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We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity.
Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system
exhibits an interaction-enhanced superradiance, with vanishing critical atom-cavity coupling rates at a discrete
set of interaction strengths. We find that, while the phenomenon can be analytically understood in the case of a
constant all-to-all interaction, the enhanced superradiance persists under typical experimental parameters with
spatially dependent interactions, but at modified critical interaction strengths. The diverging susceptibility at
these critical points is captured by emergent quantum Rabi models, each of which comprises a pair of collective
atomic states with different numbers of atomic excitations. These collective states become degenerate at the
critical interaction strengths, resulting in a superradiant phase for an arbitrarily small atom-cavity coupling.

Introduction. Combining strong long-range interac-
tion, flexible spatial configuration, and large polarizability,
Rydberg-atom arrays are emerging as an increasingly impor-
tant platform for quantum simulation and computation [1–
4]. During the past decade, a vast range of intriguing many-
body phenomena have been simulated and investigated in
Rydberg-atom arrays, including magnetism and dynamics in
quantum spin models [5–9], symmetry protected topologi-
cal phases [10], coherent excitation transfer [11–13], as well
as emergent gauge field [14–17] and many-body localiza-
tion [18, 19]. Furthermore, the recent demonstration of error
suppression using logical qubits on reconfigurable Rydberg-
atom arrays represents a seminal first step toward an era of
error-corrected intermediate-size quantum systems [20]. On
the other hand, while the Rydberg states are relatively long-
lived, dissipation in Rydberg atoms is further tunable through
a variety of means, including laser-induced loss, microwave
dressing, or coupling to a cavity. As such, Rydberg atoms
are also ideal for the study of dissipative many-body dynam-
ics [21–27]. A particularly interesting configuration is the
atom-cavity hybrid system involving Rydberg states [28, 29],
where the cavity-induced long-range interatomic interactions
and the back action of cavity dissipation conspire with the Ry-
dberg interactions, leading to exotic non-equilibrium dynam-
ics.

For atoms coupled to a cavity, an outstanding phenomenon
is the superradiant phase transition, which can be traced back
to the study of the Dicke model half a century ago [30, 31]. In
the Dicke model, an ensemble of two-level, non-interacting
atoms are coupled to a single-mode electromagnetic field,
corresponding to the atom-cavity coupling in the aforemen-
tioned hybrid system. A superradiant phase transition oc-
curs beyond a critical atom-cavity coupling strength, wherein
the cavity field becomes macroscopically populated [31–34].
While the superradiant transition also arises in open quantum
systems [35–37], the advent of ultracold quantum gases fur-
ther enriches its study [38–42]. In particular, the transition
was observed in a Bose-Einstein condensate of atoms coupled
to a dissipative cavity field, where, driven by the collective

𝑉dd

𝑥

𝑧

𝜅

ۧ|𝑠

ۧ|𝑝

𝜔𝑐

FIG. 1. Schematic illustration of Rydberg atoms in a microwave cav-
ity. The green stripes indicate the optical tweezers, used for trapping
and arranging the atom array. The dissipative cavity, characterized by
a decay rate κ , off-resonantly couples two Rydberg sates |s⟩ ↔ |p⟩.
Microscopic illustration of the resonant dipole-dipole interaction Vdd
is shown to the right.

light-matter interaction, the macroscopic population of the
steady-state cavity field is accompanied by a self-organized
density pattern in the condensate [43]. By contrast, a Fermi-
surface-nesting-enhanced superradiance was predicted and
subsequently observed for degenerate Fermi gases in a cav-
ity [44]. In these studies, the interatomic interactions are weak
at best. Whether atomic interactions, particularly the long-
range interactions of Rydberg states, can have a significant
impact on the steady-state superradiant transition, remains to
be explored.

