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The bubble wall velocity in the first order phase transition plays an important role in determining
both the amplitude and the pivot frequency of stochastic gravitational wave background. In the
framework of the minimal left-right symmetric model, we study the wall velocity when the first
order phase transition can occur. The wall velocity can be determined by matching the distribution
functions in the free particle approximation and the local thermal equilibrium approximation. It is
found that the wall velocity can be determined in the range 0.2 < vw < 0.5 for the parameter space
with the first order phase transition. It is also found that for the case when the wall velocity is close
to the speed of sound, the peak amplitude of gravitational wave spectrum can be larger than that
in the runaway case. Moreover, It is also found that there exists an approximate power law between
the wall velocity and pressure difference between broken and symmetry phases, and the power index
is equal to 0.41 or so.

I. INTRODUCTION

Cosmological first order phase transition (FOPT) could play some important roles in the baryogenesis, the genera-
tion of primordial magnetic field, the formation of primordial black holes, and the production of stochastic gravitational
wave backgrounds (SGWB), etc. The production of SGWB during a FOPT could occur via three major processes:
bubble collisions [1–6], sound wave [7–10] and megnatohydrodynamic (MHD) turbulence[11–15]. The GWs produced
by a FOPT could be detected by the proposed GW experiments, including TianQin [16], Taiji [17], LISA [18, 19],
ALIA [20], MAGIS [21], DECIGO [22], BBO [23], Cosmic Explore (CE) [24], Einstein Telescope (ET) [25], and aLIGO
[26]. A pedagogical review from the finding FOPT in a particle physics model to predicting GWs can be found in
[27].

Typically, a cosmological FOPT can be initiated by the stochastic nucleation of vacuum bubble. A scalar field, as
an order parameter, can develop a non-vanishing VEV inside the bubble, while its value in the false vacuum vanishes.
The effective potential energy inside the bubble is lower than that of outside. While the pressure inside the bubble is
larger than that of outside. The direction of the net pressure is pointed outside, which acts as a driving force on the
bubble wall and pushes the bubble to expand. When the bubble wall starts to move, plasma in the vicinity of the
wall exert a backreaction (sometime is also called as friction force) on the wall. If such a friction force can balance
the net pressure, the bubble wall can reach to its terminal velocity vw.

On the first hand, in the process that the wall sweeps through the plasma, the deviations from the equilibrium
in vicinity of the wall can be produced due to the varying of scalar field. The deviation from equilibrium state of
the plasma consequently affect the determination of vw through its modification in friction force on the bubble wall.
On the other hand, at a length scale much larger than the width of wall and a time scale larger than the relaxation
time, the deviations have dissipated and the plasma behind the wall can reach to its new thermal equilibrium. Thus
hydrodynamics can be used to describe the bulk motion of the plasma. In the radiation dominance epoch, the bulk
kinetic energy of the plasma dominates the sources [28] of the gravitational wave produced in FOPT.

In the study of bubble wall dynamics, determining vw, or equivalently the relation between friction force versus
vw, had been a challenge. To consider the interaction between scalar field and the plasma, together with collision
between particles, one need to set up transport equations of particles, [29–32]. For a bubble wall with γw ≳ 1 (γw
is the boost factor of bubble wall in the bubble center frame), the moment method and expansion near equilibrium
can be used to solve the Boltzmann equation [33, 34]. Different parameterization of the deviations from equilibrium
has been discussed in recent literature [35–37]. Determining vw with barely hydrodynamic information has also been
studied in local thermal equilibrium (LTE) limit [38–40]. In contrast, for very relativistic bubble wall with γw ≫ 1,
it is found that the emission of soft gauge bosons during a particle passing through the wall dominates the friction
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force [41–46]. A phenomenological friction coefficient η can be added into the scalar field equation, and the relation
between η and vw has been studied in literature [47–49].

In order to measure how much the vacuum energy has been converted into the bulk kinetic energy, we need to
determine the efficiency factor κv. The energy budget of an expanding bubble has been studied in Reference [47],
where a bag equation of state (EoS) with c2s = 1/3 is assumed in both symmetric phase and broken phase. For more
general cases of EoS with c2s,s and c2s,b ̸= 1/3 but constant have been studied in [50–53]. By expanding the effective

potential with respect to the temperature, the authors of the reference [54] considered a model independent method
by including the temperature dependency of c2s.

In this work, to determine the bubble wall velocity, we used two approaches that works in two different length scales.
At a length scale which is much less than the mean free path, we use the free particle approximation to describe the
momentum transmission between particles and the bubble wall. At the length scale which is much greater than the
mean free path, we adopt the local thermal equilibrium to describe the fluid bulk motion. In order to determine the
bubble wall velocity, we demand these two distribution functions can have the same momentum flux.

