
SlotGAT: Slot-based Message Passing for Heterogeneous Graph Neural Network

Ziang Zhou 1 Jieming Shi 1 Renchi Yang 2 Yuanhang Zou 3 Qing Li 1

Abstract
Heterogeneous graphs are ubiquitous to model
complex data. There are urgent needs on power-
ful heterogeneous graph neural networks to effec-
tively support important applications. We identify
a potential semantic mixing issue in existing mes-
sage passing processes, where the representations
of the neighbors of a node v are forced to be trans-
formed to the feature space of v for aggregation,
though the neighbors are in different types. That
is, the semantics in different node types are en-
tangled together into node v’s representation. To
address the issue, we propose SlotGAT with sep-
arate message passing processes in slots, one for
each node type, to maintain the representations
in their own node-type feature spaces. Moreover,
in a slot-based message passing layer, we design
an attention mechanism for effective slot-wise
message aggregation. Further, we develop a slot
attention technique after the last layer of Slot-
GAT, to learn the importance of different slots in
downstream tasks. Our analysis indicates that the
slots in SlotGAT can preserve different seman-
tics in various feature spaces. The superiority of
SlotGAT is evaluated against 13 baselines on 6
datasets for node classification and link predic-
tion. Our code is at https://github.com/
scottjiao/SlotGAT_ICML23/.

1. Introduction
Heterogeneous graphs with node and edge types (Hu et al.,
2020a; Dong et al., 2017; Yang et al., 2020a), are ubiquitous
in many real applications, e.g., protein prediction (Fout
et al., 2017), recommendation (Fan et al., 2019; Yang et al.,
2020b), social analysis (Qiu et al., 2018; Li & Goldwasser,
2019), and traffic prediction (Guo et al., 2019). Figure 1(a)

1Department of Computing, The Hong Kong Polytechnique
Univesity 2Department of Computer Science, Hong Kong Baptist
University 3Tencent. Correspondence to: Jieming Shi <jiem-
ing.shi@polyu.edu.hk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

displays a heterogeneous academic graph with 5 nodes in 3
types, i.e., author, paper, venue. Usually edge type is related
to the node types of the two ends of an edge. For instance,
the edge between v1 (author) and v2 (paper) is an authorship
edge; v2 and v5 (paper) have a citation edge.

Heterogeneous graphs have attracted great research atten-
tions. Conventional graph neural networks (GNNs) (Hamil-
ton et al., 2017; Klicpera et al., 2019; Kipf & Welling, 2017;
Velickovic et al., 2018; Monti et al., 2017; Liu et al., 2020)
can be applied by regarding heterogeneous graphs as ho-
mogeneous ones. GNNs are good enough, but still ignore
the heterogeneous semantics (Lv et al., 2021). Hence, sev-
eral heterogeneous graph neural networks (HGNNs) are
developed (Wang et al., 2019d; Yun et al., 2019; Zhu et al.,
2019; Zhang et al., 2019; Fu et al., 2020; Hu et al., 2020b;
Hong et al., 2020; Schlichtkrull et al., 2018; Cen et al.,
2019; Wang et al., 2019b;a;c; Lv et al., 2021; Zhao et al.,
2022). Some HGNNs rely on meta-paths, either predefined
manually (Wang et al., 2019d; Fu et al., 2020) or learned
automatically (Yun et al., 2019), which incur extra costs.
Then there are studies of relation oriented HGNNs (Zhu
et al., 2019; Schlichtkrull et al., 2018), HGNNs with ran-
dom walks and RNNs (Zhang et al., 2019), empowering
GNNs for HGNNs (Lv et al., 2021), etc. Zhao et al. (2022)
define a unified design space for HGNNs.

It is known that different node types have different seman-
tics, and naturally should have different impacts (Wang et al.,
2019d; Lv et al., 2021; Hu et al., 2020b). However, when
aggregating the messages from different types of nodes, the
semantics are mixed in existing work, which may hamper
the effectiveness (Wang et al., 2019d; Yun et al., 2019; Zhu
et al., 2019; Fu et al., 2020). Specifically, in existing mes-
sage passing layers, when a node v aggregates messages
from its neighbors u that may be in different node type, they
force the representation of u in another type-specific feature
space to be transformed to the feature space of v’s type, and
then aggregate the transformed message to v. We argue that
this forced transformation mixes different feature spaces,
making representations entangled with each other. This
semantic mixing issue is illustrated in Figure 1(c). Given
the heterogeneous graph in the figure, every node is with a
single initial representation as input. Then in Layer 1, when
node v2 (paper type id 1) aggregates the message from its
neighbor v1 (author type id 0) in a different node type, it

1

ar
X

iv
:2

40
5.

01
92

7v
1

 [
cs

.L
G

]
 3

 M
ay

 2
02

4

https://github.com/scottjiao/SlotGAT_ICML23/
https://github.com/scottjiao/SlotGAT_ICML23/

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

first applies a transformation τ(0, 1) to convert the represen-
tation of v1 from author’s feature space to paper’s feature
space, and then aggregates it to paper v2’s representation.
Similar forced transformation also exists when aggregating
v3 (venue) to v2 (paper) in Layer 1. Instead of converting
all v’s neighboring representations to v’s feature space, if
we separate and preserve the impacts of different node-type
features to v, we could learn more effective representations.

Hence, we propose SlotGAT, which has separate message
slots of different node types (i.e., feature spaces), with dedi-
cated attention mechanisms to measure the importance of
slots. SlotGAT conducts slot-based message passing pro-
cesses to alleviate the semantic mixing issue. We explain
the idea of slot-based message passing in Figure 1(b). For a
node v, we maintain a slot for every node type in the hetero-
geneous graph, e.g., every node with 3 slots in Figure 1(b)
for author, paper, venue types, respectively. When initializ-
ing the input slot representations of v2 (paper), the slot for
paper type (slot 1) is initialized by v2’s features, while other
slots (slots 0, 2) of v2 for author and venue are initialized
as empty. In Layer 1, when aggregating neighbors to v2,
the slot 0 message from v1 is aggregated to the correspond-
ing slot 0 of v2, without mixing with the representations
in other slots (i.e., other node types). The slot 2 message
from v3 (venue) is aggregated to the respective slot 2 of v2.
Obviously, though v2 is in paper type, it can maintain slot
representations of other node types, compared with existing
methods in Figure 1(c) where v2 mixes the representations
of v1, v2, v3, v5 in different node types. In the layers of
SlotGAT, we also design an attention-based aggregation
mechanism that considers all slot representations of a node
and its neighbors as well as edge type representations for
aggregation. In downstream tasks, to effectively integrate
the slot representations of a node, after the last layer of
SlotGAT, we develop a slot attention technique to learn the
importance of different slots. Our analysis indicates that
SlotGAT can preserve different semantics into slots.

Compared with numerous existing methods, SlotGAT
achieves superior performance on all datasets under var-
ious evaluation metrics. We also conduct model analysis,
including statistical significance test, visualization, and ab-
lation analysis, to analyze the effectiveness of SlotGAT.

We summarize our contributions as follows:

• We propose a novel slot-based heterogeneous graph neural
network model SlotGAT for heterogeneous graphs.

• We develop a new slot-based message passing mechanism,
so that semantics of different node-type feature spaces do
not entangle with each other.

• We further design attention mechanisms to effectively
process the representations in slots.

• Extensive experiments demonstrate the superiority of Slot-
GAT on real-world heterogeneous graphs.

𝑣4

𝑣5

𝑣1

𝑣2

𝑣3

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

Layer 1Input

Slot 0
(Author)

Slot 1
(Paper)

Slot 2
(Venue)

𝑣1

𝑣2

𝑣3

𝑣4
𝑣5

1

2

1

0

𝝉(1,1)

Author

Paper

Venue

(a) A heterogeneous

graph

Slot 0
(Author)

Slot 1
(Paper)

Slot 2
(Venue)

(c) The Semantic Mixing issue of existing message passing process

(b) SlotGAT: slot-based message passing

𝑣2𝑣5

𝑣1 𝑣1

𝑣1

𝑣1

𝑣1

𝑣2

𝑣2

𝑣2

𝑣3

𝑣3 𝑣3

𝑣3

𝑣4 𝑣4

𝑣4

𝑣5

𝑣5

𝑣1𝑣2𝑣4

𝑣1𝑣2𝑣3𝑣5

𝑣2𝑣3

𝑣1𝑣4

𝑣2𝑣5

𝑣2𝑣4

𝑣2𝑣5

0

1

2

Figure 1. (a) A heterogeneous graph. (b) The slot-based message
passing in the proposed SlotGAT: every node has 3 slots, corre-
sponding to 3 node-type feature spaces. For example, in the input
layer, v2’s slot 1 is initialized by its features since v2 is in type
1, while slots 0 and 2 of v2 are empty. The message passing in
SlotGAT is slot specific (colored dashed arrows), e.g., neighboring
slot messages passed to the slots of the same node type on node v2
in Layer 1. (c) The semantic mixing issue: every node maintains a
single representation; in Layer 1, v2 aggregates message from v1
by firstly applying transformation τ(0, 1) to convert v1’s represen-
tation in type 0 to the feature space of v2 in type 1, which mixes
the two feature spaces.

