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ABSTRACT

Early detection of cancer can help improve patient progno-
sis by early intervention. Head and neck cancer is diagnosed
in specialist centres after a surgical biopsy, however, there is
a potential for these to be missed leading to delayed diag-
nosis. To overcome these challenges, we present an attention
based pipeline that identifies suspected lesions, segments, and
classifies them as non-dysplastic, dysplastic and cancerous le-
sions. We propose (a) a vision transformer based Mask R-
CNN network for lesion detection and segmentation of clini-
cal images, and (b) Multiple Instance Learning (MIL) based
scheme for classification. Current results show that the seg-
mentation model produces segmentation masks and bounding
boxes with up to 82% overlap accuracy score on unseen ex-
ternal test data and surpassing reviewed segmentation bench-
marks. Next, a classification F1-score of 85% on the internal
cohort test set. An app has been developed to perform lesion
segmentation taken via a smart device. Future work involves
employing endoscopic video data for precise early detection
and prognosis.

Index Terms— Cancer early detection, deep learning,
segmentation, classification, head and neck cancer, dysplasia.

1. INTRODUCTION

Early detection of cancer can help boost patient survival as
well as reduce treatment cost and duration [1]. One of the
commonest cancers is head and neck cancer, ranked as 8" in
the UK [2] and 7*" globally [3], with rising frequency and
poor prognosis. In the UK alone, about 12,000 cases are
recorded yearly, with a striking fact that between 46% and
88% are preventable, partly through early detection of “po-
tentially malignant” conditions [2].

This is where Al can play a pivotal role, i.e., in the
early detection of head and neck cancer, e.g., Oral Cavity
Squamous Cell Carcinoma (OSCC), by identifying common
pre-malignant conditions such as Oral Epithelial Dysplasia
(OED) in clinical images [4]. In a general practitioner ap-
pointment, an OED lesion can be identified via its visual
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features including colour, texture, and shape. Such screen-
ing can be followed up by a specialist appointment to verify
symptoms and malignancies with a biopsy. In this context,
Deep Learning (DL) can speed up the triage and referral in
either an invasive or non-invasive manner: (a) by processing
clinical images taken by a GP or a dentist during a regular
check-up [3]; or (b) by analysing Whole Slide Images (WSIs)
taken via biopsies of the lesion tissue, which is considered
the gold standard, providing ever increasing reliability and
breadth of available information [6]]; The former approach
overcomes the limitations of an invasive biopsy by promising
a quick pipeline that can identify and classify the lesion at
an early stage, reducing waiting time and associated costs for
collecting invasive biopsies.

Hitherto, a sparse amount of studies have been dedicated
to OED detection, segmentation, and classification using
clinical images compared to the computational pathology ap-
proach [7]. In terms of segmentation, Anantharaman et al.
[8] utilise Mask R-CNN to segment oral cancer lesions from
an online-sourced dataset of forty images annotated by the
authors, with an average Dice score of 68.3%. Also, Tanriver
et al. compiled 684 images to create a detection, segmen-
tation, and classification system of head and neck cancer.
A Dice score of 86.0% using a U-Net model is obtained
and a classification Fl-score of 86.0% is achieved using an
EffcientNet-B4 network.

One of the most prominent contributions in lesion classi-
fication is Fu et al. [[9]], where a dataset of 44,409 clinical im-
ages are collected, pre-processed, augmented, and employed
to fine-tune a DenseNet network. Binary classification results
of OSCC results include an AUC of 98.3%. It is notewor-
thy to mention that the a mobile app based implementation is
presented as part of the evaluation study.

However, many of the studies only look at cancer detec-
tion, differentiating it from non-cancer, which is a simpler and
easier task and unfortunately do not take into account OED or
potentially malignant lesions.

Therefore, in this paper, we present an OED detection,
segmentation, and classification system that involves clinical
images taken from multiple centres. Using a novel, annotated
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Fig. 1. Block diagram of the proposed (A) vision transformer
based segmentation and (B) VGG-16 based Multiple Instance
Learning (MIL) classification pipeline.

