ORBITS AND INVARIANTS FOR COISOTROPY REPRESENTATIONS

DMITRI I. PANYUSHEV

Abstract

For a subgroup H of a reductive group G, let $\mathfrak{m}=\mathfrak{h}^{\perp} \subset \mathfrak{g}^{*}$ be the cotangent space of $\{H\} \in G / H$. The linear action $(H: \mathfrak{m})$ is the coisotropy representation. It is known that the complexity and rank of G / H (denoted c and r, respectively) are encoded in properties of $(H: \mathfrak{m})$. We complement existing results on c, r, and $(H: \mathfrak{m})$, especially for quasiaffine varieties G / H. For instance, if the algebra of invariants $\mathbb{k}[\mathfrak{m}]^{H}$ is finitely generated, then $\mathfrak{N}_{H}(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$. Moreover, if G / H is affine, then $\mathfrak{N}_{H}(\mathfrak{m})=\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$ if and only if $c=0$. We also prove that the variety $\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$ is pure, of dimension $\operatorname{dim} \mathfrak{m}-r$. Two other topics considered are (i) a relationship between varieties G / H of complexity at most 1 and the homological dimension of the algebra $\mathbb{k}[\mathfrak{m}]^{H}$ and (ii) the Poisson structure of $\mathbb{k}[\mathfrak{m}]^{H}$ and Poisson-commutative subalgebras $\mathcal{A} \subset \mathbb{k}[\mathfrak{m}]^{H}$ such that $\operatorname{trdeg} \mathcal{A}$ is maximal.

Introduction

In this article, we study invariant-theoretic properties for the coisotropy representation of a homogeneous space of a reductive group G. The ground field \mathbb{k} is algebraically closed and char $\mathbb{k}=0$. All groups and varieties are assumed to be algebraic, and all algebraic groups are affine. If Q is a group and X is a variety, then the notation $(Q: X)$ means that Q acts regularly on X. We also say that X is a Q-variety. Lie algebras of algebraic groups are denoted by the corresponding small gothic letters, e.g., $\mathfrak{q}=\operatorname{Lie} Q$.

Throughout, G is a connected reductive group and $\mathfrak{g}=\operatorname{Lie} G$. We also consider a Borel subgroup $B \subset G$, the maximal unipotent subgroup $U=(B, B)$, and a maximal torus $T \subset B$. This yields a bunch of related objects: roots, weights, simple roots, etc. For a reductive subgroup $H \subset G$, we denote by B_{H}, U_{H}, and T_{H} analogous subgroups of H.

For a subgroup $H \subset G$, let $c=c_{G}(G / H)$ and $r=r_{G}(G / H)$ be the complexity and rank of the G-variety G / H, respectively. Then $r \leqslant \operatorname{rk} G$ (see Section 1 for details.) These two integers are important for invariant theory and theory of equivariant embeddings of G / H. Let $\mathfrak{m}=\mathfrak{h}^{\perp} \subset \mathfrak{g}^{*}$ be the cotangent space of $\{H\} \in G / H$. The linear action $(H: \mathfrak{m})$ is called the coisotropy representation of H (or $G / H)$. It is shown in [12] that

- the integers c and r are closely related to properties of $(H: \mathfrak{m})$. If G / H is quasiaffine, then $\operatorname{dim} \mathfrak{m}-\max _{x \in \mathfrak{m}} \operatorname{dim} H \cdot x=2 c+r$, the stabiliser H^{x} is reductive for generic $x \in \mathfrak{m}$, and $\mathrm{rk} G-\mathrm{rk} H^{x}=r$.

2020 Mathematics Subject Classification. 14L30, 14R20, 14M27, 17B20.
Key words and phrases. Isotropy representation, quasiaffine homogeneous space, complexity of action.

- If $c=0$ and $\mathfrak{c} \subset \mathfrak{m}$ is a Cartan subspace, then $\overline{H \cdot \mathfrak{c}}=\mathfrak{m}$ and there is a finite group $W \subset G L(\mathfrak{c})$ such that $\mathbb{k}[\mathfrak{c}]^{W} \simeq \mathbb{k}[\mathfrak{m}]^{H}$. Here the morphism $\pi: \mathfrak{m} \rightarrow \mathfrak{m} / / H:=\operatorname{Spec}\left(\mathbb{k}[\mathfrak{m}]^{H}\right)$ is equidimensional, and if H is connected, then $\mathbb{k}[\mathfrak{m}]^{H}$ is a polynomial ring.

More generally, if $\mathbb{k}[\mathfrak{m}]^{H}$ is finitely generated, then π is also well-defined and the fibre $\pi^{-1}(\pi(0))=: \mathfrak{N}_{H}(\mathfrak{m})$ is the nullcone (in \mathfrak{m} with respect to H). The nullcone is a fibre of π of maximal dimension and if $c>0$, then π is not necessarily equidimensional. It is convenient to consider the defect of equidimensionality (=defect of $\mathfrak{N}_{H}(\mathfrak{m})$)

$$
\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m})-(\operatorname{dim} \mathfrak{m}-\operatorname{dim} \mathfrak{m} / / H)
$$

If H is reductive, then $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m}) \leqslant c$ [15, Prop.3.6].
In Section 2, we present new results related to the nullcones $\mathfrak{N}_{H}(\mathfrak{m})$ and $\mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$, and the generalised Cartan subspace $\mathfrak{c} \subset \mathfrak{m}$.

- For any $x \in \mathfrak{m}$, we show that $\operatorname{dim} G \cdot x \geqslant 2 \operatorname{dim} H \cdot x$, and the equality occurs if and only if $\mathfrak{g} \cdot x \cap \mathfrak{m}=\mathfrak{h} \cdot x$. Another general property is that $\operatorname{dim}\left(\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)\right)=\operatorname{dim} \mathfrak{m}-r$ and all irreducible components of $\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$ have this dimension (Theorem 2.3).
- If G / H is quasiaffine, then one can define a generalised Cartan subspace $\mathfrak{c} \subset \mathfrak{m}$ (see Section 1) and we prove that $\operatorname{codim}_{\mathfrak{m}} \overline{H \cdot \mathfrak{c}}=c$.
- If G / H is quasiaffine and $\mathbb{k}[\mathfrak{m}]^{H}$ is finitely generated, then $\mathfrak{N}_{H}(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$. Moreover, if $c=0$, then $\mathfrak{N}_{H}(\mathfrak{m})=\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$ (Theorem 2.4).
- If G / H is affine, then $\mathfrak{N}_{H}(\mathfrak{m})=\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$ if and only if G / H is spherical (Prop. 2.5). We also prove that if $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=c$, then \mathfrak{h} contains a regular semisimple element of \mathfrak{g} (Theorem 2.7). In particular, this applies to the affine homogeneous spaces with $c=0$.

In Section 3, affine homogeneous spaces of the form $\tilde{\mathcal{O}}=(G \times H) / \Delta_{H}$ are studied. Here $H \subset G$ is reductive and Δ_{H} is the diagonal in $H \times H \subset G \times H=\tilde{G}$. Then $\tilde{\mathcal{O}} \simeq G$ and the isotropy representation of $\Delta_{H} \simeq H$ is identified with the H-module \mathfrak{g}. In this case, $\tilde{\mathcal{O}}$ has a group structure, $r_{\tilde{G}}(\tilde{\mathcal{O}})=\operatorname{rk} \tilde{G}$ is maximal, and $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{g})$ can be computed via a result of R. Richardson [23]. Here we present some complements to results of Section 2.

In Section 4, we consider coisotropy representations ($H: \mathfrak{m}$) with def $\mathfrak{N}_{H}(\mathfrak{m}) \leqslant 1$. If $c=0$, then π is equidimensional and $\mathfrak{m} / / H \simeq \mathbb{A}^{n}$. This can be regarded as an illustration to the Popov conjecture [21]. In [15], we stated a related conjecture that if H is connected reductive and $c=1$, then $\mathfrak{m} / / H$ is either an affine space or a hypersurface. We verify this in two cases:
(a) for the homogeneous spaces G / H with simple G;
(b) for the homogeneous spaces $\tilde{\mathcal{O}}=(G \times H) / \Delta_{H}$ with $c_{\tilde{G}}(\tilde{\mathcal{O}})=1$, where G is simple. In both cases, classifications of such pairs (G, H) are known (see [13] for (a) and [2] for (b)), and we perform a case-by-case verification.

In Section $5, H$ is reductive and the natural Poisson bracket $\{$,$\} on the affine variety$ $\mathfrak{m} / / H$ is considered. Let z be the Poisson centre of $\left(\mathbb{k}[\mathfrak{m}]^{H},\{\},\right)$. Then there is the natural
morphism $f: \mathfrak{m} \rightarrow \operatorname{Spec} z$. Using results of F . Knop [5], we prove that f is equidimensional and $\boldsymbol{f}^{-1}(0)=\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$.

It is shown that if a subalgebra $\mathcal{A} \subset \mathbb{k}[\mathfrak{m}]^{H}$ is Poisson-commutative, then $\operatorname{trdeg} \mathcal{A} \leqslant c+r$. We conjecture that there is always such a subalgebra with $\operatorname{trdeg} \mathcal{A}=c+r$. Some partial results towards this conjecture are described.

Our basic reference for Invariant Theory is [31].

Data availability and conflict of interest statement.

This article has no associated data. There is no conflict of interest.

1. GENERALITIES ON GROUP ACTIONS AND COISOTROPY REPRESENTATIONS

Let $\mathbb{k}[X]$ denote the algebra of regular functions on a variety X. If X is irreducible, then $\mathbb{k}(X)$ is the field of rational functions on X. If X is acted upon by Q, then $\mathbb{k}[X]^{Q}$ and $\mathbb{k}(X)^{Q}$ are the subalgebra and subfield of invariant functions, respectively. The identity component of Q is denoted by Q^{o}. For $x \in X$, let Q^{x} denote the stabiliser of x in Q. Then $\mathfrak{q}^{x}=\operatorname{Lie} Q^{x}$. A stabiliser Q^{x} is said to be generic, if there is a dense open subset $\Omega \subset X$ such that Q^{y} is Q-conjugate to Q^{x} for all $y \in \Omega$. We say that a property (\mathbf{P}) holds for almost all points of X, if there is a dense open subset $X_{0} \subset X$ such that (\mathbf{P}) holds for all $x \in X_{0}$.

1.1. Complexity and rank. Let X be an irreducible G-variety. Then

- the complexity of X is $c_{G}(X)=\operatorname{dim} X-\max _{x \in X} \operatorname{dim} B \cdot x$,
- the rank of X is $r_{G}(X)=\max _{x \in X} \operatorname{dim} B \cdot x-\max _{x \in X} \operatorname{dim} U \cdot x$.

By the Rosenlicht theorem (see e.g. [31, §2.3]), we also have

$$
c_{G}(X)=\operatorname{trdeg} k(X)^{B} \text { and } c_{G}(X)+r_{G}(X)=\operatorname{trdeg} k(X)^{U} .
$$

An alternate approach to the rank uses the weights of B-semi-invariants in $\mathbb{k}(X)$. For quasiaffine varieties, this boils down to the following. Write $\mathfrak{X}_{+}=\mathfrak{X}_{+}(G)$ for the set of dominant weights of G with respect to (B, T). Let V_{λ} denote a simple G-module with highest weight $\lambda \in \mathfrak{X}_{+}$. Let $\mathbb{k}[X]=\bigoplus_{\lambda \in \mathfrak{X}_{+}} \mathbb{k}[X]_{(\lambda)}$ be the sum of G-isotypic components, where $\mathbb{k}[X]_{(0)}=\mathbb{k}[X]^{G}$. Then

$$
\Gamma_{X}=\left\{\lambda \in \mathfrak{X}_{+} \mid \mathbb{k}[X]_{(\lambda)} \neq 0\right\}
$$

is the rank monoid of X and $r_{G}(X)=\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q} \Gamma_{X}\right)$. Clearly $r \leqslant \operatorname{rk} \mathfrak{g}$. If $c_{G}(X)=0$, then X is said to be a spherical G-variety. If $\mathbb{k}[X]^{G}=\mathbb{k}$, then $\operatorname{dim} \mathbb{k}[X]_{(\lambda)}<\infty$ for all λ and $m_{\lambda}(X):=\operatorname{dim} \mathbb{k}[X]_{(\lambda)} / \operatorname{dim} \vee_{\lambda}$ is the multiplicity of V_{λ} in $\mathbb{k}[X]$ (= the multiplicity of λ in $\left.\Gamma_{X}\right)$.
1.2. The coisotropy representation. Let H be an algebraic subgroup of G with Lie $H=\mathfrak{h}$. Then $\mathfrak{g} / \mathfrak{h} \simeq \mathrm{T}_{\{H\}}(G / H)$ is an H-module and the linear action $(H: \mathfrak{g} / \mathfrak{h})$ is the isotropy representation of H. Set $\mathfrak{m}=\mathfrak{h}^{\perp}=\left\{\xi \in \mathfrak{g}^{*}|\xi|_{\mathfrak{h}}=0\right\}$. Then $\mathfrak{m} \simeq(\mathfrak{g} / \mathfrak{h})^{*}$ as H-module and the linear action $(H: \mathfrak{m})$ is the coisotropy representation of H. If necessary, we identify \mathfrak{g} and \mathfrak{g}^{*} using a non-degenerate G-invariant bilinear form Ψ on \mathfrak{g} and regard \mathfrak{m} as subspace of \mathfrak{g}.

Recall that, for a reductive $G, G / H$ is affine if and only if H is reductive. Another equivalent condition is that the form Ψ is non-degenerate on \mathfrak{h}. In this case, $\mathfrak{m} \simeq \mathfrak{g} / \mathfrak{h}$ and $\mathfrak{g} \simeq \mathfrak{h} \oplus \mathfrak{m}$ as H-module. Then the linear action ($H: \mathfrak{m}$) will be referred to as the isotropy representation of H.

