak{s}$ and $\hat{x} \in \hat{\mathfrak{h}}$. Write $\hat{x} = x_{\mathfrak{p}} + x_-$, where $x_{\mathfrak{p}} \in \mathfrak{p}$ and $x_- \in \mathfrak{n}_-$. If $\hat{x} \neq 0$, then $x_- \neq 0$ as well. We have

$$[x, y] = [\hat{x}, y] = [x_{\mathfrak{p}}, y] + [x_{-}, y]$$

and here $[x_{\mathfrak{p}}, y] \in \mathfrak{p}$. Since y' is a generic element of \mathfrak{t}_1 , there is $n \in N = \exp(\mathfrak{n})$ such that $n \cdot y = y'$. Then $n \cdot [x_-, y] = [n \cdot x_-, y']$. Again, since y' is generic, the last bracket has a nonzero component in \mathfrak{n}_- . Therefore, the same holds for $[x_-, y] = n^{-1} \cdot [n \cdot x_-, y']$.

Thus, we proved that $[\mathfrak{h}, y] \cap \mathfrak{p} = \{0\}$ for almost all $y \in \mathfrak{c}$ and thereby $[\mathfrak{h}, y] \cap \mathfrak{c} = \{0\}$.

4. Since $[\mathfrak{h}, y] \cap \mathfrak{c} = \{0\}$ for almost all $y \in \mathfrak{c}$, the intersection $H \cdot y \cap \mathfrak{c}$ is finite. Hence

$$\dim H \cdot \mathfrak{c} = \dim H \cdot y + \dim \mathfrak{c} = \dim H - \dim S + (c+r)$$
$$= \dim \mathfrak{m} - (2c+r) + (c+r) = \dim \mathfrak{m} - c. \quad \Box$$

Theorem 2.3. For any homogeneous space G/H, we have

(1) $\dim(\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)) = \dim \mathfrak{m} - r$ and all irreducible components of $\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$ have this dimension.

(2) The intersection $\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$ is proper if and only if $r = \operatorname{rk} \mathfrak{g}$.

Proof. (1) To use some results of F. Knop [5], we need more notation. Let $T_{\mathcal{O}}^* \simeq G \times_H \mathfrak{m}$ be the cotangent bundle of $\mathcal{O} = G/H$ and $\widetilde{\Phi} : T_{\mathcal{O}}^* \to \mathfrak{g}^*$ the associated moment map. Let $\widetilde{M}_{\mathcal{O}} = \overline{G \cdot \mathfrak{m}}$ denote the closure of the image of $\widetilde{\Phi}$ in \mathfrak{g}^* . Finally, $M_{\mathcal{O}}$ is the spectrum of the integral closure of $\Bbbk[\widetilde{M}_{\mathcal{O}}]$ in $\Bbbk[T_{\mathcal{O}}^*]$. This yields the commutative diagram of morphisms

where the vertical arrows are quotient morphisms and $\tilde{\Phi} = \tilde{\tau} \circ \Phi$ see [5, Sect. 6]. By construction, $\tilde{\tau}$ is finite and onto. Then so is τ . It is proved in [5] that

- $M_{\mathcal{O}} /\!\!/ G$ is an affine space, see Satz 6.6(b);
- ψ is equidimensional and onto, see Satz 6.6(c);
- dim $M_{\mathcal{O}} /\!\!/ G = r$, see Satz 7.1.

Then $\tilde{\psi} = \tau \circ \psi$ is equidimensional and onto, too. Hence, for $\bar{0} = \pi_{\tilde{M}}(0)$, we obtain $\dim \tilde{\psi}^{-1}(\bar{0}) = \dim T^*_{\mathcal{O}} - r = 2 \dim \mathfrak{m} - r$. Note that $\pi_{\tilde{M}}^{-1}(\bar{0}) = \overline{G \cdot \mathfrak{m}} \cap \mathfrak{N}_G(\mathfrak{g}^*)$. Hence

$$\tilde{\psi}^{-1}(\bar{0}) = \tilde{\Phi}^{-1}(\overline{G \cdot \mathfrak{m}} \cap \mathfrak{N}_G(\mathfrak{g}^*)) = G \times_H (\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)).$$

Therefore, $\dim(\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)) = 2 \dim \mathfrak{m} - r - \dim G/H = \dim \mathfrak{m} - r$ and all irreducible components have this dimension, as required.

(2) By definition, the intersection of \mathfrak{m} and $\mathfrak{N}_G(\mathfrak{g}^*)$ in \mathfrak{g}^* is proper if and only if

$$\dim(\mathfrak{m}\cap\mathfrak{N}_G(\mathfrak{g}^*)) = \dim\mathfrak{m} + \dim\mathfrak{N}_G(\mathfrak{g}^*) - \dim\mathfrak{g} = \dim\mathfrak{m} - \operatorname{rk}\mathfrak{g}.$$

If *H* is reductive, then $\mathfrak{N}_H(\mathfrak{m}) = \{m \in \mathfrak{m} \mid \overline{H \cdot m} \ni 0\}$. Therefore, $\mathfrak{N}_H(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$. As we prove below, this inclusion actually holds in a more general situation.

Theorem 2.4. Suppose that G/H be quasi-affine and $\mathbb{k}[\mathfrak{m}]^H$ is finitely generated. Then

- (i) $\mathfrak{N}_H(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$;
- (ii) if c = 0, then $\mathfrak{N}_H(\mathfrak{m}) = \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$.

Proof. (i) Consider a version of the commutative diagram (2.2) :

Here $\overline{G \cdot \mathfrak{m}} = \widetilde{M}_{\mathcal{O}}$ and j is the embedding of \mathfrak{m} as fibre of $\{H\} \in G/H$. As above, all vertical arrows are quotient morphisms. Since $\mathbb{k}[\mathfrak{m}]^H$ is finitely generated, we get two new objects in the lower row. Using the path through $\pi_{\mathfrak{m}}$, we see that $\mathfrak{N}_H(\mathfrak{m})$ maps into $\overline{0} = \pi_{\widetilde{M}}(0) \in \overline{G \cdot \mathfrak{m}}/\!\!/G$. On the other hand, using the path through j and $\widetilde{\psi}$, we see that $j(\mathfrak{N}_H(\mathfrak{m})) \subset \widetilde{\psi}^{-1}(\overline{0}) = G \times_H (\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*))$, i.e., $\mathfrak{N}_H(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$.

(ii) Here we use a fragment of the previous diagram:

If c = 0, then $\dim \mathfrak{m}/\!\!/ H = \dim \overline{G \cdot \mathfrak{m}}/\!\!/ G = r$. Since $\tilde{\psi}$ is equidimensional, the same is true for f. The affine varieties $\mathfrak{m}/\!\!/ H$ and $\overline{G \cdot \mathfrak{m}}/\!\!/ G$ are conical, hence f is finite and $\pi_{\mathfrak{m}}(0) = f^{-1}(\overline{0})$. Therefore, $\mathfrak{N}_{H}(\mathfrak{m}) = \overline{G \cdot \mathfrak{m}} \cap \mathfrak{N}_{G}(\mathfrak{g}^{*}) \cap \mathfrak{m} = \mathfrak{N}_{G}(\mathfrak{g}^{*}) \cap \mathfrak{m}$.

Remark 2.1. (a) There is an alternate proof of Theorem 2.4(ii) that exploits properties of the Cartan subspace $\mathfrak{c} = \mathfrak{b} \cap \mathfrak{m}$. In the spherical case, the projection $p_{\mathfrak{t}} : \mathfrak{b} \to \mathfrak{t}$ maps \mathfrak{c}

isomorphically onto \mathfrak{t}_1 and one proves that $\overline{G \cdot \mathfrak{t}_1} = \overline{G \cdot \mathfrak{c}} = \overline{G \cdot \mathfrak{m}}$. Then the finiteness of the morphism $f : \mathfrak{m}/\!\!/ H \to \overline{G \cdot \mathfrak{m}}/\!\!/ G$ is obtained without using the equidimensional map $\tilde{\psi}$.

(b) For the symmetric varieties, the equality $\mathfrak{N}_{G_0}(\mathfrak{g}_1) = \mathfrak{g}_1 \cap \mathfrak{N}_G(\mathfrak{g})$ is proved in [4].

For the affine homogeneous spaces, one can strengthen Theorem 2.4 as follows.

Proposition 2.5. If G/H is affine, then

- (i) dim $\mathfrak{m} 2c r \leq \dim \mathfrak{N}_H(\mathfrak{m}) \leq \dim \mathfrak{m} c r;$
- (ii) $\mathfrak{N}_H(\mathfrak{m}) = \mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*)$ if and only if G/H is spherical.

Proof. (i) The first inequality means that $\dim \mathfrak{N}_H(\mathfrak{m}) \ge \dim \mathfrak{m} - \dim \mathfrak{m}/\!\!/ H$. By Theorem 1.3, if G/H is affine, then

 $\operatorname{def} \mathfrak{N}_H(\mathfrak{m}) = \operatorname{dim} \mathfrak{N}_H(\mathfrak{m}) - (\operatorname{dim} \mathfrak{m} - (2c+r)) \leqslant c.$

Hence the second inequality.