OED clinical image dataset from a partner university hospi-

tal, including more than 230 cases from an internal cohort and

about 400 images from two external datasets, the main tech-
nical contributions are as follows:

1. This is the first work to introduce attention based architec-
tures into an OED detection, segmentation, and classifica-
tion pipeline in clinical images:

(a) an improved architecture based upon Mask R-CNN with
vision transformers to detect and segment OED and can-
cerous lesions that is robust to varying image resolutions
and image acquisition environments; and

(b) lesion classification using batch based Multiple Instance
Learning (MIL) with VGG-16 to grade lesions as non-
dysplastic, dysplastic, and cancerous.

2. Creating an app that showcases the segmentation model in
action with the ability for a practitioner to upload images
for OED lesion segmentation.

The remainder of this paper is organised as follows. Sec-
tion |Z| presents an overview of the detection, segmentation,
and classification system as well as the employed dataset.
Section [3] reports results and discusses limitations of the
model. Section [4] concludes the paper with a blueprint for
future work.

2. METHODS

In this section, we describe the proposed OED early detection
system in three parts: (a) clinical image dataset, (b) detection
and segmentation, and (c) classification. An overview of the
proposed system is shown in Fig. [T}

2.1. Clinical Image Dataset

In collaboration with University of Sheffield, clinical image
data was collected from a cohort of 280 cases at the School of
Clinical Dentistry. The clinical image based OED dataset is
comprised of the followed classes: (a) cancerous (35 cases),
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Fig. 2. Sample of clinical oral photographs from the Sheffield
cohort representing non-dysplastic (green), dysplastic (or-
ange) and cancerous (red) lesions. Expert annotations of af-
fected lesions are shown in red on each image.

(b) dysplastic (160 cases), and (c) non-dysplastic (85 cases).
The data has been obtained as part of a research project con-
ducted at the said institution with non-OED, OED, and OSCC
patients, where all collected images are biopsy proven to ob-
tain ground truth diagnosis. All cases are anonymised, with
an average image resolution of 5,247 x 3,567 px. Fig. [2]
shows a sample of the cohort data.

For further model optimisation and testing, two exter-
nal datasets are employed. Firstly, Barot et al.’s oral cancer
dataset includes (a) cancerous (87 cases) and non-cancerous
(44 cases), which is used for training. Secondly, Chan-
drashekar et al.’s oral cancer dataset includes (a) 158 cases
cancerous, and (b) non-dysplastic (142 cases) used for testing.
Image size varies between 93x96 px and 9,248 %6, 936 px,
with an average of 756x 731 px. It is noteworthy to mention
the diversity of image resolutions of the collected data, which
helps train the model for further robustness against different
input image sizes. The dataset is used according to Creative
Commons CC BY 4.0 license. Following image loading, a
pre-processing stage is carried out to prepare the data for
further analysis, which involves different data augmentation
operations. Such operations include horizontal flip, random
rotation, Gaussian blur, random brightness contrast, and ran-
dom hue saturation shift. Also, if the image is has a size more
than 512x512 px it is downsampled by a factor of three in
order to speed up training. For the classification task, the
internal cohort is split into 70%, 20%, and 10% for training,
validation, and testing respectively.

2.2. Lesion Detection and Segmentation

In order to segment OED lesions from a given clinical image,
the first step is to identify the correct Region of Interest (ROI).
Following this, segmentation is performed, where a mask is
drawn around the border of the lesion, producing a bounding
box and a segmentation mask.

In this work, an enhanced attention based Mask R-CNN
is employed to perform both the detection and segmenta-
tion tasks. Developed by Meta’s Fundamental Al Research
(FAIR) in 2017, Mask R-CNN is an advancement over Faster
R-CNN, and can be used to perform instance segmentation
using region proposals. The model extracts features using
a Convolutional Neural Network (CNN) [8] that are turned



into bounding box region proposals through the Regional
Proposal Network. Then an ROI Align network performs
the segmentation task, producing a proposed segmentation
for each extracted bounding box using a Fully Convolutional
Network (FCN). The loss function of Mask R-CNN is defined

in ().
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where L is classification loss defined as the cross en-
tropy loss [10], and the regression bounding box loss is de-
fined as (Z). The the revised mask loss Ly, is defined in
(3) as the Dice loss function [11], replacing the default bi-
nary cross entropy loss, where p is the predicted probability
at a given pixel where p; is the predicted probability of an-
chor 7 being a ROI; pj is the ground truth label for ¢ being a
ROI; ¢; is the predicted four parameterised coordinates; ¢ is
the ground truth coordinates; Vpox is @ normalisation term; A
is a balancing parameter; and L{™°" is the smooth L1 loss
defined as (@). We have employed the Dice loss due to its
robustness in handling class imbalance and its sensitivity in
detecting small ROIs, which are evident in the dataset.