It is well-known that the electroweak symmetry breaking of the standard model (SM) is a crossover and there is
no FOPT. In order to study the bubble wall dynamics concretely, we choose the minimal left-right symmetric model
(MLRSM) [55–57] as the underlying particle physics model, where the first order phase transitions can occur when
the neutral component of the right-hand triplet is light enough (saying a few hundred GeV) as found in the Reference
[58]. The MLRSM enlarges the EW sector of SM SU(2)L × U(1)Y to SU(2)R × SU(2)L × U(1)B−L, and brings new
insight to important questions of the SM, like spontaneous parity violation/restoration, CP violation, and neutrino
masses.

In the Reference [58], the bubble wall velocity is taken as vw = 1. To our best knowledge, in the context of the
MLRSM, there is no work yet on how to determine the bubble wall velocity dynamically. This work is supposed to fill
this gap and we will study how the bubble wall velocity in the FOPT of the MLRSM can be determined by the phase
transition dynamics and how the gravitational waves spectra can be modified when compared with the case vw = 1.
The paper is organized as follows. In section II, we briefly review the FOPT in the MLRSM. In section III, we derive

the formula that describe the dynamics in field-plasma system, and compute the bubble wall velocity. In section IV,
we examine the effects of bubble wall velocity to the gravitational wave produced from the FOPT. In section V, we
end this work with some discussions and conclusions.

II. THE FIRST ORDER PHASE TRANSITION IN THE MLRSM

A. A brief review on the Higgs potential of the MLRSM

The MLRSM enlarges the electroweak sector SU(2)L×U(1)Y in SM gauge group to SU(2)R×SU(2)L×U(1)B−L,
and the fermions are arranged in an apparent left-right symmetric fashion. In the MLRSM, the Higgs sector include
a Higgs bi-doublet Φ, a left-handed triplet ∆L and a right-handed triplet ∆R

Φ =

ϕ0
1 ϕ+

2

ϕ−
1 ϕ0

2

, ∆L =

∆+
L/

√
2 ∆++

L

∆0
L −∆+

L/
√
2

, ∆R =

∆+
R/

√
2 ∆++

R

∆0
R −∆+

R/
√
2

. (1)
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The most general scalar potential in the LRSM can be written as

V = −µ2
1 Tr[Φ

†Φ]− µ2
2

(
Tr[Φ̃Φ†] + Tr[Φ̃†Φ]

)
− µ2

3

(
Tr[∆L∆

†
L] + Tr[∆R∆

†
R]
)

+ρ1

(
Tr[∆L∆

†
L]

2 +Tr[∆R∆
†
R]

2
)
+ ρ2

(
Tr[∆L∆L] Tr[∆

†
L∆

†
L] + Tr[∆R∆R] Tr[∆

†
R∆

†
R]
)

+ρ3 Tr[∆L∆
†
L] Tr[∆R∆

†
R] + ρ4

(
Tr[∆L∆L] Tr[∆

†
R∆

†
R] + Tr[∆†

L∆
†
L] Tr[∆R∆R]

)
+λ1 Tr[Φ

†Φ]2 + λ2

(
Tr[Φ̃Φ†]2 +Tr[Φ̃†Φ]2

)
+λ3 Tr[Φ̃Φ

†] Tr[Φ̃†Φ] + λ4 Tr[Φ
†Φ]

(
Tr[Φ̃Φ†] + Tr[Φ̃†Φ]

)
+α1 Tr[Φ

†Φ]
(
Tr[∆L∆

†
L] + Tr[∆R∆

†
R]
)
+ α3

(
Tr[ΦΦ†∆L∆

†
L] + Tr[Φ†Φ∆R∆

†
R]
)

+
[
α2e

iδ
(
Tr[∆L∆

†
L] Tr[Φ̃Φ

†] + Tr[∆R∆
†
R] Tr[Φ̃

†Φ]
)
+H.c.

]
+β1

(
Tr[Φ∆RΦ

†∆†
L] + Tr[Φ†∆LΦ∆

†
R]
)
+ β2

(
Tr[Φ̃∆RΦ

†∆†
L] + Tr[Φ̃†∆LΦ∆

†
R]
)