(ii) It follows from part (i) and Theorem 2.3 that $\dim \mathfrak{N}_H(\mathfrak{m}) < \dim (\mathfrak{m} \cap \mathfrak{N}_G(\mathfrak{g}^*))$ unless c = 0.

Remark 2.2. The equality in the first place in Proposition 2.5(i) is equivalent to that π is equidimensional, while the equality in the second place means that dim $\mathfrak{N}_H(\mathfrak{m}) = c$, i.e., it is maximal possible. Hence, for c = 0, both properties hold (as we already know). For c = 1 exactly one property takes place, i.e., either π is equidimensional, or def $\mathfrak{N}_H(\mathfrak{m}) = 1$.

Let us say that a reductive subgroup $H \subset G$ is *s*-regular, if \mathfrak{h} contains a regular semisimple element of \mathfrak{g} .

Proposition 2.6. Suppose that G/H is affine and S° is a torus. If def $\mathfrak{N}_{H}(\mathfrak{m}) = c$, then H is *s*-regular.

Proof. If S^o is a torus, then dim $H = \dim U + \dim S - c$ (see Remark 1.1) and dim $\mathfrak{m} - \dim \mathfrak{m}/\!\!/ H = \dim H - \dim S$. Then

 $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m}) = \operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m}) - \operatorname{dim} H + \operatorname{dim} S = \operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m}) - \operatorname{dim} U + c.$

If def $\mathfrak{N}_H(\mathfrak{m}) = c$, then dim $\mathfrak{N}_H(\mathfrak{m}) = \dim U$. By Eq. (1.2), this means that dim $\mathfrak{g}^{T_H} = \operatorname{rk} \mathfrak{g}$, i.e., T_H contains a regular semisimple element of G.

In particular, Proposition 2.6 asserts that if c = 0 and S^o is a torus, then H is s-regular. However, it is easily seen that if a symmetric subgroup G_0 does not contain infinite normal subgroups of G (e.g. if G is simple), then it is s-regular regardless of the structure of S. This suggests that the condition on S in Proposition 2.6 is superfluous.

Theorem 2.7. If G/H is affine and def $\mathfrak{N}_H(\mathfrak{m}) = c$, then H is s-regular.

Proof. By Proposition 2.6, it suffices to handle the case in which $r < \operatorname{rk} \mathfrak{g}$, i.e., $\operatorname{rk} S > 0$.

Let $\mathcal{N}_A(B)$ (resp. $\mathcal{Z}_A(B)$) denote the *normaliser* (resp. *centraliser*) of the group B in A. Since S is contained between a Levi subgroup of G and its commutant, there is a connected reductive group $K \subset G$ such that $\mathcal{N}_G(S)^o = S^o \cdot K$ and $S^o \cap K$ is finite. Then $\operatorname{rk} K = \operatorname{rk} G - \operatorname{rk} S = r$. Since $\mathcal{N}_G(S)^o = \mathcal{Z}_G(S)^o \cdot S^o$, one also has $\mathcal{Z}_G(S)^o = K \cdot Z(S^o)$, where $Z(S^o)$ is the centre of S^o . For Lie algebras, this means that $\mathfrak{z}_\mathfrak{g}(\mathfrak{s}) = \mathfrak{k} \oplus \mathfrak{z}(\mathfrak{s})$.

As $S \subset H$, we have $N_H(S)^o = S^o \cdot (K \cap H)^o$ and $K \cap H$ is reductive. The linear action $(K \cap H : \mathfrak{m}^S)$ is the coisotropy representation of the affine homogeneous space $K/K \cap H$, and it follows from the construction that it's generic stabiliser is finite.

By the Luna–Richardson theorem [10, Theorem 4.2], the restriction homomorphism $\mathbb{k}[\mathfrak{m}] \to \mathbb{k}[\mathfrak{m}^S]$, $f \mapsto f|_{\mathfrak{m}^S}$, induces an isomorphism $\mathbb{k}[\mathfrak{m}]^H \xrightarrow{\sim} \mathbb{k}[\mathfrak{m}^S]^{N_H(S)}$. Hence $\mathbb{k}[\mathfrak{m}^S]^{N_H(S)^0} = \mathbb{k}[\mathfrak{m}^S]^{K \cap H}$ is a finite $\mathbb{k}[\mathfrak{m}]^H$ -module and $\mathfrak{N}_H(\mathfrak{m}) \cap \mathfrak{m}^S = \mathfrak{N}_{K \cap H}(\mathfrak{m}^S)$. It is also known that

- $c_K(K/K \cap H) = c_G(G/H) = c$, see [14, 1.9] and
- def $\mathfrak{N}_H(\mathfrak{m}) \leq \det \mathfrak{N}_{K \cap H}(\mathfrak{m}^S)$ [15, Lemma 3.4].

It then follows from Theorem 1.3 that def $\mathfrak{N}_{K\cap H}(\mathfrak{m}^S) = c$. Therefore, Proposition 2.6 applies to $K/K \cap H$ and we conclude that $\mathfrak{k} \cap \mathfrak{h}$ contains regular semisimple elements of \mathfrak{k} . Let \mathfrak{t}_S be a Cartan subalgebra of \mathfrak{s} . (Then $\mathfrak{t}_S \subset \mathfrak{h}$.) Let \mathfrak{t}_K be a Cartan subalgebra of \mathfrak{k} such that $\mathfrak{t}_K \cap \mathfrak{h}$ contains a regular semisimple element of \mathfrak{k} . Since K and S^o commute and their intersection is finite, $\mathfrak{t}_S \oplus \mathfrak{t}_K =: \mathfrak{k}$ is a Cartan subalgebra of \mathfrak{g} . Let $x \in \mathfrak{t}_S$ be a sufficiently general semisimple element of \mathfrak{s} . Then $\mathfrak{z}_{\mathfrak{g}}(x) = \mathfrak{z}_{\mathfrak{g}}(\mathfrak{t}_S) \supset \mathfrak{z}_{\mathfrak{g}}(\mathfrak{s}) = \mathfrak{k} \oplus \mathfrak{z}(\mathfrak{s})$. Consequently, $\mathfrak{z}_{\mathfrak{g}}(\mathfrak{t}_S) = \mathfrak{t}_S + \mathfrak{k}$ for a reductive Lie algebra $\mathfrak{k} \supset [\mathfrak{k}, \mathfrak{k}]$. However, since \mathfrak{s} contains a commutant of a Levi subalgebra of \mathfrak{g} , it is not hard to prove that $\mathfrak{k} = [\mathfrak{k}, \mathfrak{k}]$. In other words,

$$[\mathfrak{z}_\mathfrak{g}(\mathfrak{t}_S),\mathfrak{z}_\mathfrak{g}(\mathfrak{t}_S)]=[\mathfrak{z}_\mathfrak{g}(\mathfrak{s}),\mathfrak{z}_\mathfrak{g}(\mathfrak{s})]=[\mathfrak{k},\mathfrak{k}].$$

Therefore, if $x \in \mathfrak{t}_S$ is sufficiently general and $y \in \mathfrak{t}_K \cap \mathfrak{h}$ is regular in \mathfrak{k} , then $x + y \in \mathfrak{h}$ is a regular semisimple element of \mathfrak{g} .

Corollary 2.8. If G/H is an affine spherical homogeneous space, then H is s-regular.

Remark 2.3. (1) If G/H is quasiaffine but not affine, then the condition c = 0 does not guarantee that H is *s*-regular. For instance, take H = U.

(2) It can happen that c = 1, S is finite, and H is s-regular, but def $\mathfrak{N}_H(\mathfrak{m}) = 0 < 1$. For instance, take $G = SO_{2n+1}$ and $H = SL_n$.

3. ON A CLASS OF AFFINE HOMOGENEOUS SPACES

For a reductive subgroup $H \subset G$, we set $\tilde{G} = G \times H$ and $\tilde{H} = \Delta_H = H \times H \subset \tilde{G}$. Then $\tilde{\mathcal{O}} = \tilde{G}/\tilde{H}$ is an affine homogeneous space of the reductive group \tilde{G} , which is isomorphic

to *G*. The transitive \tilde{G} -action on *G* is given by the formula $(g,h) \circ s = gsh^{-1}$, where $(g,h) \in \tilde{G}$ and $s \in G$. Then the space of the coisotropy representation of \tilde{H} is

$$\tilde{\mathfrak{m}} = \tilde{\mathfrak{h}}^{\perp} = \{ (\xi, \eta) \in \mathfrak{g}^* \times \mathfrak{h}^* \mid \xi|_{\mathfrak{h}} = -\eta \}.$$

We shall identify the \hat{H} -module $\tilde{\mathfrak{m}}$ with the H-module \mathfrak{g}^* via the projection to the first factor in $\tilde{\mathfrak{g}}^* = \mathfrak{g}^* \times \mathfrak{h}^*$. If we use the isomorphisms $\mathfrak{g}^* \simeq \mathfrak{g}$ and $\mathfrak{h}^* \simeq \mathfrak{h}$, and the sum $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m} = \mathfrak{h} \oplus \mathfrak{h}^{\perp}$, then

(3.1)
$$\tilde{\mathfrak{m}} = (\mathfrak{m} \times \{0\}) \oplus \{(x, -x) \mid x \in \mathfrak{h}\} \subset \mathfrak{g} \times \mathfrak{h}.$$

The multiplicities in the algebra $\mathbb{k}[\tilde{G}/\tilde{H}]$ are closely related to the multiplicities in the branching rule $G \downarrow H$. Let $\tilde{\lambda} = (\lambda, \mu)$ be a dominant weight of \tilde{G} , where $\lambda \in \mathfrak{X}_+(G)$ and $\mu \in \mathfrak{X}_+(H)$. Write $\tilde{V}_{\tilde{\lambda}} = V_{\lambda} \otimes W_{\mu}$ for a simple \tilde{G} -module. Let $m_{\tilde{\lambda}}(\tilde{O})$ denote the multiplicity of $\tilde{V}_{\tilde{\lambda}}$ in $\mathbb{k}[\tilde{O}]$, i.e., the multiplicity of $\tilde{\lambda}$ in the rank monoid $\tilde{\Gamma} = \Gamma_{\tilde{O}}$. Then $m_{\tilde{\lambda}}(\tilde{O})$ equals the multiplicity of W_{μ} in $V_{\lambda}^*|_{H}$, see [2]. It was also shown therein that if $c_{\tilde{G}}(\tilde{O}) \leq 1$, then one can explicitly describe all the multiplicities and the branching rule.