Moreover, an updated version of Mask R-CNN introduced
in [12] involves the use of vision transformers. The networks
employs non-overlapping windowed attention in order to op-
timise for computational time and memory (as shown in Fig.
[TA). Thus, the upgraded transformer based Mask R-CNN can
achieve up to 4% improvement in terms of average precision.
The novelty of the proposed approach is the use of attention
mechanism plus enhancing the architecture by using the Dice
loss function to improve ROI detection and segmentation per-
formance in order to produce accurate and reliable segmenta-
tion on unseen data. In terms of parameters, a learning rate
of 0.0001 and a weight decay Of 0.0005 are employed in fine-
tuning the network on a ResNet-50 Feature Pyramid Network
(FPN) backbone.

2.3. Lesion Classification

After segmentation, the purpose of the classification task is to
process the lesion patches and label them into non-dysplastic,
dysplastic, and cancerous lesions. To distinguish between
these three class labels, it is important to identify features
such as texture and colour, exemplified in Fig. Classi-
fication is carried out using off-the-shelf VGG-16 [[13]] and
DenseNet [[14] models. Those models were used with varying

depth and width of layers in the classification head. Trained
weights from ImageNet [[15] were used to initialise the mod-
els and then fully trained on clinical images. We take advan-
tage of the MIL technique by dividing our dataset into two
broad groups/bags: cancerous (containing dysplastic (orange)
and cancerous (red) lesions) and non-cancerous (containing
non-dysplastic lesions), as shown in Fig. [2|

Based on MIL, the network architecture learns from the
backpropagation of two loss functions. First, L; compares
predicted probabilities for each class N of every image in the
bag B. As there are three classes, categorical cross-entropy is
used as in ([©).
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Second, binary cross entropy is defined in (6)). The pre-
dicted probability for a bag Z; is computed by combining the
predictions ¥/;;. For positive cases, i.e., the cancerous bag, av-
erage metrics are computed by adding predictions of dysplas-
tic and cancerous, whereas for a negative bag, the average is
computed between predictions of non-dysplastic items in the
bag. shows how the probabilities for the positive class are
computed, as the number of classes N = 2, i.e., the dysplastic
and cancerous classes.

For training, the batch size is set to 32 patches of size
128128 px and a bag size of 4. At first, VGG-16 [13] and
DenseNet [14]] are fine-tuned on the clinical image patches
and transfer learning is incorporated while training the MIL
counterparts i.e., VGG-16 MIL (as shown in Fig. [IB) and
DenseNet-MIL. This is done by initiating trainable weights
from clinical image training and further build-on with the
loss functions. The novelty of the classification approach lies
within (a) MIL infused training; (b) the newly created layer to
merge probabilities for the bags; and (c) the transfer learning
based approach that fine-tunes the off-the-shelf model on this
dataset using its trainable weights to further improve results
with MIL training.

. 1
ZiZE

M

3. RESULTS AND DISCUSSION

In this section, the results of the proposed detection, seg-
mentation, and classification pipelines are reported. Table
enumerates the evaluation results of the segmentation system.
As described in Section [2.1] the enhanced model is evaluated



with the default loss function along with the improved archi-
tecture Dice loss function, where the latter produced an aver-
age Dice score (DICE = %) of 57.1% and an overlap
accuracy (i.e., the accuracy of bounding box detection at 25%
overlap) of 82.4% on the unseen test dataset.