In this work, we reveal a Rydberg-interaction-enhanced su-
perradiance in an array of atoms with microwave-cavity as-
sisted Rydberg-state coupling. By studying the steady-state
superradiance of the atom-cavity hybrid system, we show that
the critical atom-cavity coupling rate for the superradiant tran-
sition vanishes at a series of discrete interaction strengths,
suggesting divergent susceptibility at these critical points. In-
voking a simplified model with a constant all-to-all interac-
tion, we derive an analytic expression for the critical points,
and find that the divergence of susceptibility thereof coincides
with the two-fold degeneracies of symmetric collective states
in the subspaces with n and n + 1 excitations, respectively.
We then demonstrate, through numerical simulations, that the
interaction-enhanced superradiance persists under typical ex-
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perimental conditions, where both the Van der Waals interac-
tion and the spatial dependence of these interactions are con-
sidered. Compared to the constant-interaction case, the criti-
cal interaction strengths are modified, but a similar set of de-
generate collective states also play a key role. Notably, these
collective states are no longer symmetric due to the spatial de-
pendence of the interaction potential. In either case, we show
that the enhanced superradiance near a critical point can be
captured by an emergent quantum Rabi model, which com-
prises the relevant near-degenerate collective states.

System configuration. We consider a one dimensional
Rydberg-atom array with a lattice constant R0, confined by
optical tweezers in a single-mode microwave cavity along the
horizontal x direction, as illustrated in Fig. 1. For each atom,
we consider two Rydberg states, denoted respectively as |s⟩
and |p⟩. The Rydberg states are coupled by the cavity mode
characterized by frequency ωc and wavelength λc. In the case
that R0 is much smaller than λc, the cavity field is identical
for all atoms, leading to a homogeneous atom-cavity cou-
pling rate G. The Rydberg atoms interact through the resonant
dipole interaction V

(
R jk

)
= C3/R3

jk, where C3 is the dipole-
dipole interaction parameter, and R jk is the distance between
the j th and k th atoms along the chain. Note that, although the
Van der Waals interactions become stronger than the dipole
interaction at short interatomic distances, they do not qual-
itatively modify the interaction-enhanced superradiance (see
later discussions). We therefore neglect the Van der Waals
interactions for now.

We start by studying the simplified case where the dipole-
dipole interaction is approximated by a constant all-to-all in-
teraction V

(
R jk

)
=Vdd. The simplified atom-cavity coupling

Hamiltonian is a generalized Dicke model with dipole inter-
actions (we take h̄ = 1) [35, 45–47]

Ĥ = Ĥatom +ωcâ†â+

√
2
N
G

N

∑
j=1

(
â† + â

)
σ̂

x
j , (1)

where the atomic Hamiltonian

Ĥatom =
ωa

2

N

∑
j=1

σ̂
z
j + ∑

j<k
Vdd

(
σ̂
−
j σ̂

+
k +H.c.

)
. (2)

Here N and ωa are the total atom number and the energy-level
difference between the two Rydberg states, respectively, â and
â† are the annihilation and creation operators of the cavity
photon, and σ̂

±
j = σ̂ x

j ± iσ̂ y
j , and σ̂

β

j (β = x,y,z) are the Pauli
operators for the j th atom, defined through σ̂

+
j = |p⟩⟨s| j,

σ̂
−
j = |s⟩⟨p| j, σ̂

z
j = |p⟩⟨p| j − |s⟩⟨s| j, with |p⟩ j and |s⟩ j in-

dicating the Rydberg states of the j th atom.
Importantly, we consider an off-resonant coupling between

the microwave cavity field and the inter-Rydberg-state transi-
tion |s⟩ ↔ |p⟩, so that the counter-rotating terms are retained
in Eq. (1). Further, since the dependence of the Hamiltonian
on the atomic degrees of freedom is fully accounted for by the
collective spin operators Ŝβ = ∑ j σ̂

β

j /2 and Ŝ± = ∑ j σ̂
±
j , we

can rewrite Hamiltonian (1) as

Ĥ = ωaŜz +VddŜ+Ŝ−+ωcâ†â+2

√
2
N
G
(
â† + â

)
Ŝx. (3)

In a realistic system, dissipation is inevitable through its
coupling to the environment. For our setup, the lifetime of the
Rydberg states are enhanced as the cavity mode suppresses
the effects of the blackbody radiation on the Rydberg states.
We further assume a negligible spontaneous decay rate from
the Rydberg states |p⟩ and |s⟩ to the electronic ground state, so
that the dominant dissipation channel is the cavity decay. The
dynamics of the atom-cavity hybrid system is then governed
by the Lindblad master equation

˙̂ρ =−i
[
Ĥ, ρ̂

]
+κ

(
2âρ̂ â† − â†âρ̂ − ρ̂ â†â

)
, (4)

where ρ̂ is the density matrix containing both the atomic and
cavity-photon degrees of freedom, and κ is the cavity decay
rate.