Set
$$\tilde{c} = c_{\tilde{G}}(\tilde{O})$$
, $\tilde{r} = r_{\tilde{G}}(\tilde{O})$. By [2, Section 3] one has $\tilde{c} = c_G(G/B_H)$ and
(3.2) $\tilde{r} = \operatorname{rk} \tilde{G} = \operatorname{rk} G + \operatorname{rk} H$.

If H does not contain infinite normal subgroups of G (in particular, H is a proper subgroup of G), then there is a more practical formula

(3.3)
$$\tilde{c} = \dim U - \dim B_H.$$

Note that if H = G, then $\tilde{\mathcal{O}} = G \times G/\Delta_G$ is a spherical homogeneous space of $G \times G$, i.e., $\tilde{c} = 0$. That is, the constraint on H is necessary for (3.3) to be valid. Whenever we consider the homogeneous space $\tilde{\mathcal{O}} = \tilde{G}/\tilde{H}$, it is also assumed that H does not contain infinite normal subgroups of G and thereby (3.3) holds.

We have here the quotient morphism $\tilde{\pi} : \tilde{\mathfrak{m}} \simeq \mathfrak{g} \to \mathfrak{g}/\!\!/ H \simeq \tilde{\mathfrak{m}}/\!\!/ \tilde{H}$ and the nullcone $\tilde{\pi}^{-1}(\tilde{\pi}(0)) = \mathfrak{N}_{\tilde{H}}(\tilde{\mathfrak{m}}) \simeq \mathfrak{N}_{H}(\mathfrak{g})$. It follows from (3.2) and (3.3) that

(3.4)
$$\dim \mathfrak{g}/\!\!/ H = 2\tilde{c} + \tilde{r} = \dim \mathfrak{g} - \dim \mathfrak{h} = \dim \mathfrak{m}$$

Proposition 3.1. All irreducible components of the nullcone $\mathfrak{N}_H(\mathfrak{g})$ have the same dimension, which is equal to dim $U_H + \frac{1}{2}(\dim \mathfrak{g} - \dim \mathfrak{g}^{T_H})$.

Proof. Since the *H*-module \mathfrak{g} contains \mathfrak{h} as a summand, all roots of \mathfrak{h} occur as *H*-weights in \mathfrak{g} . Moreover, \mathfrak{g} is a self-dual *H*-module. Therefore, \mathfrak{g} satisfies the conditions (C.1) and (C.3) considered by Richardson in [23], and his Theorem 7.3 applies here.

The point of this result is that the upper bound on dimension of the nullcone given in [25], cf. Eq. (1.1), provides now the exact value. Properties of \tilde{G}/\tilde{H} are better than those of

arbitrary affine homogeneous spaces G/H, because $\tilde{r}_{\tilde{G}}(\tilde{G}/\tilde{H}) = \operatorname{rk} \tilde{G}$ and $\dim \mathfrak{N}_{H}(\mathfrak{g})$ is known. Preceding formulae also show that

$$\operatorname{def} \mathfrak{N}_{H}(\mathfrak{g}) = \frac{1}{2} (\operatorname{dim} \mathfrak{g} - \operatorname{dim} \mathfrak{g}^{T_{H}}) - \operatorname{dim} B_{H} \leqslant \operatorname{dim} U - \operatorname{dim} B_{H} = \tilde{c},$$

which illustrates to the easy part of Theorem 1.3. Since \mathfrak{g}^{T_H} contains a Cartan subalgebra of \mathfrak{g} and dim $\mathfrak{N}_H(\mathfrak{g}) \ge \dim \mathfrak{g} - \dim \mathfrak{g}/\!\!/ H = \dim H$, Proposition 3.1 implies that

(3.5)
$$\dim B_H \leq \frac{1}{2} (\dim \mathfrak{g} - \dim \mathfrak{g}^{T_H}) \leq \dim U.$$

Here the equality in the first place is equivalent to that $\dim \mathfrak{N}_H(\mathfrak{g}) = \dim H$, i.e., $\tilde{\pi}$ is equidimensional. Whereas the equality in the second place is equivalent to that \mathfrak{g}^{T_H} is a Cartan subalgebra of \mathfrak{g} , i.e., H is *s*-regular. It is easily seen that H is *s*-regular in G if and only if \tilde{H} is *s*-regular in \tilde{G} .

Comparing equations (3.3) and (3.5) shows that

- if $\tilde{c} = 0$, then *H* is *s*-regular and $\tilde{\pi}$ is equidimensional;
- for $\tilde{c} = 1$, exactly one of these two properties is satisfied.

However, for homogeneous spaces \tilde{G}/\tilde{H} and the isotropy representation $(H : \mathfrak{g})$, there is a more precise assertion for any $\tilde{c} > 0$.

Theorem 3.2. Suppose that \mathfrak{g} is simple, $\tilde{c} > 0$, and $\mathfrak{h} \neq 0$. Then the first inequality in (3.5) is always strict, i.e., $\tilde{\pi}$ cannot be equidimensional. In particular, if $\tilde{c} = 1$, then H is s-regular and def $\mathfrak{N}_H(\mathfrak{g}) = 1$.

Proof. Without loss of generality, we may assume that H is connected. Let $x \in \mathfrak{h}$ be a semisimple element such that $H^x = T_H$. The orbit $H \cdot x \subset \mathfrak{g}$ is closed and, since $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, the slice representation at x equals $(T_H : \mathfrak{t}_H \oplus \mathfrak{m})$. Here \mathfrak{t}_H is a trivial T_H -module. The property of being equidimensional is inheritable, see [31, §8.2]. Therefore, if $(H : \mathfrak{g})$ is equidimensional, then so are $(T_H : \mathfrak{t}_H \oplus \mathfrak{m})$ and $(T_H : \mathfrak{m})$.

Assume that $\tilde{\pi}$ is equidimensional, i.e., $\dim B_H = \frac{1}{2}(\dim \mathfrak{g} - \dim \mathfrak{g}^{T_H})$. Then we have $\dim U = \frac{1}{2}(\dim \mathfrak{g} - \dim \mathfrak{g}^{T_H}) + \tilde{c}$ and hence

(3.6)
$$\dim \mathfrak{g}^{T_H} = \operatorname{rk} \mathfrak{g} + 2\tilde{c}.$$

Take a 1-parameter subgroup $\lambda : \mathbb{k}^{\times} \to T_H$ such that $\mathfrak{m}^{T_H} = \mathfrak{m}^{\lambda(\mathbb{k}^{\times})}$. Then

$$\mathfrak{m}=\mathfrak{m}^+\oplus\mathfrak{m}^{T_H}\oplus\mathfrak{m}^-,$$

where \mathfrak{m}^+ (resp. \mathfrak{m}^-) is the sum of weight spaces \mathfrak{m}_{ν} such that $(\lambda, \nu) > 0$ (resp. $(\lambda, \nu) < 0$). Since \mathfrak{m} is a self-dual *H*-module, the T_H -weights in \mathfrak{m}^+ and \mathfrak{m}^- are opposite to each other. As $\mathfrak{g}^{T_H} = \mathfrak{t}_H \oplus \mathfrak{m}^{T_H}$, it follows from (3.6) that dim $\mathfrak{m}^{T_H} = \operatorname{rk} \mathfrak{g} - \operatorname{rk} \mathfrak{h} + 2\tilde{c}$. Then using (3.2) and (3.4), we obtain dim $\mathfrak{m} = \operatorname{rk} \mathfrak{g} + \operatorname{rk} \mathfrak{h} + 2\tilde{c}$ and dim $\mathfrak{m}^+ = \operatorname{dim} \mathfrak{m}^- = \operatorname{rk} \mathfrak{h}$.

The equidimensional representations of tori are described by Wehlau [32]. For the selfdual representations, his description implies that the nonzero weights in \mathfrak{m}^+ are linearly independent. Therefore, the nonzero T_H -weights in \mathfrak{m}^+ (and in \mathfrak{m}^-) are of multiplicity 1. As the same is true for the T_H -weights in \mathfrak{h} , we obtain the following conditions:

(\Diamond_1) the multiplicity of any nonzero T_H -weight in \mathfrak{g} is ≤ 2 ;

(\Diamond_2) the number of weights with multiplicity 2 is at most $2\text{rk}\mathfrak{h} = \dim(\mathfrak{m}^+ \oplus \mathfrak{m}^-)$.