2. Preliminary
A heterogeneous graph is G = (V, E , ϕ, ψ), where V is
the set of nodes, E is the set of edges, ϕ is a node type
mapping function, and ψ is an edge type mapping function.
Every node v has node type ϕ(v), and every edge e = (v, u)
has edge type ψ(e), also denoted as ψ(v, u). Let Φ and Ψ
be the set of all node types and the set of all edge types
respectively in graph G. Assume that node types in Φ are
represented by consecutive integers starting from 0, and
denote t as the t-th node type. Let n be the number of nodes,
i.e., n = |V|, and m be the number of edges, i.e., m = |E|.
For a heterogeneous graph |Ψ|+ |Φ| > 2.

A node v has a feature vector xv. For node type t ∈ Φ, all
type-t nodes v ∈ {v ∈ V|ϕ(v) = t} have the same feature
dimension dt0 = d

ϕ(v)
0 , i.e., xv ∈ Rd

ϕ(v)
0 . Nodes of different

types can have different feature dimensions (Lv et al., 2021).

3. Related Work
Homogeneous GNNs handle graphs without node/edge
types (Kipf & Welling, 2017; Liu et al., 2020; Bruna et al.,
2014; Defferrard et al., 2016; Velickovic et al., 2018; Monti
et al., 2017; Chen et al., 2020b; Klicpera et al., 2019).
GCN (Kipf & Welling, 2017) simplifies spectral networks
on graphs (Bruna et al., 2014) into its GNN form. GAT
(Velickovic et al., 2018) introduces self-attention to GNNs.

2

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

𝑣1

Type 0

Type 1

Type 2

𝑊0
0

𝑊1
0

𝑊2
0

𝑣1

M
L

P

z

ℎ𝑣1
𝐿

ℎ𝑣2
𝐿

ℎ𝑣3
𝐿

…

𝑣2

𝑣3

𝑣5

𝑣4 𝑣4

𝑣2

𝑣3

𝑣5

𝛼𝑣4𝑣4
1

𝛼𝑣1𝑣1
1

𝛼𝑣2𝑣2
1

𝛼𝑣3𝑣3
1

𝛼𝑣5𝑣5
1

Slot Based Message Passing Layer 1 Layer 2,3,…,L

Attention Based Aggregation

Slot Initialization

D
o

w
n

stream
 L

o
ss

Downstream Processing

…
…

𝜷𝟎
𝜷𝟏
𝜷𝟐

Slot Aggregation

𝑊0
1

𝑊0
1

𝑊0
1

S
lo

t 0
S

lo
t 1

S
lo

t 2
S

lo
t 0

S
lo

t 1
S

lo
t 2

S
lo

t 0
S

lo
t 1

S
lo

t 2

𝑊1
1

𝑊2
1

𝑊2
1

𝑊1
1

𝑊2
1

𝑊1
1

Figure 2. The SlotGAT architecture. (i) SlotGAT initializes every node with multiple slots corresponding to all node types (3 types in the
example), and the slot for the node’s type is initialized by its transformed features, while the other slots are empty. (ii) In a slot-based
message passing layer, slot representations are transformed and propagated separately, with an attention based aggregation technique. (iii)
After the last L-th layer, SlotGAT includes a slot attention technique to integrate slots for downstream tasks.

Then, there is a plethora of HGNNs to handle heteroge-
neous graphs. Meta-paths are used in (Wang et al., 2019d;
Fu et al., 2020; Yun et al., 2019). HAN (Wang et al., 2019d)
consists of a hierarchical attention mechanism to capture
node-level importance between nodes and semantic-level
importance of meta-paths. MAGNN (Fu et al., 2020) is an
enhanced method with several meta-path encoders to en-
code all the information along meta-paths. Both MAGNN
and HAN require meta-paths generated manually. Graph
transformer network (GTN) (Yun et al., 2019) can automat-
ically learn meta-paths with graph transformation layers.
For heterogeneous graphs with many edge types, meta-path
based methods are not easily applicable, due to the high
cost on obtaining meta-paths. There are methods treating
heterogeneous graphs as relation graphs to develop graph
neural network methods. RSHN is a relation structure-aware
HGNN (Zhu et al., 2019), which builds coarsened line graph
to get edge features and adopts a Message Passing Neural
Network (MPNN) (Gilmer et al., 2017) to propagate node
and edge features. RGCN (Schlichtkrull et al., 2018) splits
a heterogeneous graph to multiple subgraphs by building
an independent adjacency matrix for each edge type. Fur-
thermore, HGT (Hu et al., 2020b) is a graph transformer
model to handle large heterogeneous graphs with heteroge-
neous subgraph sampling techniques. HetGNN (Zhang et al.,
2019) uses random walks to sample fixed-size neighbors
for nodes in different node type, and then applies RNNs for
representation learning. As shown in experiments, HetGNN
is inferior to our method. HetSANN (Hong et al., 2020)
contains type-specific graph attention layers to aggregate
local information. In experiments, SlotGAT is better than
HetSANN. Recently, Lv et al., (Lv et al., 2021) develop sim-
pleHGN with several techniques on homogeneous GNNs to

handle heterogeneous graphs. Space4HGNN (Zhao et al.,
2022) defines a unified design space for HGNNs, to exhaus-
tively evaluate the combinations of many techniques. Wang
et al. (2020) propose a disentangled mechanism in which
an aspect of a target node aggregates semantics from all
neighbors for recommendation, regardless of node types.
Contrarily, we learn separate semantics in different node
type feature spaces, which is different.

4. The SlotGAT Method
Figure 2 shows the architecture of SlotGAT, consisting of
node-type slot initialization, slot-based message passing
layers with attention based aggregation, and a slot attention
module.

Given a heterogeneous graph G, SlotGAT creates |Φ| slots
for every node (3 slots per node in Figure 2). The t-th slot
of a node v represents the semantic representation of v with
respect to node type t. For initialization, as in Figure 2, if
slot t of v (e.g., v3) corresponds to the node type of v, ϕ(v)
(e.g., t = 2), then slot t is initialized by node v’s features xv
via a linear transformation. All other slots of v are initialized
as zero (e.g., slots 0, 1 of v3 in Figure 2).

Then within a slot-based message passing layer of SlotGAT,
given a node v, its neighbors transform and pass slot-wise
messages to it. Compared with existing methods that only
pass one message from a neighbor u to v, SlotGAT passes
|Φ| slot messages separately to v, and these messages do not
mix with each other in intermediate layers. As illustrated in
Figure 2, in Layer l = 1, for any neighbor u of v, we apply
transformation by W

(l)
t independently on each slot t of u,

and then pass the transformed slot messages to v for slot-

3

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

wise aggregation with an attention mechanism that leverages
slot representations and edge types to compute attention
scores, elaborated in Section 4.2. Remark that the slot t of
v preserves the type-t specific semantics delivered from the
graph to v, regardless whether v is in type t or not. With this
novel slot-based message passing in a layer, SlotGAT are
able to maintain distinguishable representations of a node
in a finer granularity.

After L layers of slot-based message passing in SlotGAT,
every node v has |Φ| slot representations as shown in Figure
2. For downstream tasks, we develop a slot attention tech-
nique in Section 4.3 to learn slot importance scores to get
final representations, which are then fed into downstream
tasks. Algorithm 1 shows the pseudo code of SlotGAT.

4.1. Node Type Slot Initialization

We create |Φ| type-specific slots for every node. Then given
a node v with type ϕ(v), its slot t h(0),t

v is initialized by Eq.
1. Specifically, if slot t is not type ϕ(v), then h

(0),t
v is set to

zero initially; otherwise, h(0),t
v is initialized by the feature

vector of v with a t type-specific linear transformation W
(0)
t .

Since the feature vectors of different types of nodes can be
in different dimensions, W(0)

t is a pre-processor to map
heterogeneous node features to the same dimension d1.

h(0),t
v =

{
W

(0)
t xv ∈ Rd1 if t = ϕ(v),

0 ∈ Rd1 if t ̸= ϕ(v),
(1)

where W
(0)
t ∈ Rd1×d

ϕ(v)
0 is a t-type transformation matrix.

4.2. Slot-based Message Passing Layer

In this section, we present the slot-based message passing
layer of SlotGAT with slot-specific transformations and a
new attention mechanism.

In the l-th layer of SlotGAT, all t-type slots of all nodes in
G maintain type-specific (or slot-specific) transformations
W

(l)
t . Given a node v with slot t representation h

(l−1),t
v

from the (l − 1)-th layer, in current l-th layer, the represen-
tation is transformed to ĥ

(l),t
v by W

(l)
t in Eq. 2. Note that

the transformation is within the feature space of node type
t, and does not affect the feature spaces of other types.