We always assume that the G-action on G / H has a finite kernel. This is tantamount to saying that H contains no infinite normal subgroups of G. This condition is always satisfied, if G is simple. If G / H is spherical, then H is said to be a spherical subgroup of G. For simplicity, we write c and r for the complexity and rank of the homogeneous space G / H.

Theorem 1.1 ([12], [16, Ch. 2]). If G / H is quasiaffine, then
(1) There is a generic stabiliser for $(H: \mathfrak{m})$, say S, which is reductive;
(2) $\operatorname{dim} G+\operatorname{dim} S-2 \operatorname{dim} H=\operatorname{dim} \mathfrak{m}-\max _{x \in \mathfrak{m}} \operatorname{dim} H \cdot x=2 c+r$;
(3) $\mathrm{rk} G-\mathrm{rk} S=r$.

The theory developed in [12] (and presented with more details in [16]) contains much more results. We mention those that will be needed later. Let us assume that B and T are fixed. Then the choice of H (up to conjugacy in G) and S (up to conjugacy in H) is at our disposal. It was proved that H and S can be chosen such that
$\left(\mathcal{P}_{1}\right) \quad Z_{G}(t)^{\prime} \subset S \subset Z_{G}(t)$ for some $t \in \mathfrak{t}=\operatorname{Lie} T$. Hence $T \subset N_{G}(S)$ and S / S^{o} is abelian;
$\left(\mathcal{P}_{2}\right) \mathfrak{b} \cap \mathfrak{s}$ is a Borel subalgebra of \mathfrak{s} and $B \cap S$ is a generic stabiliser for $(B: G / H)$;
$\left(\mathcal{P}_{3}\right) \mathfrak{u} \cap \mathfrak{s}$ is the nilradical of $\mathfrak{b} \cap \mathfrak{s}$ and $U \cap S$ is a generic stabiliser for $(U: G / H)$;
$\left(\mathcal{P}_{4}\right) \mathfrak{t} \cap \mathfrak{s}$ is a Cartan subalgebra of \mathfrak{s};
$\left(\mathcal{P}_{5}\right) \quad B \cdot S=P$ is a parabolic subgroup and $P \cap H=S$.
Whenever the algebra $\mathbb{k}[\mathfrak{m}]^{H}$ is finitely generated, we consider the following objects:

- the categorical quotient $\mathfrak{m} / / H:=\operatorname{Spec}\left(\mathbb{k}[\mathfrak{m}]^{H}\right)$;
- the quotient morphism $\pi=\pi_{H, \mathfrak{m}}: \mathfrak{m} \rightarrow \mathfrak{m} / / H$ induced by the inclusion $\mathbb{k}[\mathfrak{m}]^{H} \hookrightarrow \mathbb{k}[\mathfrak{m}]$;
- the nullcone $\mathfrak{N}_{H}(\mathfrak{m}):=\pi^{-1}(\pi(0)) \subset \mathfrak{m}$.

Example 1.1. Let $\sigma \in \operatorname{Aut}(\mathfrak{g})$ be an involution and $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ the sum of ± 1-eigenspaces of σ. If G_{0} is the connected subgroup of G with Lie $G_{0}=\mathfrak{g}_{0}$, then G / G_{0} is affine and $c_{G}\left(G / G_{0}\right)=0$. We say that G / G_{0} is a symmetric variety and G_{0} is a symmetric subgroup of G. The isotropy representation $\left(G_{0}: \mathfrak{g}_{1}\right)$ has thoroughly been studied by Kostant-Rallis [4].

For instance, they proved that $\mathbb{k}\left[\mathfrak{g}_{1}\right]^{G_{0}}$ is a polynomial algebra, $\operatorname{dim} \mathfrak{g}_{1} / / G_{0}=r_{G}\left(G / G_{0}\right)$, and $\pi_{G_{0}, \mathfrak{g}_{1}}: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{1} / / G_{0}$ is equidimensional, i.e., all fibres have the same dimension.

For any quasiaffine G / H, we introduced in [12] a certain subspace $\mathfrak{c} \subset \mathfrak{m}$, which is useful in the study of the linear action $(H: \mathfrak{m})$. Let us recall the general construction of \mathfrak{c}. The definitions of the complexity and rank of G / H imply that

$$
\operatorname{dim} G / H-\max _{x \in G / H} \operatorname{dim} B \cdot x=c \quad \& \quad \operatorname{dim} G / H-\max _{x \in G / H} \operatorname{dim} U \cdot x=c+r
$$

Without loss of generality, we may assume that $x=\{H\}$ is generic in both senses and properties $\left(\mathcal{P}_{1}\right)-\left(\mathcal{P}_{5}\right)$ are satisfied. Then $\operatorname{codim}_{\mathfrak{g}}(\mathfrak{b}+\mathfrak{h})=c, \operatorname{codim}_{\mathfrak{g}}(\mathfrak{u}+\mathfrak{h})=c+r$, and we set

$$
\mathfrak{c}=(\mathfrak{b}+\mathfrak{h})^{\perp}=\mathfrak{u}^{\perp} \cap \mathfrak{m} \quad \& \quad \tilde{\mathfrak{c}}=(\mathfrak{u}+\mathfrak{h})^{\perp}=\mathfrak{b}^{\perp} \cap \mathfrak{m} .
$$

Then $\operatorname{dim} \mathfrak{c}=c+r$ and $\operatorname{dim} \tilde{\mathfrak{c}}=c$. It follows that $\operatorname{dim} \mathfrak{c} \leqslant \operatorname{dim} \mathfrak{m}-\max _{x \in \mathfrak{m}} \operatorname{dim} H \cdot x=2 c+r$, and the equality occurs if and only if $c=0$. Upon identification of \mathfrak{g} and \mathfrak{g}^{*}, we have $\mathfrak{c}=\mathfrak{b} \cap \mathfrak{m}$ and $\tilde{\mathfrak{c}}=\mathfrak{u} \cap \mathfrak{m}$.

Consider the projection $p_{\mathfrak{t}}: \mathfrak{b}=\mathfrak{t} \oplus \mathfrak{u} \rightarrow \mathfrak{t}$ and set $\mathfrak{t}_{1}=p_{\mathfrak{t}}(\mathfrak{c}) \subset \mathfrak{t}$. Then $\operatorname{dim} \mathfrak{t}_{1}=r$. If $c=0$, then $\tilde{\mathfrak{c}}=\{0\}$ and p_{t} maps \mathfrak{c} isomorphically to \mathfrak{t}_{1}. In this case, \mathfrak{c} contains no nilpotent elements of \mathfrak{g}. Moreover, the following holds.

Theorem 1.2 ([12, Section 3.2]). For $c=0$, the subspace $\mathfrak{c} \subset \mathfrak{m}$ has the following properties:
(1) the H-saturation of \mathfrak{c} is dense in \mathfrak{m}, i.e., $\overline{H \cdot \mathfrak{c}}=\mathfrak{m}$;
(2) almost all elements of \mathfrak{c} have the same stabiliser in H, which is just S;
(3) there is a finite group $W \subset G L(\mathfrak{c})$ such that the restriction homomorphism $\mathbb{k}[\mathfrak{m}] \rightarrow \mathbb{k}[\mathfrak{c}]$ induces an isomorphism $\mathbb{k}[\mathfrak{m}]^{H} \xrightarrow{\sim} \mathbb{k}[\mathfrak{c}]^{W}$.

It follows from (1) and (2) that, for almost all $x \in \mathfrak{c}$, the stabiliser H^{x} is generic, while (3) implies that $\mathbb{k}[\mathfrak{m}]^{H}$ is finitely generated and $\pi: \mathfrak{m} \rightarrow \mathfrak{m} / / H$ is equidimensional. The common dimension of fibres equals $\operatorname{dim} \mathfrak{m}-\operatorname{dim} \mathfrak{m} / / H=\operatorname{dim} \mathfrak{m}-r$. Furthermore, if H is connected, then W is a reflection group and $\mathbb{k}[\mathfrak{m}]^{H}$ is a polynomial ring, i.e., $\mathfrak{m} / / H \simeq \mathbb{A}^{r}$ is an affine space, see [12, Cor. 5].

If $c=0$, then \mathfrak{c} resembles a Cartan subspace for the isotropy representation a symmetric variety G / G_{0}. For this reason, a subspace \mathfrak{c} satisfying properties of Theorem 1.2 was christened in [12] a Cartan subspace (of \mathfrak{m}).

Thus, Theorem 1.2 shows that many good properties of the symmetric variety G / G_{0} and $\left(G_{0}: \mathfrak{g}_{1}\right)$ are retained for quasiaffine spherical homogeneous spaces.

For an arbitrary quasiaffine G / H, we shall say that $\mathfrak{c}=\mathfrak{u}^{\perp} \cap \mathfrak{m}$, as above, is a generalised Cartan subspace of \mathfrak{m}. If G / H is not spherical, then \mathfrak{c} does not satisfy properties (1) and (3) of Theorem 1.2 (cf. also Theorem 2.2 below).

Remarks. 1) In [12], the generalised Cartan subspace is denoted by \mathfrak{z}. Here we follow the notation of [16, Chapter 2].
2) Above results on the complexity, rank, and coisotropy representations are also obtained by Knop [5] via different methods. Our approach in [12, 16] is based on the study of 'doubled actions' (which is not discussed here), while Knop considers the cotangent bundles and moment map.

The nullcone $\mathfrak{N}_{H}(\mathfrak{m})$ is a fibre of π of maximal dimension [31, §5.2]. The action $(H: \mathfrak{m})$ is said to be equidimensional, if the quotient morphism $\pi: \mathfrak{m} \rightarrow \mathfrak{m} / / H$ is equidimensional. The defect of equidimensionality of $\pi\left(=\right.$ of $\left.\mathfrak{N}_{H}(\mathfrak{m})\right)$ is introduced in [15, Section 3] as the difference between $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m})$ and dimension of generic fibres of π, i.e.,

$$
\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m})-(\operatorname{dim} \mathfrak{m}-\operatorname{dim} \mathfrak{m} / / H)
$$

Therefore, π is equidimensional if and only if def $\mathfrak{N}_{H}(\mathfrak{m})=0$.
If H is reductive, then $\mathfrak{N}_{H}(\mathfrak{m})=\{x \in \mathfrak{m} \mid \overline{H \cdot x} \ni 0\}$ and the representation $(H$: $\mathfrak{m})$ is orthogonal. The latter implies that the action $(H: \mathfrak{m})$ is stable [9] and therefore $\operatorname{dim} \mathfrak{m} / / H=2 c+r$. Then $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m}) \geqslant \operatorname{dim} \mathfrak{m}-(2 c+r)$. On the other hand, there is an upper bound on dimension of the nullcone for the self-dual representations of reductive groups [25, Prop. 2.10]. In our case, this shows that

$$
\begin{equation*}
\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m}) \leqslant \operatorname{dim} U_{H}+\frac{1}{2}\left(\operatorname{dim} \mathfrak{m}-\operatorname{dim} \mathfrak{m}^{T_{H}}\right)=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g}^{T_{H}}\right) \tag{1.1}
\end{equation*}
$$

Theorem 1.3 ([15, Proposition 3.6]). If H is reductive, then $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m}) \leqslant c$.
Outline of the proof. 1^{o}. If $r=\operatorname{rk} \mathfrak{g}$, then S is finite and $\operatorname{dim} G / H=\operatorname{dim} \mathfrak{m}=\operatorname{dim} B+c$. Hence $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m}) \geqslant \operatorname{dim} \mathfrak{m}-\operatorname{dim} \mathfrak{m} / / H=\operatorname{dim} H=\operatorname{dim} U-c$. On the other hand,

$$
\begin{equation*}
\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m}) \leqslant \frac{1}{2}\left(\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g}^{T_{H}}\right) \leqslant \operatorname{dim} U . \tag{1.2}
\end{equation*}
$$

2^{o}. If $r<\operatorname{rkg} \mathfrak{g}$, then Lie $S \neq 0$ and one can use the Luna-Richardson theorem [10, Theorem 4.2]. This provides a (rather technical) reduction to part 1°.

Remark 1.1. The relations $\operatorname{dim} H=\operatorname{dim} U-c$ and $\operatorname{dim} \mathfrak{m}=\operatorname{dim} B+c$ hold only if S is finite. In general, one has $\operatorname{dim} H=\operatorname{dim} U+\operatorname{dim} B_{S}-c$ and $\operatorname{dim} \mathfrak{m}=\operatorname{dim} B-\operatorname{dim} B_{S}+c$.
1.3. Homogeneous spaces of complexity at most 1. The Luna-Vust theory of equivariant embeddings of homogeneous spaces (1983) implies that a reasonably complete theory can be developed for homogeneous spaces of complexity $\leqslant 1$. For a modern account of that theory and related topics, we refer to [28].

As is already mentioned, if \mathfrak{h} is a fixed point subalgebra for an involution of \mathfrak{g}, then $c_{G}(G / H)=0$. All connected spherical reductive subgroups H of simple algebraic groups G have been found by M. Krämer [8]. Then M. Brion and I. Mikityuk (independently) found all connected spherical reductive subgroups of the semisimple algebraic groups, see e.g. tables in [30, Ch. I, §3.6].

The study of quasiaffine homogeneous spaces of complexity 1 was initiated in [13], where a classification of the pairs (G, H) such that G simple, H is connected reductive, and $c_{G}(G / H)=1$ is also obtained. (See also [16, Chapter 3].)

2. NEW RESULTS FOR COISOTROPY REPRESENTATIONS

For the symmetric varieties (see Example 1.1), one has $\operatorname{dim} G \cdot x=2 \operatorname{dim} G_{0} \cdot x$ for any $x \in$ \mathfrak{g}_{1} [4, Prop. 5]. For quasiaffine spherical G / H, this equality holds generically, i.e., there is a dense open subset $\Omega \subset \mathfrak{m}$ such that $\operatorname{dim} G \cdot x=2 \operatorname{dim} H \cdot x$ for all $x \in \Omega$ [12, Theorem 5]. Then $H \cdot x$ is a Lagrangian subvariety of the symplectic variety $G \cdot x \subset \mathfrak{g}^{*}$ for all $x \in \Omega$. The following observation is a slight extension of [12, Proposition 1].