Let us prove that (\Diamond_1) and (\Diamond_2) cannot be satisfied if $\mathfrak{h} \neq \{0\}$. By (3.6), $\mathfrak{l} = \mathfrak{g}^{T_H}$ is not abelian. Without loss of generality, we may assume that \mathfrak{l} is a standard Levi subalgebra w.r.t. $T \subset B$, i.e., \mathfrak{l} is determined by the set of simple roots α such that $\alpha|_{\mathfrak{t}_H} = 0$.

(a) Assume that $[\mathfrak{l}, \mathfrak{l}]$ has a simple factor of rank ≥ 2 . Then there is a chain of simple roots $\alpha_1, \alpha_2, \beta$ in the Dynkin diagram of \mathfrak{g} such that $\alpha_i|_{\mathfrak{t}_H} = 0$ (i = 1, 2) and $\beta|_{\mathfrak{t}_H} \neq 0$. Then $\beta, \beta + \alpha_2, \beta + \alpha_2 + \alpha_1$ have the same (nonzero) restriction to \mathfrak{t}_H , which contradicts (\Diamond_1).

(b) Assume that $[\mathfrak{l},\mathfrak{l}] \simeq k\mathbf{A}_1$ and $k \ge 2$. Take simple roots α_1, α_2 in $[\mathfrak{l},\mathfrak{l}]$ such that the simple roots between them, say β_1, \ldots, β_r , do not belong to $[\mathfrak{l},\mathfrak{l}]$. If $\beta = \sum_{i=1}^r \beta_i$, then the roots $\beta, \beta + \alpha_1, \beta + \alpha_2$ yield a T_H -weight of multiplicity ≥ 3 , which again contradicts (\Diamond_1).

(c) Assume that $[\mathfrak{l}, \mathfrak{l}] \simeq \mathbf{A}_1$. Then $\tilde{c} = 1$, generic elements of \mathfrak{t}_H are subregular in \mathfrak{g} , and there is a unique root $\alpha \in \Pi$ such that $\alpha|_{\mathfrak{t}_H} = 0$. Each pair of roots of the form $\{\mu, \mu + \alpha\}$ gives rise to a T_H -weight in \mathfrak{g} of multiplicity 2.

• If there are roots of different length and α is short, then one can find a triple of roots $\mu, \mu + \alpha, \mu + 2\alpha$, which again provides a T_H -weight of multiplicity ≥ 3 .

• For α long, the number of pairs of **positive** roots $\{\mu, \mu + \alpha\}$ equals h^*-2 , where h^* is the *dual Coxeter number* of \mathfrak{g} , see [17, Section 1]. Then the total number of such pairs equals $2(h^*-2)$ and (\Diamond_2) means that $2\operatorname{rk}\mathfrak{h} \ge 2(h^*-2)$. Since $h^*-1 \ge \operatorname{rk}\mathfrak{g}$, one must have

$$\boldsymbol{h}^* - 2 \leqslant \operatorname{rk} \boldsymbol{\mathfrak{h}} < \operatorname{rk} \boldsymbol{\mathfrak{g}} \leqslant \boldsymbol{h}^* - 1$$

Hence $\operatorname{rk} \mathfrak{g} = h^* - 1$ and $\operatorname{rk} \mathfrak{h} = \operatorname{rk} \mathfrak{g} - 1$. The equality $\operatorname{rk} \mathfrak{g} = h^* - 1$ holds only for \mathbf{A}_n and \mathbf{C}_n , and we look more carefully at these two series. Since $\tilde{c} = 1$ and $\operatorname{rk} \mathfrak{h} = \operatorname{rk} \mathfrak{g} - 1$, we obtain using (3.4) that

$$\dim \mathfrak{h} = \dim \mathfrak{g} - \operatorname{rk} \mathfrak{g} - \operatorname{rk} \mathfrak{h} - 2\tilde{c} = \dim \mathfrak{g} - 2\operatorname{rk} \mathfrak{g} - 1$$

 $\mathfrak{g} = \mathfrak{sl}_{n+1}$: Here dim $\mathfrak{h} = n^2 - 1$ and hence $\mathfrak{h} = \mathfrak{sl}_n$ is the only possibility. But the subgroup $SL_n \subset SL_{n+1}$ is *s*-regular, if $n \ge 2$, i.e., if $\mathfrak{h} \ne 0$.

 $\mathfrak{g} = \mathfrak{sp}_{2n}$: Here dim $\mathfrak{h} = 2n^2 - n - 1 > \dim \mathfrak{sp}_{2n-2}$, and this case is also impossible.

Thus, the assumption that $\tilde{\pi}$ is equidimensional leads to a contradiction.

Remark 3.1. This result is specific for homogeneous spaces of the form $(G \times H)/\Delta_H$. For arbitrary affine homogeneous spaces G/H, it can happen that c = 1, but $\pi : \mathfrak{m} \to \mathfrak{m}/\!\!/ H$

is equidimensional and *H* is not *s*-regular. For instance, take $(G, H) = (Sp_{2n}, Sp_{2n-2})$ or (SO_{2n+1}, SO_{2n-1}) with $n \ge 2$.

3.1. More on the nullcone for $\tilde{\pi}$. For $\tilde{G} = G \times H$ and $\tilde{G}/\tilde{H} \simeq G$, we have

 $\mathfrak{N}_{\tilde{H}}(\tilde{\mathfrak{m}})\subset\mathfrak{N}_{\tilde{G}}(\tilde{\mathfrak{g}})\cap\tilde{\mathfrak{m}} \ \text{and} \ \mathfrak{N}_{\tilde{G}}(\tilde{\mathfrak{g}})=\mathfrak{N}_{G}(\mathfrak{g})\times\mathfrak{N}_{H}(\mathfrak{h})\subset\mathfrak{g}\times\mathfrak{h}.$

Using (3.1), one readily verifies that under the isomorphism $\tilde{\mathfrak{m}} \simeq \mathfrak{g}$ the variety $\mathfrak{N}_{\tilde{G}}(\tilde{\mathfrak{g}}) \cap \tilde{\mathfrak{m}}$ is identified with $\mathfrak{N}_G(\mathfrak{g}) \cap (\mathfrak{N}_H(\mathfrak{h}) \times \mathfrak{m}) \subset \mathfrak{g}$. Since $\tilde{r} = \operatorname{rk} \tilde{\mathfrak{g}}$, translating Theorem 2.3, Theorem 2.4, and Proposition 2.5 into this setting, we obtain

Theorem 3.3. If $\tilde{c} = 0$, then $\mathfrak{N}_H(\mathfrak{g}) = \mathfrak{N}_G(\mathfrak{g}) \cap (\mathfrak{N}_H(\mathfrak{h}) \times \mathfrak{m})$. For arbitrary $\tilde{c} \ge 0$, we have

- dim $\mathfrak{N}_H(\mathfrak{g}) \leq \dim \mathfrak{h} + \tilde{c} = \dim \tilde{U} = \dim U + \dim U_H;$
- $\dim(\mathfrak{N}_G(\mathfrak{g}) \cap (\mathfrak{N}_H(\mathfrak{h}) \times \mathfrak{m})) = \dim \mathfrak{h} + 2\tilde{c} = \dim \mathfrak{g} \operatorname{rk} \mathfrak{g} \operatorname{rk} \mathfrak{h};$
- the intersection $\mathfrak{N}_G(\mathfrak{g}) \cap (\mathfrak{N}_H(\mathfrak{h}) \times \mathfrak{m})$ is proper.

Moreover, if dim $\mathfrak{N}_H(\mathfrak{g}) = \dim \mathfrak{h} + \tilde{c}$, i.e., def $\mathfrak{N}_H(\mathfrak{g}) = \tilde{c}$, then H is s-regular in G.

3.2. Homogeneous spaces \tilde{G}/\tilde{H} of complexity ≤ 1 .

The pairs (G, H) such that $c_{\tilde{G}}(\tilde{G}/\tilde{H}) = 0$ can be characterised by a number of equivalent properties. An extensive list of such properties is given and discussed in [18, Section 3.2].

In particular, (G, H) is a *strong Gelfand pair*, which means that any simple *G*-module V_{λ} is a multiplicity free *H*-module. A classification of strong Gelfand pairs (in the category of compact Lie groups) is obtained by Manfred Krämer in [7].

If *G* is simple, then the (very short) list of strong Gelfand pairs consists of two series:

 $(\mathfrak{sl}_n, \mathfrak{gl}_{n-1}), n \ge 2$, and $(\mathfrak{so}_n, \mathfrak{so}_{n-1}), n \ge 5$.

See also comments in [2, Section 4] and other details in [18, Section 3.2].

Remark 3.2. For a symmetric variety G/G_0 with simple G, it is proved in [3] that

 $\tilde{\pi} : \mathfrak{g} \to \mathfrak{g}/\!\!/G_0$ is equidimensional $\iff (\mathfrak{g}, \mathfrak{g}_0)$ is either $(\mathfrak{sl}_n, \mathfrak{gl}_{n-1})$ or $(\mathfrak{so}_n, \mathfrak{so}_{n-1})$. Since these two series gives rise to the only spherical homogeneous spaces \tilde{G}/\tilde{H} , our Theorem 3.2 generalises that result of [3].