ĥ(l),t
v = W

(l)
t h(l−1),t

v , (2)

where W
(l)
t ∈ Rdl×dl−1 is a slot-specific transformation.

For instance, in Figure 2, in the first layer, the transformation
matrix W

(1)
1 for slot 1 (in red) is applied to the slots 1 of all

nodes. Even if the node is not in type t = 1, its slot 1 will
be transformed by W

(1)
1 . Observe that, if a slot is empty, its

message will still be zero vector after transformation.

𝑢

a𝑠𝑟𝑐
𝑙 ,0

a𝑠𝑟𝑐
𝑙 ,1

a𝑠𝑟𝑐
𝑙 ,2

a𝑑𝑠𝑡
𝑙 ,0

a𝑑𝑠𝑡
𝑙 ,1

a𝑑𝑠𝑡
𝑙 ,2

Ƹr𝜓(𝑣,𝑢)
𝑙

a𝑟𝑒𝑙
𝑙

ෝ𝛂𝑣𝑢
𝑙

𝑣

Source Node

Destination Node

S
lo

t 0
S

lo
t 1

S
lo

t 2
S

lo
t 0

S
lo

t 1
S

lo
t 2

Figure 3. Attention mechanism in a message passing layer.

In the l-th layer of SlotGAT (0 < l ≤ L), for every slot t
of every node v ∈ V (t ∈ Φ), we perform the above type-
specified linear transformation to get slot messages ĥ(l),t

v ,
which will be aggregated in the l-th layer via a generic slot-
based message aggregation function aggr. In particular,
given a node v, its slot t receives messages ĥ(l),t

u from its
neighbors u ∈ N(v), which are then aggregated to update
its slot t to be h

(l),t
v ,

h(l),t
v = aggr

(
{ĥ(l),t

u }u∈N(v)

)
,∀t ∈ Φ, (3)

where h
(l),t
v ∈ Rdl , h(l),t

v ∈ Rdl .

Observe that in the propagation and aggregation process
above, SlotGAT uses the whole graph topology to propagate
slot messages. Moreover, there can be multiple options
for the aggr function, e.g., mean and max (Hamilton et al.,
2017). Instead of using these vanilla aggregation functions,
we develop an attention mechanism to learn the aggregation
weights α(l)

vu in Eq. 4, where the aggregation result is then
passed via non-linear ReLu activation σ.

h(l),t
v = σ

 ∑
u∈N(v)

α(l)
vuĥ

(l),t
u

 , ∀t ∈ Φ. (4)

Now we elaborate how to get aggregation weight α(l)
vu. Intu-

itively, node u passes all its slot messages to v for all slots
t ∈ Φ. Thus, weight α(l)

vu should be computed by consider-
ing all the slot messages from u to v, as well as edge types,
instead of only using a specific slot t. In other words, all
slot messages from node u to v share the same aggregation
weight. Specifically,we develop a self-attention technique
with slot message encoders and edge-type encoders to com-
pute α(l)

vu ∈ R, as illustrated in Figure 3. In the l-th layer, all
nodes serving as the source of messages (e.g., u in Figure 3)
share a slot-specific attention vector a(l),tsrc ∈ Rdl for every
t ∈ Φ. Similarly, all nodes that serve as the destination to
receive messages (e.g., v in Figure 3) share a slot-specific
attention vector a(l),tdst ∈ Rdl for every t ∈ Φ. Further, let
a
(l)
rel ∈ Rde be an attention vector for edge types. Then the

4

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

overall attention vector a(l) is obtained by

a(l) =

(
n

t∈Φ

a(l),t
src

)∣∣∣(n

t∈Φ

a
(l),t
dst

)∣∣∣a(l)
rel. (5)

To get the edge type embedding of l-th layer, r̂(l)ψ(v,u), we
use a similar idea in (Lv et al., 2021). Let rψ(v,u) ∈ Rde be
a learnable representation of edge type ψ(v, u), and it is ran-
domly initialized and shared across all layers for all edges
with type ψ(v, u). It is transformed to get the l-th layer rep-
resentation r̂

(l)
ψ(v,u) = W

(l)
relrψ(v,u), where W

(l)
rel ∈ Rde×de

is a learnable matrix. Then we compute the attention score
α
(l)
vu by Eq. 6 and 7. In Eq. 6, we first get an intermediate
α̂
(l)
vu by inner product between the corresponding attention

vectors and representations, including source node’s slot rep-
resentations ĥ(l),t

u , destination node’s slot representations
ĥ
(l),t
v , and edge type representations r̂(l)ψ(v,u). Then we use

softmax normalization and LeakyReLU to get α(l)
vu in Eq. 7.

α̂(l)
vu =

∑
t∈Φ

⟨a(l),t
dst , ĥ

(l),t
v ⟩+

∑
t∈Φ

⟨a(l),t
src , ĥ

(l),t
u ⟩+ ⟨a(l)

rel, r̂
(l)

ψ(v,u)⟩

(6)

α(l)
vu =

exp
(

LeakyReLU
(
α̂
(l)
vu

))
∑
u∈N(v) exp

(
LeakyReLU

(
α̂
(l)
vu

)) (7)

After L slot-based message passing layers, SlotGAT outputs
the representation h

(L),t
v of every slot t in every node v ∈ V .

To provide stability to the training process, SlotGAT em-
ploys multi-head attention mechanism with K heads (Wang
et al., 2019d; Velickovic et al., 2018; Hu et al., 2020b),

ĥ
(l),t

v,(k) =W
(l)

t,(k)h
(l−1),t
v ∈ Rdl ,

h(l),t
v =

f
k=1,2,...,K σ

(∑
u∈N(v) α

(l)

vu,(k)ĥ
(l),t

u,(k)

)
,

(8)

where subscript (k) represents the corresponding variables
for the k-th head.

4.3. Slot Attention

After L layers, SlotGAT returns slot representations h(L),t
v

for |Φ| slots of nodes v ∈ V . To handle the downstream
tasks with objectives to be elaborated in Section 4.4, we
explain how to leverage all slot representations of node v to
get its final representation hv by a slot attention technique.

Given the slot representations of node v, h(L),t
v ,∀t ∈ Φ, a

simple way is to average them by Eq. 9, which however,
does not differentiate slot importance.

hv =
1

|Φ|
∑
t∈Φ h

(L),t
v . (9)

Another way is to stack a fully connected layer,

hv = Wfch
(L),t
v , (10)

M
L

P

z

z

z

𝒔𝑢,0

𝒔𝑢,1

𝒔𝑢,2

z

z

z

𝒔𝑣,0

𝒔𝑣,1

𝒔𝑣,2

መ𝛽0

መ𝛽1

መ𝛽2

S
o
ftm

ax

𝛽0 𝛽1 𝛽2

……
S

lo
t 0

S
lo

t 1
S

lo
t 2

S
lo

t 0
S

lo
t 1

S
lo

t 2

Figure 4. Slot attention

where Wfc ∈ Rdtask×(|Φ|dL) is a learnable matrix.

But the way above is not explainable to demonstrate the
importance of different slots in different tasks. Therefore,
we develop a slot attention technique (illustrated in Figure
4), which achieves better performance than the two ways
above as validated in experiments.

Specifically, in slot attention, we first apply a one-layer MLP
to transform every slot representation h

(L),t
v of every node

v of the L-th layer to vector sv,t,

sv,t = tanh
(
Wbh

(L),t
v + bb

)
, (11)

where Wb ∈ Rds×dL , bb ∈ Rds are weights and bias.

sv,t represents the slot semantics decoded from slot t of
node v in last L-th layer. Then, for each slot t, we get its
semantic importance, by computing the expected similarity
between the decoded semantics sv,t and a learnable attention
vector z ∈ RdL , which is shared across all slots of all
nodes. For slot t, its intermediate attention score (without
normalization) β̂t is computed as follows, which considers
the t-th slots of all nodes in V . Then we apply softmax to
all β̂t,∀t ∈ Φ, to get the slot attention weight βt,

β̂t =
1

|V|
∑
v∈V⟨z, sv,t⟩;βt =

exp(β̂t)∑
θ∈Φ exp(β̂θ)

. (12)

Finally, we aggregate the representations of all slots in a
node v to get its final representation hv. Let matrix H
represented all representations hv of all nodes v ∈ V .

hv =
∑
t∈Φ

βth
(L),t
v . (13)

4.4. Downstream Objectives

Node Classification. The representation hv is used as the
final output prediction vector for every node v ∈ V . Sup-
posing that there are C classes, hv is in RdC . Let Hv,c be
the probability that node v is predicted to have class label c.

