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Abstract

In the Super-Transition-Array statistical method for the computation of radiative opacity of hot

dense matter, the moments of the absorption or emission features involve partition functions with

reduced degeneracies, occurring through the calculation of averages of products of subshell popula-

tions. In the present work, we discuss several aspects of the computation of such peculiar partition

functions, insisting on the precautions that must be taken in order to avoid numerical difficulties.

In a previous work, we derived a formula for supershell partition functions, which takes the form

of a functional of the distribution of energies within the supershell and allows for fast and accurate

computations, truncating the number of terms in the expansion. The latter involves coefficients for

which we obtained a recursion relation and an explicit formula. We show that such an expansion can

be combined with the recurrence relation for shifted partition functions. We also propose, neglecting

the effect of fine structure as a first step, a positive-definite formula for the Super-Transition-Array

moments of any order, providing an insight into the asymmetry and sharpness of the latter. The

corresponding formulas are free of alternating sums. Several ways to speed up the calculations are

also presented.

1 Introduction

The radiative opacity of warm/hot plasmas is of primary importance for designing and analyzing inertial
confinement fusion (ICF) experiments [1, 2] as well as for understanding astrophysical observations and
phenomena [3–6]. The radiation-transport properties of these plasmas, among which the absorption
spectrum, are determined, mainly, by the electronic structure of the ions together with the photon
distribution. Experimental opacity measurements are rather difficult to carry out, for plasmas in uniform
density and temperature conditions [7]. Furthermore, ICF experiments and astrophysical phenomena
require opacity in a very wide density–temperature regime, for various materials. Therefore, the opacity
is traditionally determined by theoretical models. The latter have to tackle a highly complicated physical
problem of coupled atom–plasma systems, in order to calculate the absorption spectrum. Also, the models
should have the ability to sum up the whole relevant electronic quantum transitions, from all of the bound
and free electronic configurations of the plasma ions. This very hard problem requires approximations, and
each opacity numerical code has its own assumptions and numerical methods. Bar-shalom et al. developed
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2wilson9@llnl.gov
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a powerful technique for the calculation of bound-bound and bound-free photo-absorption spectra [8].
It consists in grouping the huge number of lines between the enormous number of configurations into
large sets, called Super-Transition-Arrays (STAs). The STA moments are calculated analytically via the
partition function algebra, and are split into smaller STAs until convergence is achieved. This procedure
enables the handling of situations where the number of populated configurations is too large [9]. Krief
discussed two useful methods for the estimation of the number of populated configurations: using an
exact calculation of the total combinatoric number of configurations within superconfigurations in a
converged STA calculation on one hand, and by using an estimate for the multidimensional width of
the probability distribution for electronic population over bound shells (which is binomial if electron
exchange and correlation effects are neglected) on the other hand [10]. There is still a great interest
in STA-based opacity codes, as evidenced by the recent publications on the subject (see for instance
Refs. [11–18,18–22]).

The partition function of a supershell with N subshells and Q electrons is defined as

UQ(g) =
∑

{ps}∑N
s=1

ps=Q

N∏

s=1

(
gs
ps

)

Xps
s , (1)

where Xs = e−β(ǫs−µ), with the usual notation β = 1/(kBT ), kB being the Boltzmann constant. ǫs is
the energy of subshell s, ps its population and µ the chemical potential. We use the notation

∑

{ps}∑
N
s=1

ps=Q

· · · =

g1∑

p1=0

g2∑

p2=0

· · ·

gN∑

pN=0
︸ ︷︷ ︸

∑
N
s=1

ps=Q

· · · . (2)

Partition functions with reduced degeneracies are important for the calculation of the STA moments.
By reduced degeneracies, we mean that the degeneracy of one or more subshells in the supershell is
reduced by one or more. The reduced degeneracies are sometimes called “shifted statistical weights” [23]
or “modified” degeneracies [24]. They are noted in the following way: UQ (ga) means that the set of
degeneracies {g1, g2, · · · , gN} is replaced by {g1, g2, · · · ga−1, · · · , gN} in the computation of the partition
function. In the same way, UQ

(
gabbc

)
means that the set of degeneracies {g1, g2, · · · , gN} is replaced by

{g1, g2, · · · ga − 1, · · · , gb − 2, · · · , gc − 1, · · · , gN}.
In section 2, we discuss the importance of partition functions with shifted degeneracies in the calcu-

lation of the STA moments, insisting on the different ways of computing them in order to circumvent
numerical difficulties. We insist on the precautions that must be taken, especially for non-relativistic “s”
(ℓ = 0) or relativistic p1/2 (j = 1/2) subshells (for which a twice-reduced degeneracy falls to zero), and
address the long-running issue of alternating sums.

In a previous work, we derived a formula for supershell partition functions, which takes the form
of a functional of the distribution of energies within the supershell and allows for fast and accurate
computations, truncating the number of terms in the expansion. The latter involves coefficients (denoted
Γk) for which we obtained a recursion relation and an explicit formula. In section 3, we show that such
a relation applies also for partition functions with shifted degeneracies, and provide the corresponding
expressions.

Finally, in section 4, we propose, discarding the contribution of fine-structure, an expression for the
nth-order STA moment avoiding alternating sums. The formula involves multinomial coefficients and
Stirling numbers of the second kind. The numerical efficiency of such an evaluation is connected to the
enumeration of partitions. In the same vein, we mention several numerical optimizations such as fast
exponentiation and Karatsuba-type algorithms for the product of multivariate polynomials, which should
be of great interest for the computation of opacity in the superconfiguation approximation. A matrix
representation of the recurrence relations, acting on vectors of partition functions, is described.
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2 Reduced degeneracies in the STA theory

2.1 General relations and mean populations

The mean population of subshell a inside a Q-electron subshell is

〈pa〉 =
1

UQ(g)

∑

{ps}∑N
s=1

ps=Q

pa

N∏

s=1

(
gs
ps

)

Xps
s . (3)

Using the identity

p

(
g
p

)

= g

(
g − 1
p− 1

)

, (4)

the average population of subshell a reads

〈pa〉 =
1

UQ(g)

∑

{ps}∑
N
s=1

ps=Q

ga

N∏

s=1

(
gs − δs,a
ps − δs,a

)

Xps
s . (5)

Then, using (
g
p

)

=

(
g − 1
p

)

+

(
g − 1
p− 1

)

, (6)

we get

〈pa〉 =
ga

UQ(g)

∑

{ps}∑N
s=1

ps=Q

N∏

s=1

(
gs
ps

)

Xps
s −

ga
UQ(g)

∑

{ps}∑N
s=1

ps=Q

N∏

s=1

(
gs − δs,a

ps

)

Xps
s , (7)

i.e.

〈pa〉 =
ga

UQ(g)
UQ(g)−

ga
UQ(g)

UQ (ga) , (8)

yielding

〈pa〉 = ga

[

1−
UQ (ga)

UQ(g)

]

. (9)

Applying the relation (6) again, one gets

UQ(g) =
∑

{ps}∑N
s=1

ps=Q

N∏

s=1

(
gs
ps

)

Xps
s =

∑

{ps}∑N
s=1

ps=Q

N∏

s=1

(
gs − δs,a

ps

)

Xps
s +

∑

{ps}∑N
s=1

ps=Q−1

N∏

s=1

(
gs − δs,a
ps − δs,a

)

Xps
s

(10)
or

UQ(g) = UQ (ga) +Xa

∑

{ps}∑
N
s=1

ps=Q−1

N∏

s=1

(
gs − δs,a

ps

)

Xps
s (11)

yielding the relation
UQ(g) = UQ (ga) +XaUQ−1 (g

a) , (12)

from which it follows that

UQ (ga) =

Q
∑

k=0

UQ−k(g)(−Xa)
k. (13)
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Applying Eq. (13) for UQ−k

(
gb
)
, we obtain

UQ−k

(
gb
)
=

Q−k
∑

r=0

UQ−k−r(g)(−Xb)
r, (14)

yielding

UQ

(
gab
)
=

Q
∑

k=0

Q−k
∑

r=0

(−Xa)
k(−Xb)

rUQ−k−r(g). (15)

Setting m = k + r, we get

UQ

(
gab
)
=

Q
∑

k=0

Q
∑

m=k

(−Xa)
k(−Xb)

m−kUQ−m(g), (16)

i.e.,

UQ

(
gab
)

=

Q
∑

k=0

[
k∑

m=0

(−Xa)
m(−Xb)

k−m

]

UQ−k(g)

=

Q
∑

k=0

(−Xb)
k

[
k∑

m=0

(
Xa

Xb

)m
]

UQ−k(g), (17)

giving finally

UQ

(
gab
)
=

Q
∑

k=0

(−1)k

[

Xk+1
b −Xk+1

a

Xb −Xa

]

UQ−k(g). (18)

Using Eq. (12), we can write

〈pa〉 = gaXa
UQ−1 (g

a)

UQ(g)
, (19)

or also
〈pa〉 =

ga

1 +
UQ (ga)

XaUQ−1 (ga)

. (20)

Expressions (9), (19) and (20) are equivalent.
In order to reduce the computation time, it is interesting, when the number of electrons in a supershell

is larger than half of its degeneracy, to deal with the “complementary” of electrons: the “holes”. The
definition of a partition function in terms of holes, noted U∗, is obtained from the partition function in
terms of electrons U , under the substitution Xk → X∗

k = 1/Xk. The same recurrence relations applies.
The number of electrons Q is replaced by the number of holes Q∗ = G −Q, where G is the degeneracy
of the supershell defined by