The list of pairs (G, H) such that G is simple, H is connected, and $\tilde{c} = 1$ is obtained in [2, Section 4]. For the reader convenience, we recall it in Table 1.

TABLE 1. The pairs (G, H) with simple G and $\tilde{c} = 1$

№	1	2	3	4	5	6	7	8
G	SL_{n+1}	Sp_6	$Spin_7$	\mathbf{G}_2	SL_3	SL_3	Sp_4	SL_4
H	SL_n	$Sp_4 \times SL_2$	\mathbf{G}_2	SL_3	SO_3	T	$SL_2 \cdot \mathbb{k}^{\times}$	$(SL_2)^2 \cdot \mathbb{k}^{\times}$

For N₂ 6, $T = T_2$ is a maximal torus of SL_3 , and N₂ 7 represents actually two different pairs. Here *H* is a Levi subgroup of Sp_4 , and there are two non-conjugate Levi subgroups corresponding to either the **long** or the **short** simple root of Sp_4 . In Section 4, these two cases will be referred to as 7(*l*) and 7(*s*), respectively.

4. The defect of the null-cone and invariants

Let $G \to GL(V)$ be a linear representation of a connected reductive group G. In [21], V. Popov conjectured that if G is semisimple and $\pi : V \to V/\!\!/G$ is equidimensional, then $V/\!\!/G$ is an affine space, i.e, $\Bbbk[V]^G$ is a polynomial algebra. Afterwards, this conjecture was extended to arbitrary connected reductive groups. Using our terminology, the conjecture can be stated as follows:

If G is a connected reductive group and def $\mathfrak{N}_G(V) = 0$, then $V/\!\!/G$ is an affine space.

There had been a good few classification work related to this conjecture. To the best of my knowledge, it is verified in the following cases:

- *G* is simple, V is irreducible (V.L. Popov, 1976 [21]);
- *G* is simple, V is reducible (O.M. Adamovich, 1980);
- *G* is semisimple, V is irreducible (P. Littelmann, 1989);
- *G* is a torus (E.B. Vinberg (oral lecture at MSU) 1983; D. Wehlau, 1992 [32]);
- *G* is a product of two simple factors, with some exceptions (D. Wehlau, 1993 [33]).

An interesting approach to an *a priori* proof of the Popov conjecture is presented in [29]. More information on this conjecture and other references can be found in [31, § 8.7].

Some time ago, I stated a similar conjecture on non-equidimensional representations. Let $\operatorname{ed} V/\!\!/ G$ denote the *embedding dimension* of $V/\!\!/ G$, i.e., the minimal number of generators of $\mathbb{k}[V]^G$. Then $\operatorname{hd} V/\!\!/ G := \operatorname{ed} V/\!\!/ G - \operatorname{dim} V/\!\!/ G$ is the *homological dimension* of $V/\!\!/ G$, see [22].

Conjecture 4.1 ([15, Conj. 3.5]). Suppose that G is connected, V is a self-dual G-module, and def $\mathfrak{N}_G(V) = 1$. Then $V/\!\!/G$ is either an affine space or a hypersurface, i.e., $\operatorname{hd} V/\!\!/G \leq 1$.

The assumption on self-duality is essential here, see Example in [15, p. 94]. This conjecture is proved for tori [15, Prop. 3.10] and $G = SL_2$ [15, Example 3.12(1)].

The isotropy representation of a reductive subgroup $H \subset G$ is orthogonal and the complexity of G/H provides an upper bound on def $\mathfrak{N}_H(\mathfrak{m})$, see Theorem 1.3. Therefore, Conjecture 4.1 can be specialised to the following

Conjecture 4.2. If *H* is connected reductive and $c_G(G/H) = 1$, then $\operatorname{hd} \mathfrak{m}/\!\!/ H \leq 1$.

As a support to Conjecture 4.2, we prove below two theorems. Before stating these theorems, we describe our general approach. If *H* is simple and $H \subset GL(V)$, then we use various classification results on the structure of $V/\!\!/H$:

- when $V/\!\!/H \simeq \mathbb{A}^N$ [1, 24];
- when $V/\!\!/ H$ is a complete intersection, especially a hypersurface [26, 27];
- when $H = SL_2$ and $hd(V/SL_2) \leq 3$ [22, Theorem 4].

If *H* is not simple, then we work with consecutive quotients, using factors of *H*. Suppose that $H = H_1 \times H_2$ is a product of reductive groups. Then one has the quotient morphisms

(4.1)
$$\mathfrak{m} \xrightarrow{\pi_1} \mathfrak{m}/\!\!/ H_1 \xrightarrow{\pi_2} (\mathfrak{m}/\!\!/ H_1)/\!\!/ H_2 = \mathfrak{m}/\!\!/ H.$$

In all cases below, we can choose H_1 such that $\operatorname{hd}(\mathfrak{m}/\!\!/ H_1) \leq 2$, hence $\mathfrak{m}/\!\!/ H_1$ is a complete intersection. (In most cases, we actually obtain $\operatorname{hd}(\mathfrak{m}/\!\!/ H_1) \leq 1$.) This yields an embedding $\mathfrak{m}/\!\!/ H_1 \hookrightarrow V_2$ into an H_2 -module V_2 such that $\operatorname{codim}_{V_2}(\mathfrak{m}/\!\!/ H_1) \leq 2$. Then using the equations of $\mathfrak{m}/\!\!/ H_1$ in V_2 , we describe $\mathfrak{m}/\!\!/ H$ as a subvariety of $V_2/\!\!/ H_2$. This allows us to handle the second step in (4.1) and prove that $\operatorname{hd}(\mathfrak{m}/\!\!/ H) \leq 1$.

To describe m as *H*-module, we need some notation. The fundamental weights of *H* are denoted by $\{\varphi_i\}$ and ε stands for the basic character of one-dimensional torus $\mathbb{k}^{\times} = \mathsf{T}_1$. The fundamental weights for the second (resp. third) simple factor of *H* are marked with prime (resp. double prime). The unique fundamental weight of SL_2 is denoted by φ . Write $\mathbb{1}$ for the trivial one-dimensional representation.

As in [24, 25, 27], the simple *H*-module W_{λ} is identified with its highest weight λ , using the multiplicative notation for λ in terms of the fundamental weights. For instance, we write $\varphi_j \varphi_k + 3\varphi_i^2$ in place of $W_{\varphi_j + \varphi_k} + 3W_{2\varphi_i}$. Finally, λ^* is a dual *H*-module to λ .

Theorem 4.3. If G is simple and $c_G(G/H) = 1$, then

- either $\mathfrak{m}/\!\!/ H$ is an affine space and def $\mathfrak{N}_H(\mathfrak{m}) = 0$;
- or $\mathfrak{m}/\!\!/ H$ is a hypersurface and def $\mathfrak{N}_H(\mathfrak{m}) = 1$.

(Hence an a priori conceivable case, where $\mathfrak{m}/\!\!/ H \simeq \mathbb{A}^n$ and def $\mathfrak{N}_H(\mathfrak{m}) = 1$, does not occur.)

Proof. The list of such pairs (G, H) consists of 17 items, and we refer to their numbering in [13, Table 1] (see also Table 1 in [16]). The output is that $\mathbb{k}]\mathbb{m}]^H$ is a polynomial algebra for $\mathbb{N}^{\mathbb{N}}$ 1, 4–9, 13, 16, 17. For the other cases, $\mathbb{k}]\mathbb{m}]^H$ is a hypersurface.

Let us provide some details to our computations. If *H* is simple, then the pairs with a polynomial algebra $\mathbb{k}]\mathbb{m}]^H$ can be picked from the list of "coregular representations" of *H* obtained by Schwarz [24] and Adamovich–Golovina [1]. This applies to $\mathbb{N}^{\mathbb{Q}}$ 4–8, 13, 16–17. Moreover, for all these cases, one also has def $\mathfrak{N}_H(\mathfrak{m}) = 0$, see [25].

For \mathbb{N} 1, we have $(G, H) = (SL_{2n}, SL_n \times SL_n)$ and $\mathfrak{m} = \varphi_1 \varphi'_1 + (\varphi_1 \varphi'_1)^* + \mathbb{1}$. Here one can use the fact that $\hat{H} = (SL_n)^2 \cdot \mathsf{T}_1$ is a symmetric subgroup of G, with isotropy representation $\hat{\mathfrak{m}} = \varphi_1 \varphi'_1 \varepsilon + (\varphi_1 \varphi'_1 \varepsilon)^*$, and hence $\mathbb{k}[\hat{\mathfrak{m}}]^{\hat{H}}$ is a polynomial algebra.