Denote Y as the groundtruth label matrix whose entries
Yv,c = 1 if node v has label c; otherwise Yv,c = 0.
A cross-entropy loss function is used to train the model
over labeled training nodes Ltrain ⊂ V : LNC(H,G) =
− 1

|Ltrain|
∑
v∈Ltrain

∑
c∈[C] Yv,c log (Hv,c).

5

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

Algorithm 1 SlotGAT
Input: Heterogeneous graph G = (V, E , ϕ, ψ), number of
heads K, number of layers L, number of epochs T
Output: The learned representations H.
Generate initial parameters for all learnable parameters.
for each epoch i = 0, 1, 2, ..., T do

Perform node type based slot initialization to get h(0),t
v ;

for each layer l = 0, 1, 2, ..., L do
for each head k = 0, 1, 2, ...,K do

Construct slot messages ĥ(l),t

v,(k) = W
(l)

t,(k)h
(l−1),t
v ;

Compute attention α(l)

vu,(k);
end for
Aggregate the messages with attention
h
(l),t
v ←

f
k=1,2,...,K σ(

∑
u∈N(v) α

(l)

vu,(k)ĥ
(l),t

u,(k));
end for
Compute semantics vectors sv,t ← MLP(h(L),t

v);
Compute slot attention βt;
Aggregate the slots hv ←

∑
t∈Φ βth

(L),t
v ;

end for

Link Prediction. Link prediction is binary classification
on node pairs. Positive pairs Epos ⊂ V × V are the edges
actually in E , and negative pairs Eneg ⊂ V × V are non-
existing ones. Epos and Eneg together are training sam-
ples. The model is expected to distinguish node pairs in
test set whether it should be positive or negative. Given two
nodes v, u with representations Hv and Hu respectively,
a common method is to decode them to get a similarity
score, which is then fed into a binary cross-entropy loss:
LLP (H,G) = −

∑
(v,u)∈Epos

log [Decoder (Hv,Hu)] −∑
(v,u)∈Eneg

log [1−Decoder (Hv,Hu)]. Two decoders
are considered: dot product and DistMult (Yang et al., 2015),
with details in Appendix A.4.

4.5. Analysis

We conduct theoretical analysis to motivate the design of
slots for different node types to learn different semantics,
which mitigates the semantic mixing issue. We adopt the
row-normalized Laplacian model in (Kipf & Welling, 2017)
for analysis, and the empirical property of attention models
are similar to spectra-based graph convolution methods with
row-normalization (Chen et al., 2020a).

Let A be the adjacency matrix and D be the degree matrix
of heterogeneous graph G, and define Lrw = D−1(D−A).
The spectral graph convolution operator G is G = I −
αLrw, where α ∈ (0, 1]. Suppose that G has k maximal
connected components (CC) {CCi}ki=1. Let cc(j) denote
the CC where node vj is, and |cc(j)| be the size of the
CC. Considering the slot initialization in Section 4.1, let
X(t) ∈ Rn×dt0 be the initial feature matrix of slots t of all
n nodes in G, and the i-th row vector x

(t)
i be the initial

feature vector of slot t of node vi. Only nodes in type t
have nonzero x

(t)
i in X(t); otherwise, x(t)

i = 0. With self-

loop added to every node, there is no bipartite component
in the graph. Then inspired by (Li et al., 2018), we derive
Theorem 4.1, with proof in Appendix A.8.
Theorem 4.1. Given a heterogeneous graph G, for the t-
slot feature matrix X(t) ∈ Rn×dt0 in which only nodes of
type t have non-zero features, if the graph has no bipartite
components, after infinite number of convolution operations
G, the slot t representation of node vi is

[lim
ℓ→+∞

GℓX(t)]i =
1

|cc(i)|
∑

∀vj∈cc(i),ϕ(vj)=t

x
(t)
j .

As proved in the theorem, after infinite steps, the representa-
tion of the slot t in node vi converges to the average feature
vector of all the nodes in the same type t in cc(i). Since
the semantics of the nodes in a different node type t′ with
initial features X(t′), are usually very different from X(t),
the representations for slots t′ will apparently converge to
a different state. Theorem 4.1 proves that the slots of the
nodes within the same connected component cc(i) converge
to different states 1

|cc(i)|
∑

∀vj∈cc(i),ϕ(vj)=t x
(t)
j that are rele-

vant to node type t feature spaces, which explains the power
of SlotGAT to mitigate the semantic mixing issue. On the
other hand, (Li et al., 2018) prove that all node represen-
tations in a homogeneous connected component converge
to the same state. SlotGAT performs L layers (≪ +∞),
and thus the slot representations output by SlotGAT, h(L),t

vi

are semantically different from h
(L),t′

vi for slots t and t′ of
node vi in G. We further provide visualization results of slot
representations in Section 5.3 to validate that the slot-based
message passing in SlotGAT captures rich semantics.

Complexity. We then provide the complexity analysis of
SlotGAT, by following a similar fashion as (Velickovic et al.,
2018). Let m, n and |Φ| be the number of nodes, edges,
and node types, respectively, and assume that all representa-
tions in all layers have the same dimension d. In one Slot-
GAT layer (Section 4.2), (i) feature transformation in Eq. 2
needs O(nd2|Φ|); (ii) attention computation in Eq. 6 and
Eq. 7 needs O(md|Φ|). Hence, the complexity of a single
layer is O(nd2|Φ|+md|Φ|), which is on par with baseline
methods if factor |Φ| is regarded as a constant. According
to (Velickovic et al., 2018), applying K heads multiplies
the storage and parameters, while the computation of in-
dividual heads is fully independent and parallelized. The
computation of Eq. 1 in Section 4.1 is only performed once
for all n nodes before the L-layer message passing, and it
needs time O(ndd0|Φ|), which is O(nd2|Φ|) if the input
feature dimension d0 is d as well. The slot attention in Sec-
tion 4.3 is also computed only once after message passing,
and its complexity is O(ndds|Φ|), which is O(nd2|Φ|) if
the embedding dimension of slot attention ds is also d. The
number of layers L is usually small as a constant, e.g., 3.
Hence, the complexity of SlotGAT is O(nd2|Φ|+md|Φ|).

6

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

Table 1. Statistics of Benchmark Datasets.
Node

Classification #Nodes #Node
Types #Edges #Edge

Types Target #Classes

DBLP 26,128 4 239,566 6 author 4
IMDB 21,420 4 86,642 6 movie 5
ACM 10,942 4 547,872 8 paper 3

Freebase 180,098 8 1,057,688 36 book 7
PubMed NC 63,109 4 244,986 10 disease 8

Link Prediction Target

LastFM 20,612 3 141,521 3 user-artist
PubMed LP 63,109 4 244,986 10 disease-disease

5. Experiments
5.1. Experiment Settings

Datasets. Table 1 reports the statistics of benchmark
datasets widely used in (Lv et al., 2021; Wang et al., 2019d;
Zhao et al., 2022; Zhang et al., 2019; Yun et al., 2019; Yang
et al., 2022). The datasets cover various domains, including
academic graphs (e.g., DBLP, ACM), information graphs
(e.g., IMDB, LastFM, Freebase), and medical biological
graph (e.g., PubMed). For node classification, each dataset
contains a target node type, and all nodes with the target type
are the nodes for classification (Lv et al., 2021). PubMed LP
is the same as PubMed NC, but for link prediction. Each
link prediction dataset has a target edge type, and edges
in the target edge type are the target for prediction. The
descriptions of all datasets are in Appendix A.1.

Baselines. We compare with HAN (Wang et al., 2019d),
DisenHAN (Wang et al., 2020), GTN (Yun et al., 2019),
MAGNN (Fu et al., 2020), HetGNN (Zhang et al., 2019),
HGT (Hu et al., 2020b), RGCN (Schlichtkrull et al., 2018),
RSHN(Zhu et al., 2019), HetSANN (Hong et al., 2020),
simpleHGN (Lv et al., 2021), and Space4HGNN (Zhao
et al., 2022). We also compare with GCN (Kipf & Welling,
2017) and GAT (Velickovic et al., 2018).

Evaluation Settings. For node classification, following (Lv
et al., 2021), we split labeled training set into training and
validation with ratio 80% : 20%, while the testing data are
fixed with detailed numbers in Appendix A.2 Table 12. For
link prediction, we adopt ratio 81% : 9% : 10% to divide the
edges into training, validation, and testing. For each dataset,
we repeat experiments on 5 random splits and then report
the average and standard deviation. For node classification,
we report the averaged Macro-F1 and Micro-F1 scores. We
also conduct paired t-tests (Student, 1908; Klicpera et al.,
2019) to evaluate the statistical significance of SlotGAT.
For link prediction, we report MRR (mean reciprocal rank)
and ROC-AUC. The evaluation metrics are summarized in
Appendix A.6. Link prediction needs negative samples (i.e.,
non-existence edges) for test, which are generated within
2-hop neighbors of a node (Lv et al., 2021).