Interaction-enhanced superradiance. We focus on the su-
perradiant transition in the steady state of the atom-cavity hy-
brid system. Adopting a mean-field approximation on the cav-
ity field, we replace â with the expectation value α = ⟨â⟩,
which, under the stationary condition ∂α/∂ t = 0, is given by

α =
−i2

√
2
N G

iωc +κ

〈
Ŝx〉 . (5)

The steady state is solved self-consistently by numerically di-
agonalizing Hamiltonian (3) while enforcing Eq. (5).

In Fig. 2(a), we show the numerically calculated steady-
state cavity photon number ⟨â†â⟩ = |α|2 (solid curves) with
increasing atom-cavity coupling strength G, for an array of
N = 6 atoms. Under most of the interaction strengths, as well
as in the non-interacting case, a superradiant transition can be
identified at a critical Gc, across which the cavity field starts to
become finite. Importantly, the sign and strength of the Ryd-
berg interaction Vdd have a significant impact on the superradi-
ant transition. As a dramatic example, at Vdd =−1/3, the criti-
cal Gc vanishes—the system becomes superradiant even for an
arbitrarily small atom-cavity coupling rate. The mean-field re-
sults above are consistent with those from a full-quantum cal-
culation [see dashed curves in Fig. 2(a)], for which we evolve
the Lindblad equation (4) for a sufficiently long time so that
the system is close to the steady state. While the superradiant
phase transitions from the full-quantum treatment are not as
sharp compared to the mean-field results, at the critical value
of Vdd =−1/3, both calculations indicate a vanishing Gc.

The overall interaction dependence of the superradiant tran-
sition is more transparent in Fig. 2(b)(c), where the color con-
tour respectively indicates the steady-state cavity photon num-
ber and the collective atom correlation ⟨Ŝx⟩, on the 1/Vdd–
G plane. Consistent with the collective nature of superra-
diance, the macroscopic population of the cavity field is al-
ways accompanied by the emergence of collective atomic cor-
relations. Furthermore, we find that repulsive interactions
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FIG. 2. (a) The steady-state cavity photon number as a function of the
atom-cavity coupling rate for different interaction strengths. Solid
lines represent results under the mean-field approximation, while
dash-dotted lines are obtained by evolving the quantum master equa-
tion (4) for sufficiently long times, starting from the initial direct-
product state |ss . . .s⟩⊗ |0⟩ of the atom-cavity hybrid system. Here
|0⟩ is the vacuum state of cavity photons. Different colors corre-
spond to different interaction strengths. (b)(c) Steady-state phase di-
agrams, characterized by the cavity photon number and the collective
atom correlation Ŝx, respectively. Here “SR” stands for the superra-
diant phase, and “NP” stands for the normal phase. (d) Impact of
the cavity dissipation on the critical atom-cavity coupling rate of the
superradiant transition. Different colors and line shapes correspond
to different cavity decay rates. For all calculations, we take ωa as the
unit of energy, with other parameters given by N = 6, ωc = 0.75, and
κ = 0.25 [for (a)(b)(c)].

(Vdd > 0) tend to suppress the transition, leading to an ever
increasing Gc for larger Vdd. By contrast, under attractive
interactions (Vdd < 0), Gc exhibits an undulating pattern. It
vanishes at some discrete integer values of 1/V c

dd, indicat-
ing interaction-enhanced superradiance, as first observed in
Fig. 2(a). Furthermore, while the critical coupling strength
Gc generally depends on the cavity-decay rate κ , the critical
interaction strengths V c

dd where Gc vanishes are independent
of the cavity decay [see Fig. 2(d)]. While such independence
has potential significance for engineering superradiant transi-
tions in bad cavities, it also strongly suggests an underlying
mechanism hinged upon the atomic correlations.