G =

N∑

s=1

gs. (21)

Relation (12) becomes
U∗
Q∗(g) = X∗

aU
∗
Q∗−1 (g

a) + U∗
Q∗ (ga) . (22)

As concerns reduced degeneracies, we have the following relations

UQ−n(g) = A U∗
Q∗+n(g), (23)

as well as
UQ−n(g) = A X∗

aU
∗
Q∗+n−1 (g

a) , (24)
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and
UQ−n

(
gab
)
= A X∗

aX
∗
bU

∗
Q∗+n−2

(
gab
)
, (25)

with

A =

N∏

s=1

Xgs
s . (26)

Within the “hole” formalism, one has therefore

〈pa〉 = 〈ga − pa〉
∗ = ga

U∗
Q∗ (ga)

U∗
Q∗(g)

, (27)

or also
〈pa〉 =

ga

1 +X∗
a

U∗
Q∗−1 (g

a)

U∗
Q∗ (ga)

. (28)

For holes, we iterate from

U∗
Q∗ (ga) =

1

Xa

[
U∗
Q∗+1(g)− U∗

Q∗+1 (g
a)
]
, (29)

yielding

U∗
Q∗ (ga) = −

G−Q∗

∑

n=1

U∗
Q∗+n(g)(−Xa)

−n, (30)

where G =
∑N

s=1 gs. Applying Eq. (30) twice, we get [25]:

U∗
Q∗

(
gab
)
=

G−Q∗

∑

k=2

[
k−1∑

m=1

(−Xb)
−(k−m)(−Xa)

−m

]

U∗
Q∗+k(g), (31)

which is equal to

U∗
Q∗

(
gab
)
=

G−Q∗

∑

k=2

(−Xb)
−kX2−k

a

[

Xk−1
a −Xk−1

b

Xa −Xb

]

U∗
Q∗+k(g). (32)

Equations (13), (18), (30) and (32) significantly simplify the calculations as they include usual partition
function (i.e., with the entire set of degeneracies) Uk(g), whatever a and b [25]. This is due to the fact
that in the calculation of UQ(g) (see section 3.1), the series {U0(g), · · · ,UQ(g)} or {UG(g), · · · ,U0(g)} are
calculated as well.

2.2 Definitions

Let us consider N subshells, with degeneracies g1, g2, · · · , gN populated by Q electrons. We define

Dαβ
0 = 〈β〉 − 〈α〉, (33)

where 〈s〉 is the one-electron integral

〈s〉 = ǫs + 〈s| −
Z

r
− V (r)|s〉, (34)

and

Dαβ
s = 〈β, s〉 − 〈α, s〉+ ηαβ

(
δα,s

gα − 1
−

δβ,s
gβ − 1

)

, (35)

where

ηαβ = (2ℓα + 1) (2ℓβ + 1)

{
∑

k>0

fkF
(k) (nαℓα, nβℓβ) +

∑

k

gkG
(k) (nαℓα, nβℓβ)

}

(36)
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Figure 1: Ratios of consecutive partition functions in two cases: supershell (3s3p3d) in a germanium
plasma at T = 20 eV and ρ=0.01 g/cm3 (left), and supershell (3s3p3d4s4p4d4f) in an iron plasma at
T = 30 eV and ρ=0.01 g/cm3 (right). Results of the recursion relations of Bar-Shalom et al., Wilson and
Chen, and Gilleron and Pain (Eq. (94)) compared to the exact values.
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Figure 2: Average populations in supershell
(3s3p3d) in a copper plasma at T =100 eV and
ρ =1 g/cm3. Results obtained with the recursion
relation (94).
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Figure 3: (Color online) Variances of popula-
tions in supershell (3s3p3d) in a copper plasma
at T =100 eV and ρ =1 g/cm3. Results obtained
with the recursion relation (94).

with

fk =

(
ℓα k ℓα
0 0 0

)(
ℓβ k ℓβ
0 0 0

){
ℓα k ℓα
ℓβ 1 ℓβ

}

(37)

and

gk =

(
ℓα k ℓβ
0 0 0

)2{
2

3
δk,1 −

1

2(2ℓα + 1)(2ℓβ + 1)

}

, (38)
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Figure 4: Correlations between populations of orbitals 3d and 4s (full black circles) as well as between
3d and 4d (empty red squares) in supershell (3s3p3d) in a copper plasma at T =100 eV and ρ =1 g/cm3.
Results obtained with the recursion relation (94).

F (k) and G(k) being the direct and exchange Slater integrals respectively, and

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)

and
{

ℓ1 ℓ2 ℓ3
ℓ4 ℓ5 ℓ6

}

the Wigner 3j and Racah 6j symbols respectively. For r 6= s, the electron-electron

interaction matrix elements are:

〈r, s〉 = F (0) (nrℓr, nsℓs)−
1

2

∑

k

(
ℓr k ℓs
0 0 0

)2

G(k)(nrℓr, nsℓs) (39)

and

〈r, r〉 = F (0) (nrℓr, nrℓr)−
(2ℓr + 1)

(4ℓr + 1)

∑

k>0

(
ℓr k ℓr
0 0 0

)2

F (k)(nrℓr, nrℓr). (40)

Note that 〈s〉 and 〈r, s〉 are sometimes noted Is and Vrs respectively.

2.3 Expression of the STA moments

For intermediate- or high-Z, the number of lines between two configurations c and c′ can be so large
that the average separation between two lines is smaller than the individual line widths. In this case, for
a given single-electron jump, the lines coalesce into a quasi-Gaussian envelope called UTA (Unresolved
Transition Array) [26].

In the STA theory [8, 27], the unresolved transition arrays between two superconfigurations are also
modeled by a continuous distribution of photon energy (often Gaussian), characterized by its moments of
order 0, 1 and 2, resulting from an average of the inter-term transition elements over all the configurations
involved. In the same way that a UTA is a superposition of lines, a STA can be understood as a
superposition of UTAs. The n-order Mα→β

n moments associated with a given α → β mono-electronic
jump are not normalized in this article. This explains the notion of 0th-order moment, which precisely
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represents this norm. Let us define

Mα→β
n =

∑

c∈Ξ

(
Eα→β

c

)n
Gce

−β(Eα→β
c −µQ) = 〈En

c 〉 U
(Ξ)
Q , (41)

where the energy of a configuration c reads

Eα→β
c = Dαβ

0 +
∑

r

(pr − δr,α)D
αβ
r , (42)

and U
(Ξ)
Q is the partition function of superconfiguration Ξ:

U
(Ξ)
Q =

∑

c∈Ξ

Gce
−β(Ec−µQ). (43)

We can expand the zero- and first-order moments as

Mα→β
0 = gαgβXαU

α
Q−1

(
gαβ
)

(44)

and

Mα→β
1 = gαgβXα

[

Dαβ
0 Uα

Q−1

(
gαβ
)
+
∑

r

Dαβ
r Xrg

αβ
r Uαr

Q−2

(
gαβr

)

]

. (45)

The functions Dαβ
0 = 〈β〉 − 〈α〉 and Dαβ

r = 2[〈β, r〉 − 〈α, r〉] + (δr,α − δr,β) η
αβ
r depend on the mono- 〈r〉

and di-electronic 〈r, s〉, as well as functions ηαβr for which expressions can be found in Refs. [8, 28, 29].
The notation Uα

Q−1

(
gαβ
)
means that

• i) The partition function is evaluated with Qσ − 1 electrons in the supershell σ containing subshell
α, and Qσ in the others (with

∑

σ Qσ = Q).

• ii) The degeneracies of both subshells α and β are reduced by one.

We set gαβr = gr − δr,α − δr,β . The average energy of a STA is built from these two moments by the
formula

Eα→β
S =

Mα→β
1

Mα→β
0

= Dαβ
0 +

∑

r

Dαβ
r Xrg

αβ
r

Uαr
Q−2

(
gαβr

)

Uα
Q−1 (g

αβ)
, (46)

while the second-order can be split into five parts:

Mα→β
2 = Mα→β

21 +Mα→β
22 +Mα→β

23 +Mα→β
24 +Mα→β

25 . (47)

For the initial and final superconfigurations, a given single-electron α → β transition can occur between
several pairs of electronic configurations. Each of these α → β lines has a slightly different energy, and
its own UTA width. The Mα→β

21 moment is the contribution to the second-order moment of the UTA
widths of each of these lines [30]:

Mα→β
21 = gαgβXα

∑

r

VG(ℓrℓα − ℓrℓβ)Xrg
αβ
r Uαr

Q−2

(
gαβrr

)
, (48)

where VG(ℓrℓα − ℓrℓβ) is the UTA variance of the α → β transition with a single spectator electron in
the r subshell. Analytical formulas for these variances are given in Ref. [26]. The second component
represents the contribution of the spin-orbit interaction

Mα→β
22 = ∆2

so,α→βM
α→β
0 , (49)
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with

∆2
so,α→β =

(ζα − ζβ)

4
[ℓα(ℓα + 1)ζα − ℓβ(ℓβ + 1)ζβ ] +

ζαζβ
2

, (50)

where ζr represents the usual spin-orbit integral. The remaining terms correspond to the energy spread
of the lines of transition α → β between two configurations:

Mα→β
23 = gαgβXα

[
∑

r,t

Dαβ
r Dαβ

t gαβrt gαβr XrXtU
αrt
Q−3

(
gαβrt

)
+
∑

t

(

Dαβ
t

)2

gαβt XtU
αt
Q−2

(
gαβt

)