Hyper-parameter Search Space. We search learning rate
within {1, 5} × {1e−5, 1e−4, 1e−3, 1e−2}, weight decay
rate within {1, 5} × {1e−5, 1e−4, 1e−3}, dropout rate for
features within {0.2, 0.5, 0.8, 0.9}, dropout rate for con-
nections within {0, 0.2, 0.5, 0.8, 0.9}, and number of hid-
den layers L within {2, 3, 4, 5, 6}. We use the same di-
mension of hidden embeddings across all layers dl within
{32, 64, 128}. We search the number of epochs within the
range of {40, 300, 1000} with early stopping patience 40,
and dimension ds of slot attention vector within the range
of {3, 8, 32, 64}. Following (Lv et al., 2021), for input fea-
ture type, we use feat = 0 to denote the use of all given
features, feat = 1 to denote using only target node features
(zero vector for others), and feat = 2 to denote all nodes
with one-hot features. For node classification, we use feat 1
and set the number of attention heads K to be 8. For link
prediction, we use feat 2 and set K to be 2. Link prediction
has two decoders, dot product and DistMult, which are also
searchable. The search space and strategies of all baselines
follow (Lv et al., 2021; Zhao et al., 2022). The searched
hyper parameters are in Appendix A.5.

5.2. Evaluation Results

Node Classification. Table 2 reports the node classification
results of all methods on five datasets, with mean Macro-
F1 and Micro-F1 and their standard deviation. The overall
observation is that SlotGAT consistently outperforms all
baselines for both Macro-F1 and Micro-F1 on all datasets,
often by a significant margin, which validates the power
of SlotGAT. For instance, in IMDB that is a multi-label
classification dataset, the Micro-F1 of SlotGAT is 68.54%,
while that of the best competitor is 67.48%; moreover, Slot-
GAT has a smaller standard deviation 0.33, compared to
0.57 of the competitor. On the largest Freebase, SlotGAT
achieves 49.68% Macro-F1, while the best competitor has
47.72%. On PubMed NC, SlotGAT has higher Micro-F1
53.25% compared with 51.86% of HGT. On DBLP and
ACM, where all methods are with relatively high perfor-
mance, SlotGAT still achieves the best performance. The
superior performance of SlotGAT on node classification in-
dicates that SlotGAT with slot-based message passing mech-
anism is able to learn richer representations to preserve the
node heterogeneity in various heterogeneous graphs.

Link Prediction. Table 3 reports the link prediction results
on LastFM and PubMed LP, with mean ROC-AUC and
MRR and their standard deviations. SlotGAT achieves the
best performance on both datasets over both metrics. For
instance, on LastFM, SlotGAT is with ROC-AUC 70.33%,
2.74% higher than simpleHGN, the best competitor, and also
the MRR of SlotGAT is 91.72%, while that of simpleHGN
is 90.81%. On PubMed LP, SlotGAT is with ROC-AUC
85.39%, 2% higher than simpleHGN. The performance of
SlotGAT for link prediction again reveals the effectiveness

7

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

Table 2. Node classification results with mean and standard deviation of Macro-F1/Micro-F1. Vacant positions (“-”) mean out of memory.
Best is in bold, and runner up is underlined.

DBLP IMDB ACM PubMed NC Freebase
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

RGCN 91.52±0.50 92.07±0.50 58.85±0.26 62.05±0.15 91.55±0.74 91.41±0.75 18.02±1.98 20.46±2.39 46.78±0.77 58.33±1.57
HAN 91.67±0.49 92.05±0.62 57.74±0.96 64.63±0.58 90.89±0.43 90.79±0.43 15.43±2.41 24.88±2.27 21.31±1.68 54.77±1.40

DisenHAN 93.66±0.39 94.18±0.36 63.40±0.49 67.48±0.45 92.52±0.33 92.45±0.33 41.71±4.43 50.93±4.25 - -
GTN 93.52±0.55 93.97±0.54 60.47±0.98 65.14±0.45 91.31±0.70 91.20±0.71 - - - -

RSHN 93.34±0.58 93.81±0.55 59.85±3.21 64.22±1.03 90.50±1.51 90.32±1.54 - - - -
HetGNN 91.76±0.43 92.33±0.41 48.25±0.67 51.16±0.65 85.91±0.25 86.05±0.25 21.86±3.21 29.93±3.51 - -
MAGNN 93.28±0.51 93.76±0.45 56.49±3.20 64.67±1.67 90.88±0.64 90.77±0.65 - - - -
HetSANN 78.55±2.42 80.56±1.50 49.47±1.21 57.68±0.44 90.02±0.35 89.91±0.37 - - - -

HGT 93.01±0.23 93.49±0.25 63.00±1.19 67.20±0.57 91.12±0.76 91.00±0.76 47.50±6.34 51.86±4.85 29.28±2.52 60.51±1.16
GCN 90.84±0.32 91.47±0.34 57.88±1.18 64.82±0.64 92.17±0.24 92.12±0.23 9.84±1.69 21.16±2.00 27.84±3.13 60.23±0.92
GAT 93.83±0.27 93.39±0.30 58.94±1.35 64.86±0.43 92.26±0.94 92.19±0.93 24.89±8.47 34.65±5.71 40.74±2.58 65.26±0.80

simpleHGN 94.01±0.27 94.46±0.20 63.53±1.36 67.36±0.57 93.42±0.44 93.35±0.45 42.93±4.01 49.26±3.32 47.72±1.48 66.29±0.45
space4HGNN 94.24±0.42 94.63±0.40 61.57±1.19 63.96±0.43 92.50±0.14 92.38±0.10 45.53±4.64 49.76±3.92 41.37±4.49 65.66±4.94

SlotGAT 94.95±0.20 95.31±0.19 64.05±0.60 68.54±0.33 93.99±0.23 94.06±0.22 47.79±3.56 53.25±3.40 49.68±1.97 66.83±0.30

Table 3. Link prediction results with mean and standard deviation
of ROC-AUC/MRR. Vacant positions (“-”) means out of memory.

LastFM PubMed LP
ROC-AUC MRR ROC-AUC MRR

RGCN 57.21±0.09 77.68±0.17 78.29±0.18 90.26±0.24
DisenHAN 57.37±0.2 76.75±0.28 73.75±1.13 85.61±2.31
HetGNN 62.09±0.01 83.56±0.14 73.63±0.01 84.00±0.04
MAGNN 56.81±0.05 72.93±0.59 - -

HGT 54.99±0.28 74.96±1.46 80.12±0.93 90.85±0.33
GCN 59.17±0.31 79.38±0.65 80.48±0.81 90.99±0.56
GAT 58.56±0.66 77.04±2.11 78.05±1.77 90.02±0.53

simpleHGN 67.59±0.23 90.81±0.32 83.39±0.39 92.07±0.26
space4HGNN 66.89±0.69 90.77±0.32 81.53±2.51 90.86±1.02

SlotGAT 70.33±0.13 91.72±0.50 85.39±0.28 92.22±0.28

Table 4. Statistical Significance Test (Node Classification)
DBLP IMDB ACM PubMed NC Freebase

micro-F1 0.000244 0.000111 0.00713 0.00102 0.0421
macro-F1 0.000209 0.160 0.00783 0.000192 0.156

Table 5. Statistical Significance Test (Link Prediction)
LastFM PubMed LP

ROC-AUC 0.0252 0.00801
MRR 0.0445 0.0261

of the proposed slot-based message passing mechanism and
attention techniques to avoid semantic mixing issue and
preserve pairwise node relationships for link prediction.

5.3. Model Analysis

Slot Visualization. We adopt Tsne (van der Maaten & Hin-
ton, 2008) to visualize the slot representations of SlotGAT.
Figure 5 reports the slot visualization of the 2-nd SlotGAT
layer on IMDB. Figure 5(a) is the visualization of the 0-
th slots (in type-0 feature space) of all nodes with colors
representing their own types. Figure 5(b), (c), (d) are the
visualization of 1-st, 2-nd, and 3-rd slots of all nodes respec-
tively. First, observe that the 4 slots of a node (for all nodes
in a graph) learn radically different representations, as the
visualizations in the four figures exhibit different patterns.
For instance, in Figure 5(a), 0-th slots can distinguish nodes

Figure 5. Tsne visualization on all slot representations of 2-nd
SlotGAT layer on IMDB

in type 0 (red) from others, but cannot distinguish nodes of
types 1, 2, 3. On the other hand, in Figure 5(b), 1-st slots
can distinguish nodes of all types in 0, 1, 2, 3. Similar obser-
vations can be made in Figures 5(c) (d). The visualization
in Figure 5 validates that SlotGAT is able to learn richer
semantics in a finer granularity and also preserve the seman-
tic differences of different node-type feature spaces, which
explains the superior performance of SlotGAT. Additional
visualization on DBLP is provided in Appendix A.3.