An emergent quantum Rabi model. In the standard Dicke
model, the superradiant transition can be analyzed by divid-
ing the Hilbert space into subspaces with different numbers of
atomic excitations, and the transition is found to be dominated
by symmetric states in each subspace [48, 49]. Of particular
importance are the ground state and the first excited state, the
former with no atomic excitations and the latter a symmetric
superposition of all instances of a single excitation. The criti-
cal atom-cavity coupling rate of the superradiant transition is
related to the energy difference between these two states. Now

the addition of Rydberg interactions would modify the spec-
tral outlook of the collective atomic excitations, giving rise to
not only level shifts but also degeneracies in the low-lying
collective states. As we show below, it is this interaction-
induced low-energy degeneracy that is directly responsible for
the interaction-enhanced superradiance.

With the physical understanding above, we define the states
{|ψn⟩}, which are the symmetric superpositions of all possible
n-atom excitations, with

|ψn⟩=
1√
Cn

N
∑

{ j...k}
|s . . . p j . . . pk . . .s⟩, (6)

where { j . . .k} in the summation denotes all possible combi-
nations of n excitation locations. In the absence of the cav-
ity field, the corresponding eigenenergies for these collective
states are ωn = −

(N
2 −n

)
ωa + n(N −n)Vdd. As illustrated

in Fig. 3(a), with increasing attractive interaction Vdd, the en-
ergies of some symmetric excited states shift downward sig-
nificantly, and the ground state becomes degenerate with at a
discrete set of interaction strengths

V c
dd(n) =− ωa

N − (2n+1)
, (7)

where n ≤ N/2. More specifically, at each of the critical inter-
action strength V c

dd(n), the two-fold degenerate ground-state
subspace is spanned by |ψn⟩ and |ψn+1⟩. It follows that the
superradiant transition near V c

dd(n) is dominated by the two
near-degenerate states |ψn⟩ and |ψn+1⟩. To quantitatively con-
firm this point, we divide the overall range of 1/Vdd into dif-
ferent regions, centered at the critical points with vanishing
Gc. These regions are separated by the vertical dotted lines
in Fig. 3(b). As the background of Fig. 3(b), we show the
color contour of the overlap P(n,n+1) between the steady state
(denoted as |ψs⟩) and the ground-state manifold at the critical
V c

dd of the corresponding region. For instance, we consider
{|ψ0⟩, |ψ1⟩} in region I, {|ψ1⟩, |ψ2⟩} in II, {|ψ2⟩, |ψ3⟩} in III,
and P(n,n+1) = |⟨ψn|ψs⟩|2 + |⟨ψn+1|ψs⟩|2 in the correspond-
ing region. Apparently, P(n,n+1) is close to unity in the broad
vicinity of the superradiant phase transition.

The observation above inspires us to examine an emergent
quantum Rabi model

Ĥ(n,n+1)
eff =

∆n

2
(|ψn+1⟩⟨ψn+1|− |ψn⟩⟨ψn|)+ωcâ†â

+

√
2
N
Gηn

(
â† + â

)
(|ψn+1⟩⟨ψn|+H.c.) , (8)

where ∆n = ωn+1 − ωn is the energy-level difference be-
tween the lowest-lying states |ψn⟩ and |ψn+1⟩, and ηn =
⟨ψn+1|2Ŝx |ψn⟩ =

√
(N −n)(n+1) is the modifier for the

atom-cavity coupling in the symmetric-state subspace. The
corresponding superradiant tranition point for the quantum
Rabi model is analytically given as [50]

Gc =
1

2ηn

√
N |∆n|

2
ω2

c +κ2

ωc
. (9)
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FIG. 3. (a) Schematic illustration of the energy shift and degenera-
cies of different symmetric states (bold lines) with different interac-
tion strengths. The left subplot illustrates the energy levels of the
Dicke model with Vdd = 0. From bottom to top, the colored bold
lines correspond to subspaces with n = 0,1,2,3, respectively, where
collective states in the same subspace have the same energy. The sub-
plot on the right illustrates the energy levels at the critical interaction
strengths 1/V c