]

, (51)

Mα→β
24 = 2Dαβ

0

(

Mα→β
1 −Dαβ

0 Mα→β
0

)

(52)

and
Mα→β

25 = (Dαβ
0 )2Mα→β

0 . (53)

The STA variance is finally

(

∆α→β
S

)2

=
Mα→β

2

Mα→β
0

−

(

Mα→β
1

Mα→β
0

)2

. (54)

The calculation of partition functions, involving modified degeneracies, may seem problematic. When the
initial or final subshell of the mono-electronic transition is an “s” or “p1/2” subshell (degeneracy g = 2),
the preceding formulae can introduce zero or negative degeneracies, making the formula indeterminate a

priori. For example, the partition function UQ

(
gαβrs

)
makes no sense if r = s = α (or r = s = β) and

α (or β) is an “s” subshell, since this means that the degeneracy of this orbital is equal to -1... Usually,
this problem is circumvented by expressing partition functions using the following relation:

UQ

(
gαβrs

)
=

Q
∑

i=0

(−Xs)
iUQ−i

(
gαβr

)
=

Q
∑

i=0

Q−i
∑

j=0

(−Xs)
i(−Xr)

jUQ−i−j

(
gαβ
)

=

Q
∑

k=0

k∑

i=0

(−Xs)
i(−Xr)

k−iUQ−k

(
gαβ
)
=

Q
∑

k=0

(−Xr)
kUQ−k

(
gαβ
)

k∑

i=0

(
Xs

Xr

)i

. (55)

Proceeding that way, there is no more “apparent” issue, since the functions UQ−k

(
gαβ
)
are always

defined. However, a doubt remains, concerning the general validity of the final formulas, since they may
rely on an indeterminate form at a given step of the calculation. The purpose of the next sections is
to remove indeterminate forms, when they arise, by analyzing the different steps of the calculation of
moments, and to check the impact it may have on the formulas published by Bar-Shalom et al. [8] for
the STA variances. By examining the formulas for moments, we can see that two contributions are likely
to be problematic: Mα→β

23 and Mα→β
21 .

2.4 Contribution Mα→β
23

As concerns the Mα→β
23 part

Mα→β
23 = gαgβXα

[
∑

r,t

Dαβ
r Dαβ

t gαβrt gαβr XrXtU
αrt
Q−3

(
gαβrt

)
+
∑

t

(

Dαβ
t

)2

gαβt XtU
αt
Q−2

(
gαβt

)

]

, (56)

an indetermination may appear in the double sum for r = t = α (or r = t = β) if α (or β) is a

“s” orbital: we must then calculate functions Uααα
Q−3

(
gαβαα

)
(or Uαββ

Q−3

(
gαβββ

)
) which have no a priori

meaning. However, we’re saved by the term gαβrt which is zero in these situations. The formula (56) is
therefore correct, and can be used in all cases.
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2.5 Contribution Mα→β
21

An indetermination can arise due to the calculation of the UTA width:

Mα→β
21 = gαgβXα

∑

r

VG (ℓrℓα − ℓrℓβ) g
αβ
r XrU

αr
Q−2

(
gαβrr

)
, (57)

when r = α (or r = β) and α (or β) is an “s” or “p1/2” subshell. On the contrary to the preceding case,
there is no multiplicative factor likely to cancel these contributions, and one is faced with the evaluation
of quantities like Uαα

Q−2

(
gαβαα

)
(or Uαβ

Q−2

(
gαβββ

)
) without clear physical meaning. The origin of such

indeterminations stems from an incorrect manipulation in the derivation of the moment. Let us consider
the mono-electronic transition α → β connecting two configurations c and c′ defined by

{

c : ℓN1

1 ℓN2

2 . . . ℓNα
α . . . ℓ

Nβ

β . . .

c′ : ℓN1

1 ℓN2

2 . . . ℓ
Nα−1

α . . . ℓ
Nβ+1

β . . .

The statistical broadening of the transition array c − c′ can be expressed as a combination of the two-
electron variances VG(ℓrℓα − ℓrℓβ),

Vα→β
G (~p) =

p1(g1 − p1)

g1 − 1
VG(ℓ1ℓα − ℓ1ℓβ) (58)

+
p2(g2 − p2)

g2 − 1
VG(ℓ2ℓα − ℓ2ℓβ)

+ . . .

+
(pα − 1)(gα − pα)

gα − 2
VG(ℓ

2
α − ℓαℓβ)

+ . . .

+
pβ(gβ − pβ − 1)

gβ − 2
VG(ℓαℓβ − ℓ2β),

+ . . .

each term corresponding to the accounting for potential spectator electrons in each subshell. The notation
~p = {p1, p2, · · · , pN} represents the vector of subshell populations. The latter expression can be put in
the more compact form:

Vα→β
G (~p) =

N∑

s=1

(ps − δs,α) (gs − ps − δs,β)

gαβs − 1
Vs,α→β
G , (59)

with the simplified notation Vs,α→β
G = VG (ℓrℓα − ℓrℓβ). The moment Mα→β

21 can be obtained by sum-
ming that variance over all the initial configurations of the superconfiguration:

Mα→β
21 =

∑

|~p|=Q

N∏

j=1

(
gj
pj

)

X
pj

j Vα→β
G (~p)pα(gβ − pβ), (60)

with |~p| = p1 + p2 + · · · + pN . Introducing expression (59) into Eq. (60), we arrive at expression (57).
The details of such calculations are provided in Ref. [8]. The validity of such a formula is clear as soon
as gα 6= 2 and gβ 6= 2 (note that these conditions can not apply simultaneously since α 6= β). But if one
of those conditions is verified, a division by zero, or an indeterminate form (zero divided by zero) arise
in the expression of the moment. The formula (57) may therefore deserve scrutiny in such situations.

2.6 Case where α or β is an “s” or “p1/2” subshell

2.6.1 Case where α is a s or p1/2 subshell

Let us consider the case where the initial subshell α is a s subshell, i.e., ℓα = 0 and gα = 4ℓα + 2 = 2
(the case of the relativistic orbital p1/2 is identical). In this case, there are two situations to consider:

10



• if pα = 1, there is no spectator in the orbital, since the single electron participates in the optical
transition;

• if pα = 2, we have a full “s” or “p1/2” subshell, and therefore makes no contribution to the variance.

Note that the case pα = 0 is not allowed. There is therefore no contribution to variance from the term
VG (ℓrℓα − ℓrℓβ) which is zero by the way. If we calculate the variance of the transition array s2 → sp
using the UTA formulas [26], we find an indeterminate form with divisions by zero (because of ℓ = 0). In
this case, we use the fact that this variance is identical for the complementary transition array p6 → p5s,
and show that the variance is zero. Thus, the UTA variance is written in the following form (see the
third line in the right-hand side):

Vα→β
G (~p) =

p1(g1 − p1)

g1 − 1
VG(ℓ1ℓα − ℓ1ℓβ) (61)

+
p2(g2 − p2)

g2 − 1
VG(ℓ2ℓα − ℓ2ℓβ) + . . .

+ 0× VG(ℓ
2
α − ℓαℓβ) + . . .

+
pβ(gβ − pβ − 1)

gβ − 2
VG(ℓαℓβ − ℓ2β) + . . .

The latter formula can be put in the more compact form:

Vα→β
G (~p) =

∑

s6=α

(ps − δs,α) (gs − ps − δs,β)

gαβs − 1
Vs,α→β
G . (62)

It is easy to check that the corresponding moment is equal to

Mα→β
21 = gαgβXα

∑

r 6=α

Vr,α→β
G gαβr XrU

αr
Q−2

(
gαβrr

)
. (63)

It is precisely the latter relation that must be used in lieu of Eq. (57) when α is a “s” subshell. It is
useful to calculate the difference between Eqs. (63) and (57), in order to quantify the potential error due
to the “original” formulas; one has

Mα→β
21 = gαgβXα

∑

r

Vr,α→β
G gαβr XrU

αr
Q−2

(
gαβrr

)
− gαgβX

2
αV

α,α→β
G Uαα

Q−2

(
gαβαα

)
, (64)

and thus

δMα→β
21 = Mα→β

21 −
(

Mα→β
21

)

orig
= −gαgβX

2
αV

α,α→β
G Uαα

Q−2

(
gαβαα

)
. (65)

As concerns the impact on the STA variance, one has

(

δ∆α→β
S

)2

=
δMα→β

21

Mα→β
0

= −Vα,α→β
G

XαU
αα
Q−2

(
gαβαα

)

Uα
Q−1 (g

αβ)
. (66)

Using the following relation

XαU
αα
Q−2

(
gαβαα

)
= Uα

Q−1

(
gαβα

)
− Uα

Q−1

(
gαβαα

)
, (67)

we get

(

δ∆α→β
S

)2

= Vα,α→β
G

(

Uα
Q−1

(
gαβαα

)

Uα
Q−1 (g

αβ)
−

Uα
Q−1

(
gαβα

)

Uα
Q−1 (g

αβ)

)

. (68)
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Let us now introduce the usual notation Uα
Q−1 = UQ′ , with

Q′ =

{
Qσ − 1 α ∈ σ
Qσ α /∈ σ

. (69)

One has

UQ′

(
gαβα

)
=

Q′

∑

k=0

(−Xα)
k UQ′−k

(
gαβ
)

(70)

and

UQ′

(
gαβαα

)
=

Q′

∑

i=0

(−Xα)
i UQ′−i

(
gαβα

)
=

Q′

∑

i=0

Q′−i
∑

j=0

(−Xα)
i+j UQ′−i−j

(
gαβ
)