Lemma 2.1. (i) For any algebraic subgroup $H \subset G$ and $x \in \mathfrak{m}=\mathfrak{h}^{\perp}$, one has

$$
\operatorname{dim} G \cdot x=\operatorname{dim} H \cdot x+\operatorname{dim}([\mathfrak{g}, x] \cap \mathfrak{m}) \geqslant 2 \operatorname{dim} H \cdot x .
$$

(ii) $\operatorname{dim} G \cdot x=2 \operatorname{dim} H \cdot x \Longleftrightarrow[\mathfrak{g}, x] \cap \mathfrak{m}=[\mathfrak{h}, x]$.

Proof. We have $([\mathfrak{g}, x] \cap \mathfrak{m})^{\perp}=([\mathfrak{g}, x])^{\perp}+\mathfrak{m}^{\perp}=\mathfrak{g}^{x}+\mathfrak{h}$. Hence

$$
\operatorname{dim}([\mathfrak{g}, x] \cap \mathfrak{m})=\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g}^{x}-\operatorname{dim} \mathfrak{h}+\operatorname{dim}\left(\mathfrak{g}^{x} \cap \mathfrak{h}\right)=\operatorname{dim} G \cdot x-\operatorname{dim} H \cdot x .
$$

It is also clear that $[\mathfrak{g}, x] \cap \mathfrak{m} \supset[\mathfrak{h}, x]$.
In the setting of symmetric varieties (Example 1.1), the relation $[\mathfrak{g}, x] \cap \mathfrak{g}_{1}=\left[\mathfrak{g}_{0}, x\right]$ for all $x \in \mathfrak{g}_{1}$ readily follows from the presence of involution σ.

Recall that $\mathfrak{c}=\mathfrak{m} \cap \mathfrak{u}^{\perp}=\mathfrak{m} \cap \mathfrak{b}$ is a generalised Cartan subspace, $\tilde{\mathfrak{c}}=\mathfrak{c} \cap \mathfrak{u}$, and $\mathfrak{t}_{1}=$ $p_{\mathfrak{t}}(\mathfrak{c}) \subset \mathfrak{t}$. The following is a generalisation of Theorem 1.2(1).

Theorem 2.2. Let G / H be a quasiaffine homogeneous space and $\mathfrak{c} \subset \mathfrak{m}$ a generalised Cartan subspace. Then $\operatorname{codim}_{\mathfrak{m}} \overline{H \cdot \mathfrak{c}}=c_{G}(G / H)=c$.

Proof. 1. We assume that properties $\left(\mathcal{P}_{1}\right)-\left(\mathcal{P}_{5}\right)$ are satisfied for S, B, and H. Then $\mathfrak{l}=\mathfrak{s} \oplus \mathfrak{t}_{1}$ is a Levi subalgebra of $\mathfrak{p}=\operatorname{Lie} P$. Moreover, by [12, Lemma 3], one has $\mathfrak{g}^{y}=\mathfrak{l}$ for almost all $y \in \mathfrak{t}_{1}$. Let \mathfrak{n} denote the nilradical of \mathfrak{p} and \mathfrak{n}_{-}the opposite nilradical, i.e., $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{n}_{-}$. Then $\mathfrak{c}=\mathfrak{m} \cap \mathfrak{b}=\mathfrak{m} \cap\left(\mathfrak{n} \oplus \mathfrak{t}_{1}\right)$ and $\tilde{\mathfrak{c}}=\mathfrak{m} \cap \mathfrak{u}=\mathfrak{m} \cap \mathfrak{n}$.
2. By part 1, we have $\mathfrak{c}^{\perp}=\mathfrak{m}^{\perp}+\left(\mathfrak{n} \oplus \mathfrak{t}_{1}\right)^{\perp}=\mathfrak{h}+(\mathfrak{s} \oplus \mathfrak{n})=\mathfrak{h}+\mathfrak{n}$. For almost all $y \in \mathfrak{c}$, \mathfrak{g}^{y} is a Levi subalgebra of \mathfrak{p} (see Step 1 in [16, Theorem 2.2.6]). Therefore $([\mathfrak{g}, y] \cap \mathfrak{c})^{\perp}=$ $\mathfrak{g}^{y}+\mathfrak{c}^{\perp}=\mathfrak{h}+\left(\mathfrak{g}^{y}+\mathfrak{n}\right)=\mathfrak{h}+\mathfrak{p}$. Hence

$$
\begin{equation*}
[\mathfrak{g}, y] \cap \mathfrak{c}=(\mathfrak{h}+\mathfrak{p})^{\perp}=\mathfrak{m} \cap \mathfrak{n}=\tilde{\mathfrak{c}} \text { and } \operatorname{dim}([\mathfrak{g}, y] \cap \mathfrak{c})=c \tag{2.1}
\end{equation*}
$$

3. Let us prove that $[\mathfrak{h}, y] \cap \mathfrak{c}=\{0\}$ for almost all $y \in \mathfrak{c}$. (For $c=0$, this follows from (2.1), and this was already used in [12, 16] for proving Theorem 1.2(1).) By part 2, $[\mathfrak{g}, y] \cap \mathfrak{c}=\tilde{\mathfrak{c}} \subset \mathfrak{n}$. Therefore, it suffices to prove that $[\mathfrak{h}, y] \cap \mathfrak{n}=\{0\}$. Actually, we shall show that $[\mathfrak{h}, y] \cap \mathfrak{p}=\{0\}$.

Since $\mathfrak{h} \cap \mathfrak{p}=\mathfrak{s}$, we can write $\mathfrak{h}=\mathfrak{s} \oplus \hat{\mathfrak{h}}$, where $\hat{\mathfrak{h}} \cap \mathfrak{p}=\{0\}$. Then every nonzero element of $\hat{\mathfrak{h}}$ has a nonzero component in \mathfrak{n}_{-}w.r.t. the sum $\mathfrak{g}=\mathfrak{p} \oplus \mathfrak{n}_{-}$. Write $y=y^{\prime}+y^{\prime \prime}$, where $y^{\prime} \in \mathfrak{t}_{1}$ and $y^{\prime \prime} \in \mathfrak{n}$, i.e., $p_{\mathfrak{t}}(y)=y^{\prime}$. Let us say that $y^{\prime} \in \mathfrak{t}_{1}$ is generic, if $\mathfrak{g}^{y^{\prime}}=\mathfrak{l}$. Take a nonzero $x=x_{\mathfrak{s}}+\hat{x} \in \mathfrak{h}$, where $x_{\mathfrak{s}} \in \mathfrak{s}$ and $\hat{x} \in \hat{\mathfrak{h}}$. Write $\hat{x}=x_{\mathfrak{p}}+x_{-}$, where $x_{\mathfrak{p}} \in \mathfrak{p}$ and $x_{-} \in \mathfrak{n}_{-}$. If $\hat{x} \neq 0$, then $x_{-} \neq 0$ as well. We have

$$
[x, y]=[\hat{x}, y]=\left[x_{\mathfrak{p}}, y\right]+\left[x_{-}, y\right]
$$

and here $\left[x_{\mathfrak{p}}, y\right] \in \mathfrak{p}$. Since y^{\prime} is a generic element of \mathfrak{t}_{1}, there is $n \in N=\exp (\mathfrak{n})$ such that $n \cdot y=y^{\prime}$. Then $n \cdot\left[x_{-}, y\right]=\left[n \cdot x_{-}, y^{\prime}\right]$. Again, since y^{\prime} is generic, the last bracket has a nonzero component in \mathfrak{n}_{-}. Therefore, the same holds for $\left[x_{-}, y\right]=n^{-1} \cdot\left[n \cdot x_{-}, y^{\prime}\right]$.

Thus, we proved that $[\mathfrak{h}, y] \cap \mathfrak{p}=\{0\}$ for almost all $y \in \mathfrak{c}$ and thereby $[\mathfrak{h}, y] \cap \mathfrak{c}=\{0\}$.
4. Since $[\mathfrak{h}, y] \cap \mathfrak{c}=\{0\}$ for almost all $y \in \mathfrak{c}$, the intersection $H \cdot y \cap \mathfrak{c}$ is finite. Hence
$\operatorname{dim} \overline{H \cdot \mathfrak{c}}=\operatorname{dim} H \cdot y+\operatorname{dim} \mathfrak{c}=\operatorname{dim} H-\operatorname{dim} S+(c+r)$

$$
=\operatorname{dim} \mathfrak{m}-(2 c+r)+(c+r)=\operatorname{dim} \mathfrak{m}-c
$$

Theorem 2.3. For any homogeneous space G / H, we have
(1) $\operatorname{dim}\left(\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)\right)=\operatorname{dim} \mathfrak{m}-r$ and all irreducible components of $\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$ have this dimension.
(2) The intersection $\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$ is proper if and only if $r=\mathrm{rk} \mathfrak{g}$.

Proof. (1) To use some results of F. Knop [5], we need more notation. Let $T_{\mathcal{O}}^{*} \simeq G \times_{H} \mathfrak{m}$ be the cotangent bundle of $\mathcal{O}=G / H$ and $\widetilde{\Phi}: T_{\mathcal{O}}^{*} \rightarrow \mathfrak{g}^{*}$ the associated moment map. Let $\widetilde{M}_{\mathcal{O}}=\overline{G \cdot \mathfrak{m}}$ denote the closure of the image of $\widetilde{\Phi}$ in \mathfrak{g}^{*}. Finally, $M_{\mathcal{O}}$ is the spectrum of the integral closure of $\mathbb{k}\left[\widetilde{M}_{\mathcal{O}}\right]$ in $\mathbb{k}\left[T_{\mathcal{O}}^{*}\right]$. This yields the commutative diagram of morphisms

where the vertical arrows are quotient morphisms and $\tilde{\Phi}=\tilde{\tau} \circ \Phi$ see [5, Sect. 6]. By construction, $\widetilde{\tau}$ is finite and onto. Then so is τ. It is proved in [5] that

- $M_{\mathcal{O}} / / G$ is an affine space, see Satz 6.6(b);
- ψ is equidimensional and onto, see Satz 6.6(c);
- $\operatorname{dim} M_{\mathcal{O}} / / G=r$, see Satz 7.1.

Then $\tilde{\psi}=\tau \circ \psi$ is equidimensional and onto, too. Hence, for $\overline{0}=\pi_{\tilde{M}}(0)$, we obtain $\operatorname{dim} \tilde{\psi}^{-1}(\overline{0})=\operatorname{dim} T_{\mathcal{O}}^{*}-r=2 \operatorname{dim} \mathfrak{m}-r$. Note that $\pi_{\tilde{M}}^{-1}(\overline{0})=\overline{G \cdot \mathfrak{m}} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$. Hence

$$
\tilde{\psi}^{-1}(\overline{0})=\widetilde{\Phi}^{-1}\left(\overline{G \cdot \mathfrak{m}} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)\right)=G \times_{H}\left(\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)\right) .
$$

Therefore, $\operatorname{dim}\left(\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)\right)=2 \operatorname{dim} \mathfrak{m}-r-\operatorname{dim} G / H=\operatorname{dim} \mathfrak{m}-r$ and all irreducible components have this dimension, as required.
(2) By definition, the intersection of \mathfrak{m} and $\mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$ in \mathfrak{g}^{*} is proper if and only if

$$
\operatorname{dim}\left(\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)\right)=\operatorname{dim} \mathfrak{m}+\operatorname{dim} \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)-\operatorname{dim} \mathfrak{g}=\operatorname{dim} \mathfrak{m}-\mathrm{rk} \mathfrak{g} .
$$

If H is reductive, then $\mathfrak{N}_{H}(\mathfrak{m})=\{m \in \mathfrak{m} \mid \overline{H \cdot m} \ni 0\}$. Therefore, $\mathfrak{N}_{H}(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$. As we prove below, this inclusion actually holds in a more general situation.

Theorem 2.4. Suppose that G / H be quasi-affine and $\mathbb{k}[\mathfrak{m}]^{H}$ is finitely generated. Then
(i) $\mathfrak{N}_{H}(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$;
(ii) if $c=0$, then $\mathfrak{N}_{H}(\mathfrak{m})=\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$.

Proof. (i) Consider a version of the commutative diagram (2.2) :

Here $\overline{G \cdot \mathfrak{m}}=\widetilde{M}_{\mathcal{O}}$ and j is the embedding of \mathfrak{m} as fibre of $\{H\} \in G / H$. As above, all vertical arrows are quotient morphisms. Since $\mathbb{k}[\mathfrak{m}]^{H}$ is finitely generated, we get two new objects in the lower row. Using the path through $\pi_{\mathfrak{m}}$, we see that $\mathfrak{N}_{H}(\mathfrak{m})$ maps into $\overline{0}=\pi_{\tilde{M}}(0) \in \overline{G \cdot \mathfrak{m}} / / G$. On the other hand, using the path through j and $\tilde{\psi}$, we see that $j\left(\mathfrak{N}_{H}(\mathfrak{m})\right) \subset \tilde{\psi}^{-1}(\overline{0})=G \times_{H}\left(\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)\right)$, i.e., $\mathfrak{N}_{H}(\mathfrak{m}) \subset \mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$.
(ii) Here we use a fragment of the previous diagram:

If $c=0$, then $\operatorname{dim} \mathfrak{m} / / H=\operatorname{dim} \overline{G \cdot \mathfrak{m}} / / G=r$. Since $\tilde{\psi}$ is equidimensional, the same is true for f. The affine varieties $\mathfrak{m} / / H$ and $\overline{G \cdot \mathfrak{m}} / / G$ are conical, hence f is finite and $\pi_{\mathfrak{m}}(0)=f^{-1}(\overline{0})$. Therefore, $\mathfrak{N}_{H}(\mathfrak{m})=\overline{G \cdot \mathfrak{m}} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right) \cap \mathfrak{m}=\mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right) \cap \mathfrak{m}$.