dd =−5,−3,−1 (left, middle, right), respectively. Here
the bold lines indicate the energy levels of the symmetric states, their
colors indicate different excitation numbers, consistent with those in
the case of Vdd = 0 (left subplot). The thin grey lines denote non-
symmetric collective states. (b) The critical atom-cavity coupling
rate for the superradiant transition with varying interaction strengths,
calculated from the effective quantum Rabi models (dashed lines)
and the full Hamiltonian (solid lines), respectively (see main text for
detailed discussion). The three regions (marked with I, II, and III),
separated by the vertical dotted lines at 1/Vdd = −4,−2, are cen-
tered at the critical interaction strengths 1/V c

dd = −5,−3,−1. The
color contour in the background represents the overlap P(n,n+1) be-
tween the steady state and the degenerate ground-state manifold at
the central critical interaction strength V c

dd of the corresponding re-
gion. Other parameters and the unit of energy are the same as those
in Fig. 2(b)(c).

Naturally, when the states |ψn⟩ and |ψn+1⟩ become degenerate
at the critical interaction strengths, we have ∆n = 0 and Gc = 0,
meaning a divergent susceptibility and superradiance for an
arbitrarily small atom-cavity coupling.

To further illustrate the utility of the emergent quantum
Rabi model (8), we examine the effectiveness of the model
across the critical points. Again, we apply quantum Rabi mod-
els associated with the central critical point of each region.
Specifically, we apply Ĥ(0,1)

eff in region I, Ĥ(1,2)
eff in region II,

and Ĥ(2,3)
eff in region III. Following Eq. (9), the superradiant

transition points are given by the dashed curves in Fig. 3(b).
The phase boundaries from the quantum Rabi models agree
well with those from the full Hamiltonian (3), when the inter-
action parameter is close to V c

dd. The agreement deteriorates
near the region boundaries, where we expect high-lying sym-
metric excitations to play a non-negligible role.
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FIG. 4. (a) Energies ωn of the low-lying collective states |ψn⟩ within
the n-excitation subspace. Locations of degeneracy are highlighted
with in dashed yellow circles. (b) The critical atom-cavity coupling
rate for the superradiant transition with varying interaction strengths,
is calculated from the effective quantum Rabi models (dashed lines)
and the full Hamiltonian (solid lines), respectively. The three regions
(marked with I, II, III,), separated by the vertical dotted lines, cor-
respond to regions where different collective states dominate. For
our calculations here, we take typical experimental parameters [52].
Specifically, we take the Rydberg states |60S1/2,m j = 1/2⟩ and
|60P1/2,m j = −1/2⟩ of 87Rb as |s⟩ and |p⟩, respectively. Accord-
ingly, C3/h̄ωa = −0.57 µm3, Cpp

6 /h̄ωa = −11.48 µm6, Css
6 /h̄ωa =

51.10 µm6, Csp
6 /h̄ωa = −1.00 µm6, and N = 6, ωc/ωa = 0.75,

κ/ωa = 0.25, with ωa = 16.7 GHz.

Realistic interaction potentials. Under typical experimen-
tal conditions, two types of interactions coexist that differ in
character: (i) the resonant dipole-dipole interactions consid-
ered above; (ii) the off-resonant Van der Waals interactions
between the Rydberg states [10, 51–53]. The two types of
interactions also differ in their spatial dependence, with the
former ∼ 1/R3

jk and the latter ∼ 1/R6
jk. As a result, the full

atomic Hamiltonian is given by

Ĥatom =
ωa

2

N

∑
j=1

σ̂
z
j + ∑

j<k

Vdd

| j− k|3
(

σ̂
−
j σ̂

+
k +H.c.

)
+ ĤVdW,

(10)
where Vdd =C3/R3

0, and

ĤVdW = ∑
j<k

[
Vpp

| j− k|6
P̂↑

j P̂↑
k +

Vss

| j− k|6
P̂↓

j P̂↓
k (11)

+
Vsp

| j− k|6
(

P̂↑
j P̂↓

k + P̂↓
j P̂↑

k

)]
. (12)

Here the Van der Waals interactions are characterized by
Vpp =Cpp

6 /R6
0, Vss =Css

6 /R6
0, and Vsp =Csp

6 /R6
0, with the pro-

jectors P̂↑/↓
j =

(
σ̂

z
j ±1

)
/2. In the following, we use the in-
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teratomic distance R0 to tune the different interaction terms in
a consistent manner.