=

Q′

∑

i=0

Q′

∑

k=i

(−Xα)
k UQ′−k

(
gαβ
)
=

Q′

∑

k=0

k∑

i=0

(−Xα)
k UQ′−k

(
gαβ
)

=

Q′

∑

k=0

(k + 1)(−Xα)
k UQ′−k

(
gαβ
)
. (71)

Finally, we obtain the correction - to be added to the original formulas - in case where the initial subshell
α of the radiative transition is an “s” or “p1/2” subshell:

(

δ∆α→β
S

)2

= Vα,α→β
G

Q′

∑

k=0

k (−Xα)
k UQ′−k

(
gαβ
)

UQ′ (gαβ)
. (72)

2.6.2 Case where β is an “s” or “p1/2” subshell

Let us now see what happens if β, the final subshell of the mono-electronic transition, is a s subshell, i.e.
ℓβ = 0 and gβ = 4ℓβ + 2 = 2. Similarly to the preceding case (see section 2.6.1), the UTA broadening
reads

Vα→β
G (~p) =

∑

s6=β

(ps − δs,α) (gs − ps − δs,β)

gαβs − 1
Vs,α→β
G , (73)

leading to the following expression of the moment:

Mα→β
21 = gαgβXα

∑

r 6=β

Vr,α→β
G gαβr XrU

αr
Q−2

(
gαβrr

)
. (74)

The difference with the original formula for the second-order moment reads

δMα→β
21 = Mα→β

21 −
(

Mα→β
21

)

orig
= −gαgβXαXβV

β,α→β
G Uαβ

Q−2

(
gαβββ

)
. (75)

As concerns the STA variances, the difference is

(

δ∆α→β
S

)2

=
δMα→β

21

Mα→β
0

= −Vβ,α→β
G

XβU
αβ
Q−2

(
gαβββ

)

Uα
Q−1 (g

αβ)
. (76)

Finally, the correction - to be added to the original formulas - in case where the final subshell β of the
mono-electronic transition is an “s” or “p1/2” subshell:

(

δ∆α→β
S

)2

= Vβ,α→β
G

Q′

∑

k=1

k(−Xβ)
k UQ′−k

(
gαβ
)

UQ′ (gαβ)
. (77)
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2.6.3 Conclusion concerning the validity of STA formulas

In the problematic cases, when α or β is an “s” (in the non-relativistic case, ℓ = 0) or p1/2 (in the

relativistic case, j = 1/2) subshell, we showed that the corrective term is proportional to Vs→sp
G or to

Vs→ps
G , i.e. the variance of transition array s2 → sp. Such a variance is equal to zero, since it involves

an an “s” or “p1/2” subshell which is full. In order to convince oneself, it is convenient to calculate the
variance of the “complementary” array p6 → p5s. One has obviously H1 = H2 = H3 = H4 = H6 = 0
(see Ref. [26] for the definitions of the Hi quantities), since all the 3j symbols cancel. It is exactly the
same for the H5 term for which

H5 = 9




1

9
−







0 1 1
1 1 0
1 0 1











(
0 1 1
0 0 0

)4

[G(1)(ps)]2, (78)

where G(1) represents the exchange Slater integral of order 1 (see Eq. (2.3)). Since






0 1 1
1 1 0
1 0 1






=

1

9
, (79)

one gets H5 = 0, which completes

VG(s
2 − sp) = VG

(
p6 − p5s

)
= 0. (80)

As a consequence, the original formulas for the STA moments are correct. The occurrence of “indefinite”
partition functions is avoided by a prefactor equal to zero. Therefore, the STA moments up to order 2 in
their most compact form (i.e. involving the reduced degeneracies) can be easily evaluated with the help
of our robust recursion relation.

3 Fast computation of partition functions with reduced degen-

eracies

3.1 Robust recursion relations

One possibility consists in eliminating all the partition functions with reduced degeneracies in order to
have only partition functions with full degeneracies. This enables one to save computation time, but
remains problematic because of alternating signs. Using Eq. (17) for an integer 0 ≤ n ≤ Q gives

UQ−n

(
gab
)
=

Q−n
∑

p=0

UQ−n−p(g)(−1)p
p
∑

k=0

Xp−k
a Xk

b (81)

or

UQ−n

(
gab
)
=

Q
∑

k=n

UQ−k(g)(−1)k−n
k−n∑

p=0

Xk−p−n
a Xp

b . (82)

Equation (81) can be simplified as (see Eq. (18)):

UQ−n

(
gab
)
=

Q−n
∑

p=0

(−1)p

[

Xp+1
b −Xp+1

a

Xb −Xa

]

UQ−n−p(g) (83)

and Eq. (82) as

UQ−n

(
gab
)
=

Q
∑

k=n

(−1)k−n

[

Xk−n+1
b −Xk−n+1

a

Xb −Xa

]

UQ−k(g). (84)
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In the particular case where a = b, we have therefore

UQ−n (g
aa) =

Q−n
∑

p=0

UQ−n−p(g)(−1)pXp
a(p+ 1) (85)

or

UQ−n (g
aa) =

Q
∑

k=n

UQ−k(g)(−1)k−nXk−n
a (k − n+ 1). (86)

In the first STA codes [8, 28, 29], the partition functions where obtained from the relation

UQ =
1

Q

Q
∑

k=1

χkUQ−k, (87)

with

χk = −

N∑

i=1

gi(−Xi)
k, (88)

N being the number of subshells of the considered supershell. Introducing a dependence with respect to
β = 1/(kBT ), Eq. (87) can be expressed in the following form (with a scaled argument kβ for U1):

UQ(β) =
1

Q

Q
∑

k=1

U1(kβ)UQ−k(β). (89)

The recurrence relation (87) (or equivalently (89)) is initialized with the condition U0 = 1. From the
beginning, we have used the notation UQ, illustrating the fact that the partition function depends solely
on the number of electrons. In fact, the partition function depends also on the number of subshells N in
the supershell. The partition function can thus be noted UQ,N . The relation (87) is a sum of quantities
with alternating signs, which are sources of numerical instabilities. The Wilson and Chen approach
consists in working with ratios of consecutive partition functions [31]:

RQ =
UQ

UQ−1
(90)

yielding the nested form

RQ =
χ1

Q

{

1 +
c2

RQ−1

{

1 +
c3

RQ−2

{

1 + · · ·

{}}}}

, (91)

where
ci =

χi

χi−1
. (92)

Equation (91) can also be recast in a homothetic form

QRQ(β)

R1(β)
= 1 +

Q
∑

i=2

(−1)i−1
i−1∏

k=1

R1 [(k + 1)β]

R1 [kβ]

1

RQ−k(β)
. (93)

However, this clever idea only brought slight improvement, and the numerical instabilities, although less
frequent, remain. This is the main reason why we proposed a doubly-recursive relation [32], both over
the number of electrons Q and the number of subshells N . The relation reads

UQ,N =

min(Q,gN )
∑

pN=0

(
gN
pN

)

XpN

N UQ−pN ,N−1, (94)
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initialized by the condition U0,0 = 1. As explained in the introduction, the averages over the populations,
required in the STA theory, involve partition function with reduced degeneracies. The form (20) appears
to be the most efficient one since it involves two partition functions UQ (ga) and UQ−1 (g

a) which are
“simultaneously” (in the sense that they rely on the same set of degeneracies) obtained from the joint
recursion relation (94), making the replacement g → ga.

The doubly-recursive relation from Ref. [32] (see Eq. (94)) is stable even for larger supershells that are
almost completely filled, but is needlessly computationally expensive. In these cases, the generalization
by Wilson et al. starting from completely filled shells is more effective and as stable [33, 34]:

UGN−h,N =

min(Q,gN )
∑

m=max(0,h−GN−1)

(
gN
m

)

Xm
N UGN−1−h+m,N−1, (95)

where h is the number of holes in the supershell. GN = G is the degeneracy of the supershell and GN−1

represents the total degeneracy of the supershell minus the degeneracy of the subshell N . Note that the
“removed” subshell can be any of the list, not necessarily the last one.

Figure 1 displays the ratios of consecutive partition functions in two cases: supershell (3s3p3d) in a
germanium plasma at T = 20 eV and ρ=0.01 g/cm3 (left), and supershell (3s3p3d4s4p4d4f) in an iron
plasma at T = 30 eV and ρ=0.01 g/cm3 (right). In the former case, the recursion relations of Bar-Shalom
et al. [8], and the approach of Wilson and Chen using ratios of consecutive partition functions [31] can
be applied, but only exploiting the particle-hole symmetry (they can not cover all the cases in electron
counting). In the iron-plasma case, however, both previous methods fail, even within the electron-hole
counting. Only the relation (94) gives the exact values.