It is worthy to mention that test subset comprises images
of varying resolutions (e.g., small to high image size) and
have been collected using different capture devices, lighting
conditions, camera angles, hospital locations, and patient de-
mographics, which provides a much needed heterogeneity in
evaluating such models. In order to further illustrate the seg-
mentation model capabilities, an online web application is de-
veloped using Gradi(ﬂ The reader can select a sample or up-
load an image to run the model and predict the lesion bound-
ing box and mask. Further, the results of the model are bench-
marked against related work in Table[2] In order to establish a
fair comparison, the benchmarking was carried out using the
same dataset and using the default parameters provided for
each compared model.

Moreover, we evaluate our classification model, with a
focus on the accurate grading of clinical images and mitigat-
ing false negatives. The Fl-score is reported in the bar plot
in Fig. |§| for VGG-16, VGG-16 MIL (ours), DenseNet and
DenseNet MIL (ours), where MIL is the network architecture
shown in Fig. [TB. F1-score [17] is plotted individually for all
classes and an overall score is computed based on the test set
as shown in Fig. 3] Looking at both individial classes and
overall performance, our MIL model with VGG-16 achieves
the highest overall Fl-score of 85.0% and also for the class
label dysplastic, which is 88.0%.

To compare the evaluated models’ performances, false
positive and false negative output is discussed. When visu-
alising predicted class scores, as shown in Fig. [3] a greater
number of mislabels can be seen in the non-dysplastic class,
mainly on the boundaries and less on the lesion. It is mainly
due to fewer non-dysplastic images in the used dataset. An-
other reason for misclassification is the unlabelled back-
ground that is covered within the lesion while cropping the
bounding box. The dysplastic lesion is predicted with 100%
accuracy and few mis-labels are encountered in the cancer-
ous lesion. For example, the VGG-16 MIL model achieved a

Thttps://huggingface.co/spaces/alsalemi/oed

Table 1. Segmentation evaluation metrics

Model Mask Dice | BBox F1 | BBox Overlap Accuracy
Mask R-CNN + Dice Loss 55.2% 60.5% 76.1%
Transformer Mask R-CNN 52.6% 62.9% 76.4%
Transformer Mask R-CNN + Dice Loss 57.1% 69.2% 82.4%

Table 2. Benchmarking segmentation with related work

F1-Score

0.8 0.88 0.81 0.8 0.75 0.77 0.77
0.6 0.61

0.85 .75 0.87 0.82 0.850.84

0.72

Overall F1 Score
I DenseNet MIL

Cancerous
DenseNet

Non-Dysplastic
VGG-16

Dysplastic
B VGG-16 MIL

| Dysplastic |

| Cancerous |

|Non-Dysplastic |

Fig. 3. Top: Fl-score for VGG-16, VGG-16 MIL, DenseNet
and DenseNet MIL, where MIL is the network architecture
shown in Fig. [TB. Bottom: Sample images classified by the
VGG-16 MIL model.

sensitivity of 100%, 99.0%, and 87.0% for dysplastic, cancer-
ous, and non-dysplastic classes respectively, and a specificity
of 98.0%, 99.0%, and 97.0% for dysplastic, cancerous, and
non-dysplastic classes respectively.

The current pipeline harbours some limitations, e.g., the
lack of a prognosis functionality, which will be addressed in
future work. Once the limitations are addressed and perfor-
mance is improved, the work can be tested in a clinical setting
to verify its efficacy. The code used is publicly availableﬂ

4. CONCLUSIONS

In this paper, a novel attention based OED detection, seg-
mentation, and classification pipeline is proposed, taking ad-
vantage of a multi-source dataset. As a step towards early
detection of head and neck cancer, the improved attention
based Mask R-CNN segmentation architecture produces up
to 82.0% overlap accuracy score, while the MIL classifica-
tion system achieves up to 85.0% F1-score on the internal
cohort validation set. Future work involves addressing the
aforementioned limitations as an integrated pipeline, and em-
ploying endoscopic video data for automated early detection

Benchmarking Algorithm Used In Mask Dice .
Mask R-CNN i8] 52.1% and prognosis.
U-Net [16] 28.5%

Transformer Mask R-CNN + Dice Loss | Proposed Pipeline 57.1%

2https://github.com/Precision-Vision/oed-classification-segmentation
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