In this case, the homogeneity of the configuration is broken,
and the symmetric-state picture above no longer applies. Nev-
ertheless, we find that the interaction-enhanced superradiance
persists, with vanishing Gc at discrete values of R0, which is
explicitly demonstrated in Fig. 4. The phenomenon is closely
related to the lowest-energy states in each n-excitation sub-
space. We define these states as |ψn⟩, and plot their energies in
Fig. 4(a). Interestingly, the locations of degenerate low-lying
collective states coincide with those of vanishing Gc. This
strongly suggests the applicability of the emergent quantum
Rabi models (8) near these critical points (with updated coef-
ficients ∆n and ηn). In Fig. 4(b), we show the resultant phase
boundaries under Eq. (9) as dashed curves, which are in good
agreement with the full mean-field calculations near the criti-
cal points (purple solid). Apparently, the interaction-enhanced
superradiance here is also due to the near degeneracy of the
low-lying collective states in the atomic sector.

Discussion. We show that interatomic interactions can dra-
matically enhance the superradiant phase transition for Ryd-
berg atoms in a dissipative cavity. Specifically, near a discrete
set of interaction strengths, the susceptibility of the system
diverges, and the steady state becomes superradiant for an ar-
bitrarily small atom-cavity coupling rate. The phenomenon is
attributed to the interaction-induced degeneracy of low-lying
collective atomic excitations, which allow for the application
of emergent quantum Rabi models near these critical points.

For future studies, it would be interesting to explore the im-
pact of interaction on the superradiant transitions for Rydberg
arrays in higher dimensions. Understanding such processes
can prove useful for the ongoing study of quantum computa-
tion and simulation with neutral-atom arrays.
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H. Ott, Phys. Rev. X 7, 021020 (2017).

[26] S. Helmrich, A. Arias, G. Lochead, T. M. Wintermantel, M.
Buchhold, S. Diehl, and S. Whitlock, Nature 577, 481 (2020).

[27] H. Li, K. Sun, and W. Yi, arXiv:2401.16894.
[28] X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and A.-

C. Ji, Phys. Rev. Lett. 110, 090402 (2013).
[29] D. Yan, Z.-H. Wang, C.-N. Ren, H. Gao, Y. Li, and J.-H. Wu,

Phys. Rev. A 91, 023813 (2015).
[30] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[31] K. Hepp and E. H. Lieb, Ann. Phys. 76, 360 (1973).
[32] Y. K. Wang and F. T. Hioe, Phys. Rev. A 7, 831 (1973).
[33] J. Larson and E. K. Irish, J. Phys. A: Math. Theor. 50, 174002

(2017).
[34] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre, Adv.

Quant. Techn. 2, 1800043 (2019).
[35] G. Chen, D. Zhao, and Z. Chen, J. Phys. B: At. Mol. Opt. Phys.

39, 3315 (2006).
[36] EmanueleG. Dalla. Torre, S. Diehl, M. D. Lukin, S. Sachdev,

and P. Strack, Phys. Rev. A 87, 023831 (2013).
[37] D. Fallas Padilla and H. Pu, Phys. Rev. A 108, 033706 (2023).
[38] D. Nagy, G. Kónya, G. Szirmai, and P. Domokos, Phys. Rev.

Lett. 104, 130401 (2010).
[39] D. Nagy, G. Szirmai, and P. Domokos, Phys. Rev. A 84, 043637

mailto:wyiz@ustc.edu.cn


6

(2011).
[40] Y. Chen, Z. Yu, and H. Zhai, Phys. Rev. Lett. 112, 143004

(2014).
[41] J. Keeling, M. J. Bhaseen, and B. D. Simons, Phys. Rev. Lett.

112, 143002 (2014).
[42] F. Piazza and P. Strack, Phys. Rev. Lett. 112, 143003 (2014).
[43] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature

464, 1301 (2010).
[44] X. Zhang, Y. Chen, Z. Wu, J. Wang, J. Fan, S. Deng, and H.

Wu, Science 373, 1359 (2021).
[45] S. V. Lawande, B. N. Jagatap, and R. R. Puri, J. Phys. B: Atom.