Figures 2 and 3 represent respectively the average populations and population standard deviations
(divided by the degeneracy) of all the subshells contained in the supershell (3s3p3d) in a copper plasma
at T =100 eV and ρ =1 g/cm3, as a function of the possible number of electrons in the supershell. We
can see that the variation of the average population is different, according to the considered subshell.
The curves are concave for 3s, 3p and 3d subshells, and convex for subshells of the N shell. However,
inside a shell, the shapes are similar, although the values are different. For the standard deviations also,
the M and N shells reveal a different trend, the maximum is for a number of electron smaller than the
half-degeneracy in the case of 3s, 3p and 3d, and higher in the case of 4s, 4p, 4d and 4f. Figure 4 displays
the correlation

〈pipj〉 − 〈pi〉〈pj〉, (96)

where

〈pipj〉 =
1

UQ(g)

∑

{ps}∑N
s=1

ps=Q

pipj

N∏

s=1

(
gs
ps

)

Xps
s , (97)

for pairs of subshells (i=3d, j=4s) and (i=3d, j=4d). The above mentioned normalized standard deviation
is therefore

1

gi

√

〈p2i 〉 − 〈pi〉2. (98)

3.2 Fast approximation

With the notation ḡa meaning that the subshell a is excluded from the vector of degeneracies of the
supershell, Oreg derived the following expression [23]:

UQ(ḡ
a) =

Q
∑

n1=0

n1∑

n2=0

· · ·

nga−1∑

nga=0

(−Xa)
Q−ngaUnga

(g) =

Q
∑

k=0

N
(ga)
k (−Xa)

Q−kUk(g), (99)
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Orbital εnℓ (eV) gnℓ ∆nℓ

3s -369.82378 2 3.5638435082145383
3p -326.10399 6 1.9475291499937191
3d -260.22501 10 0.52527915095661570
4s -117.83349 2 -0.63275928872077869
4p -101.62248 6 -0.68771775131188129
4d -77.903611 10 -0.75365851294335506
4f -59.280040 14 -0.79551737222936836

Table 1: Supershell orbitals, energies (eV), degeneracies and quantities ∆nℓ for a non-relativistic treat-
ment of a copper plasma at a temperature of 100 eV and density of 1 g/cm3 corresponding to a chemical
potential of -402.85531 eV.

with N
(ga)
k the number of times Uk(g) appears in the sum over all indices ni. It is clear [23] that the

specific value nga = k appears exactly once for each set n1 ≥ n2 ≥ n3 ≥ · · · ≥ nga−1 ≥ k. Thus

N
(m)
k =

Q
∑

n1=k

n1∑

n2=k

· · ·

nm−2∑

nm−1=k

1 =

Q−k
∑

nm−1=0

nm−1∑

nm−2=0

· · ·

n3∑

n2=0

n2∑

n1=0

1. (100)

Oreg tabulated these numbers using Bernoulli functions. However, as mentioned by Faussurier [35],
those numbers (noted Sm(Q) by Faussurier), are simply the number of combinations with repetitions of
k elements among N , i.e.,

N
(m)
k =

(
Q− k +m− 1

m− 1

)

. (101)

Such a result can be proven by induction. We have, N
(m)
k = Sm(Q− k), following Faussurier’s notation

Sm(Q) =

Q
∑

nm−1=0

nm−1∑

nm−2=0

· · ·

n3∑

n2=0

n2∑

n1=0

1. (102)

Noting that, for m > 2:

Sm(Q) =

Q
∑

nm−1=0

Sm−1 (nm−1) , (103)

we have

Sm(Q) =

Q
∑

nm−1=0

(
nm−1 +m− 2

m− 2

)

. (104)

The identity
Q
∑

n=0

(
n+ p
p

)

=

(
Q+ p+ 1

p+ 1

)

(105)

then completes the proof by induction.
It is worth mentioning that (see Appendix 6), when one tries to find an equivalent version of relation

in an inverse way (i.e. expressing the partition function for a given number of subshells in terms of
the partition functions for higher numbers of subshells), we get a relation with alternating signs and a
combination with repetition as well.

Figure 5 represents the ratios of consecutive partition functions in supershell (3s3p3d4s4p4d4f) for a
copper plasma at T =100 eV and ρ =1 g/cm3. Figures 6, 7, 8, 9 and 10 represent the average populations
of orbitals 3s, 3p, 3d, 4s and 4f respectively, as functions of the number of electrons Q. Inside a shell,
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k ↓ m → 1 2 3 4 5 6 7 8

0 1 8 36 120 330 792 1716 3432
1 1 7 28 84 210 462 924 1716
2 1 6 21 56 126 252 462 792
3 1 5 15 35 70 126 210 330
4 1 3 9 20 35 56 84 120
5 1 2 5 9 15 21 28 36
6 1 2 2 3 5 6 7 8
7 1 1 1 1 1 1 1 1

Table 2: Numbers N
(m)
k =

(
Q− k +m− 1

m− 1

)

(see Eq. (101) for different values of k and m in the case

Q = 7).

0 10 20 30 40
Number of electrons Q

0.01
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Q

 / 
U

Q
-1

Bar-Shalom et al. 1989
Wilson and Chen 1999
Gilleron and Pain 2004
Wilson and Pain 2022: 5 terms
Wilson and Pain 2022: 10 terms
Wilson and Pain 2022: 20 terms

(3s3p3d4s4p4d4f)
Q

Cu, T=100 eV, ρ=1 g/cc

Figure 5: Ratios of consecutive partition functions in supershell (3s3p3d4s4p4d4f) in a copper plasma
at T =100 eV and ρ =1 g/cm3 using the Wilson and Pain relation (106) [36] for different values of the
number of terms in the expansion: 5, 10 and 20. Results of the recursion relations of Bar-Shalom et al.,
Wilson and Chen, and Gilleron and Pain (Eq. (94)) are also displayed.

17



the curves are very similar (see the behaviours of 3s, 3p and 3d on one hand, and of 4s, 4p, 4d and 4f on
the other hand). This is the reason why we only show the 4s and 4f cases for the N shell. We can see
that the convergence is not completely reached for 20 terms, the optimum value of terms being between
20 and 30 in all cases.
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Figure 6: Population of subshell 3s in supershell
(3s3p3d4s4p4d4f) for a copper plasma at T =100
eV and ρ =1 g/cm3 using the relation (106) [36]
for different values of the number of terms in the
expansion: 10, 20 and 30.
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Figure 7: Population of subshell 3p in supershell
(3s3p3d4s4p4d4f) for a copper plasma at T =100
eV and ρ =1 g/cm3 using the relation (106) [36]
for different values of the number of terms in the
expansion: 10, 20 and 30.
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Figure 8: Population of subshell 3d in supershell
(3s3p3d4s4p4d4f) for a copper plasma at T =100
eV and ρ =1 g/cm3 using the relation (106) [36]
for different values of the number of terms in the
expansion: 10, 20 and 30.
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Figure 9: Population of subshell 4s in supershell
(3s3p3d4s4p4d4f) for a copper plasma at T =100
eV and ρ =1 g/cm3 using the relation (106) [36]
for different values of the number of terms in the
expansion: 10, 20 and 30.

Recently, we published [36, 37] a formula for supershell partition functions, which takes the form
of a functional of the distribution of energies within the supershell and allows for fast and accurate
computations, truncating the number of terms in the expansion. The latter involves coefficients Γk for
which we obtained a recursion relation and an explicit formula. One has

UQ(g) = XQ
0

{(
G
Q

)

+

(
G− 1
Q− 1

)

Γ1 +
1

2

(
G− 2
Q− 2

)

Γ2 +
1

6

(
G− 3
Q− 3

)

Γ3 +
1

24

(
G− 4
Q− 4

)

Γ4...

}

,

(106)

18



0 10 20 30 40 50
Number of electrons Q

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 p
op

ul
at

io
n 

<
p>

Q
5 terms
10 terms
20 terms
30 terms

4f subshell
Cu, T=100 eV, ρ=1 g/cm

3

Figure 10: Population of subshell 4f in supershell (3s3p3d4s4p4d4f) for a copper plasma at T =100 eV
and ρ =1 g/cm3 using the relation (106) [36] for different values of the number of terms in the expansion:
10, 20 and 30.

where

Γ1 =
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i=1

gi∆i (107)

and

Γ2 =

(
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as well as
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and also
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)(
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, (110)

where

∆i =
Xi

X0
− 1 (111)

and

X0 =
1

G

N∑

i=1

giXi. (112)

In the present case (copper plasma at T=100 eV and ρ=1 g/cm3), we have X0 = 0.15747627875868209
and the ∆i are given in table 1.
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In our previous work [36], we found that the Γk coefficients satisfy the recurrence relation

{
Γk

k!

}

=
1

k

k∑

p=1

(−1)
p+1

Ωp

{
Γk−p

(k − p)!

}

, (113)

with Γ0 = 1 and

Ωp =

[
m∑

i=1

gi∆
p
i

]

. (114)

An explicit formula for the Γk coefficients was obtained in Ref. [37], together with a mathematical proof
based on elementary symmetric polynomials and the Newton-Girard identity. The numerical implemen-
tation is discussed in the same paper. The Γk coefficients are actually equal to

Γk = k!(−1)k
∑

~q/
q1+2q2+···+kqk=k

k∏

p=1

1

qp!

(

−
1

p
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gi∆
p
i

)qp

. (115)

Inserting expansion (106) into Eq. (99) enables one to write

UQ (ḡa) =

Q
∑

k=0

Xk
0 (−Xa)

Q−k

Q−k
∑

i=0

Γi

i!

(
G− i
k − i

)(
Q+ k − 1
Q − 1

)

, (116)

which is equal to

UQ (ḡa) =

Q
∑

i=0

Q
∑

k=i

Xk
0 (−Xa)

Q−k Γi

i!

(
G− i
k − i

)(
Q+ k − 1
Q− 1
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. (117)

Although it is probably of limited use for numerical applications, it is worth mentioning that the latter
formula can be expressed in terms of hypergeometric functions:

UQ (ḡa) = (−Xa)
Q

Q
∑

i=0

Γi

i!