Remark 2.1. (a) There is an alternate proof of Theorem 2.4(ii) that exploits properties of the Cartan subspace $\mathfrak{c}=\mathfrak{b} \cap \mathfrak{m}$. In the spherical case, the projection $p_{\mathfrak{t}}: \mathfrak{b} \rightarrow \mathfrak{t}$ maps \mathfrak{c}
isomorphically onto \mathfrak{t}_{1} and one proves that $\overline{G \cdot \mathfrak{t}_{1}}=\overline{G \cdot \mathfrak{c}}=\overline{G \cdot \mathfrak{m}}$. Then the finiteness of the morphism $f: \mathfrak{m} / / H \rightarrow \overline{G \cdot \mathfrak{m}} / / G$ is obtained without using the equidimensional map $\tilde{\psi}$.
(b) For the symmetric varieties, the equality $\mathfrak{N}_{G_{0}}\left(\mathfrak{g}_{1}\right)=\mathfrak{g}_{1} \cap \mathfrak{N}_{G}(\mathfrak{g})$ is proved in [4].

For the affine homogeneous spaces, one can strengthen Theorem 2.4 as follows.
Proposition 2.5. If G / H is affine, then
(i) $\operatorname{dim} \mathfrak{m}-2 c-r \leqslant \operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m}) \leqslant \operatorname{dim} \mathfrak{m}-c-r$;
(ii) $\mathfrak{N}_{H}(\mathfrak{m})=\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)$ if and only if G / H is spherical.

Proof. (i) The first inequality means that $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m}) \geqslant \operatorname{dim} \mathfrak{m}-\operatorname{dim} \mathfrak{m} / / H$. By Theorem 1.3, if G / H is affine, then

$$
\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m})-(\operatorname{dim} \mathfrak{m}-(2 c+r)) \leqslant c
$$

Hence the second inequality.
(ii) It follows from part (i) and Theorem 2.3 that $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m})<\operatorname{dim}\left(\mathfrak{m} \cap \mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right)\right)$ unless $c=0$.

Remark 2.2. The equality in the first place in Proposition $2.5(\mathrm{i})$ is equivalent to that π is equidimensional, while the equality in the second place means that $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m})=c$, i.e., it is maximal possible. Hence, for $c=0$, both properties hold (as we already know). For $c=1$ exactly one property takes place, i.e., either π is equidimensional, or $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=1$.

Let us say that a reductive subgroup $H \subset G$ is s-regular, if \mathfrak{h} contains a regular semisimple element of \mathfrak{g}.

Proposition 2.6. Suppose that G / H is affine and S^{o} is a torus. If $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=c$, then H is s-regular.

Proof. If S^{o} is a torus, then $\operatorname{dim} H=\operatorname{dim} U+\operatorname{dim} S-c$ (see Remark 1.1) and $\operatorname{dim} \mathfrak{m}-$ $\operatorname{dim} \mathfrak{m} / / H=\operatorname{dim} H-\operatorname{dim} S$. Then

$$
\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m})-\operatorname{dim} H+\operatorname{dim} S=\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m})-\operatorname{dim} U+c
$$

If $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=c$, then $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{m})=\operatorname{dim} U$. By Eq. (1.2), this means that $\operatorname{dim} \mathfrak{g}^{T_{H}}=\mathrm{rk} \mathfrak{g}$, i.e., T_{H} contains a regular semisimple element of G.

In particular, Proposition 2.6 asserts that if $c=0$ and S^{o} is a torus, then H is s-regular. However, it is easily seen that if a symmetric subgroup G_{0} does not contain infinite normal subgroups of G (e.g. if G is simple), then it is s-regular regardless of the structure of S. This suggests that the condition on S in Proposition 2.6 is superfluous.

Theorem 2.7. If G / H is affine and $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=c$, then H is s-regular.

Proof. By Proposition 2.6, it suffices to handle the case in which $r<\operatorname{rk} \mathfrak{g}$, i.e., $\mathrm{rk} S>0$.
Let $\mathcal{N}_{A}(B)$ (resp. $\mathcal{Z}_{A}(B)$) denote the normaliser (resp. centraliser) of the group B in A. Since S is contained between a Levi subgroup of G and its commutant, there is a connected reductive group $K \subset G$ such that $\mathcal{N}_{G}(S)^{o}=S^{o} \cdot K$ and $S^{o} \cap K$ is finite. Then rk $K=\operatorname{rk} G-\operatorname{rk} S=r$. Since $\mathcal{N}_{G}(S)^{o}=\mathcal{Z}_{G}(S)^{o} \cdot S^{o}$, one also has $\mathcal{Z}_{G}(S)^{o}=K \cdot Z\left(S^{o}\right)$, where $Z\left(S^{o}\right)$ is the centre of S^{o}. For Lie algebras, this means that $\mathfrak{z g}(\mathfrak{s})=\mathfrak{k} \oplus \mathfrak{z}(\mathfrak{s})$.

As $S \subset H$, we have $N_{H}(S)^{o}=S^{o} \cdot(K \cap H)^{o}$ and $K \cap H$ is reductive. The linear action ($K \cap H: \mathfrak{m}^{S}$) is the coisotropy representation of the affine homogeneous space $K / K \cap H$, and it follows from the construction that it's generic stabiliser is finite.

By the Luna-Richardson theorem [10, Theorem 4.2], the restriction homomorphism $\mathbb{k}[\mathfrak{m}] \rightarrow \mathbb{k}\left[\mathfrak{m}^{S}\right],\left.f \mapsto f\right|_{\mathfrak{m}^{S}}$, induces an isomorphism $\mathbb{k}[\mathfrak{m}]^{H} \xrightarrow{\sim} \mathbb{k}\left[\mathfrak{m}^{S}\right]^{N_{H}(S)}$. Hence $\mathbb{k}\left[\mathfrak{m}^{S}\right]^{N_{H}(S)^{0}}=\mathbb{k}\left[\mathfrak{m}^{S}\right]^{K \cap H}$ is a finite $\mathbb{k}[\mathfrak{m}]^{H}$-module and $\mathfrak{N}_{H}(\mathfrak{m}) \cap \mathfrak{m}^{S}=\mathfrak{N}_{K \cap H}\left(\mathfrak{m}^{S}\right)$. It is also known that

- $c_{K}(K / K \cap H)=c_{G}(G / H)=c$, see [14, 1.9] and
- def $\mathfrak{N}_{H}(\mathfrak{m}) \leqslant \operatorname{def} \mathfrak{N}_{K \cap H}\left(\mathfrak{m}^{S}\right)$ [15, Lemma 3.4].

It then follows from Theorem 1.3 that def $\mathfrak{N}_{K \cap H}\left(\mathfrak{m}^{S}\right)=c$. Therefore, Proposition 2.6 applies to $K / K \cap H$ and we conclude that $\mathfrak{k} \cap \mathfrak{h}$ contains regular semisimple elements of \mathfrak{k}. Let \mathfrak{t}_{S} be a Cartan subalgebra of \mathfrak{s}. (Then $\mathfrak{t}_{S} \subset \mathfrak{h}$.) Let \mathfrak{t}_{K} be a Cartan subalgebra of \mathfrak{k} such that $\mathfrak{t}_{K} \cap \mathfrak{h}$ contains a regular semisimple element of \mathfrak{k}. Since K and S^{o} commute and their intersection is finite, $\mathfrak{t}_{S} \oplus \mathfrak{t}_{K}=: \tilde{\mathfrak{t}}$ is a Cartan subalgebra of \mathfrak{g}. Let $x \in \mathfrak{t}_{S}$ be a sufficiently general semisimple element of \mathfrak{s}. Then $\mathfrak{z}_{\mathfrak{g}}(x)=\mathfrak{z}_{\mathfrak{g}}\left(\mathfrak{t}_{S}\right) \supset \mathfrak{z}_{\mathfrak{g}}(\mathfrak{s})=\mathfrak{k} \oplus \mathfrak{z}(\mathfrak{s})$. Consequently, $\mathfrak{z}_{\mathfrak{g}}\left(\mathfrak{t}_{S}\right)=\mathfrak{t}_{S}+\tilde{\mathfrak{k}}$ for a reductive Lie algebra $\tilde{\mathfrak{k}} \supset[\mathfrak{k}, \mathfrak{k}]$. However, since \mathfrak{s} contains a commutant of a Levi subalgebra of \mathfrak{g}, it is not hard to prove that $\tilde{\mathfrak{k}}=[\mathfrak{k}, \mathfrak{k}]$. In other words,

$$
\left[\mathfrak{z}_{\mathfrak{g}}\left(\mathfrak{t}_{S}\right), \mathfrak{z}_{\mathfrak{g}}\left(\mathfrak{t}_{S}\right)\right]=\left[\mathfrak{z}_{\mathfrak{g}}(\mathfrak{s}), \mathfrak{z}_{\mathfrak{g}}(\mathfrak{s})\right]=[\mathfrak{k}, \mathfrak{k}] .
$$

Therefore, if $x \in \mathfrak{t}_{S}$ is sufficiently general and $y \in \mathfrak{t}_{K} \cap \mathfrak{h}$ is regular in \mathfrak{k}, then $x+y \in \mathfrak{h}$ is a regular semisimple element of \mathfrak{g}.

Corollary 2.8. If G / H is an affine spherical homogeneous space, then H is s-regular.
Remark 2.3. (1) If G / H is quasiaffine but not affine, then the condition $c=0$ does not guarantee that H is s-regular. For instance, take $H=U$.
(2) It can happen that $c=1, S$ is finite, and H is s-regular, but $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=0<1$. For instance, take $G=S O_{2 n+1}$ and $H=S L_{n}$.

3. On a CLASS OF AFFINE HOMOGENEOUS SPACES

For a reductive subgroup $H \subset G$, we set $\tilde{G}=G \times H$ and $\tilde{H}=\Delta_{H}=H \times H \subset \tilde{G}$. Then $\tilde{\mathcal{O}}=\tilde{G} / \tilde{H}$ is an affine homogeneous space of the reductive group \tilde{G}, which is isomorphic
to G. The transitive \tilde{G}-action on G is given by the formula $(g, h) \circ s=g s h^{-1}$, where $(g, h) \in \tilde{G}$ and $s \in G$. Then the space of the coisotropy representation of \tilde{H} is

$$
\tilde{\mathfrak{m}}=\tilde{\mathfrak{h}}^{\perp}=\left\{(\xi, \eta) \in \mathfrak{g}^{*} \times \mathfrak{h}^{*}|\xi|_{\mathfrak{h}}=-\eta\right\} .
$$

We shall identify the \tilde{H}-module $\tilde{\mathfrak{m}}$ with the H-module \mathfrak{g}^{*} via the projection to the first factor in $\tilde{\mathfrak{g}}^{*}=\mathfrak{g}^{*} \times \mathfrak{h}^{*}$. If we use the isomorphisms $\mathfrak{g}^{*} \simeq \mathfrak{g}$ and $\mathfrak{h}^{*} \simeq \mathfrak{h}$, and the sum $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}=\mathfrak{h} \oplus \mathfrak{h}^{\perp}$, then

$$
\begin{equation*}
\tilde{\mathfrak{m}}=(\mathfrak{m} \times\{0\}) \oplus\{(x,-x) \mid x \in \mathfrak{h}\} \subset \mathfrak{g} \times \mathfrak{h} \tag{3.1}
\end{equation*}
$$

The multiplicities in the algebra $\mathbb{k}[\tilde{G} / \tilde{H}]$ are closely related to the multiplicities in the branching rule $G \downarrow H$. Let $\tilde{\lambda}=(\lambda, \mu)$ be a dominant weight of \tilde{G}, where $\lambda \in \mathfrak{X}_{+}(G)$ and $\mu \in \mathfrak{X}_{+}(H)$. Write $\tilde{\mathrm{V}}_{\tilde{\lambda}}=\mathrm{V}_{\lambda} \otimes \mathrm{W}_{\mu}$ for a simple \tilde{G}-module. Let $m_{\tilde{\lambda}}(\tilde{\mathcal{O}})$ denote the multiplicity of $\tilde{V}_{\tilde{\lambda}}$ in $\mathbb{k}[\tilde{\mathcal{O}}]$, i.e., the multiplicity of $\tilde{\lambda}$ in the rank monoid $\tilde{\Gamma}=\Gamma_{\tilde{\mathcal{O}}}$. Then $m_{\tilde{\lambda}}(\tilde{\mathcal{O}})$ equals the multiplicity of W_{μ} in $\left.\mathrm{V}_{\lambda}^{*}\right|_{H}$, see [2]. It was also shown therein that if $c_{\tilde{G}}(\tilde{O}) \leqslant 1$, then one can explicitly describe all the multiplicities and the branching rule.
$\operatorname{Set} \tilde{c}=c_{\tilde{G}}(\tilde{O}), \tilde{r}=r_{\tilde{G}}(\tilde{O})$. By [2, Section 3] one has $\tilde{c}=c_{G}\left(G / B_{H}\right)$ and

$$
\begin{equation*}
\tilde{r}=\operatorname{rk} \tilde{G}=\operatorname{rk} G+\operatorname{rk} H \tag{3.2}
\end{equation*}
$$

If H does not contain infinite normal subgroups of G (in particular, H is a proper subgroup of G), then there is a more practical formula

$$
\begin{equation*}
\tilde{c}=\operatorname{dim} U-\operatorname{dim} B_{H} \tag{3.3}
\end{equation*}
$$

Note that if $H=G$, then $\tilde{\mathcal{O}}=G \times G / \Delta_{G}$ is a spherical homogeneous space of $G \times G$, i.e., $\tilde{c}=0$. That is, the constraint on H is necessary for (3.3) to be valid. Whenever we consider the homogeneous space $\tilde{\mathcal{O}}=\tilde{G} / \tilde{H}$, it is also assumed that H does not contain infinite normal subgroups of G and thereby (3.3) holds.