Mol. Phys. 18, 1711 (1985).
[46] F.-Q. Dou, Y.-Q. Lu, Y.-J. Wang, and J.-A. Sun, Phys. Rev. B

105, 115405 (2022).
[47] W. Zhang, S. Wang, C. Wu, and G. Wang, Phys. Rev. E 107,

054125 (2023).
[48] See Supplemental Materials for details.
[49] R. K. Bullough, Hyperfine Interact 37, 71 (1987).
[50] M.-J. Hwang, P. Rabl, and M. B. Plenio, Phys. Rev. A 97,

013825 (2018).
[51] P. Scholl, H. J. Williams, G. Bornet, F. Wallner, D. Barredo,

L. Henriet, A. Signoles, C. Hainaut, T. Franz, S. Geier, A.
Tebben, A. Salzinger, G. Zürn, T. Lahaye, M. Weidemüller, and
A. Browaeys, PRX Quantum 3, 020303 (2022).

[52] C. Chen, G. Bornet, M. Bintz, G. Emperauger, L. Leclerc, V.
S. Liu, P. Scholl, D. Barredo, J. Hauschild, S. Chatterjee, M.
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S1

SUPPLEMENTAL MATERIAL FOR “INTERACTION-ENHANCED SUPERRADIANCE OF A RYDERG-ATOM ARRAY”

I. SYMMETRIC STATE SUBSPACE

For superradiance, states with symmetric atomic excitations play a crucial role. To see this, we first define a symmetric
subspace composed of all symmetric states {|ψn⟩}, and project the Hamiltonian into the subspace to obtain Ĥeff = P̂ĤP̂, with
P̂ = ∑

N
n=1 |ψn⟩⟨ψn|. The effective Hamiltonian can be written as

Ĥ [0,Nc]
eff =

Nc

∑
n=1

ωn (|ψn⟩⟨ψn|)+ωcâ†â+

√
2
N
G
(
â† + â

)Nc−1

∑
n=0

ηn (|ψn+1⟩⟨ψn|+H.c.) , (S.1)

where ωn is the energy of the state |ψn⟩, and ηn = ⟨ψn+1|2Ŝx |ψn⟩ =
√
(N −n)(n+1) is the modifier for the atom-cavity

coupling in the symmetric-state subspace. The superscript of the Hamiltonian [0,Nc] indicates that the subspace is cutoff at Nc
atomic excitations.

We then numerically confirm that the effective Hamiltonian can fully characterize the superradiant phase transition on the
mean-field level. Specifically, as shown in Fig. S1(a)(b), we calculate the steady-state cavity photon number as a function of the
atom-cavity coupling rate, with increasing Nc, that is, by sequentially enlarging the symmetric-state subspace to include more
symmetric atomic excitations. As we consider more symmetric states, the results gradually converge. When we include all
symmetric states with Nc = N, the obtained results are completely consistent with those obtained using the full Hamiltonian. In
Fig. S1(c), we reproduce the results of Fig. 2 of the main text, using the effective Hamiltonian (S.1) with Nc = N.
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FIG. S1. The steady-state cavity photon number with increasing atom-cavity coupling rate for (a) Vdd = 0 and (b) Vdd = −1/5. The solid
curves with different colors represent calculation results using an increasing number of symmetric states [with increasing Nc in the model
(S.1)]. The green dashed curves represent the results from the full Hamiltonian. (c) The steady-state phase diagram obtained from Ĥ [0,N]

eff under
the mean-field approximation. All parameters are the same as those in Fig. 3 of the main text.

The effective Hamiltonian (S.1) is useful for calculations of systems with large atom numbers. Therein, the Hilbert-space
dimension d grows exponentially with the number of atoms N. As the atom number increases, the computational scale becomes
significant, whether dealing with the full quantum master-equation evolution or applying the mean-field approximation. How-
ever, the effective model Ĥ [0,N]

eff substantially reduces the dimensionality to d ∝ N +1, thus greatly reduces computational cost.
As an illustrative example, in Fig. S2, we calculate the steady-state phase diagram for N = 20.