+β3

(
Tr[Φ∆RΦ̃

†∆†
L] + Tr[Φ†∆LΦ̃∆

†
R]
)
, (2)

where Φ̃ = σ2Φ
∗σ2 (with σ2 the second Pauli matrix). As being required by left-right symmetry, all the quartic

couplings in the potential above are real parameters. The CP violating phase δ associated with α2 is shown explicitly.
In this work, to simplify our discussion on the velocity of bubble wall, we confine to consider a specific scenario where

there exists FOPT which is mainly driven by the neutral component of ∆R and the phase transition occurs to break the
symmetry SUR(2)×UB−L(1) → UY (1), as pointed out in [58]. After taking into account current experimental bounds
and theoretical constraints, the scenario can set parameters as ρ4 = λ2 = λ3 = λ4 = α1 = α2 = β1 = β2 = β3 = 0.
At zero temperature, the neutral components of scalar fields can develop non-zero vaccuum expectation values,

which can be parameterized as follows

⟨Φ⟩ = 1√
2

κ1 0

0 κ2e
iθκ

, ⟨∆L⟩ =
1√
2

 0 0

vLe
iθL 0

, ⟨∆R⟩ =
1√
2

 0 0

vR 0

, with T = 0, (3)

where, θL,κ are CP violating phases and set to be zero in this work. While the bi-doublet VEV κ1,2 are related

to EW VEV through the relation vEW =
√
κ2
1 + κ2

2 = 246GeV. And the ratio between κ1 and κ2 is set to be
ξ = κ2/κ1 = 10−3, as required by experimental constraints.
Due to the tiny neutrino mass, it is a good approximation to take vL = 0. Thus, In this simplified scenario, the

theoretical free parameters of the potential can be traded off by physical particle masses as given follows

ρ1 =
m2

H0
3

2v2R
, ρ2 =

m2
H++

3

2v2R
, ρ3 =

2m2
H0

2
−m2

H0
3

v2R
, α3 =

2m2
H0

3

v2R
µ2
1

v2R
= −α3

2

ξ2

1− ξ2
+ λ1

v2EW

v2R
,

µ2
2

v2R
=

α3

4

ξ2

1− ξ2
,

µ2
3

v2R
= ρ1 +

α3

2

v2EW

v2R
.

(4)

Due to the left-right symmetry, both gauge coupling constants of SU(2)L,R are fixed to be gL = gR = 0.64, and the
gauge coupling constant of UB−L(1) denoted as gB−L is determined by the following relation

1

e2
=

1

g2L
+

1

g2Y
=

1

g2L
+

1

g2R
+

1

g2B−L

. (5)

To simplify our study, we assume that the symmetry breaking is SU(2)R ×UB−L(1) → UY (1), of which the breaking
scale is determined by vR (which is typically 10 TeV or above). Thus, in this approximation, the VEV of the triplet
scalar ∆R becomes non-vanishing, while the VEV of other scalar fields are set to be vanishing

⟨Φ⟩ = ⟨∆L⟩ = 0, ⟨∆R⟩ =
1√
2

0 0

ϕ 0

, with T ∼ vR. (6)

where ϕ is the neutral component of ∆R, which plays the key role to determine the phase transition.
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B. The first order Phase transition

We start from the effective potential, which is a function of ϕ and can be put as given below

Veff = V0(ϕ) + V T=0
1 (ϕ) + V T ̸=0

1 (T, ϕ)

=

(
−µ2

3

2
ϕ2 +

ρ1
4
ϕ4

)
+

1

64π2

∑
i

gim
4
i

(
log

m2
i

µ2
− Ci

)
+

T 4

2π2

∑
i

giJ±

(
m2

i

T 2

)
,

(7)

where V0 is the tree-level potential, V T=0
1 is the Coleman-Weinberg one-loop effective potential, and V T ̸=0

1 is thermal
contribution at finite temperature.

The mass parameters mi of different particles are dependent on the value of ϕ, as given in Eq. (4) . The renor-
malization scale µ is tuned to make the location of minimum of Veff remains ϕ = vR. The degree of freedom gi and
constant Ci for i-th particle are given by

(gi, Ci) =


(1, 3/2), for scalar,

(−2λ, 3/2), for fermion,

(3, 5/6), for gauge boson,

(8)

where λ = 1 (2) for Weyl (Dirac) fermion. In the bosonic sector, there are Higgs scalars and vector gauge bosons
which can contribute to this Higgs potential, and their contributions are crucial for the FOPT. In this study, the
Goldstone bosons are treated as the longitudinal components of vector gauge bosons. In the fermionic sector, there
are right-handed neutrino which can contribute significantly to this Higgs potential.