For N^o 9, we have $(G, H) = (\mathbf{C}_n, \mathbf{C}_{n-2} \times \mathbf{A}_1 \times \mathbf{A}_1), n \ge 3$, and $\mathfrak{m} = \varphi_1 \varphi' + \varphi_1 \varphi'' + \varphi' \varphi''$. Here $\mathfrak{m}|_{\mathbf{C}_{n-2}} = 4\varphi_1 + 4\mathbb{1}$. If $n \ge 4$, then $(4\varphi_1)/\!/\mathbf{C}_{n-2} \simeq \mathbb{A}^6$, and it is isomorphic to

 $\varphi'\varphi'' + 2\mathbb{1}$ as $\mathbf{A}_1 \times \mathbf{A}_1$ -module. Hence $\mathfrak{m}/\!\!/ \mathbf{C}_{n-2} \simeq \varphi'\varphi'' + 2\mathbb{1} + \varphi'\varphi''$. It is easily seen that $(2\varphi'\varphi'')/\!\!/ \mathbf{A}_1 \times \mathbf{A}_1 \simeq \mathbb{A}^3$ (it is also $\mathbb{N}_2 \mathbb{1}$ with n = 2). Therefore, $\mathfrak{m}/\!\!/ H \simeq \mathbb{A}^5$. By [25], $(\mathbf{C}_{n-2}, 4\varphi_1)$ is equidimensional if and only if $n \ge 5$. Then both quotient morphisms

$$\mathfrak{m} \to \mathfrak{m}/\!\!/ \mathbf{C}_{n-2} \to (\mathfrak{m}/\!\!/ \mathbf{C}_{n-2})/\!\!/ (\mathbf{A}_1 \times \mathbf{A}_1) = \mathfrak{m}/\!\!/ H$$

are equidimensional. This already shows that $\mathfrak{m}/\!\!/ H$ is an affine space for $n \ge 4$ and, moreover, $(H : \mathfrak{m})$ is equidimensional, if $n \ge 5$. Some other *ad hoc* methods allow us to handle the case with n = 3 and prove the equidimensionality for n = 4.

The other cases, where *H* is semisimple, are $Sp_4 \supset SL_2$ (N^a 14) and $\mathbf{B}_5 \supset \mathbf{B}_3 \times \mathbf{A}_1$ (N^a 12). – In N^a 14, the SL_2 -module m equals φ^6 (binary forms of degree 6), and it is a classical fact from XIX century that φ^6 / SL_2 is a hypersurface, cf. also [22, Theorem 4].

- In \mathbb{N}_2 12, $\mathfrak{m} = \varphi_3 \varphi'^2 + \varphi_1$ as $\mathbf{B}_3 \times \mathbf{A}_1$ -module. Then $\mathfrak{m} = 3\varphi_3 + \varphi_1$ as \mathbf{B}_3 -module and $\mathfrak{m}/\!\!/\mathbf{B}_3 \simeq \mathbb{A}^{10}$. Using explicit multi-degrees of basic \mathbf{B}_3 -invariants, see \mathbb{N}_2 6 in [1, Table 3], one sees that $\mathfrak{m}/\!\!/\mathbf{B}_3 \simeq \varphi'^2 + \varphi'^4 + 2\mathbb{I}$ as \mathbf{A}_1 -module, and therefore $(\mathfrak{m}/\!\!/\mathbf{B}_3)/\!\!/\mathbf{A}_1 = \mathfrak{m}/\!\!/H$ is a hypersurface.

Consider an item, where *H* is not semisimple. For $\mathbb{N}^{\mathbb{N}}$ 11, we have $(G, H) = (\mathbf{B}_4, \mathbf{G}_2 \cdot \mathbf{T}_1)$ and $\mathfrak{m} = \varphi_1 \varepsilon + \varphi_1 + \varphi_1 \varepsilon^{-1}$. Then $\mathfrak{m} = 3\varphi_1$ as \mathbf{G}_2 -module and $(3\varphi_1)/\!/\mathbf{G}_2 \simeq \mathbb{A}^7$. Using explicit multi-degrees of basic \mathbf{G}_2 -invariants, cf. $\mathbb{N}^{\mathbb{N}}$ 1 in [1, Table 4], we obtain that the T_1 -weights on \mathbb{A}^7 are $\varepsilon^2, \varepsilon, \varepsilon^{-1}, \varepsilon^{-2}, 1, 1, 1$. Hence $\mathbb{A}^7/\!/\mathsf{T}_1 = \mathfrak{m}/\!/H$ is a hypersurface.

Remark 4.1. I would like to fix some misprints and omissions in [13, Table 1].

- In N^o 1, the group *H* has to be $SL_n \times SL_n$;
- the summand 1 has to be added to \mathfrak{m} in \mathbb{N}_2 3, 6. One also has r = 4 in \mathbb{N}_2 3.
- for № 12, the right formula for m is given above.

A similar approach works for affine homogeneous spaces \tilde{G}/\tilde{H} with $\tilde{c} = 1$.

Theorem 4.4. If G is simple and $\tilde{c} = c_{\tilde{G}}(\tilde{G}/\tilde{H}) = 1$, then $\mathfrak{g}/\!\!/ H$ is a hypersurface.

Proof. We check the assertion for all items in Table 1. The *H*-modules \mathfrak{g} are given below. The underlined summands give rise to the adjoint representation of *H*.

- 1. $\mathfrak{sl}_{n+1} = \underline{\varphi_1 \varphi_{n-1}} + \varphi_1 + \varphi_{n-1} + \mathbb{1}$ as SL_n -module.
- 2. $\mathfrak{sp}_6 = \varphi_1^2 + \varphi_1 \varphi' + \underline{\varphi'^2}$ as $Sp_4 \times SL_2$ -module.
- 3. $\mathfrak{so}_7 = \varphi_1 + \varphi_2$ as **G**₂-module.
- 4. $\mathbf{G}_2 = \underline{\varphi_1 \varphi_2} + \varphi_1 + \varphi_2$ as SL_3 -module.
- 5. $\mathfrak{sl}_3 = \underline{\varphi}^2 + \varphi^4$ as SL_2 -module (we use the isomorphism $\mathfrak{sl}_2 \simeq \mathfrak{so}_3$).

6. $\mathfrak{sl}_3 = (\varepsilon + \mu + \varepsilon \mu) + (\varepsilon + \mu + \varepsilon \mu)^* + \underline{21}$ as T_2 -module.

7(s).
$$\mathfrak{sp}_4 = \varphi^2 \varepsilon^2 + \varphi^2 + \varphi^2 \varepsilon^{-2} + \underline{1}$$
 as $SL_2 \cdot \mathsf{T}_1$ -module.

7(*l*). $\mathfrak{sp}_4 = \underline{\varphi^2} + \varphi \varepsilon + \varphi \varepsilon^{-1} + \varepsilon^2 + \varepsilon^{-2} + \underline{1}$ as $SL_2 \cdot \mathsf{T}_1$ -module.

8. $\mathfrak{sl}_4 = \varphi \varphi' \varepsilon + \varphi \varphi' \varepsilon^{-1} + \underline{\varphi}^2 + \underline{\varphi'}^2 + \underline{1}$ as $(SL_2 \times SL_2) \cdot \mathsf{T}_1$ -module.

▶ Items 1,3–5 are representations admitting a *finite coregular extension* in the sense of Shmel'kin [26], and he proves that here $g/\!\!/H$ is an (explicitly described) hypersurface.

• Items 7(l, s) can be handled in a similar way, and we provide details for one of them.

- In the *s*-case, we have $\mathfrak{sp}_4 = 3\varphi^2 + \mathbb{I}$ as SL_2 -module, and $(3\varphi^2)/\!/SL_2$ is a hypersurface, see [22, Theorem 4]. We skip below the trivial *H*-module \mathbb{I} . It is not hard to write explicitly down the basic invariants for $(SL_2 : 3\varphi^2)$. Let *F* denote the basic invariant of degree 2 for the adjoint representation $(SL_2 : \varphi^2)$, i.e., F(v) = (v, v) for $v \in \varphi^2$. If $(v_1, v_2, v_3) \in 3\varphi^2$, then the basic SL_2 -invariants are: F_{ij} , $1 \leq i \leq j \leq 3$, and \tilde{F} , where $F_{ij}(v_1, v_2, v_3) = (v_i, v_j)$ and $\tilde{F} = \det[v_1, v_2, v_3]$. The basic relation is

(4.2)
$$\det((F_{ij})_{i,j=1}^3) = \tilde{F}^2,$$

where $F = (F_{ij})_{i,j=1}^3$ is the symmetric 3 by 3 matrix. If $t \cdot (v_1, v_2, v_3) = (t^{-2}v_1, v_2, t^2v_3)$ for $t \in T_1$, then $F_{13}, F_{22}, \tilde{F}$ are already T_1 -invariants, but $t \cdot F_{11} = t^4 F_{11}, t \cdot F_{12} = t^2 F_{12}, t \cdot F_{23} = t^{-2}F_{23}$, and $t \cdot F_{33} = t^{-4}F_{33}$. Therefore, the other $SL_2 \cdot T_1$ -invariants are:

$$x_1 = F_{11}F_{33}, \ y_1 = F_{12}F_{23}, \ z_1 = F_{11}F_{23}^2, \ z_2 = F_{33}F_{12}^2$$

Thus, we get seven generators and yet another relation

$$(4.3) x_1 y_1^2 = z_1 z_2$$

Expressing the det(F) via these $SL_2 \cdot T_1$ -invariants, we rewrite (4.2) as

$$x_1F_{22} + 2y_1F_{13} + F_{13}^2F_{22} + z_1 + z_2 = \tilde{F}^2.$$

Therefore, either z_1 or z_2 can be excluded from the minimal generating system of $\mathbb{k}[\mathfrak{m}]^H$. Afterwards, (4.3) yields the relation for the remaining six invariants.