{(
Q+ i− 1
Q− 1

)

2F1

[
−G+ i, Q+ i

i+ 1
;
X0
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]

−

(
G− i

Q + 1− i

)(
2Q

Q− 1

)

3F2

[
1, Q−G+ 1, 2Q+ 1
Q + 2, Q+ 2− i

;
X0

Xa

]}

, (118)

where 2F1 and 3F2 represent the Gauss and Clausen hypergeometric functions respectively.

4 Positive-definite expression of any nth order moment

4.1 Derivation of the nth order moment neglecting UTA widths

Neglecting the contribution of fine structure, i.e. the UTA width, the unnormalized and uncentered
nth−order moment reads

M
αβ
n =

∑

|~p|=Q

pα (gβ − pβ)

[

D0 +

N∑

s=1

(ps − δs,α)Ds

]n N∏

k=1

(
gk
pk

)

Xpk

k . (119)

Since one has

pα (gβ − pβ) = gαgβ

(
gβ − 1
pβ

)

(
gβ
pβ

) − gαgβ

(
gα − 1
pα

)(
gβ − 1
pβ

)

(
gα
pα

)(
gβ
pβ

) , (120)
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M αβ
n can be put in the form

M
αβ
n = M

αβ
n,1 − M

αβ
n,2 (121)

with

M
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Xpk

k (122)

and

M
αβ
n,2 = gαgβ

∑

|~p|=Q

[
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k . (123)

We have also
[

D0 +

N∑

s=1

(ps − δs,α)Ds

]n

=
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(
n
i

)
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(
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psDs

)i

. (124)

The relation (
q
∑

p=0

ap

)n

=
∑

k0+k1+···+kq=n

(
n

k0, k1, · · · , kq

)

ak0

0 ak1

1 ak2

2 · · · akq
q (125)

where (
n

k0, k1, · · · , kq

)

=
n!

k0!k1! · · · kq!
(126)

is the usual multinomial coefficient, yields

(
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psDs

)k

=
∑

i1+i2+···+iN=k

(
k

i1, i2, · · · , iN

)

ai11 ai22 · · · aiNN (127)

with as = psDs. One has therefore

(
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1 Di2
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We now take advantage of the relation

pn
(
g
p

)

=
n∑

k=1

S(k)
n (g)k

(
g − k
p− k

)

, (129)

with S
(k)
n the Stirling numbers of the second kind and (g)k = g(g − 1) · · · (g − k + 1). The latter Stirling

numbers satisfy (among others) the relations

S
(k)
n+1 = kS(k)

n + S(k−1)
n (130)

for 0 < k < n as well as

S(k)
n =

1
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(
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, (131)

and
∞∑

n=0

S(k)
n xn =

k∏

p=1

x

1− px
. (132)
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One has in particular S
(n)
n = 1, and S

(0)
n = S

(n)
0 = 1. Finally, using Eq. (129), we get
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The final expression of the contribution M
αβ
n,1 to the moment is therefore

M
αβ
n,1 = gαgβ

∑

|~p|=Q

n∑

i=0

(
n
i

)

(D0 −Dα)
n−i

∑

i1+i2+···+iN=i

(
i

i1, i2, · · · , iN

)

×Di1
1 Di2

2 · · ·DiN
N

i1∑

r1=1

i2∑

r2=1

· · ·

iN∑

rN=1

N∏

k=1

S
(rk)
ik

(gk)rk

(
gk − δk,α − rk

pk − rk

)

Xpk

k (134)

and in the same way

M
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Such formulas do not contain any alternating summations. Their computation time is conditioned by the
enumeration of partitions, for which efficient algorithms exist (see Appendix 7).

It is worth mentioning that expressions (134) and (135) can be simplified in the statistical-weight
approximation (see Appendix 8). This can be useful if one is interested in performing fast calculations
at high temperature, for instance in the simulation of laser experiments in Hohlraums.

4.2 Case of the second-order moment neglecting UTA widths

The unnormalized, uncentered second-order moment reads, still neglecting the UTA width:

M
αβ
2 =

∑

|~p|=Q

pα (gβ − pβ)

[

D0 +

N∑

s=1
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k . (136)

Thanks to Eq. (120), one has

pα (gβ − pβ) = gαgβ
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gβ
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) , (137)
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and M
αβ
2 can be put in the form

M
αβ
2 = M

αβ
2,1 − M
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2,2 (138)

with
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and

M
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We have also
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and
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Using Eq. (129), we get that the final expression of the contribution M
αβ
2,1 to the moment is therefore
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yielding

M
αβ
2,1 = gαgβ

∑

|~p|=Q

(D0 −Dα)
2

N∏

k=1

(
gk − δk,β

pk

)

Xpk

k

+2gαgβ (D0 −Dα)
N∑

s=1

DsS
(1)
1 (gs)1

N∏

k=1

(
gk − δk,β − δk,s

pk − δk,s

)

Xpk

k

+gαgβ

N∑

s=1

D2
s

2∑

r=1

S
(r)
2 (gs)r

N∏

k=1

(
gk − δk,β − rδk,s

pk − rδk,s

)

Xpk

k

+gαgβ

N∑

s,s′=1
s6=s′

DsDs′S
(1)
1 (gs)1 S

(1)
1 (gs′)1

N∏

k=1

(
gk − δk,β − δk,s − δk,s′

pk − δk,s − δk,s′

)

Xpk

k (144)

23



or

M
αβ
2,1 = gαgβXβ (D0 −Dα)

2
UQ

(
gβ
)

+2gαgβXβ (D0 −Dα)

N∑

s=1

XsDsUQ−1

(
gβs
)

+gαgβ

N∑

s=1

D2
s

[
gsXsUQ−1

(
gβs
)
+ gs (gs − 1)X2

sUQ−2

(
gβss

)]

+gαgβ

N∑

s,s′=1
s6=s′

DsDs′gsgs′XsXs′UQ−2

(

gβss
′

)

, (145)

and in the same way
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The computation of moments can also benefit from fast exponentiation (for the computation of all the
Xi = e−β(ǫi−µ), i = 1, · · · , N , see Appendix 9).

5 Conclusion

Reduced partition functions are an important element in the calculation of moments in the Super-
Transition-Arrays statistical approach for opacity calculations of hot plasmas. The zeroth-order moment
is the intensity, the first-order moment the average energy and the second-order moment the variance.
All these reduced partition functions can be expressed using nominal partition functions, i.e., with the
full set of supershell degeneracies, but this leads to alternating sums, which can be a source of numer-
ical instability. Krief has shown that, for the average energy, this approach does not lead to numerical
instabilities when the energy dispersion of the subshells in the supershell is less than 5 kBT [25]. This
enables one to save much computational time when using the Bar-Shalom recurrence relation. For the
second-order moment, however, the situation is different: the presence of alternating sums may be pro-
hibitive. The best solution is probably to use the doubly-recursive relation (over the numbers of electrons
and subshells), which applies to the partition functions with reduced (also called shifted or modified)
degeneracies. In that case the numerical cost is higher, but the formulas remain simpler, and the number
of alternating sums is smaller.

In the present work, we reviewed the different methods for the computation of partition functions
with shifted degeneracies. We discussed the different precautions that must be taken, in order to avoid
indeterminate forms. We also applied our recently-published expansion of partition functions (which
accuracy can be controlled by truncating the series) to the reduced degeneracies, and obtained compact
expressions. Finally, we provided positive-definite expressions of the STA moments of any order, without
taking into the UTA width in a first attempt, based on the use of multinomial coefficients and Stirling
numbers of the second kind. Such formulas, however, may have a high numerical cost, but can be
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optimized using efficient partitioning algorithms. The problem with computing STA machinery boils
down to two possibilities:

• (i) either one can use recursion relations, in which case alternating signs crop up, which lead to
numerical instabilities and/or loss of accuracy,

• (ii) or one can compute with formula that has only positive definite terms, but then one usually
ends up with so many terms it is either too time consuming and/or memory intensive.

For example, from the original paper [8] an example of the latter option was Eqs. (34) and (36), which
required computations of partition functions of different sets of degeneracies, and an example of the
former strategy was Eqs. (50) to (54), which necessitated alternating signs in Eq. (51). The Stirling
numbers’ approach exemplifies aspect (ii) and the double recurrence relation exemplifies aspect (i). The
double recurrence relation for calculating partition functions by adding a shell at a time is a hybrid
approach which avoids alternating signs but does not require too many operations. It would be nice to
have a formalism that exhibits the same hybrid philosophy for moments.

The calculation of partition function is inseparable from the construction of the supershells. For that
purpose, enumerative combinatorics [38, 39] plays also a major role, since the corresponding supershell-
generation algorithms often rely on successive splittings and gatherings of supershells, which usually
involves different classes of binary trees.

Finally, in the future we plan to include effective statistical weights in the formalism, in order to
obtain a smooth disappearance of the orbitals [40], when pressure ionization takes place, in high-density
plasmas.
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6 Appendix A: Double recursion relation with decreasing num-

ber of electrons

The generating-function technique used for the derivation of the double recursion relation (94) can be
used in a “reverse order”, i.e., expressing the partition function with Q electrons and N − 1 subshell in
terms of the partition function with Q− k electrons in N subshell. The generating function reads

δ0,y =
1

2iπ

∫ iπ+α0

−iπ+α0

etydt, (147)

where y = Q−
∑N

s=1 ps and α0 a real parameter. The partition function thus reads

UQ =
1

2iπ

∫ iπ+α0

−iπ+α0

[
N∏

s=1

gs∑

ps=0

(
gs
ps

)
(
Xse

−t
)ps

]

etQdt. (148)

Setting z = e−t, the integration in the complex plane is performed around a closed circle of radius e−α0 ,
surrounding the pole at z = 0. The latter expression becomes

UQ =
1

2iπ

∮
FN (z)

zQ+1
dz, (149)

where FN (z) is defined by

FN (z) =

N∏

s=1

gs∑

ps=0

(
gs
ps

)

(Xsz)
ps =

N∏

s=1

(1 + zXs)
gs . (150)

Equation (149) is calculated using the Cauchy formula, by evaluating the residue of the function FN (z)/zQ+1

at the pole z = 0 of order Q+ 1, i.e.