It is noteworthy that in order to get rid of imaginary part in Veff that arises from −µ2
1,2,3 in scalar scalar masses,

we use thermal mass m2
i = m2

i (T, ϕ) instead of m2
i (0, ϕ) for every scalars, this also recovers the correction VD from

daisy diagram to the effective potential Veff in previous study[58], the actual formulae for particle masses are listed
in Appendix A. For particles in thermal equilibrium, function J− (J+) for bosons (fermions) are defined as

J±(m
2/T 2) = T−3

∫ ∞

0

dp p2 log
(
1± e−

√
p2+m2/T

)
. (9)

When the FOPT happens, a critical bubble can form through thermally assisted quantum tunneling process. The
nucleation rate of bubbles is given by [59]

Γ = Γ0 exp(−S3/T ), Γ0 ∼ T 4(S3/2πT )
3/2, (10)

where S3 is 3D tunneling action, which is given as

S3 =

∫
d3x

[
1

2
(∇ϕb)

2 +∆Veff(T, ϕb)

]
, (11)

where ∆Veff(T, ϕ) is defined as ∆Veff(T, ϕ) = Veff(T, ϕ)− Veff(T, 0). And the field configure ϕb is a saddle point of S3

known as bounce solutions which satisfy the following equation of motion and boundary conditions

∂2ϕ

∂r2
+

2

r

∂ϕ

∂r
=

∂

∂v
Veff(T, ϕ), ϕ′(r = 0) = 0, ϕ(r → ∞) = 0. (12)

In this study, we use the code CosmoTransitions [60] to find the bounce solution and to evaluate S3 when ϕb is
found. The nucleation temperature TN is defined when Γ/H ∼ O(1), where the Hubble’s parameter is defined as

H∗(T ) =
8π3g∗T

2

90Mpl
, (13)

with Mpl denoting the Planck mass. The total degree of freedoms of the model can be found to be g∗ = 134.
In order to determine the GW spectrum caused by the FOPT, there are two parameters needed to be obtained.

The first one is α, which describes the strength of the phase transition

α =
ϵ∗(T )

a+(T )T 4

∣∣∣∣
T=TN

, (14)
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where

ϵ∗ = −∆Veff +
T

4

∂∆Veff

∂T

∣∣∣∣
T=TN

, and a+(T )T
4 = − 3T

4

∂Veff(T, 0)

∂T

∣∣∣∣
T=TN

. (15)

The other one is β, which describes the inverse duration of the phase transition compared with Hubble’s parameter

β

H∗
= T

d

dT

S3

T

∣∣∣∣
T=TN

. (16)
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FIG. 1: Model parameter dependence of two feature parameters of phase transition, α and β/H∗, are shown.

Below we demonstrate the effects of model parameters of Higgs potential to these two parameters. As mentioned
above, the model parameters of Higgs potential can be expressed as the masses of scalars, i.e. mH0

1
, mH0

2
, mH++

2
and

mH0
3
separately. The mass ranges for these scalar particles are tabulated in the last two columns in TABLE I, which

are consistent with both experimental bounds and theoretical constraints, which had been studied in reference [58].
The degeneracy of each parameter is also tabulated in TABLE I, and the detailed mass relations in the thermal

media are provided in the Appendix A. For example, there are four scalar particles which have the same mass, i.e.
H0

1 , A
0
1, and H±

1 , as given in Eq. (A5), and the mass parameter is denoted by mH0
1
.

TABLE I: Default values and range of scalar particle masses are tabulated and the degeneracy of each scalar mass is also
provided.

parameters degeneracy default value lower bound upper bound

mH0
1

4 10 TeV 6 TeV 12 TeV

mH0
2

6 10 TeV 4 TeV 10.5 TeV

m
H++

2
2 8 TeV 4 TeV 11.5 TeV

mH0
3

1 1.5 TeV 0.125 TeV 2 TeV

Based on the input of the model given in TABLE I, in FIG. 1, we show the computed parameters α and β/H∗
with different particle masses. A set of default values for the masses of scalars are given as an open circle, while the
range of mass values of scalars are listed in the second column in TABLE I. For each curve, we vary the mass of one
particle, and fix the masses of other particles to their default values. For example, for the blue line, we vary the mass
of H0

1 from 6− 12 TeV, and fix other particles’ masses at the default values.
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From FIG. 1, it is observed that in general, β/H∗ is inversely proportional to α. The masses of scalars H0
1 , H

0
2 and

H++
2 are not sensitive to the results, by varying their masses, the value of α is around 0.03 and β/H∗ is around 700.

However, the mass of scalar H0
3 can much more drastically change the values of both α and β/H∗, especially β/H∗

can reach 200 at α around 0.08. This can be attributed to the fact that m2
H0

3
= 2ρ1v

2
R, where ρ1 directly contributes

to Veff through the quartic term at the tree-level, while other scalar particles only contribute to the effective potential
through one-loop effects and thermal loops. It is worthy of mentioning that, the calculation of the left-right model
in [58] showed that β/H∗ can reach 104 and α can be as small as 0.01, which are dependent upon the theoretical
parameters.