- In the *l*-case, $\mathfrak{sp}_4 = \varphi^2 + 2\varphi + 3\mathbb{1}$ as SL_2 -module, and $(\varphi^2 + 2\varphi)/\!/SL_2$ is a hypersurface, too. The rest is similar to the *s*-case.

▶ N_{\circ} 6 is easy and left to the reader.

№ 8 is a slice representation for № 2. Therefore, using the monotonicity results for homological dimension of algebras of invariants [22, Theorem 2], it suffices to handle № 2.
№ 2 is the most difficult case, and we only give some hints. Here sp₆ = φ₁² + 2φ₁ + 31 as *Sp*₄-module. The representation (*Sp*₄ : φ₁²+2φ₁) is a slice for (*SL*₄ : φ₁²+φ₂+2φ₁^{*} = V) (use w ∈ φ₁^{*} = w) and bd (V/SL) = 2127. Table 01. Therefore, (φ₂²+2φ₁)/(*Sp*₄)

 $v \in \tilde{\varphi}_2$ such that $(SL_4)^v = Sp_4$) and hd $(\tilde{V}/\!\!/SL_4) = 2$ [27, Table 9]. Therefore, $(\varphi_1^2 + 2\varphi_1)/\!\!/Sp_4$ is a complete intersection and hd $(\varphi_1^2 + 2\varphi_1)/\!\!/Sp_4 \leq 2$ [22]. The subsequent argument is similar in spirit with that in case 7(*s*), but much more elaborated. We also need the fact that, for the truncated $Sp_4 \times SL_2$ -module $\varphi_1^2 + \varphi_1 \varphi' = V \subset \mathfrak{sp}_6$, the quotient $V/\!/(Sp_4 \times SL_2)$ is an affine space of dimension 5 [33].

5. COISOTROPY REPRESENTATIONS AND RELATED POISSON STRUCTURES

In this section, G/H is affine, and we think of \mathfrak{m} as a subspace of \mathfrak{g}^* . The cotangent bundle $T^*_{G/H} = G \times_H \mathfrak{m}$ is a symplectic *G*-variety, hence the algebra $\Bbbk[T^*_{G/H}]$ is equipped with the associated Poisson bracket $\{ , \}$. This bracket restricts to the algebra of *G*-invariants $\Bbbk[T^*_{G/H}]^G \simeq \Bbbk[\mathfrak{m}]^H$, which makes $\mathfrak{m}/\!\!/H$ a Poisson variety. Recall that $\dim \mathfrak{m}/\!\!/H = 2c + r$.

The Poisson bracket $(\mathbb{k}[\mathfrak{m}]^H, \{,\})$ has the following explicit description, see e.g. [30, Ch. II, §1.8]. The algebra of regular functions $\mathbb{k}[\mathfrak{m}]$ is also the symmetric algebra of $\mathfrak{g}/\mathfrak{h} \simeq \mathfrak{m}^*$, hence $\mathbb{k}[\mathfrak{m}]^H = \mathcal{S}(\mathfrak{g}/\mathfrak{h})^H$. Let $f_1, f_2 \in \mathcal{S}(\mathfrak{g}/\mathfrak{h})^H$ and $\alpha \in (\mathfrak{g}/\mathfrak{h})^* = \mathfrak{m} \subset \mathfrak{g}^*$. Then

(5.1)
$$\{f_1, f_2\}(\alpha) = \langle \alpha, [d_\alpha f_1, d_\alpha f_2] \rangle$$

The commutator on the right-hand side of this formula is understood as the commutator in \mathfrak{g} of any representatives of the cosets $d_{\alpha}f_1, d_{\alpha}f_2 \in \mathfrak{g}/\mathfrak{h}$, because the result does not depend on the choice of these representatives in \mathfrak{g} (if f_1 and f_2 are *H*-invariants!). Note that if $\mathfrak{h} = \mathfrak{g}^{\sigma}$ for an involution σ , then the right-hand side in (5.1) is identically zero. That is, for the symmetric variety G/H, the Poisson bracket vanishes on $\Bbbk[T^*_{G/H}]^G$. Let $\mathrm{rk}\{,\}$ denote the *rank of the Poisson bracket*, i.e., the maximal dimension of symplectic leaves in $\mathfrak{m}/\!\!/ H$. It follows from [30, Ch. II, §3, Theorem 2] that in our case $\mathrm{rk}\{,\} = 2c$.

Let $(\mathcal{P}, \{ , \}_{\mathcal{P}})$ be an affine Poisson variety. A subalgebra \mathcal{A} of $\Bbbk[\mathcal{P}]$ is said to be *Poisson-commutative*, if $\{\mathcal{A}, \mathcal{A}\} = 0$. As is well-known, if \mathcal{A} is Poisson-commutative, then

$$\operatorname{trdeg} \mathcal{A} \leq \dim \mathcal{P} - \frac{1}{2} \operatorname{rk} \{ , \}_{\mathcal{P}}.$$

Therefore, we arrive at the following conclusion.

Lemma 5.1. If \mathcal{A} is a Poisson-commutative subalgebra of $\mathbb{k}[\mathfrak{m}]^H$, then $\operatorname{trdeg} \mathcal{A} \leq c + r$.

Conjecture 5.2. For any affine homogeneous space G/H, there is a Poisson-commutative subalgebra $\mathcal{A} \subset \Bbbk[\mathfrak{m}]^H$ such that $\operatorname{trdeg} \mathcal{A} = c + r$.

Let \mathcal{Z} denote the Poisson centre of $(\mathbb{k}[\mathfrak{m}]^H, \{,\})$. By [5, Section 7], \mathcal{Z} is a polynomial ring and trdeg $\mathcal{Z} = r$. Some stronger results can also be found in [6, Section 9].

Example 5.1. For c = 0, one has $\mathcal{Z} = \mathbb{k}[\mathfrak{m}]^H$, and there is nothing to prove. For c = 1, trdeg $\mathbb{k}[\mathfrak{m}]^H = \text{trdeg } \mathcal{Z} + 2$ and one can take any $f \in \mathbb{k}[\mathfrak{m}]^H$ that is not algebraic over \mathcal{Z} . Then the subalgebra generated by \mathcal{Z} and f is Poisson-commutative and its transcendence degree equals r + 1, as required. Thus, Conjecture 5.2 is true, if $c \leq 1$.

By [5, Theorem 7.6], one has $\mathcal{Z} = \mathbb{k}[M_{\mathcal{O}}]^G$ and the morphism $T^*_{G/H} \to \text{Spec } \mathcal{Z}$ is given by the map ψ in (2.2). Therefore, using commutative diagrams (2.2) and (2.3), we get the chain morphisms

$$\mathfrak{m} \xrightarrow{\pi_{\mathfrak{m}}} \mathfrak{m}/\!\!/ H \longrightarrow \operatorname{Spec} \mathfrak{Z} = M_{\mathcal{O}}/\!\!/ G \xrightarrow{\tau} \overline{G {\cdot} \mathfrak{m}}/\!\!/ G,$$

where τ is finite, the morphisms $\boldsymbol{f} : \mathfrak{m} \to \operatorname{Spec} \mathfrak{Z}$ and $\tilde{\boldsymbol{f}} : \mathfrak{m} \to \overline{G \cdot \mathfrak{m}} /\!\!/ G = \tilde{M}_{\mathcal{O}} /\!\!/ G$ are equidimensional, and $\tilde{\boldsymbol{f}}^{-1}(\bar{0}) = \boldsymbol{f}^{-1}(\bar{0}) = \mathfrak{N}_{G}(\mathfrak{g}^{*}) \cap \mathfrak{m}$.

5.1. The case of \tilde{G}/\tilde{H} . For the homogeneous spaces of the form $\tilde{G}/\tilde{H} = (G \times H)/\Delta_H$, one can say more. Recall that $\tilde{r} = \operatorname{rk} \mathfrak{g} + \operatorname{rk} \mathfrak{h}$, $\tilde{c} = \dim U - \dim B_H$, and $\tilde{\mathfrak{m}} \simeq \mathfrak{g}^*$. Here Lemma 5.1 says that if $\mathcal{A} \subset \Bbbk[\mathfrak{g}^*]^H = \mathfrak{S}(\mathfrak{g})^H$ is Poisson-commutative, then

(5.2)
$$\operatorname{trdeg} \mathcal{A} \leqslant \tilde{c} + \tilde{r} = \frac{1}{2} (\dim \mathfrak{g} - \dim \mathfrak{h} + \operatorname{rk} \mathfrak{g} + \operatorname{rk} \mathfrak{h}).$$

In this setting, the existence of \mathcal{A} such that $\operatorname{trdeg} \mathcal{A} = \tilde{c} + \tilde{r}$ has been proved for several classes of reductive subalgebras \mathfrak{h} :

• $\mathfrak{h} = \mathfrak{g}^{\sigma}$ is a symmetric subalgebra [19, Theorem 2.7];

• $\mathfrak{h} = \mathfrak{g}^{\theta}$, where ϑ is an automorphism of \mathfrak{g} of finite order ≥ 3 [20, Theorem 3.10]. Here one also needs the condition that a certain contraction of \mathfrak{g} associated with ϑ , denoted $\mathfrak{g}_{(0)}$, has the same index as \mathfrak{g} . It should be noted, however, that this condition has been verified in many cases, and it is likely that this condition always holds.