II. SYSTEM WITH ONLY SPATIALLY DEPENDENT DIPOLE-DIPOLE INTERACTIONS.

When the spatial dependence of the dipole interactions is taken into account, the homogeneity of the configuration is broken,
and the symmetric-state picture above no longer applies. Nevertheless, we find that the interaction-enhanced superradiance
persists, with vanishing Gc at discrete values of Vdd that are shifted with respect to Eq. (7) of the main text. This is explicitly
demonstrated in Fig. S3, where we take V

(
R jk

)
= C3/R3

jk = Vdd/| j− k|3. Interestingly, near the critical points where Gc = 0,
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FIG. S2. Steady-state phase diagram of the generalized Dicke model with dipole-dipole interactions for N = 20 atoms.

the emergent quantum Rabi models still apply, though a different set of collective states must be considered. Specifically, we
redefine |ψn⟩ as the lowest-energy state in the subspace with n atom excitations, and update ∆n and ηn in the quantum Rabi
model [Eq. (8) of the main text] accordingly. The resultant phase boundaries according to Eq. (9) of the main text are shown
as dashed curves in Fig. S3, which are in good agreement with the full mean-field calculations near the critical points (purple
solid).
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FIG. S3. Critical atom-cavity coupling rate as a function of the Rydberg interaction strength Vdd. The grey solid curve represents results from
a constant all-to-all interaction. The purple solid curve represents results from the full Hamiltonian with spatially dependent dipole-dipole
interaction, while the grey dashed curve represents results from the quantum Rabi models in the corresponding region. The spatially dependent
interaction is given by V

(
R jk

)
=C3/R3

jk =Vdd/| j−k|3. Parameters and the unit of the energy are the same as those in Fig. 3 of the main text.

III. SYSTEM WITH ONLY VAN DER WAALS INTERACTIONS

In the main text, for each atom, we consider a pair of Rydberg states. Here we focus on a more common Rydberg simulator
with one ground state and a Rydberg state. The atomic Hamiltonian takes the following form

Ĥatom = ωa

N

∑
j=1

σ̂
z
j

2
+ ∑

j<k
Vpp

1+ σ̂
z
j

2
1+ σ̂

z
k

2
, (S.2)
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where we consider an all-to-all Van der Waals interaction characterized by Vpp. The energies of the collective atomic states with
n excitations are then

ωn =−
(

N
2
−n

)
ωa +C2

nVpp. (S.3)

In Fig. S4(a), we show the energy gap ∆E between the lowest two collective states. When the energy gap is significant, a large
atom-cavity coupling rate is required for the superradiant transition to happen. It is clear that no matter how the interaction
strength is adjusted, the ground-state degeneracy consisting of collective states |ψn⟩ and |ψn+1⟩ cannot be achieved, unlike in the
resonant-dipole case. Fig. S4 shows the calculated phase diagram of this model. The Van der Waals interaction alone appears to
suppress the superradiance.
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FIG. S4. Superradiance under the Van der Waals interactions. (a) The energy gap ∆E between the ground state and the first excited state as a
function of the interaction strength Vpp. (b)(c) The steady-state phase diagram of the system, characterized by the cavity photon number (b),
and the atomic correlation

〈
Ŝx
〉

(c), respectively. Other parameters for the calculations are the same as those of Fig. 3 in the main text.

IV. MULTI-FOLD DEGENERACIES UNDER REALISTIC INTERACTION POTENTIALS.

Under realistic interaction potentials, accidental multi-fold degeneracies of the low-lying collective states can also arise.
For instance, under the parameters of Fig. 4 in the main text, a three-fold degeneracy emerges in the atomic ground state for
R0 ∼ 1.48 µm, as circled out in Fig. S5(a). The three degenerate states are the lowest-energy collective states in the n = 4,5,6-
excitation subspace, respectively. The degeneracy also leads to a diverging susceptibility for the superradiant transition. Re-
markably, we can reproduce the critical atom-cavity coupling near the three-fold degenerate point, by constructing the emergent
Rabi model. The result is shown in Fig. S5(b), where the lowest-energy collective states |ψn=5⟩ and |ψn=6⟩ are used to the left
of the three-fold degenerate point, and the states |ψn=4⟩ and |ψn=5⟩ are used to the right.
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the full Hamiltonian (solid lines), respectively. Other parameters are the same as those of Fig. 4 in the main text.
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