III. DYNAMICS FOR STEADY BUBBLE WALL

When a bubble forms, the vacuum pressure difference between the inside and the outside pushes the bubble to
expand, i.e. ∆p = pi − po > 0, where pi and po denotes the pressure inside and outside of the bubble, respectively.
The moving bubble wall stirs the ambient plasma, pushing the plasma out of equilibrium, and the plasma exerts a
friction force on the bubble wall. The friction force increases with the bubble wall velocity. If the friction force on per
unit area on the bubble wall balances the vacuum pressure difference before the bubble wall collision, the wall will
reach its terminal velocity vw, otherwise the wall will run away, i.e. the Lorentz factor γw increase permanently. The
friction force in high γw limit has been studied in [41–44], where the particle splitting process dominates the friction
force. In this work, it is found that the friction is strong enough in γw ≳ 1 region and the typical value for the bubble
velocity vw is 0.2− 0.5 , thus we can neglect particle splitting safely.

A. The field-plasma system

The energy-momentum tensor of the field-plasma system can be split in two parts, i.e. the scalar field part Tµν
field

and the plasma part Tµν
plasma. And the conservation law can be expressed as

∂µT
µν = ∂µT

µν
field + ∂µT

µν
plasma = 0. (17)

The energy-momentum tensor of scalar field Tµν
field is given by

Tµν
field = ∂µϕ∂νϕ− gµν

(
1

2
∂ρϕ∂

ρϕ− Vvac(ϕ)

)
. (18)

where Vvac(ϕ) is the renormalized vacuum effective potential. The energy-momentum tensor of plasma Tµν
plasma is given

by

Tµν
plasma =

∑
i

∫
d3p

(2π)3Ei
pµpνfi(p,x). (19)

where i runs over the particle species. In order to study the dynamics at the microscopic scale, we neglect the
curvature of the bubble wall and assume that the wall can be described by two parallel planes being separated by the
distance Lw and both moving towards z-direction. For the non-runaway case, the bubble wall velocity vw reach its
terminal value before collision, we have

ϕ = ϕ

(
ūµ
wxµ

Lw

)
, (20)

where ūµ
w = γw(vw, 0, 0, 1) is a space-like unit vector and Lw is the bubble wall thickness.

The dynamical transition of particles in the plasma can be described by the Boltzmann equation

L[f ] ≡
(

∂

∂t
− pz

E

∂

∂z
+

m

E

∂m

∂z

∂

∂pz

)
f(p,x) = C[f ], (21)

where L is an abbreviation of the differential operator on the lhs, f(p,x) is the distribution functions of a particle in
the phase space, and C[f ] is collision integral.
In earlier works, to determine the bubble velocity, the Boltzmann equations are solved using the moment method

[32], or the spectral method [37]. Both methods need to solve the coupled differential equations numerically for both
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active and passive particles, which becomes an obstacle when the species of particles become larger like in the left-right
symmetric model where there are more than 10 types of active particles which should be taken into account. For
example, there are 3 family right-handed neutrinos, 3 massive gauge vector particles (each has 3 degree of freedom),
and 4 types of scalar fields with 13 degrees of freedom as given in Table I.

In order to circumvent this obstacle, we will adopt two methods to approximate the field-plasma system, i.e. 1) free
particle approximation and 2) local thermal equilibrium (LTE) approximation. We match these two approximations
to find the bubble velocity, As we know, these two approaches work at different length scale.

• At the length scale where the distance to bubble wall is much smaller than the mean free paths λmfp, the ∂zm
term on lhs of Eq. (21) dominates, thus the collision terms C[f ] can be neglected. At this distance, the free
particle approximation can be used, and there is an analytical solution to Eq. (21), which is discussed in detail
in III B. We use this approximation to estimate the thermal pressure, which acting as a friction force on the
bubble wall.

• In another limit where the distance much lager than λmfp, LTE becomes a good approximation. We utilize this
method to calculate the profile of sound shell, and more importantly, to calculate energy and momentum flux
near the bubble wall, which is discussed in III C.

The key criteria is to compute the mean free paths λmfp. Considering a typical scattering process 12 → 34 which
occurs near thermal equilibrium, the mean free paths can be calculated from the collision terms as

λ−1
mfp ∼ 1

2E1

∑
12→34

∫ ∏
i=2,3,4

d3pi
(2π)32Ei

(2π)4δ4(pµ1 + pµ2 − pµ3 − pµ4 )|M12→34|2f2(1∓ f3)(1∓ f4)

∼
∑

12→34

n2(σvrel)12→34.