UQ = Res

(
FN (z)

zQ+1
; 0

)

= lim
z→0

1

Q!

∂Q

∂zQ
FN (z). (151)

One has therefore

UQ,N−1 =
1

Q!

∂Q

∂zQ
FN−1(z)

∣
∣
∣
∣
z=0

=
1

Q!

∂Q

∂zQ

[

(1 + zXN)−gN

N∏

s=1

(1 + zXs)
gs

]∣
∣
∣
∣
∣
z=0

. (152)

The latter result can also be obtained using the Egorychev method [41, 42], consisting in expressing the
binomial coefficient as

(
n

k

)

= Res

[
(1 + z)n

zk+1
; 0

]

=
1

2πi

∫

|z|=ρ

(1 + z)n

zk+1
dz, (153)

where 0 < ρ < ∞. Applying the Leibniz formula for the derivative of a product, one gets

UQ,N−1 =
1

Q!

Q
∑

k=0

(
Q
k

)
∂k

∂zk
(1 + zXN)−gN .

∂Q−k

∂zQ−k

N∏

s=1

(1 + zXs)
gs

]

. (154)

Calculating the kth derivative of (1 + zXN)−gN , one obtains

UQ,N−1 =
1

Q!

Q
∑

k=0

(
Q
k

)

(−1)kgN(gN + 1)(gN + 2) · · · (gN + k − 1)Xk
N(1 + zXN )−gN−k

×
∂Q−k

∂zQ−k

N∏

s=1

(1 + zXs)
gs

∣
∣
∣
∣
∣
z=0

. (155)
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The latter expression simplifies into

UQ,N−1 =
1

Q!

Q
∑

k=0

Q!

k!(Q − k)!

(gN + k − 1)!

(gN − 1)!
(−XN )k(1 + zXN)−gN−k.

∂Q−k

∂zQ−k

N∏

s=1

(1 + zXs)
gs

∣
∣
∣
∣
∣
z=0

, (156)

leading to

UQ,N−1 =

Q
∑

k=0

(gN + k − 1)!

k!(gN − 1)!
(−XN )k(1 + zXN)−gN−k 1

(Q− k)!

∂Q−k

∂zQ−k

N∏

s=1

(1 + zXs)
gs

∣
∣
∣
∣
∣
z=0

, (157)

yielding

UQ,N−1 =

Q
∑

k=0

(
gN + k − 1
gN − 1

)

(−XN)k UQ−k,N−1, (158)

involving, as Oreg’s relation (99), the number of combinations with repetitions of k elements among gN .
Unfortunately, the relation is not very efficient since it involve terms with alternate signs. This happens
rather often. For instance, relation (99) contains alternate-sign terms, but the relation expressing UQ(g)
in terms of partition functions of the kind UQ (ga) does not [23], as illustrated, for instance, by the
relations:

UQ(g) =
1

G−Q

N∑

s=1

gsUQ (gs) (159)

as well as

UQ(g) =
1

Q

N∑

s=1

gsXsUQ−1 (g
s) (160)

and

UQ(g) =
1

Q2

N∑

r,s=1

gr (gs − δr,s)XrXsUQ−2 (g
rs) . (161)

7 Appendix B: Partitions and multinomial coefficients

Let q and n be two integers, q ≥ 1, and k1, k2, ..., kq are real numbers. Then,

(x1 + x2 + x3 + · · ·+ xq)
n =

∑

k1+k2+k3+...+kq=n

(
n

k1, k2, k3, . . . , kq

)

xk1

1 xk2

2 xk3

3 . . . xkq
q . (162)

The sum covers all q tuples of natural numbers (k1, k2, ..., kq) such that k1 + k2 + ... + kq = n, some of
which may be zero. If we arrange the multinomial coefficients in a triangle so that in row n are the

(
n

k1, k2, . . . , kq

)

, (163)

with k1 ≥ k2 ≥ · · · ≥ kq ≥ 1, the (k1, k2, . . . , kq) are arranged in descending lexicographical order, we
obtain the first lines, starting with n = 1:

Note that in this triangle, the number of terms in line n is equal to the number p(n) of partitions of
the integer n; the sum of the terms of a line is listed as OEIS sequence A005651 [43].

The total number of terms in the expansion of (
∑q

i=1 xi)
n
is equal to the number of unitary monomials

of degree n formed from x1, x2,..., xq, i.e. the number of their n-combinations with repetitions

(
n+ q − 1

q − 1

)

. (164)
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1, 2
1, 3, 6
1, 4, 6, 12, 24
1, 5, 10, 20, 30, 60, 120
1, 6, 15, 20, 30, 60, 90, 120, 180, 360, 720

Table 3: first values of the multinomial coefficient sorted by rows n (first line corresponds to n =1, second
line to n =2, etc.).

Denoting, for n and q strictly positive integers, p(n, q) the number of partitions of n in q parts, the
function p is recursive and verifies the following relationship for all n > q > 1:

p(n, q) = p(n− 1, q − 1) + p(n− q, q), (165)

with the initial conditions p(n, q) = 0 if n < q, p(n, n) = p(n, 1) = 1. The relationship arises from a
distinction of cases among these partitions: either the last (smallest) part is worth 1, in which case the
partition is obtained from a partition of (n − 1) in (q − 1) parts, by adding this last part; or all parts
are worth at least 2, in which case the partition is obtained from a partition of (n − q) into q parts, by
increasing each part by one.

Provided that “memoization” is used, this procedure enables the number of partitions of an integer
to be calculated with quadratic algorithmic complexity as a function of n, by adding up all the values of
p(n, q) when q varies between 1 and n. In programming, memoization is an optimization technique that
makes applications more efficient and hence faster [44]. It does this by storing computation results in
cache, and retrieving that same information from the cache the next time it’s needed instead of computing
it again. In simpler words, it consists of storing in cache the output of a function, and making the function
check if each required computation is in the cache before computing it. A cache is simply a temporary data
store that holds data so that future requests for that data can be served faster. Memoization is a simple
but powerful trick that can help speed up our code, especially when dealing with repetitive and heavy
computing function. Consider the following function calculating the terms of the Lucas sequence [45]:

luc(n) {

if n is equal to 0 then

return 2

else

if n is equal to 1 then

return 1

else

return luc(n-1) + luc(n-2);

endif

endif

}

Lucas number Ln is equal to φn + (1 − φ)n, where φ is the golden ratio. As it stands, this recursive
function is extremely inefficient (time complexity O(φn) where φ is the golden ratio), as many recursive
calls are made on the same values of n. The “memoized” version of luc stores previously calculated
values in an associative table:

memoluc(n) {

if table(n) undefined then

if n is equal to 0 then

table(n)=2

else

if n is equal to 1 then
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table(n)=1

else

table(n) = luc(n-1) + luc(n-2);

endif

endif

return table(n);

}

The function calculates the value table(n) if it has not yet been defined, then returns the value
stored in table(n). The complexity of memoluc is linear in both time and space. Note that there are
even more efficient ways of calculating the terms of the Fibonacci sequence, but this is just to illustrate
memoluc.

A more efficient way of calculating the number of partitions of an integer is deduced from Euler’s
pentagonal number theorem. This gives a recurrence relation which can be written as

p(n) = p(n−1)+p(n−2)−p(n−5)−p(n−7)+p(n−12)+p(n−15)+· · ·=
∑

q≥1

(−1)q−1p

(

n−
q(3q ± 1)

2

)

.

(166)
The q(3q±1)/2 are generalized pentagonal numbers. For instance, the number of multinomial coefficients

(
4

k1, k2, k3

)

(167)

in a sum (a+ b+ c)4 is equal to
(
4 + 3− 1

3− 1

)

=

(
6

2

)

= 15, (168)

corresponding to (4, 0, 0), (0, 4, 0), (0, 0, 4), (3, 1, 0), (3, 0, 1), (1, 3, 0), (0, 3, 1), (1, 0, 3), (0, 1, 3), (2, 2, 0),
(0, 2, 0), (0, 0, 2), (2, 1, 1), (1, 2, 1) and (1, 1, 2), while the number of partition of 4 into 3 sets, i.e. p(4, 3)
is equal to 1, and corresponds to (1, 1, 2).

8 Appendix C: Moments in the statistical-weight approximation

In the framework of the design or interpretation of inertial-confinement-fusion experiments, inline cal-
culations of opacity and emissivity are required at each time step and in each spatial cell, with the
corresponding radiation field, of radiative-hydrodynamics simulations of Hohlraums. The computation
time is therefore the main limiting factor, and developing fast approximate methods for the calculation of
partition functions would enable one to investigate the possibility of carrying out, in such complex sim-
ulations, the collisional-radiative modeling of the plasma in the superconfiguration approximation [46].
Indeed, the computation of the rates of the different radiative and collisional involved processes requires
the determination of the canonical partition functions of the supershells. At high temperature, it can be
relevant to simplify the partition function by replacing the Xi factors by the degeneracy gi. In that case,
the partition functions reduce to simple binomial coefficients.