Statistical Significance Test. In Table 4, we report the
p-values of paired t-tests between SlotGAT and the best
baseline simpleHGN, w.r.t., micro-F1 and macro-F1 for
node classification. In Table 5 we report the p-values on
link prediction w.r.t. ROC-AUC and MRR. P-value below
0.05 means statistical significance. Observe that most p-
values are below 0.05 except two p-values, indicating the
improvement of SlotGAT over simpleHGN is statistically
significant and robust.

Slot Attention Ablation. We ablate the slot attention tech-
nique in Section 4.3 that integrates all slots of a node, and
compare with other ways, including average (Eq. 9), non-
biased fully connected layer (last fc) in Eq. 10, and target
slot only (target): h

(L)
v = 1

|Φtarget|
∑
t∈Φtarget

h
(L),t
v ∈

8

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

Table 6. Ablation for Slot Attention (Macro-F1/Micro-F1) on node classification. Best is in bold, and runner up is underlined.
DBLP IMDB ACM PubMed NC Freebase

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
SlotGAT 94.95±0.20 95.31±0.19 64.05±0.60 68.54±0.33 93.99±0.23 94.06±0.22 47.79±3.56 53.25±3.40 49.68±1.97 66.83±0.30

SlotGAT (average) 94.52±0.31 94.93±0.25 62.71±1.10 67.56±0.42 93.43±0.50 93.35±0.43 47.18±4.16 52.61±3.23 47.90±1.61 67.01±0.90
SlotGAT (target slot) 87.12±8.44 87.73±7.91 39.35±18.9 48.91±11.2 93.63±1.03 93.50±1.15 44.60±4.14 50.54±4.65 48.77±2.86 66.38±0.50

SlotGAT (last fc) 94.72±0.22 95.11±0.21 63.15±0.53 68.16±0.31 93.91±0.35 93.99±0.35 48.24±5.37 53.72±2.88 51.63±0.75 66.68±0.42

Table 7. Statistical Significance Test between SlotGAT and its vari-
ants w.r.t. Micro-F1.

DBLP IMDB ACM PubMed Freebase
SlotGAT (average) 0.0090 0.0362 0.0379 0.0226 0.3054

SlotGAT (target slot) 0.0129 0.1014 0.0300 0.0248 0.1988
SlotGAT (last fc) 0.0832 0.6714 0.2840 0.1588 0.2571

Table 8. Statistical Significance Test between SlotGAT and its vari-
ants w.r.t. Macro-F1.

DBLP IMDB ACM PubMed Freebase
SlotGAT (average) 0.0042 0.0325 0.0359 0.1833 0.2611

SlotGAT (target slot) 0.0304 0.1074 0.0372 0.1984 0.1160
SlotGAT (last fc) 0.0420 0.6952 0.2748 0.9704 0.2114

RdL . The results are reported in Table 6. Observe that Slot-
GAT with slot attention is the best on DBLP, IMDB, and
ACM, and is top-2 on PubMed NC and Freebase. The re-
sults validate the effectiveness of slot attention. Moreover,
SlotGAT (average) and SlotGAT (target) are not with high
performance, indicating that blindly averaging slot represen-
tations or only using the target slot are less effective. More-
over, We provide the paired t-test results between SlotGAT
and its variants w.r.t. Micro-F1 and Macro-F1 in Table 7
and Table 8 respectively. Combining with the results in
Table 6, we have the following observations. (i) On DBLP,
IMDB, ACM and PubMed NC for Micro-F1 (Table 7), the
improvement of SlotGAT over SlotGAT(average) and Slot-
GAT(target slot) is statistically significant, since 7 out of
the 8 corresponding p-values are below 0.05, and similar
observation can be made on Table 8 for these methods. (ii)
As shown in Table 6, SlotGAT(last fc) is comparable to
SlotGAT, and thus the corresponding p-values are relatively
large in the last rows of Tables 7 and 8. Note that SlotGAT
(last fc) is less explainable than SlotGAT with slot attention.
(iii) On Freebase, all methods have close F1 scores in Ta-
ble 6, and thus the p-values are relatively large in the last
columns of Tables 7 and 8. These observations, combined
with Table 6, validate our statement that SlotGAT with slot
attention is the best on DBLP, IMDB, and ACM, and is
top-2 on PubMed NC and Freebase.

Efficiency. Tables 9 and 10 report the training time and
inference time of SlotGAT compared with simpleHGN and
HGT, two strong baselines. Table 11 reports the peak mem-
ory usage. As shown, SlotGAT has moderate training and
inference time and slightly higher memory usage to achieve
the state-of-the-art effectiveness reported ahead.

Table 9. Training time per epoch (millisecond)
DBLP IMDB ACM PubMed NC Freebase

simpleHGN 76.21 75.57 105.44 170.77 423.32
SlotGAT 230.61 241.36 131.98 520.95 458.23

HGT 741.23 613.12 1097.8 2384.14 3711.24

Table 10. Inference time (millisecond)
DBLP IMDB ACM PubMed NC Freebase

simpleHGN 57.1 54.42 47.16 70.67 175.34
SlotGAT 127.19 119.95 69.1 258.44 231.31

HGT 531.13 410.52 650.12 1818.42 2939.8

Table 11. Peak GPU memory (GB)
DBLP IMDB ACM PubMed NC Freebase

simpleHGN 3.46 3.01 6.32 5.96 7.06
SlotGAT 6.36 5.97 5.5 13.37 9.32

HGT 1.34 1.08 2.02 2.54 6.75

6. Conclusion, Limitation, and Future Work
In this paper, we identify a semantic mixing issue that po-
tentially hampers the performance on heterogeneous graphs.
To alleviate the issue, we design SlotGAT with separate mes-
sage passing processes in slots, one for each node type. In
such a way, SlotGAT conducts slot-based message passing.
We also design an attention-based aggregation mechanism
over all slot representations to conduct effective slot-wise
message aggregation per layer. To effectively support down-
stream tasks, we further develop a slot attention technique.
Extensive experiments validate the superiority of SlotGAT.

SlotGAT has factor |Φ| as a trade-off of efficiency for effec-
tiveness, which is a potential limitation if many node types
exist. There are several ways to handle this in the future,
e.g., being selective on node types to reduce the number of
slots and setting a limit on the dimension of all slots.

Acknowledgement
This work is supported by Hong Kong RGC ECS No.
25201221, and National Natural Science Foundation of
China No. 62202404. This work is also supported by a
collaboration grant from Tencent Technology (Shenzhen)
Co., Ltd (P0039546). This work is supported by a startup
fund (P0033898) from Hong Kong Polytechnic University
and project P0036831.

9

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

References
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor,

J. Freebase: a collaboratively created graph database
for structuring human knowledge. In SIGMOD’08, pp.
1247–1250, 2008.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In
ICLR’14, 2014.

Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., and Tang, J.
Representation learning for attributed multiplex heteroge-
neous network. In KDD’19, pp. 1358–1368, 2019.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. In
AAAI, pp. 3438–3445. AAAI Press, 2020a.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In ICML’20, pp.
1725–1735, 2020b.

Chung, F. R. Spectral graph theory, volume 92. American
Mathematical Soc., 1997.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In NeurIPS’16, pp. 3837–3845, 2016.

Dong, Y., Chawla, N. V., and Swami, A. metapath2vec:
Scalable representation learning for heterogeneous net-
works. In KDD ’17, pp. 135–144. ACM, 2017.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, Y. E., Tang, J., and Yin,
D. Graph neural networks for social recommendation. In
WWW’19, pp. 417–426, 2019.

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. Protein
interface prediction using graph convolutional networks.
In NeurIPS’17, pp. 6530–6539, 2017.

Fu, X., Zhang, J., Meng, Z., and King, I. Magnn: metapath
aggregated graph neural network for heterogeneous graph
embedding. In WWW’20, pp. 2331–2341, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML’17, pp. 1263–1272. PMLR, 2017.

Guo, S., Lin, Y., Feng, N., Song, C., and Wan, H. Attention
based spatial-temporal graph convolutional networks for
traffic flow forecasting. In AAAI’19, pp. 922–929, 2019.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In NeurIPS’17,
pp. 1024–1034, 2017.

Hong, H., Guo, H., Lin, Y., Yang, X., Li, Z., and Ye, J. An
attention-based graph neural network for heterogeneous
structural learning. In AAAI’20, volume 34, pp. 4132–
4139, 2020.

Hu, Z., Dong, Y., Wang, K., Chang, K.-W., and Sun, Y. Gpt-
gnn: Generative pre-training of graph neural networks.
In KDD‘20, pp. 1857–1867, 2020a.

Hu, Z., Dong, Y., Wang, K., and Sun, Y. Heterogeneous
graph transformer. In WWW’20, pp. 2704–2710, 2020b.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR’17, 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. In ICLR’19, 2019.