(22)

It is noteworthy that the mean free path of a particle labelled as 1 is determined by the cross sections and incoming
particles densities labelled as n2 involved in the reactions. To estimate the mean free path given in Eq.(22), it should
be pointed that the sum runs over all possible 12 → 34 processes, and the number of processes involved in the
left-right symmetric model are typically of order O(1 ∼ 10). The scattering number density n2 can be estimated as
n2 ≲ ζ3 T

3/4π3 ∼ 0.01T 3 and the total cross section can be computed as (σvrel)12→34 ∼ λ2 T−2/16π ∼ 0.02λ2 T−2

where typically, the couplings λ can be taken in the perturbation range O(0.1 ∼ 1). Thus we can obtain the free
mean path as λ−1

mfp to be 10−5 ∼ 10−3 T or so. The validity of free particle approximation and LTE approximation is
discussed in the following subsections.

B. Free particle approximation

In the case where the mean free path λmfp is much larger than the bubble wall thickness Lw

λmfp ≫ γ−1
w Lw, (23)

we can neglect C[f ] in Eq. (21). It is also found that when the condition Eq. (23) holds, the profile of bubble does
not change the distributions of particles. Thus we leave the validation of Eq. (23) after the vw have been done where
in IIID.

The interaction between particles and scalar field can be more easily studied in the bubble wall frame. In such a
frame, the conservation laws of energy-momentum tensor can be expressed as

∂zT
zz = 0, ∂zT

z0 = 0. (24)

Inserting Eq. (18) and (19) into (24), we arrive at the equation of motion for scalar field, which has the following
form

0 =
∂ϕ

∂z

(
∂2ϕ

∂z2
− ∂Vvac

∂ϕ
− ∂

∂ϕ

∑
i

∫
p2zd

3p

(2π)3Ei
fi(p,x)

)
. (25)

Meanwhile, the t dependency of distribution function can also be eliminated and the Boltzmann equations can be
modified as (

pz
E

∂

∂z
− m

E

∂m

∂z

∂

∂pz

)
f(pz, p⊥, z) = 0. (26)
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For a single bubble wall, the mass parameter of a particle m decreases monotonically along z-direction, thus we can
use the following substitution

∂

∂z
=

∂m

∂z

∂

∂m
. (27)

This leads a general solution for Eq. (26)

f = f(p2z +m2, p⊥, z). (28)

By noting the mass-energy relation E =
√
p2z + p2⊥ +m2, it should be pointed out that the solution given in Eq. (28)

has taken into account the energy conservation for every single particle species.
There are two boundaries, which correspond to z → −∞ where the plasma is in the broken phase and z → +∞

where the plasma is in the symmetric phase. Near the regions of these two boundaries, the distribution functions of
a particle that moving toward the wall can be approximately described by the distribution functions of equilibrium.
Since we are working in the bubble wall frame, the distribution function is boosted in −z-direction, i.e.

f(pz) =
1

exp(βsγw(E(ms) + vwpz))± 1
, pz < 0, z → +∞,

f(pz) =
1

exp(βbγw(E(mb) + vwpz))± 1
, pz > 0, z → −∞,

(29)

where the subscripts s and b denote symmetric and broken phases where the particles are coming from, but β−1
s,b are

not necessarily equal to the temperature of the symmetric or broken phase. We will address this issue in the discussion
on the results shown by FIG. 12. Applying these boundary conditions to Eq. (28), the solution can be written in
three branches [61]:

B1: transmission from broken phase t+

f(pz, p⊥, z) =
1

exp(βbγw(E + vwpz,b))± 1
, pz ≥ +

√
m2

b −m2(z); (30)

B2: reflection r

f(pz, p⊥, z) =
1

exp(βsγw(E + vwpz,s))± 1
, |pz| <

√
m2

b −m2(z); (31)

B3: transmission from symmetric phase t−

f(pz, p⊥, z) =
1

exp(βsγw(E + vwpz,s))± 1
, pz ≤ −

√
m2

b −m2(z), (32)

where pz,s ≡
√
p2z +m2(z)−m2

s, similar to pz,b. A schematic picture of these three branches are shown in FIG. 2,
where z → −∞ is the broken phase, and z → ∞ corresponds to the symmetry phase.
It should be pointed out that for reflection branch, the solution given in Eq. (31) in this work is different from that

given in [61], i.e. a correct result has no sign[pz] in front of vw. If the sign[pz] is added in front of vw, it is found that
the energy conservation might be broken.

In order to determine the bubble wall velocity, we need use the energy-momentum tensors of plasma, which can be
computed when the distribution functions of particles in the plasma are known. Since we have neglected the collisions
between particles, the energy flux should be constant along z-direction for every branch separately. Thus we should
have

T 0z
t± (z → +∞) = T 0z

t± (z → −∞), and T 0z
r+(z → +∞) = −T 0z

r−(z → +∞), (33)

where T 0z
t,r can be calculated by using Eq. (19), which contribute to Tµν

plasma by definition. While it should be mentioned

that T 0z
r+ (T 0z

r−) is defined as being integrated for momentum modes pz < 0 (pz > 0) only.