• \mathfrak{h} is the centraliser of a semisimple element of \mathfrak{g} [11, Lemma 2.1], i.e., \mathfrak{h} is a Levi subalgebra of \mathfrak{g} .

Note also that if $\mathfrak{h} \subset \mathfrak{g}$ has a non-trivial centre, then, for any \mathfrak{r} such that $[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{r} \subset \mathfrak{h}$, we have $\dim \mathfrak{h} - \operatorname{rk} \mathfrak{h} = \dim \mathfrak{r} - \operatorname{rk} \mathfrak{r}$. Therefore, if a Poisson-commutative subalgebra $\mathcal{A} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{h}}$ has the maximal transcendence degree, then it follows from (5.2) that \mathcal{A} has the maximal transcendence degree as subalgebra of the larger Poisson algebra $\mathcal{S}(\mathfrak{g})^{\mathfrak{r}}$.

Remark. An advantage of this case is that $\mathbb{k}[\tilde{\mathfrak{m}}] = S(\mathfrak{g})$ is a Poisson algebra. Therefore, one can construct 'large' Poisson-commutative subalgebras in $S(\mathfrak{g})^H$ using compatible Poisson brackets and Mishchenko-Fomenko subalgebras of $S(\mathfrak{g})$, see [11, 19, 20]. But for an arbitrary affine G/H, the algebra $\mathbb{k}[\mathfrak{m}]$ does not possess a natural Poisson structure.

5.2. A more general setting. Let $R \subset Q$ be arbitrary connected affine algebraic groups. Then $Q \times R/\Delta_R \simeq Q$ is an affine homogeneous space of $Q \times R$ and the coisotropy representation of $R \simeq \Delta_R$ is isomorphic to $(R : \mathfrak{q}^*)$. Here we are led to consider Poisson-commutative subalgebras of the Poisson algebra $\mathfrak{S}(\mathfrak{q})^R = \mathfrak{S}(\mathfrak{q})^{\mathfrak{r}}$.

Our luck is that this problem (without connection to coisotropy representations) has been considered in [11], where an upper bound on trdeg \mathcal{A} similar to (5.2) is given. The only difference is that the *rank* of a Lie algebra has to be replaced with the *index*. (Recall that rk $\mathfrak{q} = \operatorname{ind} \mathfrak{q}$ whenever \mathfrak{q} is reductive.) That is, if $\mathcal{A} \subset S(\mathfrak{q})^r$ and $\{\mathcal{A}, \mathcal{A}\} = 0$, then

(5.3)
$$\operatorname{trdeg} \mathcal{A} \leqslant \frac{1}{2} (\dim \mathfrak{q} - \dim \mathfrak{r} + \operatorname{ind} \mathfrak{q} + \operatorname{ind} \mathfrak{r}),$$

see [11, Prop. 1.1]. It is also shown in [11] that if $\mathfrak{r} = \mathfrak{q}^{\xi}$ is the stabiliser of $\xi \in \mathfrak{q}^*$ under the coadjoint representation of \mathfrak{q} and $\operatorname{ind} \mathfrak{q}^{\xi} = \operatorname{ind} \mathfrak{q}$, then this bound is achieved in many cases. In particular, if \mathfrak{q} is reductive, then this happens for any ξ .

However, results of [5] do not apply in this setting, unless both groups Q and R are reductive.

References

- [1] O. ADAMOVICH and E. GOLOVINA. Simple linear Lie groups having a free algebra of invariants, In: *"Voprosy teorii grupp i gomologicheskoi algebry"*, t. 2, p. 3–41, Yaroslavl University, 1979 (Russian). English translation: *Selecta Math. Sov.*, 3 (1984), 183–220.
- [2] D. AKHIEZER and D. PANYUSHEV. Multiplicities in the branching rules and the complexity of homogeneous spaces, *Moscow Math. J.*, 2 (2002), 17–33.
- [3] N. ANDRUSKIEWITSCH. On the complicatedness of the pair (g, K), *Rev. Mat. Univ. Complutense Madr.* 2, no. 1 (1989), 13–28.
- [4] B. KOSTANT and S. RALLIS. Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753–809.
- [5] F. KNOP. Weylgruppe und Momentabbildung, Invent. Math., 99 (1990), 1-23.
- [6] F. KNOP. A Harish-Chandra homomorphism for reductive group actions, Ann. Math., 140 (1994), 253–288.
- [7] M. KRÄMER. Multiplicity free subgroups of compact connected Lie groups, Arch. Math., 27 (1976), 28–36.
- [8] M. KRÄMER. Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compos. Math., 38 (1979), 129–153.
- [9] D. LUNA. Sur les orbites fermées des groups algébriques réductifs, Invent. Math., 16 (1972), 1–5.
- [10] D. LUNA and R.W. RICHARDSON. A generalization of the Chevalley restriction theorem. *Duke Math. J.*, **46** (1979), 487–496.
- [11] A. MOLEV and O. YAKIMOVA. Quantisation and nilpotent limits of Mishchenko–Fomenko subalgebras, *Represent. Theory*, 23 (2019), 350–378.
- [12] D. PANYUSHEV. Complexity and rank of homogeneous spaces, Geom. Dedicata, 34 (1990), 249–269.
- [13] D. PANYUSHEV. Complexity of quasiaffine homogeneous varieties, *t*-decompositions and affine homogeneous spaces of complexity 1, in: E.B. Vinberg (Ed.), "Lie groups, their discrete subgroups and Invariant Theory" (Adv. Sov. Math., vol. 8, pp.151–166) Providence: AMS 1992.
- [14] D. PANYUSHEV. A restriction theorem and the Poincaré series for *U*-invariants, *Math. Annalen*, **301** (1995), 655–675.
- [15] D. PANYUSHEV. Good properties of algebras of invariants and defect of linear representations, J. Lie Theory, 5 (1995), 81–99.
- [16] D. PANYUSHEV. Complexity and rank of actions in invariant theory, J. Math. Sci. (New York), 95 (1999), 1925–1985.
- [17] D. PANYUSHEV. The poset of positive roots and its relatives, J. Algebraic Combin., 23 (2006), 79–101.
- [18] D. PANYUSHEV and O. YAKIMOVA. Poisson-commutative subalgebras and complete integrability on non-regular coadjoint orbits and flag varieties, *Math. Zeitschrift*, 295, no. 1-2 (2020), 101–127.
- [19] D. PANYUSHEV and O. YAKIMOVA. Poisson-commutative subalgebras of S(g) associated with involutions, *Intern. Math. Res. Notices*, 2021, no. 23, 18367–18406.

22

- [20] D. PANYUSHEV and O. YAKIMOVA. Periodic automorphisms, compatible Poisson brackets, and Gaudin subalgebras, *Transform. Groups*, **26**, no. 2 (2021), 641–670.
- [21] V.L. POPOV. Representations with a free module of covariants, Funct. Anal. Appl., 10 (1977), 242–244.
- [22] V.L. POPOV. Homological dimension of algebras of invariants, J. reine angew. Math., 341 (1983), 157– 173.
- [23] R.W. RICHARDSON. Irreducible components of the nullcone, Contemp. Math., 88 (1989), 409–434.
- [24] G. SCHWARZ. Representations of simple Lie groups with regular rings of invariants, *Invent. Math.*, 49 (1978), 167–191.
- [25] G. SCHWARZ. Representations of simple Lie groups with a free module of covariants, *Invent. Math.*, 50 (1978), 1–12.
- [26] D.A. SHMEL'KIN. On non-connected simple linear groups with a free algebra of invariants, *Izv. Math.*, 60 (1996), 811–856.
- [27] D.A. SHMEL'KIN. On representations of SL_n with algebras of invariants being complete intersections, *J. Lie Theory*, **11**, no. 1 (2001), 207–229.
- [28] D.A. TIMASHEV. Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences 138. Berlin: Springer, xxii, 253 p. (2011).
- [29] E.B. VINBERG. Effective theory of invariants, In: "Algebra", Collection of papers dedicated to O.Yu. Schmidt, Moskva, MSU, 27–33 (1982) (Russian). English translation in: "Fourteen Papers Translated from the Russian", AMS Translations: Series 2, 137 (1987), 15–19.
- [30] E.B. VINBERG. Commutative homogeneous spaces and co-isotropic symplectic actions. *Russ. Math. Surv.*, **56**, no. 1 (2001), 1–60.
- [31] E.B. VINBERG and V.L. POPOV. *Invariant theory*, in: Sovremennye problemy matematiki. Fundam. napravl., t. 55, p. 137–309, Moskva: VINITI, 1989 (Russian). English translation: *Algebraic Geometry IV* (Encyclopaedia Math. Sci., vol. 55, p.123–284) Berlin Heidelberg New York: Springer 1994.
- [32] D. WEHLAU. A proof of the Popov conjecture for tori, Proc. Amer. Math. Soc., 114 (1992), 839-845.
- [33] D. WEHLAU. Equidimensional representations of 2-simple groups, J. Algebra, 154 (1993), 437–489.

INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS, MOSCOW 127051, RUSSIA *Email address*: panyush@mccme.ru