Li, C. and Goldwasser, D. Encoding social information with
graph convolutional networks for political perspective
detection in news media. In ACL’19, pp. 2594–2604,
2019.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
AAAI’18, volume 32, 2018.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural
networks. In KDD’20, pp. 338–348, 2020.

Lv, Q., Ding, M., Liu, Q., Chen, Y., Feng, W., He, S., Zhou,
C., Jiang, J., Dong, Y., and Tang, J. Are we really making
much progress?: Revisiting, benchmarking and refining
heterogeneous graph neural networks. In KDD ’21, pp.
1150–1160, 2021.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In CVPR’17,
pp. 5425–5434, 2017.

Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., and Tang, J.
Deepinf: Social influence prediction with deep learning.
In KDD’18, pp. 2110–2119, 2018.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In ESWC’18, pp. 593–607.
Springer, 2018.

Student. The probable error of a mean. Biometrika, pp.
1–25, 1908.

van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. JMLR’08, 9(86):2579–2605, 2008.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR’18,
2018.

10

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

von Luxburg, U. A tutorial on spectral clustering. Stat.
Comput., 17(4):395–416, 2007.

Wang, H., Zhang, F., Zhang, M., Leskovec, J., Zhao, M.,
Li, W., and Wang, Z. Knowledge-aware graph neural
networks with label smoothness regularization for recom-
mender systems. In KDD’19, pp. 968–977, 2019a.

Wang, H., Zhao, M., Xie, X., Li, W., and Guo, M. Knowl-
edge graph convolutional networks for recommender sys-
tems. In WWW’19, pp. 3307–3313, 2019b.

Wang, X., He, X., Cao, Y., Liu, M., and Chua, T.-S. Kgat:
Knowledge graph attention network for recommendation.
In KDD’19, pp. 950–958, 2019c.

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., and
Yu, P. S. Heterogeneous graph attention network. In
WWW’19, 2019d.

Wang, Y., Tang, S., Lei, Y., Song, W., Wang, S., and Zhang,
M. Disenhan: Disentangled heterogeneous graph atten-
tion network for recommendation. In CIKM ’20, pp.
1605–1614. ACM, 2020.

Yang, B., Yih, W., He, X., Gao, J., and Deng, L. Embed-
ding entities and relations for learning and inference in
knowledge bases. 2015.

Yang, C., Pal, A., Zhai, A., Pancha, N., Han, J., Rosenberg,
C., and Leskovec, J. Multisage: Empowering gcn with
contextualized multi-embeddings on web-scale multipar-
tite networks. In KDD’20, pp. 2434–2443, 2020a.

Yang, C., Xiao, Y., Zhang, Y., Sun, Y., and Han, J. Het-
erogeneous network representation learning: A unified
framework with survey and benchmark. IEEE Trans.
Knowl. Data Eng., 34(10):4854–4873, 2022.

Yang, G., Zhang, X., and Li, Y. Session-based recommenda-
tion with graph neural networks for repeat consumption.
In ICCPR’20, pp. 519–524, 2020b.

Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. Graph
transformer networks. In NeurIPS’19, 2019.

Zhang, C., Song, D., Huang, C., Swami, A., and Chawla,
N. V. Heterogeneous graph neural network. In KDD’19,
pp. 793–803, 2019.

Zhao, T., Yang, C., Li, Y., Gan, Q., Wang, Z., Liang, F.,
Zhao, H., Shao, Y., Wang, X., and Shi, C. Space4hgnn: A
novel, modularized and reproducible platform to evaluate
heterogeneous graph neural network. In SIGIR ’22, pp.
2776–2789, 2022.

Zhu, S., Zhou, C., Pan, S., Zhu, X., and Wang, B. Relation
structure-aware heterogeneous graph neural network. In
ICDM’19, 2019.

11

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

A. Appendix
All experiments are conducted on a machine powered by
an Intel(R) Xeon(R) E5-2603 v4 @ 1.70GHz CPU, 131GB
RAM, and a Nvidia Geforce 3090 Cards with Cuda version
11.3. Source codes of all competitors are obtained from
respective authors.

A.1. Dataset Descriptions

For all of the benchmark datasets, one could access them
in online platform HGB1. In the following, we provide
the descriptions of these datasets. The detailed data
statistics, including the number of nodes in every type
and the number of edges in every type, can be found
at https://github.com/scottjiao/SlotGAT_
ICML23/data_statistics.txt.

• DBLP2 is a bibliography website of computer sci-
ence. There are 4 node types, including authors, papers,
terms, and venues, as well as 6 edge types. The edge
types include paper-term, paper-term, paper-venue,
paper-author, term-paper, and venue-paper. The target
is to predict the class labels of authors. The classes are
database, data mining, AI, and information retrieval.

• IMDB3 is a website about movies. There are 4 node
types: movies, directors, actors, and keywords. A
movie can have multiple class labels. The 6 edge
types include movie-director, director-movie, movie-
actor, actor-movie, movie-keyword, and keyword-
movie. There are 5 classes: action, comedy, drama,
romance, and thriller. Movies are the targets to classify.

• ACM is a citation network (Wang et al., 2019d), con-
taining node types of authors, papers, terms, and sub-
jects. The edge types include paper-cite-paper, paper-
ref-paper, paper-author, author-paper, paper-subject,
subject-paper, paper-term, and term-paper. The node
classification target is to classify papers into 3 classes:
database, wireless communication, and data mining.

• Freebase (Bollacker et al., 2008) is a large knowledge
graph with 8 node types, including book, film, music,
sports, people, location, organization, and business,
and 36 edge types. The target is to classify books in 7
classes: scholarly work, book subject, published work,
short story, magazine, newspaper, journal, and poem.

• LastFM 4 is an online music website. There are 3 node
types: user, artist, and tag. And it has 3 edge types:

1https://www.biendata.xyz/hgb/
2http://web.cs.ucla.edu/˜yzsun/data/
3https://www.kaggle.com/karrrimba/

movie-metadatacsv
4https://grouplens.org/datasets/

hetrec-2011/

Table 12. Data Split of Node Classification Datasets.
#Nodes #Training #Validation #Testing

DBLP 26,128 974 243 2,840
IMDB 21,420 1,097 274 3,159
ACM 10,942 726 181 2,118

Freebase 180,098 1,909 477 4,446
PubMed NC 63,109 295 73 86

Figure 6. Tsne visualization on all slot representations of 3-rd Slot-
GAT layer on DBLP

user-artist , user-user, artist-tag. The link prediction
task aims to predict the edges between users and artists.

• PubMed5 is a biomedical literature library. We use the
data constructed by (Yang et al., 2022). The node types
are gene, disease, chemical, and species. The 10 edge
types contain gene-and-gene, gene-causing-disease,
disease-and-disease, chemical-in-gene, chemical-in-
disease, chemical-and-chemical, chemical-in-species,
species-with-gene, species-with-disease, and species-
and-species. The target of the node classification task
is to predict the disease into eight categories with class
labels from (Yang et al., 2022). The target of link pre-
diction is to predict the existence of edges between
genes and diseases.

A.2. Node Classification Data Split

Following (Lv et al., 2021), we have the training and va-
lidiation ratio 8:2, while keeping fixed testing test, and the
statistics of testing data, as well as training and validation
data are listed in Table 12.

A.3. Additional Visualization Results

Figure 6 reports the Tsne visualization on the slot represen-
tations of the 3-rd SlotGAT layer on DBLP. In particular,
Figure 6(a) is the visualization of the 0-th slots (in type-0
feature space) of all nodes with colors representing their

5https://pubmed.ncbi.nlm.nih.gov

12

https://github.com/scottjiao/SlotGAT_ICML23/data_statistics.txt
https://github.com/scottjiao/SlotGAT_ICML23/data_statistics.txt
https://www.biendata.xyz/hgb/
http://web.cs.ucla.edu/~yzsun/data/
https://www.kaggle.com/karrrimba/movie-metadatacsv
https://www.kaggle.com/karrrimba/movie-metadatacsv
https://grouplens.org/datasets/hetrec-2011/
https://grouplens.org/datasets/hetrec-2011/
https://pubmed.ncbi.nlm.nih.gov

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

Table 13. The searched hyper-parameters for SlotGAT with best performances on various datasets.
Datasets AttDim lr wd dropAttn droptFeat featType hiddenDim Layers Epoch Heads Decoder EdgeDim
DBLP 32 1e-4 1e-3 0.5 0.5 1 64 4 300 8 - 64
IMDB 3 1e-4 1e-3 0.2 0.8 1 128 3 300 8 - 64
ACM 32 1e-3 1e-4 0.8 0.8 1 64 2 300 8 - 64

pubmed NC 3 5e-3 1e-3 0.8 0.2 1 128 2 300 8 - 64
Freebase 8 5e-4 1e-3 0.5 0.5 2 16 2 300 8 - 0
LastFM 64 5e-4 1e-4 0.9 0.2 2 64 8 1000 2 DotProduct 64

pubmed LP 32 1e-3 1e-4 0.5 0.5 2 64 4 1000 2 DistMult 64

own types, and Figure 5(b), (c), (d) are the visualization of
1-st slots (in type-1 feature space), 2-nd slots (in type-2 fea-
ture space), 3-rd slots (in type-3 feature space) of all nodes
respectively. First, observe that the 4 slots of a node (for all
nodes in a graph) learn very different representations, as the
visualizations in the four figures exhibit different patterns.
Note that the number of nodes in type 3 is very few com-
pared to other three node types, and thus are nearly invisible
in these figures. Therefore, we focus the discussion on nodes
of the other three types in red, blue and yellow. In particular,
as shown in Figure 6(a), the 0-th slots (in type-0 feature
space) are able to distinguish nodes in type 1 (blue) from
others, but cannot distinguish nodes of types 0, 2, 3. On the
other hand, in Figure 6(b), the 1-st slots (in type-1 feature
space) are able to distinguish nodes of different types in 0, 1,
2. Similar observation can be made in Figures 6(c),(d). The
visualization in Figure 6 proves that SlotGAT is able to learn
richer semantics in finer granularity and also preserve the
semantic differences of different node-type feature spaces
into different slots. This visualization also provide evidence
on the superior performance of SlotGAT.