By using E dE = p⊥ dp⊥, we can integrate out p⊥ first. Thus only the integration over pz is left. For T 0z
t± , we arrive

at the following results

T 0z
t+ = +

∫ ∞

0

pz dpz
(2π)2

(
± Ez,b

βbγw
ln(1± exp(−βbγw(Ez,b + vwpz)))∓

1

β2
bγ

2
w

Li2(exp(−βbγw(Ez,b + vwpz)))

)
,

T 0z
t− = −

∫ ∞

√
∆m2

pz dpz
(2π)2

(
± Ez,s

βsγw
ln(1± exp(−βsγw(Ez,s − vwpz)))∓

1

β2
sγ

2
w

Li2(exp(−βsγw(Ez,s − vwpz)))

)
,

(34)



9

-4 -2 0 2 4

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

FIG. 2: Trajectories of particles from different branches in phase space given in Eqs. (30), (31) and (32), are shown, where we
set ms = 0. Sign in subscript labels the moving direction of a particle and the reflection branch has been split into two parts.

where ∆m2 = m2
b −m2

s, Ez,s =
√
p2z +m2

s, and Ez,b =
√
p2z +m2

b .
To derive T zz(z), it is noticed that the reflection branch does contribute which is different from T 0z(z). After

performing integration over p⊥, we arrive the following results, which can be organized into three branches,

B1: transmission from broken phase t+

T zz
t+ (z) = ± 1

βbγw

∫ ∞

√
m2

b−m2(z)

p2z dpz
(2π)2

ln(1± exp(−βbγw(Ez + vwpz,b))); (35)

B2: reflection r

T zz
r (z) = ± 2

βsγw

∫ √
m2

b−m2(z)

0

p2z dpz
(2π)2

ln(1± exp(−βsγw(Ez − vwpz,s))); (36)

B3: transmission from symmetric phase t−

T zz
t− (z) = ± 1

βsγw

∫ ∞

√
m2

b−m2(z)

p2z dpz
(2π)2

ln(1± exp(−βsγw(Ez − vwpz,s))), (37)

where Ez ≡ p2z +m2(z). It is observed that in the limit vw → 0,
∑

t±,r T
zz
t±,r(β = 1/T,m(ϕ), vw) = V T ̸=0

1 (T, ϕ) holds

exactly.
To calculate the quantities T 0z and T zz, we should sum over all particle species in the plasma. Here, for the sake

of simplicity, we have dropped the symbol of sum.
When the bubble wall moves steadily in the plasma, the pressure from the inside of bubble wall and the pressure

from the outside of the bubble wall should be balanced. Thus in terms of energy conservation laws, the following
relations should hold

−∆T zz
field = ∆T zz

plasma ≡ ∆T zz
i+ +∆T zz

i− , (38)

where the quantities in Eq. (38) are defined as
∆T zz

field ≡ −Vvac(z → +∞) + Vvac(z → −∞);

∆T zz
i+

≡ T zz
t+ (+∞)− T zz

t+ (−∞), particles incident from broken phase;

∆T zz
i−

≡ T zz
t− (+∞)− T zz

t− (−∞) + T zz
r (+∞), particles incident from symmetric phase.

(39)
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FIG. 3: Model parameter and vw dependence of T zz is demonstrated. The ∆T zz
i± for different mH0

3
are represented by solid

(dashed) lines, with mH0
1

= mH0
2

= 10 TeV and m
H++

2
= 8 TeV. The ∆T zz

field for different case are represented by horizontal

dash-dotted lines.

In FIG. 3, we demonstrate the features of ∆T zz for ms = 0 with different bubble wall velocity vw and
√
∆m2/T

values. The y-axis denotes ∆T zz and the x-axis denotes the bubble wall velocity vw. In the plot, the vacuum pressure
difference ∆T zz

field is represented by the horizontal dash-dotted lines. It is observed that ∆T zz
i−

/T 4 increases with the

increase of vw while ∆T zz
i+

/T 4 decreases with the increase of vw. Due to the fact that the term ∆T zz
i−

contributes
dominantly to the quantity ∆T zz

plasma and ∆T zz
field does not change with vw, roughly speaking, one can read off vw by

eyes which should be at the place where ∆T zz
i−

≈ −∆T zz
field. Obviously, to find the exact result for vw, one need to

solve the Eq. (38)

0 = ∆T zz
field(ϕ∗) + ∆T zz

i+ (ϕ∗, βb, vw) + ∆T zz
i− (ϕ∗, βs, vw) ≡ ∆T zz(ϕ∗, βs, βb, vw), (40)

where ϕ∗ is the VEV in broken phase and is determined by the following condition

0 =
∂∆T zz(ϕ, βs, βb, vw)

∂ϕ

∣∣∣∣
ϕ=ϕ∗

. (41)

There are still two independents βb,s parameters in the equation remains undetermined. Generally speaking, one can

use T−1
N (TN is the nucleation termparature) as an approximate solution. However, in this work, we make use of

hydrodynamics which has been discussed in III C. This helps us to determine βb,s by matching T zz and T 0z calculated
from two different approaches.