The final expression of the contribution M
αβ
n,1 to the moment becomes then

M
αβ
n,1 = gαgβ

∑

|~p|=Q

n∑

i=0

(
n
i

)

(D0 −Dα)
n−i

∑

i1+i2+···+iN=i

(
i

i1, i2, · · · , iN

)

×Di1
1 Di2

2 · · ·DiN
N

i1∑

r1=1

i2∑

r2=1

· · ·

iN∑

rN=1

N∏

k=1

S
(rk)
ik

(gk)rk

(
gk − δk,α − rk

pk − rk

)

Xpk

k , (169)
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i.e., in the idealized statistical-weight approximation (infinite temperature, β = 0 and thus, ∀k, Xk = 1):

M
α,β
n,1 = gαgβ

n∑

i=0

(
n
i

)

(D0 −Dα)
n−i

∑

i1+i2+···iN=i

(
i

i1, i2, · · · , iN

)

×

i1∑

r1=1

i2∑

r2=1

· · ·

iN∑

rN=1

N∏

k=1

S
(rk)
ik

(gk)k

(

G− 1−
∑N

k=1 rk
Q−

∑N
k=1 rk

)

, (170)

and in the same way

M
α,β
n,2 = gαgβ

∑

|~p|=Q

n∑

i=0

(
n
i

)

(D0 −Dα)
n−i

∑

i1+i2+···iN=i

(
i

i1, i2, · · · , iN

)

×

i1∑

r1=1

i2∑

r2=1

· · ·

iN∑

rN=1

N∏

k=1

S
(rk)
ik

(gk)k

(
gk − δk,α − δk,β − rk

pk − rk

)

Xpk

k , (171)

giving, in the statistical-weight approximation (∀k, Xk = 1):

M
α,β
n,2 = gαgβ

n∑

i=0

(
n
i

)

(D0 −Dα)
n−i

∑

i1+i2+···iN=i

(
i

i1, i2, · · · , iN

)

×

i1∑

r1=1

i2∑

r2=1

· · ·

iN∑

rN=1

N∏

k=1

S
(rk)
ik

(gk)k

(

G− 2−
∑N

k=1 rk
Q−

∑N
k=1 rk

)

(172)

and since (
n
p

)

=

(
n− 1
p

)

+

(
n− 1
p− 1

)

, (173)

we have

M
α,β
n = gαgβ

n∑

i=0

(
n
i

)

(D0 −Dα)
n−i

∑

i1+i2+···iN=i

(
i

i1, i2, · · · , iN

)

×

i1∑

r1=1

i2∑

r2=1

· · ·

iN∑

rN=1

N∏

k=1

S
(rk)
ik

(gk)k

(

G− 1−
∑N

k=1 rk
Q− 1−

∑N
k=1 rk

)

. (174)

9 Appendix D: Speeding up the calculation

9.1 Fast exponentiation and polynomial multiplication

The partition functions involve many powers of Xi, the exponent being the population (number of elec-
trons) of the subshell i. It is useful, in order to hasten the computations, to resort to fast exponentiation
(or “square-and-multiply” or Chandah-sutra [47]) techniques. The first way of obtaining np (n and p
being integers) is of course to multiply n by itself p times. However, there are far more efficient methods,
where the number of operations required is no longer of the order of p, but of the order of ln(p). For
instance, if we write

p =
∑

i≤d

ai2
i (175)

for ai ∈ {0, 1}, we notice that

np = na0
(
n2
)a1

(

n22
)a2

. . .
(

n2d
)ad

. (176)
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It thus takes d operations to calculate all n2i , then d additional operations to form the product of
(

n2i
)ai

.

The total number of operations is therefore 2d, which is of the order of the logarithm of p. This simple
algebraic remark leads to the following algorithm. Let n be an integer strictly greater than 1. Suppose
we know how to calculate, for each real x, all the powers xk of x, for all k, such that 1 ≤ k < n. If n is
even, then xn = (x2)n/2. It is then sufficient to calculate yn/2 for y = x2. If n is odd and n > 1, then
xn = x(x2)(n−1)/2, and one can simply calculate y(n−1)/2 for y = x2 and multiply by x. This leads us to
the following recursive algorithm, which calculates xn for a strictly positive integer n:

power(x, n) =







x, if n = 1
power

(
x2, n

2

)
, if n is even

x× power
(

x2, (n−1)
2

)

, if n is odd.
(177)

Compared with the ordinary method of multiplying x by itself n−1 times, this algorithm requires O(log n)
multiplications, which speeds up the calculation of xn dramatically for large integers. The algorithm is
implemented in the short Fortran 90 program below.

module fast_exp

implicit none

interface operator (.fexp.)

module procedure realexp

end interface

contains

function realexp (base, exponent)

real :: realexp

real, intent(in) :: base

integer, intent(in) :: exponent

integer :: i

realexp = 1.0

if (exponent < 0) then

do i = exponent, -1

realexp = realexp / base

end do

else

do i = 1, exponent

realexp = realexp * base

end do

end if

end function realexp

end module fast_exp

program example

use fast_exp

write(*,*) 3.4.fexp.10

end program example

Using ** instead of “.fexp.” on the third line would overload the standard exponentiation operator.
The output of the above program is 206437.812.
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Since the partition functions can be viewed as multivariate polynomials (the variables being Xi,
i = 1, · · · , N), the computations can also be sped up using well-known techniques, such as the Karatsuba
algorithm for products of polynomials [48], or other divide-and-conquer algorithms for euclidean division
for instance [49, 50].

9.2 Matrix representation

The relation (99) between partition functions can be put in a matrix form, which can be expressed as

UQ(ḡ
a) =

Q
∑

k=0

NQ,k Uk(g), (178)

with
NQ,k = N

(ga)
k,Q (−Xa)

Q−k, (179)

where we introduce the dependence with respect to Q, which was hidden in N
(m)
k as noted by Oreg (see

Eq. (100)). For instance, in a subshell with degeneracy G = 6, one has













U0(ḡ
a)

U1(ḡ
a)

U2(ḡ
a)

U3(ḡ
a)

U4(ḡ
a)

U5(ḡ
a)

U6(ḡ
a)













=













1 0 0 0 0 0 0
N1,0 N1,1 0 0 0 0 0
N2,0 N2,1 N2,2 0 0 0 0
N3,0 N3,1 N3,2 N3,3 0 0 0
N4,0 N4,1 N4,2 N4,3 N4,4 0 0
N5,0 N5,1 N5,2 N5,3 N5,4 N5,5 0
N6,0 N6,1 N6,2 N6,3 N6,4 N6,5 N6,6

























U0(g)
U1(g)
U2(g)
U3(g)
U4(g)
U5(g)
U6(g)













, (180)

which enables one to obtain UQ

(
ḡab
)
, UQ

(
ḡabc

)
, etc. by successive multiplications of matrices. Note that

the above matrix relation can be inverted as












U0(g)
U1(g)
U2(g)
U3(g)
U4(g)
U5(g)
U6(g)













=













1 0 0 0 0 0 0
Y1,0 1 0 0 0 0 0
Y2,0 Y2,1 1 0 0 0 0
Y3,0 Y3,1 Y3,2 1 0 0 0
Y4,0 Y4,1 Y4,2 Y4,3 1 0 0
Y5,0 Y5,1 Y5,2 Y5,3 Y5,4 1 0
Y6,0 Y6,1 Y6,2 Y6,3 Y6,4 Y6,5 1

























U0(ḡ
a)

U1(ḡ
a)

U2(ḡ
a)

U3(ḡ
a)

U4(ḡ
a)

U5(ḡ
a)

U6(ḡ
a)













, (181)

where

YQ,k =
XQ−k

a

(Q− k)!
ga(ga − 1) · · · (ga −Q + k + 1) = XQ−k

a

(
ga

Q− k

)

. (182)

and YQ,Q = 1, i.e.,

YQ,k = XQ−k
a

(
ga

Q− k

)

. (183)

We thus have, by the way,

UQ(ḡ
a) =

Q
∑

k=0

(
ga

Q− k

)

XQ−k
a Uk(g). (184)

Strassen first suggested an algorithm [51] to multiply matrices with worst case running time less than
the conventional O(n3) operations. He also presented a recursive algorithm dedicated to the inversion of
matrices and the calculation of determinants using matrix multiplication. Bunch and Hopcroft improved
the algorithm in 1974 [52] in the case where principal submatrices are singular. Recently, Tonks et al.

covered the case of multivariate polynomial matrix inversion [53]. The inverse of a matrix of polynomials
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is in general a matrix of rational functions. In performing these algorithms symbolically, this means we
are forced to take greatest common divisors of potentially large polynomials in order to simplify results of
inversion. The worst case complexity of taking the greatest common divisor is polynomial in the degree
of the polynomials and exponential in the number of variables [54]. As far as we are concerned the
number of variables may as well be fixed, but the degree of numerators and denominators will increase
per recursion as a result of the matrix arithmetic performed in any one recursion.

The automatic discovery of algorithms using machine learning offers the prospect of reaching beyond
human intuition and outperforming the current best human-designed algorithms. However, automating
the algorithm discovery procedure is intricate, as the space of possible algorithms is enormous. It is worth
mentioning that Fawzi et al. reported a deep reinforcement learning approach for discovering efficient
algorithms for the multiplication of arbitrary matrices, based on training to find tensor decompositions
within a finite factor space [55].
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