We have here the quotient morphism $\tilde{\pi}: \tilde{\mathfrak{m}} \simeq \mathfrak{g} \rightarrow \mathfrak{g} / / H \simeq \tilde{\mathfrak{m}} / / \tilde{H}$ and the nullcone $\tilde{\pi}^{-1}(\tilde{\pi}(0))=\mathfrak{N}_{\tilde{H}}(\tilde{\mathfrak{m}}) \simeq \mathfrak{N}_{H}(\mathfrak{g})$. It follows from (3.2) and (3.3) that

$$
\begin{equation*}
\operatorname{dim} \mathfrak{g} / / H=2 \tilde{c}+\tilde{r}=\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{h}=\operatorname{dim} \mathfrak{m} \tag{3.4}
\end{equation*}
$$

Proposition 3.1. All irreducible components of the nullcone $\mathfrak{N}_{H}(\mathfrak{g})$ have the same dimension, which is equal to $\operatorname{dim} U_{H}+\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g}^{T_{H}}\right)$.

Proof. Since the H-module \mathfrak{g} contains \mathfrak{h} as a summand, all roots of \mathfrak{h} occur as H-weights in \mathfrak{g}. Moreover, \mathfrak{g} is a self-dual H-module. Therefore, \mathfrak{g} satisfies the conditions (C.1) and (C.3) considered by Richardson in [23], and his Theorem 7.3 applies here.

The point of this result is that the upper bound on dimension of the nullcone given in [25], cf. Eq. (1.1), provides now the exact value. Properties of \tilde{G} / \tilde{H} are better than those of
arbitrary affine homogeneous spaces G / H, because $\tilde{r}_{\tilde{G}}(\tilde{G} / \tilde{H})=\operatorname{rk} \tilde{G}$ and $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{g})$ is known. Preceding formulae also show that

$$
\operatorname{def} \mathfrak{N}_{H}(\mathfrak{g})=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g}^{T_{H}}\right)-\operatorname{dim} B_{H} \leqslant \operatorname{dim} U-\operatorname{dim} B_{H}=\tilde{c}
$$

which illustrates to the easy part of Theorem 1.3. Since $\mathfrak{g}^{T_{H}}$ contains a Cartan subalgebra of \mathfrak{g} and $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{g}) \geqslant \operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g} / / H=\operatorname{dim} H$, Proposition 3.1 implies that

$$
\begin{equation*}
\operatorname{dim} B_{H} \leqslant \frac{1}{2}\left(\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g}^{T_{H}}\right) \leqslant \operatorname{dim} U . \tag{3.5}
\end{equation*}
$$

Here the equality in the first place is equivalent to that $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{g})=\operatorname{dim} H$, i.e., $\tilde{\pi}$ is equidimensional. Whereas the equality in the second place is equivalent to that $\mathfrak{g}^{T_{H}}$ is a Cartan subalgebra of \mathfrak{g}, i.e., H is s-regular. It is easily seen that H is s-regular in G if and only if \tilde{H} is s-regular in \tilde{G}.

Comparing equations (3.3) and (3.5) shows that

- if $\tilde{c}=0$, then H is s-regular and $\tilde{\pi}$ is equidimensional;
- for $\tilde{c}=1$, exactly one of these two properties is satisfied.

However, for homogeneous spaces \tilde{G} / \tilde{H} and the isotropy representation $(H: \mathfrak{g})$, there is a more precise assertion for any $\tilde{c}>0$.

Theorem 3.2. Suppose that \mathfrak{g} is simple, $\tilde{c}>0$, and $\mathfrak{h} \neq 0$. Then the first inequality in (3.5) is always strict, i.e., $\tilde{\pi}$ cannot be equidimensional. In particular, if $\tilde{c}=1$, then H is s-regular and $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{g})=1$.

Proof. Without loss of generality, we may assume that H is connected. Let $x \in \mathfrak{h}$ be a semisimple element such that $H^{x}=T_{H}$. The orbit $H \cdot x \subset \mathfrak{g}$ is closed and, since $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$, the slice representation at x equals $\left(T_{H}: \mathfrak{t}_{H} \oplus \mathfrak{m}\right)$. Here \mathfrak{t}_{H} is a trivial T_{H}-module. The property of being equidimensional is inheritable, see [31, §8.2]. Therefore, if $(H: \mathfrak{g})$ is equidimensional, then so are $\left(T_{H}: \mathfrak{t}_{H} \oplus \mathfrak{m}\right)$ and $\left(T_{H}: \mathfrak{m}\right)$.

Assume that $\tilde{\pi}$ is equidimensional, i.e., $\operatorname{dim} B_{H}=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g}^{T_{H}}\right)$. Then we have $\operatorname{dim} U=\frac{1}{2}\left(\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g}^{T_{H}}\right)+\tilde{c}$ and hence

$$
\begin{equation*}
\operatorname{dim} \mathfrak{g}^{T_{H}}=\operatorname{rk} \mathfrak{g}+2 \tilde{c} \tag{3.6}
\end{equation*}
$$

Take a 1-parameter subgroup $\lambda: \mathbb{k}^{\times} \rightarrow T_{H}$ such that $\mathfrak{m}^{T_{H}}=\mathfrak{m}^{\lambda\left(\mathbb{k}^{\times}\right)}$. Then

$$
\mathfrak{m}=\mathfrak{m}^{+} \oplus \mathfrak{m}^{T_{H}} \oplus \mathfrak{m}^{-}
$$

where \mathfrak{m}^{+}(resp. \mathfrak{m}^{-}) is the sum of weight spaces \mathfrak{m}_{ν} such that $(\lambda, \nu)>0$ (resp. $(\lambda, \nu)<0$). Since \mathfrak{m} is a self-dual H-module, the T_{H}-weights in \mathfrak{m}^{+}and \mathfrak{m}^{-}are opposite to each other. As $\mathfrak{g}^{T_{H}}=\mathfrak{t}_{H} \oplus \mathfrak{m}^{T_{H}}$, it follows from (3.6) that $\operatorname{dim} \mathfrak{m}^{T_{H}}=\operatorname{rk} \mathfrak{g}-\operatorname{rk} \mathfrak{h}+2 \tilde{c}$. Then using (3.2) and (3.4), we obtain $\operatorname{dim} \mathfrak{m}=\operatorname{rk} \mathfrak{g}+\operatorname{rk} \mathfrak{h}+2 \tilde{c}$ and $\operatorname{dim} \mathfrak{m}^{+}=\operatorname{dim} \mathfrak{m}^{-}=\operatorname{rk} \mathfrak{h}$.

The equidimensional representations of tori are described by Wehlau [32]. For the selfdual representations, his description implies that the nonzero weights in \mathfrak{m}^{+}are linearly independent. Therefore, the nonzero T_{H}-weights in \mathfrak{m}^{+}(and in \mathfrak{m}^{-}) are of multiplicity 1. As the same is true for the T_{H}-weights in \mathfrak{h}, we obtain the following conditions:
$\left.(\rangle_{1}\right)$ the multiplicity of any nonzero T_{H}-weight in \mathfrak{g} is $\leqslant 2$;
$\left(\triangle_{2}\right)$ the number of weights with multiplicity 2 is at most $2 \mathrm{rk} \mathfrak{h}=\operatorname{dim}\left(\mathfrak{m}^{+} \oplus \mathfrak{m}^{-}\right)$.
Let us prove that $\left(\diamond_{1}\right)$ and $\left(\diamond_{2}\right)$ cannot be satisfied if $\mathfrak{h} \neq\{0\}$. By (3.6), $\mathfrak{l}=\mathfrak{g}^{T_{H}}$ is not abelian. Without loss of generality, we may assume that \mathfrak{l} is a standard Levi subalgebra w.r.t. $T \subset B$, i.e., \mathfrak{l} is determined by the set of simple roots α such that $\left.\alpha\right|_{\mathfrak{t}_{H}}=0$.
(a) Assume that $[l, l]$ has a simple factor of rank $\geqslant 2$. Then there is a chain of simple roots $\alpha_{1}, \alpha_{2}, \beta$ in the Dynkin diagram of \mathfrak{g} such that $\left.\alpha_{i}\right|_{\mathfrak{t}_{H}}=0(i=1,2)$ and $\left.\beta\right|_{\mathfrak{t}_{H}} \neq 0$. Then $\beta, \beta+\alpha_{2}, \beta+\alpha_{2}+\alpha_{1}$ have the same (nonzero) restriction to \mathfrak{t}_{H}, which contradicts $\left(\diamond_{1}\right)$.
(b) Assume that $[\mathfrak{l}, \mathfrak{l}] \simeq k \mathbf{A}_{1}$ and $k \geqslant 2$. Take simple roots α_{1}, α_{2} in $[\mathfrak{l}, \mathfrak{l}]$ such that the simple roots between them, say $\beta_{1}, \ldots, \beta_{r}$, do not belong to $[\mathfrak{l}, \mathfrak{l}]$. If $\beta=\sum_{i=1}^{r} \beta_{i}$, then the roots $\beta, \beta+\alpha_{1}, \beta+\alpha_{2}$ yield a T_{H}-weight of multiplicity $\geqslant 3$, which again contradicts $\left(\diamond_{1}\right)$.
(c) Assume that $[\mathfrak{l}, \mathfrak{l}] \simeq \mathbf{A}_{1}$. Then $\tilde{c}=1$, generic elements of \mathfrak{t}_{H} are subregular in \mathfrak{g}, and there is a unique root $\alpha \in \Pi$ such that $\left.\alpha\right|_{\text {t }_{H}}=0$. Each pair of roots of the form $\{\mu, \mu+\alpha\}$ gives rise to a T_{H}-weight in \mathfrak{g} of multiplicity 2.

- If there are roots of different length and α is short, then one can find a triple of roots $\mu, \mu+\alpha, \mu+2 \alpha$, which again provides a T_{H}-weight of multiplicity $\geqslant 3$.
- For α long, the number of pairs of positive roots $\{\mu, \mu+\alpha\}$ equals $\boldsymbol{h}^{*}-2$, where \boldsymbol{h}^{*} is the dual Coxeter number of \mathfrak{g}, see [17, Section 1]. Then the total number of such pairs equals $2\left(\boldsymbol{h}^{*}-2\right)$ and $\left.(\rangle_{2}\right)$ means that $2 \mathrm{rk} \mathfrak{h} \geqslant 2\left(\boldsymbol{h}^{*}-2\right)$. Since $\boldsymbol{h}^{*}-1 \geqslant \mathrm{rk} \mathfrak{g}$, one must have

$$
\boldsymbol{h}^{*}-2 \leqslant \operatorname{rkh}<\operatorname{rk} \mathfrak{g} \leqslant \boldsymbol{h}^{*}-1 .
$$

Hence $\operatorname{rk} \mathfrak{g}=\boldsymbol{h}^{*}-1$ and $\operatorname{rk} \mathfrak{h}=\operatorname{rk} \mathfrak{g}-1$. The equality $\operatorname{rk} \mathfrak{g}=\boldsymbol{h}^{*}-1$ holds only for \mathbf{A}_{n} and \mathbf{C}_{n}, and we look more carefully at these two series. Since $\tilde{c}=1$ and $\mathrm{rk} \mathfrak{h}=\mathrm{rk} \mathfrak{g}-1$, we obtain using (3.4) that

$$
\operatorname{dim} \mathfrak{h}=\operatorname{dim} \mathfrak{g}-\operatorname{rk} \mathfrak{g}-\operatorname{rk} \mathfrak{h}-2 \tilde{c}=\operatorname{dim} \mathfrak{g}-2 \operatorname{rk} \mathfrak{g}-1 .
$$

$\mathfrak{g}=\mathfrak{s l}_{n+1}$: Here $\operatorname{dim} \mathfrak{h}=n^{2}-1$ and hence $\mathfrak{h}=\mathfrak{s l}_{n}$ is the only possibility. But the subgroup $S L_{n} \subset S L_{n+1}$ is s-regular, if $n \geqslant 2$, i.e., if $\mathfrak{h} \neq 0$.
$\mathfrak{g}=\mathfrak{s p}_{2 n}:$ Here $\operatorname{dim} \mathfrak{h}=2 n^{2}-n-1>\operatorname{dim} \mathfrak{s p}_{2 n-2}$, and this case is also impossible.
Thus, the assumption that $\tilde{\pi}$ is equidimensional leads to a contradiction.
Remark 3.1. This result is specific for homogeneous spaces of the form $(G \times H) / \Delta_{H}$. For arbitrary affine homogeneous spaces G / H, it can happen that $c=1$, but $\pi: \mathfrak{m} \rightarrow \mathfrak{m} / / H$
is equidimensional and H is not s-regular. For instance, take $(G, H)=\left(S p_{2 n}, S p_{2 n-2}\right)$ or $\left(S O_{2 n+1}, S O_{2 n-1}\right)$ with $n \geqslant 2$.
3.1. More on the nullcone for $\tilde{\pi}$. For $\tilde{G}=G \times H$ and $\tilde{G} / \tilde{H} \simeq G$, we have

$$
\mathfrak{N}_{\tilde{H}}(\tilde{\mathfrak{m}}) \subset \mathfrak{N}_{\tilde{G}}(\tilde{\mathfrak{g}}) \cap \tilde{\mathfrak{m}} \text { and } \mathfrak{N}_{\tilde{G}}(\tilde{\mathfrak{g}})=\mathfrak{N}_{G}(\mathfrak{g}) \times \mathfrak{N}_{H}(\mathfrak{h}) \subset \mathfrak{g} \times \mathfrak{h}
$$

Using (3.1), one readily verifies that under the isomorphism $\tilde{\mathfrak{m}} \simeq \mathfrak{g}$ the variety $\mathfrak{N}_{\tilde{G}}(\tilde{\mathfrak{g}}) \cap \tilde{\mathfrak{m}}$ is identified with $\mathfrak{N}_{G}(\mathfrak{g}) \cap\left(\mathfrak{N}_{H}(\mathfrak{h}) \times \mathfrak{m}\right) \subset \mathfrak{g}$. Since $\tilde{r}=$ rk $\tilde{\mathfrak{g}}$, translating Theorem 2.3, Theorem 2.4, and Proposition 2.5 into this setting, we obtain

Theorem 3.3. If $\tilde{c}=0$, then $\mathfrak{N}_{H}(\mathfrak{g})=\mathfrak{N}_{G}(\mathfrak{g}) \cap\left(\mathfrak{N}_{H}(\mathfrak{h}) \times \mathfrak{m}\right)$. For arbitrary $\tilde{c} \geqslant 0$, we have

- $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{g}) \leqslant \operatorname{dim} \mathfrak{h}+\tilde{c}=\operatorname{dim} \tilde{U}=\operatorname{dim} U+\operatorname{dim} U_{H} ;$
- $\operatorname{dim}\left(\mathfrak{N}_{G}(\mathfrak{g}) \cap\left(\mathfrak{N}_{H}(\mathfrak{h}) \times \mathfrak{m}\right)\right)=\operatorname{dim} \mathfrak{h}+2 \tilde{c}=\operatorname{dim} \mathfrak{g}-\operatorname{rk} \mathfrak{g}-\mathrm{rk} \mathfrak{h} ;$
- the intersection $\mathfrak{N}_{G}(\mathfrak{g}) \cap\left(\mathfrak{N}_{H}(\mathfrak{h}) \times \mathfrak{m}\right)$ is proper.