A.4. Link Prediction Decoders

Given Hv and Hu, dot product decoder first computes
dot product and then applies a sigmoid activation function:
Decoder(Hv,Hu) = σ(⟨Hv,Hu⟩).

DistMult requires a learnable square weight matrix
Wψ(v,u) ∈ RdL×dL for edge type ψ(v, u).Then
a bi-linear form between Hv,Hu is calculated as:
Decoder(Hv,Hu) = σ(H⊤

v Wψ(v,u)Hu). The choice of
dot product or DistMult is regarded as a part of hyper-tuning
process (Lv et al., 2021).

A.5. Searched Hyper-parameters

To facilitate the re-producibility of this work, we present
the searched hyper-parameters of SlotGAT in Table 13 on
different datasets. Note that due to the high computational
cost in dataset Freebase, we set the dimension de = 0 of
attention vector for edge types in this dataset, while de = 64
in all other datasets. Moreover, three tricks are used in
the implementation of SlotGAT as suggested in (Lv et al.,
2021): residual connection, attention residual and using
hidden embedding in middle layers for link prediction tasks.

A.6. Metrics

Here we illustrate how we compute the four metrics: Macro-
F1, Micro-F1, ROC-AUC and MRR.

Macro-F1: The macro F1 score is computed using the
average of all the per-class F1 scores. Denote Precisionc as
the precision of class c, and Recallc as the recall of class c.
We have

Macro-F1 =
1

C

∑
c∈[C]

2Precisionc · Recallc
Precisionc + Recallc

. (14)

Micro-F1: The Micro-F1 score directly uses the total preci-
sion and recall scores. With the Precision and Recall scores
of all nodes regardless of their classes, we have

Micro-F1 =
2Precision · Recall
Precision + Recall

. (15)

ROC-AUC: The Area Under the Curve (AUC) score is cal-
culated from Receiver Operating Characteristic (ROC). De-
fine the True Positive Rate (TPR) as TPR = TP

TP+FN , where
TP, FN represent true positive and false negative respectively.
The False Positive Rate (FPR) is calculated as FPR = FP

FP+TN ,
where FP, TN represent false positive and true negative re-
spectively. One can see that, TPR and FPR scores vary if we
change the classification threshold. One can also prove that,
there exists a one-to-one function f such that under every
threshold: f(FPR) = TPR. Then the ROC-AUC score is
the area under the graph of this function f :

ROC-AUC =

∫
x∈[0,1]

f(x). (16)

MRR: Mean reciprocal rank (MRR) is a metric usually
used in recommendation system. Here we use it to evalu-
ate performance in link prediction as in (Lv et al., 2021).
For each node v involved in concerned edges, i.e., positive
and negative edges to be evaluated, one can sort its all re-
lated nodes u, i.e., connected by these positive or negative
nodes, by the similarities of their computed embeddings.
Then, denote the minimal rank of the first occurred nodes
u connected with positive links (v, u) ∈ Epos in the above
sorted nodes list as Rv, we have the MRR as the mean of
reciprocal of this minimal rank over all the involved nodes
{(v, u) ∈ Epos or Eneg}.

13

SlotGAT: Slot-based Message Passing for Heterogeneous Graphs

Table 14. Meta-paths used in our experiments.
Dataset Meta-paths Meaning

DBLP APA, APTPA,
APVPA

A: Author, P: Paper,
T: Term, V: Venue

IMDB

MDM, MAM,
DMD, DMAMD,
AMA, AMDMA,

MKM

M: Movie, D: Director,
A: Actor, K: Keyword

ACM

PAP, PSP,
PcPAP, PcPSP,
PrPAP, PrPSP,

PTP

P: Paper, A: Author,
S: Subject, T: Term,
c: citation relation,
r: reference relation

Freebase

BB, BFB,
BLMB, BPB,
BPSB, BOFB,

BUB

B: Book, F: Film,
L: Location, M: Music,

P: Person, S: Sport,
O: Organization,

U: bUsiness

LastFM
UU, UAU,

UATAU, AUA,
ATA, AUUA

U: User, A: Artist,
T: Tag

PubMed DD, DGGD,
DCCD, DSSD

D: Disease, G: Gene,
C: Chemical, S: Species

A.7. Meta-paths Used in Baselines

We provide the meta-paths used in baselines in Table 14,
which are widely adopted in (Lv et al., 2021; Fu et al., 2020;
Wang et al., 2019d).

A.8. Proof of Theorem 4.1

Proof. The indication vector for the i-th CC is denoted by
1(i) ∈ Rn. This vector indicates whether a node is in the
maximal connected component CCi, i.e.,

1
(i)
j =

{
1, vj ∈ CCi
0, vj ̸∈ CCi (17)

If a graph has no bipartite components, the eigenvalues
are all in [0,2) (Chung, 1997). The eigenspace of Lrw
corresponding to eigenvalue 0 is spanned by {1(i)}ki=1 (von
Luxburg, 2007). For α ∈ (0, 1], the eigenvalues of (I −
αLrw) fall into (-1,1], and the eigenspace of eigenvalue 1 is
spanned by {1(i)}ki=1.

Denote (I − αLrw) = G = Pdiag{λ1, λ2, ..., λn}P⊤ as
the diagnolization of symetric matrix G, where λi is the
eigenvalues and the i-th column of matrix P is the corre-
sponding eigenvector. We compute

[lim
ℓ→+∞

(I − αLrw)
ℓ
X(t)]i

=[lim
ℓ→+∞

GℓX(t)]i

=[Pdiag{ lim
ℓ→+∞

λℓ1, lim
ℓ→+∞

λℓ2, ..., lim
ℓ→+∞

λℓn}P⊤X(t)]i

(18)
Since all eigenvalues λi ∈ (−1, 1], only the eigenvalues

equal to one could avoid shrinking to 0. Thus,

[Pdiag{ lim
ℓ→+∞

λℓ1, lim
ℓ→+∞

λℓ2, ..., lim
ℓ→+∞

λℓn}P⊤X(t)]i

=

n∑
j=1

n∑
o=1

(lim
ℓ→+∞

λℓo)PioPjox
(t)
j

=

n∑
j=1

∑
1≤o≤n,
λo=1

PioPjox
(t)
j

(19)
Since the eigenspace of matrix G corresponding to eigen-
value 1 are spanned by {1(i)}ki=1 (von Luxburg, 2007), and
all of the eigenvectors within the matrix P ’s columns are
orthogonal to each other, we can see that each column P:,o

corresponding to eigenvalue 1 (the count of this kind of
vectors is equal to k) will be one of the vectors in the set
{ 1√

|CCi|
· 1(i)}ki=1. These k vectors all have 2-norm equal

to 1, where |CCi| is the size of the i-th CC. Thus if λo = 1,
P:,o is one of the vectors in set { 1√

|CCi|
1(i)}ki=1. Then

PioPjo = 1
|cc(i)| ⇐⇒ vj ∈ cc(i) (node vi and node vj

in the same CC), where |cc(i)| is the size of the CC which
node i is in, otherwise PioPjo = 0. Therefore,

[lim
ℓ→+∞

GℓX(t)]i =

n∑
j=1

∑
1≤o≤n,
λo=1

PioPjox
(t)
j

=
∑

vj∈cc(i)

1

|cc(i)|x
(t)
j .

(20)

Since only nodes with type t have non-zero features, Eq. 20
is re-written as:

[lim
ℓ→+∞

GℓX(t)]i =
∑

vj∈cc(i)

1

|cc(i)|x
(t)
j

=
∑

vj∈cc(i),

ϕ(vj)=t

1

|cc(i)|x
(t)
j .

(21)

14