Moreover, if $\operatorname{dim} \mathfrak{N}_{H}(\mathfrak{g})=\operatorname{dim} \mathfrak{h}+\tilde{c}$, i.e., $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{g})=\tilde{c}$, then H is s-regular in G.

3.2. Homogeneous spaces \tilde{G} / \tilde{H} of complexity $\leqslant 1$.

The pairs (G, H) such that $c_{\tilde{G}}(\tilde{G} / \tilde{H})=0$ can be characterised by a number of equivalent properties. An extensive list of such properties is given and discussed in [18, Section 3.2].

In particular, (G, H) is a strong Gelfand pair, which means that any simple G-module V_{λ} is a multiplicity free H-module. A classification of strong Gelfand pairs (in the category of compact Lie groups) is obtained by Manfred Krämer in [7].

If G is simple, then the (very short) list of strong Gelfand pairs consists of two series:

$$
\left(\mathfrak{s l}_{n}, \mathfrak{g l}_{n-1}\right), n \geqslant 2, \text { and }\left(\mathfrak{s o}_{n}, \mathfrak{s o}_{n-1}\right), n \geqslant 5 .
$$

See also comments in [2, Section 4] and other details in [18, Section 3.2].
Remark 3.2. For a symmetric variety G / G_{0} with simple G, it is proved in [3] that

$$
\tilde{\pi}: \mathfrak{g} \rightarrow \mathfrak{g} / / G_{0} \text { is equidimensional } \Longleftrightarrow\left(\mathfrak{g}, \mathfrak{g}_{0}\right) \text { is either }\left(\mathfrak{s l}_{n}, \mathfrak{g l}_{n-1}\right) \text { or }\left(\mathfrak{s o}_{n}, \mathfrak{s o}_{n-1}\right) .
$$

Since these two series gives rise to the only spherical homogeneous spaces \tilde{G} / \tilde{H}, our Theorem 3.2 generalises that result of [3].

The list of pairs (G, H) such that G is simple, H is connected, and $\tilde{c}=1$ is obtained in [2, Section 4]. For the reader convenience, we recall it in Table 1.

Table 1. The pairs (G, H) with simple G and $\tilde{c}=1$

№	1	2	3	4	5	6	7	8
G	$S L_{n+1}$	$S p_{6}$	$S p i n_{7}$	\mathbf{G}_{2}	$S L_{3}$	$S L_{3}$	$S p_{4}$	$S L_{4}$
H	$S L_{n}$	$S p_{4} \times S L_{2}$	\mathbf{G}_{2}	$S L_{3}$	$S O_{3}$	T	$S L_{2} \cdot \mathbb{k}^{\times}$	$\left(S L_{2}\right)^{2} \cdot \mathbb{k}^{\times}$

For №6, $T=\mathrm{T}_{2}$ is a maximal torus of $S L_{3}$, and № 7 represents actually two different pairs. Here H is a Levi subgroup of $S p_{4}$, and there are two non-conjugate Levi subgroups corresponding to either the long or the short simple root of $S p_{4}$. In Section 4, these two cases will be referred to as $7(l)$ and $7(s)$, respectively.

4. THE DEFECT OF THE NULL-CONE AND INVARIANTS

Let $G \rightarrow G L(\mathrm{~V})$ be a linear representation of a connected reductive group G. In [21], V . Popov conjectured that if G is semisimple and $\pi: \mathrm{V} \rightarrow \mathrm{V} / / G$ is equidimensional, then $\mathrm{V} / / G$ is an affine space, i.e, $\mathbb{k}[\mathrm{V}]^{G}$ is a polynomial algebra. Afterwards, this conjecture was extended to arbitrary connected reductive groups. Using our terminology, the conjecture can be stated as follows:

If G is a connected reductive group and $\operatorname{def} \mathfrak{N}_{G}(\mathrm{~V})=0$, then $\mathrm{V} / / G$ is an affine space.
There had been a good few classification work related to this conjecture. To the best of my knowledge, it is verified in the following cases:

- G is simple, V is irreducible (V.L. Popov, 1976 [21]);
- G is simple, V is reducible (O.M. Adamovich, 1980);
- G is semisimple, V is irreducible (P. Littelmann, 1989);
- G is a torus (E.B. Vinberg (oral lecture at MSU) 1983; D. Wehlau, 1992 [32]);
- G is a product of two simple factors, with some exceptions (D. Wehlau, 1993 [33]).

An interesting approach to an a priori proof of the Popov conjecture is presented in [29]. More information on this conjecture and other references can be found in [31, § 8.7].

Some time ago, I stated a similar conjecture on non-equidimensional representations. Let ed $\mathrm{V} / / G$ denote the embedding dimension of $\mathrm{V} / / G$, i.e., the minimal number of generators of $\mathbb{k}[\mathrm{V}]^{G}$. Then $\operatorname{hd} \mathrm{V} / / G:=\operatorname{ed} \mathrm{V} / / G-\operatorname{dim} \mathrm{V} / / G$ is the homological dimension of $\mathrm{V} / / G$, see [22].

Conjecture 4.1 ([15, Conj. 3.5]). Suppose that G is connected, V is a self-dual G-module, and def $\mathfrak{N}_{G}(\mathrm{~V})=1$. Then $\mathrm{V} / / G$ is either an affine space or a hypersurface, i.e., $\mathrm{hd} \mathrm{V} / / G \leqslant 1$.

The assumption on self-duality is essential here, see Example in [15, p. 94]. This conjecture is proved for tori [15, Prop.3.10] and $G=S L_{2}$ [15, Example 3.12(1)].

The isotropy representation of a reductive subgroup $H \subset G$ is orthogonal and the complexity of G / H provides an upper bound on def $\mathfrak{N}_{H}(\mathfrak{m})$, see Theorem 1.3. Therefore, Conjecture 4.1 can be specialised to the following

Conjecture 4.2. If H is connected reductive and $c_{G}(G / H)=1$, then hd $\mathfrak{m} / / H \leqslant 1$.
As a support to Conjecture 4.2, we prove below two theorems. Before stating these theorems, we describe our general approach. If H is simple and $H \subset G L(\mathrm{~V})$, then we use various classification results on the structure of $\mathrm{V} / / H$:

- when $\mathrm{V} / / H \simeq \mathbb{A}^{N}[1,24]$;
- when $\mathrm{V} / / H$ is a complete intersection, especially a hypersurface [26, 27];
- when $H=S L_{2}$ and hd $\left(\mathrm{V} / / S L_{2}\right) \leqslant 3$ [22, Theorem 4].

If H is not simple, then we work with consecutive quotients, using factors of H. Suppose that $H=H_{1} \times H_{2}$ is a product of reductive groups. Then one has the quotient morphisms

$$
\begin{equation*}
\mathfrak{m} \xrightarrow{\pi_{1}} \mathfrak{m} / / H_{1} \xrightarrow{\pi_{2}}\left(\mathfrak{m} / / H_{1}\right) / / H_{2}=\mathfrak{m} / / H . \tag{4.1}
\end{equation*}
$$

In all cases below, we can choose H_{1} such that hd $\left(\mathfrak{m} / / H_{1}\right) \leqslant 2$, hence $\mathfrak{m} / / H_{1}$ is a complete intersection. (In most cases, we actually obtain hd $\left(\mathfrak{m} / / H_{1}\right) \leqslant 1$.) This yields an embedding $\mathfrak{m} / / H_{1} \hookrightarrow \mathrm{~V}_{2}$ into an H_{2}-module V_{2} such that $\operatorname{codim}_{\mathrm{V}_{2}}\left(\mathfrak{m} / / H_{1}\right) \leqslant 2$. Then using the equations of $\mathfrak{m} / / H_{1}$ in \mathfrak{V}_{2}, we describe $\mathfrak{m} / / H$ as a subvariety of $\mathrm{V}_{2} / / H_{2}$. This allows us to handle the second step in (4.1) and prove that hd $(\mathfrak{m} / / H) \leqslant 1$.

To describe \mathfrak{m} as H-module, we need some notation. The fundamental weights of H are denoted by $\left\{\varphi_{i}\right\}$ and ε stands for the basic character of one-dimensional torus $\mathbb{k}^{\times}=\mathrm{T}_{1}$. The fundamental weights for the second (resp. third) simple factor of H are marked with prime (resp. double prime). The unique fundamental weight of $S L_{2}$ is denoted by φ. Write $\mathbb{1}$ for the trivial one-dimensional representation.

As in [24, 25, 27], the simple H-module W_{λ} is identified with its highest weight λ, using the multiplicative notation for λ in terms of the fundamental weights. For instance, we write $\varphi_{j} \varphi_{k}+3 \varphi_{i}^{2}$ in place of $\mathrm{W}_{\varphi_{j}+\varphi_{k}}+3 \mathrm{~W}_{2 \varphi_{i}}$. Finally, λ^{*} is a dual H-module to λ.

Theorem 4.3. If G is simple and $c_{G}(G / H)=1$, then

- either $\mathfrak{m} / / H$ is an affine space and $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=0$;
- or $\mathfrak{m} / / H$ is a hypersurface and $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=1$.
(Hence an a priori conceivable case, where $\mathfrak{m} / / H \simeq \mathbb{A}^{n}$ and $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=1$, does not occur.)
Proof. The list of such pairs (G, H) consists of 17 items, and we refer to their numbering in $[13$, Table 1] (see also Table 1 in [16]). The output is that $\mathbb{k}] \mathfrak{m}]^{H}$ is a polynomial algebra for № $1,4-9,13,16,17$. For the other cases, $\mathbb{k}] \mathfrak{m}]^{H}$ is a hypersurface.

Let us provide some details to our computations. If H is simple, then the pairs with a polynomial algebra $\mathbb{k}] \mathfrak{m}]^{H}$ can be picked from the list of "coregular representations" of H obtained by Schwarz [24] and Adamovich-Golovina [1]. This applies to № 4-8,13,16-17. Moreover, for all these cases, one also has $\operatorname{def} \mathfrak{N}_{H}(\mathfrak{m})=0$, see [25].

For № 1, we have $(G, H)=\left(S L_{2 n}, S L_{n} \times S L_{n}\right)$ and $\mathfrak{m}=\varphi_{1} \varphi_{1}^{\prime}+\left(\varphi_{1} \varphi_{1}^{\prime}\right)^{*}+\mathbb{1}$. Here one can use the fact that $\hat{H}=\left(S L_{n}\right)^{2} \cdot \mathrm{~T}_{1}$ is a symmetric subgroup of G, with isotropy representation $\hat{\mathfrak{m}}=\varphi_{1} \varphi_{1}^{\prime} \varepsilon+\left(\varphi_{1} \varphi_{1}^{\prime} \varepsilon\right)^{*}$, and hence $\mathbb{k}[\hat{\mathfrak{m}}]^{\hat{H}}$ is a polynomial algebra.

For № 9, we have $(G, H)=\left(\mathbf{C}_{n}, \mathbf{C}_{n-2} \times \mathbf{A}_{1} \times \mathbf{A}_{1}\right), n \geqslant 3$, and $\mathfrak{m}=\varphi_{1} \varphi^{\prime}+\varphi_{1} \varphi^{\prime \prime}+\varphi^{\prime} \varphi^{\prime \prime}$. Here $\left.\mathfrak{m}\right|_{\mathbf{c}_{n-2}}=4 \varphi_{1}+4 \mathbb{1}$. If $n \geqslant 4$, then $\left(4 \varphi_{1}\right) / / \mathbf{C}_{n-2} \simeq \mathbb{A}^{6}$, and it is isomorphic to
$\varphi^{\prime} \varphi^{\prime \prime}+2 \mathbb{1}$ as $\mathbf{A}_{1} \times \mathbf{A}_{1}$-module. Hence $\mathfrak{m} / / \mathbf{C}_{n-2} \simeq \varphi^{\prime} \varphi^{\prime \prime}+2 \mathbb{1}+\varphi^{\prime} \varphi^{\prime \prime}$. It is easily seen that $\left(2 \varphi^{\prime} \varphi^{\prime \prime}\right) / / \mathbf{A}_{1} \times \mathbf{A}_{1} \simeq \mathbb{A}^{3}$ (it is also № 1 with $n=2$). Therefore, $\mathfrak{m} / / H \simeq \mathbb{A}^{5}$. By [25], $\left(\mathbf{C}_{n-2}, 4 \varphi_{1}\right)$ is equidimensional if and only if $n \geqslant 5$. Then both quotient morphisms

$$
\mathfrak{m} \rightarrow \mathfrak{m} / / \mathbf{C}_{n-2} \rightarrow\left(\mathfrak{m} / / \mathbf{C}_{n-2}\right) / /\left(\mathbf{A}_{1} \times \mathbf{A}_{1}\right)=\mathfrak{m} / / H
$$

are equidimensional. This already shows that $\mathfrak{m} / / H$ is an affine space for $n \geqslant 4$ and, moreover, $(H: \mathfrak{m})$ is equidimensional, if $n \geqslant 5$. Some other ad hoc methods allow us to handle the case with $n=3$ and prove the equidimensionality for $n=4$.

The other cases, where H is semisimple, are $S p_{4} \supset S L_{2}$ (№ 14) and $\mathbf{B}_{5} \supset \mathbf{B}_{3} \times \mathbf{A}_{1}$ (․o12).

- In № 14, the $S L_{2}$-module \mathfrak{m} equals φ^{6} (binary forms of degree 6), and it is a classical fact from XIX century that $\varphi^{6} / / S L_{2}$ is a hypersurface, cf. also [22, Theorem 4].
- In № $12, \mathfrak{m}=\varphi_{3} \varphi^{\prime 2}+\varphi_{1}$ as $\mathbf{B}_{3} \times \mathbf{A}_{1}$-module. Then $\mathfrak{m}=3 \varphi_{3}+\varphi_{1}$ as \mathbf{B}_{3}-module and $\mathfrak{m} / / \mathbf{B}_{3} \simeq \mathbb{A}^{10}$. Using explicit multi-degrees of basic \mathbf{B}_{3}-invariants, see № 6 in [1, Table 3], one sees that $\mathfrak{m} / / \mathbf{B}_{3} \simeq \varphi^{\prime 2}+\varphi^{\prime 4}+2 \mathbb{1}$ as \mathbf{A}_{1}-module, and therefore $\left(\mathfrak{m} / / \mathbf{B}_{3}\right) / / \mathbf{A}_{1}=\mathfrak{m} / / H$ is a hypersurface.

Consider an item, where H is not semisimple. For № 11 , we have $(G, H)=\left(\mathbf{B}_{4}, \mathbf{G}_{2} \cdot \mathbf{T}_{1}\right)$ and $\mathfrak{m}=\varphi_{1} \varepsilon+\varphi_{1}+\varphi_{1} \varepsilon^{-1}$. Then $\mathfrak{m}=3 \varphi_{1}$ as \mathbf{G}_{2}-module and $\left(3 \varphi_{1}\right) / / \mathbf{G}_{2} \simeq \mathbb{A}^{7}$. Using explicit multi-degrees of basic \mathbf{G}_{2}-invariants, cf. № 1 in [1, Table 4], we obtain that the T_{1}-weights on \mathbb{A}^{7} are $\varepsilon^{2}, \varepsilon, \varepsilon^{-1}, \varepsilon^{-2}, 1,1,1$. Hence $\mathbb{A}^{7} / / \mathrm{T}_{1}=\mathfrak{m} / / H$ is a hypersurface.

Remark 4.1. I would like to fix some misprints and omissions in [13, Table 1].

- In № 1 , the group H has to be $S L_{n} \times S L_{n}$;
- the summand $\mathbb{I l}$ has to be added to \mathfrak{m} in № 3,6 . One also has $r=4$ in № 3 .
- for № 12 , the right formula for \mathfrak{m} is given above.

A similar approach works for affine homogeneous spaces \tilde{G} / \tilde{H} with $\tilde{c}=1$.
Theorem 4.4. If G is simple and $\tilde{c}=c_{\tilde{G}}(\tilde{G} / \tilde{H})=1$, then $\mathfrak{g} / / H$ is a hypersurface.
Proof. We check the assertion for all items in Table 1. The H-modules \mathfrak{g} are given below. The underlined summands give rise to the adjoint representation of H.

1. $\mathfrak{s l}_{n+1}=\underline{\varphi_{1} \varphi_{n-1}}+\varphi_{1}+\varphi_{n-1}+\mathbb{1}$ as $S L_{n}$-module.
2. $\mathfrak{s p}_{6}=\underline{\varphi_{1}^{2}}+\varphi_{1} \varphi^{\prime}+\underline{\varphi^{\prime 2}}$ as $S p_{4} \times S L_{2}$-module.
3. $\mathfrak{s o}_{7}=\varphi_{1}+\underline{\varphi_{2}}$ as \mathbf{G}_{2}-module.
4. $\mathbf{G}_{2}=\underline{\varphi_{1} \varphi_{2}}+\varphi_{1}+\varphi_{2}$ as $S L_{3}$-module.
5. $\mathfrak{s l}_{3}=\underline{\varphi^{2}}+\varphi^{4}$ as $S L_{2}$-module (we use the isomorphism $\mathfrak{s l}_{2} \simeq \mathfrak{s o}_{3}$).
6. $\mathfrak{s l}_{3}=(\varepsilon+\mu+\varepsilon \mu)+(\varepsilon+\mu+\varepsilon \mu)^{*}+\underline{2 \mathbb{1}}$ as T_{2}-module.
$7(s) . \mathfrak{s p}_{4}=\varphi^{2} \varepsilon^{2}+\underline{\varphi^{2}}+\varphi^{2} \varepsilon^{-2}+\underline{\mathbb{1}}$ as $S L_{2} \cdot \mathrm{~T}_{1}$-module.
$7(l) . \mathfrak{s p}_{4}=\underline{\varphi^{2}}+\varphi \varepsilon+\varphi \varepsilon^{-1}+\varepsilon^{2}+\varepsilon^{-2}+\underline{\mathbb{I}}$ as $S L_{2} \cdot \mathrm{~T}_{1}$-module.
7. $\mathfrak{s l}_{4}=\varphi \varphi^{\prime} \varepsilon+\varphi \varphi^{\prime} \varepsilon^{-1}+\underline{\varphi^{2}}+\underline{\varphi^{\prime 2}}+\underline{\mathbb{I}}$ as $\left(S L_{2} \times S L_{2}\right) \cdot \mathrm{T}_{1}$-module.

- Items 1,3-5 are representations admitting a finite coregular extension in the sense of Shmel'kin [26], and he proves that here $\mathfrak{g} / / H$ is an (explicitly described) hypersurface.
- Items $7(l, s)$ can be handled in a similar way, and we provide details for one of them.
- In the s-case, we have $\mathfrak{s p}_{4}=3 \varphi^{2}+\mathbb{1}$ as $S L_{2}$-module, and $\left(3 \varphi^{2}\right) / / S L_{2}$ is a hypersurface, see [22, Theorem 4]. We skip below the trivial H-module $\mathbb{1}$. It is not hard to write explicitly down the basic invariants for $\left(S L_{2}: 3 \varphi^{2}\right)$. Let F denote the basic invariant of degree 2 for the adjoint representation $\left(S L_{2}: \varphi^{2}\right)$, i.e., $F(v)=(v, v)$ for $v \in \varphi^{2}$. If $\left(v_{1}, v_{2}, v_{3}\right) \in 3 \varphi^{2}$, then the basic $S L_{2}$-invariants are: $F_{i j}, 1 \leqslant i \leqslant j \leqslant 3$, and \tilde{F}, where $F_{i j}\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{i}, v_{j}\right)$ and $\tilde{F}=\operatorname{det}\left[v_{1}, v_{2}, v_{3}\right]$. The basic relation is

$$
\begin{equation*}
\operatorname{det}\left(\left(F_{i j}\right)_{i, j=1}^{3}\right)=\tilde{F}^{2} \tag{4.2}
\end{equation*}
$$

where $\boldsymbol{F}=\left(F_{i j}\right)_{i, j=1}^{3}$ is the symmetric 3 by 3 matrix. If $t \cdot\left(v_{1}, v_{2}, v_{3}\right)=\left(t^{-2} v_{1}, v_{2}, t^{2} v_{3}\right)$ for $t \in \mathrm{~T}_{1}$, then $F_{13}, F_{22}, \tilde{F}$ are already T_{1}-invariants, but $t \cdot F_{11}=t^{4} F_{11}, t \cdot F_{12}=t^{2} F_{12}$, $t \cdot F_{23}=t^{-2} F_{23}$, and $t \cdot F_{33}=t^{-4} F_{33}$. Therefore, the other $S L_{2} \cdot \mathrm{~T}_{1}$-invariants are:

$$
x_{1}=F_{11} F_{33}, y_{1}=F_{12} F_{23}, z_{1}=F_{11} F_{23}^{2}, z_{2}=F_{33} F_{12}^{2}
$$

Thus, we get seven generators and yet another relation

$$
\begin{equation*}
x_{1} y_{1}^{2}=z_{1} z_{2} . \tag{4.3}
\end{equation*}
$$

Expressing the $\operatorname{det}(\boldsymbol{F})$ via these $S L_{2} \cdot \mathrm{~T}_{1}$-invariants, we rewrite (4.2) as

$$
x_{1} F_{22}+2 y_{1} F_{13}+F_{13}^{2} F_{22}+z_{1}+z_{2}=\tilde{F}^{2} .
$$

Therefore, either z_{1} or z_{2} can be excluded from the minimal generating system of $\mathbb{k}[\mathfrak{m}]^{H}$. Afterwards, (4.3) yields the relation for the remaining six invariants.

- In the l-case, $\mathfrak{s p}_{4}=\varphi^{2}+2 \varphi+3 \mathbb{1}$ as $S L_{2}$-module, and $\left(\varphi^{2}+2 \varphi\right) / / S L_{2}$ is a hypersurface, too. The rest is similar to the s-case.
- № 6 is easy and left to the reader.
- № 8 is a slice representation for № 2 . Therefore, using the monotonicity results for homological dimension of algebras of invariants [22, Theorem 2], it suffices to handle № 2. - № 2 is the most difficult case, and we only give some hints. Here $\mathfrak{s p}_{6}=\varphi_{1}^{2}+2 \varphi_{1}+3 \mathbb{1}$ as $S p_{4}$-module. The representation $\left(S p_{4}: \varphi_{1}^{2}+2 \varphi_{1}\right)$ is a slice for $\left(S L_{4}: \tilde{\varphi}_{1}^{2}+\tilde{\varphi}_{2}+2 \tilde{\varphi}_{1}^{*}=\tilde{V}\right)$ (use $v \in \tilde{\varphi}_{2}$ such that $\left.\left(S L_{4}\right)^{v}=S p_{4}\right)$ and hd $\left(\tilde{V} / / S L_{4}\right)=2$ [27, Table 9]. Therefore, $\left(\varphi_{1}^{2}+2 \varphi_{1}\right) / / S p_{4}$ is a complete intersection and hd $\left(\varphi_{1}^{2}+2 \varphi_{1}\right) / / S p_{4} \leqslant 2$ [22]. The subsequent argument is similar in spirit with that in case $7(s)$, but much more elaborated. We also need the fact that, for the truncated $S p_{4} \times S L_{2}$-module $\varphi_{1}^{2}+\varphi_{1} \varphi^{\prime}=\mathrm{V} \subset \mathfrak{s p}_{6}$, the quotient $\mathrm{V} / /\left(S p_{4} \times S L_{2}\right)$ is an affine space of dimension 5 [33].

5. COISOTROPY REPRESENTATIONS AND RELATED POISSON STRUCTURES

In this section, G / H is affine, and we think of \mathfrak{m} as a subspace of \mathfrak{g}^{*}. The cotangent bundle $T_{G / H}^{*}=G \times_{H} \mathfrak{m}$ is a symplectic G-variety, hence the algebra $\mathbb{k}\left[T_{G / H}^{*}\right]$ is equipped with the associated Poisson bracket $\{$,$\} . This bracket restricts to the algebra of G$-invariants $\mathbb{k}\left[T_{G / H}^{*}\right]^{G} \simeq \mathbb{k}[\mathfrak{m}]^{H}$, which makes $\mathfrak{m} / / H$ a Poisson variety. Recall that $\operatorname{dim} \mathfrak{m} / / H=2 c+r$.

The Poisson bracket $\left(\mathbb{k}[\mathfrak{m}]^{H},\{\},\right)$ has the following explicit description, see e.g. [30, Ch. II, §1.8]. The algebra of regular functions $\mathbb{k}[\mathfrak{m}]$ is also the symmetric algebra of $\mathfrak{g} / \mathfrak{h} \simeq$ \mathfrak{m}^{*}, hence $\mathbb{k}[\mathfrak{m}]^{H}=\mathcal{S}(\mathfrak{g} / \mathfrak{h})^{H}$. Let $f_{1}, f_{2} \in \mathcal{S}(\mathfrak{g} / \mathfrak{h})^{H}$ and $\alpha \in(\mathfrak{g} / \mathfrak{h})^{*}=\mathfrak{m} \subset \mathfrak{g}^{*}$. Then

$$
\begin{equation*}
\left\{f_{1}, f_{2}\right\}(\alpha)=\left\langle\alpha,\left[d_{\alpha} f_{1}, d_{\alpha} f_{2}\right]\right\rangle \tag{5.1}
\end{equation*}
$$

The commutator on the right-hand side of this formula is understood as the commutator in \mathfrak{g} of any representatives of the cosets $d_{\alpha} f_{1}, d_{\alpha} f_{2} \in \mathfrak{g} / \mathfrak{h}$, because the result does not depend on the choice of these representatives in \mathfrak{g} (if f_{1} and f_{2} are H-invariants!). Note that if $\mathfrak{h}=\mathfrak{g}^{\sigma}$ for an involution σ, then the right-hand side in (5.1) is identically zero. That is, for the symmetric variety G / H, the Poisson bracket vanishes on $\mathbb{k}\left[T_{G / H}^{*}\right]^{G}$. Let $\mathrm{rk}\{$, denote the rank of the Poisson bracket, i.e., the maximal dimension of symplectic leaves in $\mathfrak{m} / / H$. It follows from [30, Ch. II, §3, Theorem 2] that in our case $\operatorname{rk}\{\}=,2 c$.

Let $\left(\mathcal{P},\{,\}_{\mathcal{P}}\right)$ be an affine Poisson variety. A subalgebra \mathcal{A} of $\mathbb{k}[\mathcal{P}]$ is said to be Poissoncommutative, if $\{\mathcal{A}, \mathcal{A}\}=0$. As is well-known, if \mathcal{A} is Poisson-commutative, then

$$
\operatorname{trdeg} \mathcal{A} \leqslant \operatorname{dim} \mathcal{P}-\frac{1}{2} \operatorname{rk}\{,\}_{\mathcal{P}}
$$

Therefore, we arrive at the following conclusion.
Lemma 5.1. If \mathcal{A} is a Poisson-commutative subalgebra of $\mathbb{k}[\mathfrak{m}]^{H}$, then $\operatorname{trdeg} \mathcal{A} \leqslant c+r$.
Conjecture 5.2. For any affine homogeneous space G / H, there is a Poisson-commutative subalgebra $\mathcal{A} \subset \mathbb{k}[\mathfrak{m}]^{H}$ such that $\operatorname{trdeg} \mathcal{A}=c+r$.

Let \mathcal{Z} denote the Poisson centre of $\left(\mathbb{k}[\mathfrak{m}]^{H},\{\},\right)$. By $[5$, Section 7$], z$ is a polynomial ring and $\operatorname{trdeg} Z=r$. Some stronger results can also be found in [6, Section 9].

Example 5.1. For $c=0$, one has $\mathbb{Z}=\mathbb{k}[\mathfrak{m}]^{H}$, and there is nothing to prove. For $c=1$, $\operatorname{trdeg} \mathbb{k}[\mathfrak{m}]^{H}=\operatorname{trdeg} Z+2$ and one can take any $f \in \mathbb{k}[\mathfrak{m}]^{H}$ that is not algebraic over \mathcal{Z}. Then the subalgebra generated by z and f is Poisson-commutative and its transcendence degree equals $r+1$, as required. Thus, Conjecture 5.2 is true, if $c \leqslant 1$.

By [5, Theorem 7.6], one has $z=\mathbb{k}\left[M_{\mathcal{O}}\right]^{G}$ and the morphism $T_{G / H}^{*} \rightarrow \operatorname{Spec} z$ is given by the map ψ in (2.2). Therefore, using commutative diagrams (2.2) and (2.3), we get the chain morphisms

$$
\mathfrak{m} \xrightarrow{\pi_{\mathfrak{m}}} \mathfrak{m} / / H \longrightarrow \operatorname{Spec} z=M_{\mathcal{O}} / / G \xrightarrow{\tau} \overline{G \cdot \mathfrak{m}} / / G
$$

where τ is finite, the morphisms $\boldsymbol{f}: \mathfrak{m} \rightarrow$ Spec z and $\tilde{\boldsymbol{f}}: \mathfrak{m} \rightarrow \overline{G \cdot \mathfrak{m}} / / G=\tilde{M}_{\mathcal{O}} / / G$ are equidimensional, and $\tilde{f}^{-1}(\overline{0})=\boldsymbol{f}^{-1}(\overline{0})=\mathfrak{N}_{G}\left(\mathfrak{g}^{*}\right) \cap \mathfrak{m}$.
5.1. The case of \tilde{G} / \tilde{H}. For the homogeneous spaces of the form $\tilde{G} / \tilde{H}=(G \times H) / \Delta_{H}$, one can say more. Recall that $\tilde{r}=\operatorname{rk} \mathfrak{g}+\operatorname{rk} \mathfrak{h}, \tilde{c}=\operatorname{dim} U-\operatorname{dim} B_{H}$, and $\tilde{\mathfrak{m}} \simeq \mathfrak{g}^{*}$. Here Lemma 5.1 says that if $\mathcal{A} \subset \mathbb{k}\left[\mathfrak{g}^{*}\right]^{H}=\mathcal{S}(\mathfrak{g})^{H}$ is Poisson-commutative, then

$$
\begin{equation*}
\operatorname{trdeg} \mathcal{A} \leqslant \tilde{c}+\tilde{r}=\frac{1}{2}(\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{h}+\operatorname{rk} \mathfrak{g}+\operatorname{rk} \mathfrak{h}) \tag{5.2}
\end{equation*}
$$

In this setting, the existence of \mathcal{A} such that $\operatorname{trdeg} \mathcal{A}=\tilde{c}+\tilde{r}$ has been proved for several classes of reductive subalgebras \mathfrak{h} :

- $\mathfrak{h}=\mathfrak{g}^{\sigma}$ is a symmetric subalgebra [19, Theorem 2.7];
- $\mathfrak{h}=\mathfrak{g}^{\theta}$, where ϑ is an automorphism of \mathfrak{g} of finite order $\geqslant 3$ [20, Theorem 3.10]. Here one also needs the condition that a certain contraction of \mathfrak{g} associated with ϑ, denoted $\mathfrak{g}_{(0)}$, has the same index as \mathfrak{g}. It should be noted, however, that this condition has been verified in many cases, and it is likely that this condition always holds.
- \mathfrak{h} is the centraliser of a semisimple element of \mathfrak{g} [11, Lemma 2.1], i.e., \mathfrak{h} is a Levi subalgebra of \mathfrak{g}.

Note also that if $\mathfrak{h} \subset \mathfrak{g}$ has a non-trivial centre, then, for any \mathfrak{r} such that $[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{r} \subset \mathfrak{h}$, we have $\operatorname{dim} \mathfrak{h}-\operatorname{rk} \mathfrak{h}=\operatorname{dim} \mathfrak{r}-\mathrm{rk} \mathfrak{r}$. Therefore, if a Poisson-commutative subalgebra $\mathcal{A} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{h}}$ has the maximal transcendence degree, then it follows from (5.2) that \mathcal{A} has the maximal transcendence degree as subalgebra of the larger Poisson algebra $\mathcal{S}(\mathfrak{g})^{\mathfrak{r}}$.

Remark. An advantage of this case is that $\mathbb{k}[\tilde{\mathfrak{m}}]=\mathcal{S}(\mathfrak{g})$ is a Poisson algebra. Therefore, one can construct 'large' Poisson-commutative subalgebras in $\mathcal{S}(\mathfrak{g})^{H}$ using compatible Poisson brackets and Mishchenko-Fomenko subalgebras of $\mathcal{S}(\mathfrak{g})$, see [11, 19, 20]. But for an arbitrary affine G / H, the algebra $\mathbb{k}[\mathfrak{m}]$ does not possess a natural Poisson structure.
5.2. A more general setting. Let $R \subset Q$ be arbitrary connected affine algebraic groups. Then $Q \times R / \Delta_{R} \simeq Q$ is an affine homogeneous space of $Q \times R$ and the coisotropy representation of $R \simeq \Delta_{R}$ is isomorphic to $\left(R: \mathfrak{q}^{*}\right)$. Here we are led to consider Poissoncommutative subalgebras of the Poisson algebra $\mathcal{S}(\mathfrak{q})^{R}=\mathcal{S}(\mathfrak{q})^{\mathfrak{r}}$.

Our luck is that this problem (without connection to coisotropy representations) has been considered in [11], where an upper bound on $\operatorname{trdeg} \mathcal{A}$ similar to (5.2) is given. The only difference is that the rank of a Lie algebra has to be replaced with the index. (Recall that $\operatorname{rk} \mathfrak{q}=\operatorname{ind} \mathfrak{q}$ whenever \mathfrak{q} is reductive.) That is, if $\mathcal{A} \subset \mathcal{S}(\mathfrak{q})^{\mathfrak{r}}$ and $\{\mathcal{A}, \mathcal{A}\}=0$, then

$$
\begin{equation*}
\operatorname{trdeg} \mathcal{A} \leqslant \frac{1}{2}(\operatorname{dim} \mathfrak{q}-\operatorname{dim} \mathfrak{r}+\operatorname{ind} \mathfrak{q}+\operatorname{ind} \mathfrak{r}) \tag{5.3}
\end{equation*}
$$

see [11, Prop. 1.1]. It is also shown in [11] that if $\mathfrak{r}=\mathfrak{q}^{\xi}$ is the stabiliser of $\xi \in \mathfrak{q}^{*}$ under the coadjoint representation of \mathfrak{q} and ind $\mathfrak{q}^{\xi}=$ ind \mathfrak{q}, then this bound is achieved in many cases. In particular, if \mathfrak{q} is reductive, then this happens for any ξ.

However, results of [5] do not apply in this setting, unless both groups Q and R are reductive.

REFERENCES

[1] O. Adamovich and E. Golovina. Simple linear Lie groups having a free algebra of invariants, In: "Voprosy teorii grupp i gomologicheskoi algebry", t. 2, p.3-41, Yaroslavl University, 1979 (Russian). English translation: Selecta Math. Sov., 3 (1984), 183-220.
[2] D. AKHIEZER and D. PANYUSHEV. Multiplicities in the branching rules and the complexity of homogeneous spaces, Moscow Math. J., 2 (2002), 17-33.
[3] N. Andruskiewitsch. On the complicatedness of the pair (ga, K), Rev. Mat. Univ. Complutense Madr. 2, no. 1 (1989), 13-28.
[4] B. Kostant and S. Rallis. Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809.
[5] F. KnOp. Weylgruppe und Momentabbildung, Invent. Math., 99 (1990), 1-23.
[6] F. KNOP. A Harish-Chandra homomorphism for reductive group actions, Ann. Math., 140 (1994), 253-288.
[7] M. KRÄMER. Multiplicity free subgroups of compact connected Lie groups, Arch. Math., 27 (1976), 28-36.
[8] M. KRÄMER. Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compos. Math., 38 (1979), 129-153.
[9] D. LuNA. Sur les orbites fermées des groups algébriques réductifs, Invent. Math., 16 (1972), 1-5.
[10] D. Luna and R.W. RIchardson. A generalization of the Chevalley restriction theorem. Duke Math. J., 46 (1979), 487-496.
[11] A. Molev and O. Yakimova. Quantisation and nilpotent limits of Mishchenko-Fomenko subalgebras, Represent. Theory, 23 (2019), 350-378.
[12] D. PANYUSHEV. Complexity and rank of homogeneous spaces, Geom. Dedicata, 34 (1990), 249-269.
[13] D. PANYUSHEV. Complexity of quasiaffine homogeneous varieties, t-decompositions and affine homogeneous spaces of complexity 1, in: E.B. Vinberg (Ed.), "Lie groups, their discrete subgroups and Invariant Theory" (Adv. Sov. Math., vol. 8, pp.151-166) Providence: AMS 1992.
[14] D. Panyushev. A restriction theorem and the Poincaré series for U-invariants, Math. Annalen, 301 (1995), 655-675.
[15] D. PANYUSHEV. Good properties of algebras of invariants and defect of linear representations, J. Lie Theory, 5 (1995), 81-99.
[16] D. Panyushev. Complexity and rank of actions in invariant theory, J. Math. Sci. (New York), 95 (1999), 1925-1985.
[17] D. PANYUSHEV. The poset of positive roots and its relatives, J. Algebraic Combin., 23 (2006), 79-101.
[18] D. PANYUSHEV and O. YAKIMOVA. Poisson-commutative subalgebras and complete integrability on non-regular coadjoint orbits and flag varieties, Math. Zeitschrift, 295, no. 1-2 (2020), 101-127.
[19] D. PANYUSHEV and O. YAKIMOVA. Poisson-commutative subalgebras of $\mathcal{S}(\mathfrak{g})$ associated with involutions, Intern. Math. Res. Notices, 2021, no. 23, 18367-18406.
[20] D. Panyushev and O. YaKimova. Periodic automorphisms, compatible Poisson brackets, and Gaudin subalgebras, Transform. Groups, 26, no. 2 (2021), 641-670.
[21] V.L. Popov. Representations with a free module of covariants, Funct. Anal. Appl., 10 (1977), 242-244.
[22] V.L. Popov. Homological dimension of algebras of invariants, J. reine angew. Math., 341 (1983), 157173.
[23] R.W. Richardson. Irreducible components of the nullcone, Contemp. Math., 88 (1989), 409-434.
[24] G. SCHWARZ. Representations of simple Lie groups with regular rings of invariants, Invent. Math., 49 (1978), 167-191.
[25] G. SCHWARZ. Representations of simple Lie groups with a free module of covariants, Invent. Math., 50 (1978), 1-12.
[26] D.A. SHMEL'KIN. On non-connected simple linear groups with a free algebra of invariants, Izv. Math., 60 (1996), 811-856.
[27] D.A. SHMEL'KIN. On representations of $S L_{n}$ with algebras of invariants being complete intersections, J. Lie Theory, 11, no. 1 (2001), 207-229.
[28] D.A. TimAshev. Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences 138. Berlin: Springer, xxii, 253 p. (2011).
[29] E.B. Vinberg. Effective theory of invariants, In: "Algebra", Collection of papers dedicated to O.Yu. Schmidt, Moskva, MSU, 27-33 (1982) (Russian). English translation in: "Fourteen Papers Translated from the Russian", AMS Translations: Series 2, 137 (1987), 15-19.
[30] E.B. Vinberg. Commutative homogeneous spaces and co-isotropic symplectic actions. Russ. Math. Surv., 56, no. 1 (2001), 1-60.
[31] E.B. Vinberg and V.L. Popov. Invariant theory, in: Sovremennye problemy matematiki. Fundam. napravl., t. 55, p. 137-309, Moskva: VINITI, 1989 (Russian). English translation: Algebraic Geometry IV (Encyclopaedia Math. Sci., vol. 55, p.123-284) Berlin Heidelberg New York: Springer 1994.
[32] D. Wehlau. A proof of the Popov conjecture for tori, Proc. Amer. Math. Soc., 114 (1992), 839-845.
[33] D. Wehlau. Equidimensional representations of 2-simple groups, J. Algebra, 154 (1993), 437-489.

Institute for Information Transmission Problems, Moscow 127051, Russia
Email address: panyush@mccme.ru