It is interesting to compare ∆T zz
field with the parameter αbag in the bag-model [47]. Since −∆T zz

field is proportional
to bag constant by the following relation,

∆T zz
field

T 4
=

∆Vvac

T 4
∼ αbag

g∗π
2

30
, where g∗ = 134. (42)

thus we can solve out αbag. The values of αbag is depicted by the right y-axis in FIG. 3, which is in the range of
0.01 ∼ 0.1 when model parameters are taken in the range specified.
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C. Local thermal equilibrium approximation

To calculate the terminal bubble wall velocity, we can assume that the bubble radius rw is close to the mean bubble
separation R∗ [62]

rw ∼ R∗, where R∗H∗ = (8π)1/3vw(H∗/β). (43)

For the typical value of β/H∗ shown in FIG. 1 and the nucleation temperature TN ≃ 2.7TeV, we have R∗ ∼ 1011 TN .
In such a case, the bubble radius rw can be sufficiently large, such that rw ≫ λmfp, the particles far from the bubble
wall can be treated as in LTE.

In the regions far from the bubble wall, the field-plasma system can be described by perfect fluid

Tµν
LTE = wuµuν − pgµν , (44)

where the pressure p, energy density e and enthalpy w are given by

p = −Veff(T, ϕ∗(T )), e = T
∂p

∂T
− p = Veff − T

∂Veff

∂T
, w = e+ p = −T

∂Veff

∂T
. (45)

In the symmetric phase, we take ϕ∗(T ) = 0. While in broken phase, we take

0 =
∂Veff(T, ϕ)

∂ϕ

∣∣∣∣
ϕ=ϕ∗(T )

(46)

as the definition of ϕ∗. The fluid 4-velocity uµ is parameterized as

uµ = γ(1,v), where γ = 1/
√
1− v2, (47)

where v is 3-velocity. The conservation law of energy-momentum can then be projected on uµ and ūµ ≡ γ(v,v/v).

uν∂µT
µν
LTE = ∂µ(wu

µ)− uµ∂µp = 0, ūν∂µT
µν
LTE = wuµūν∂µuν − ūµ∂µp = 0 (48)

The conservation law of energy-momentum holds everywhere in the plasma, we can apply it to find the profiles of
sound shell. Since there is no specific length scale in Eq. (48), we assume that the solution of Eq. (48) for the profile
of sound shell is spherical and self-similar, where p, e and v are functions of ξ ≡ r/t. Here r denotes the radius of
bubble and t is the time elapse after the bubble is formed. Thus, in reality, the parameter ξ can only take the value
in the range 0 ≤ ξ ≤ 1. Then Eq. (48) can take the following form

(ξ − v)
∂ξe

w
= 2

v

ξ
+ [1− γ2v(ξ − v)]∂ξv,

(1− ξv)
∂ξp

w
= γ2(ξ − v)∂ξv.

(49)

With the definition of speed of sound c2s = (∂p/∂T )/(∂e/∂T ), Eq. (49) can be written as

2
v

ξ
=

(
µ2

c2s
− 1

)
γ2(1− ξv)∂ξv,

2
v

ξ
=

(
µ2

c2s
− 1

)
(1− ξv)2

ξ − v

∂ξT

T
,

(50)

where µ(ξ, v) ≡ (ξ − v)/(1− ξv) is the fluid velocity in local frame.
When considering the temperature dependence of cs, the second line in Eq. (50) should also be solved simultaneously.

Due to the singularities appear in Eq. (50) at µ(ξ, v) = cs, it is convenient to introduce a parameter τ to rewrite the
equation into a parametric form [47, 62]

∂τξ = ξ[(ξ − v)2 − c2s(1− ξv)2],

∂τv = 2vc2s(1− v2)(1− ξv),

∂τT

T
= 2vc2s(ξ − v).

(51)
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Since we are working in the limit of R ≫ Lw, the bubble wall can be treated as a step function. This will induce
discontinuities in p, e and v. After boosting into the bubble wall frame, the conservation law become

T 0r
LTE = w+γ

2
+v+ = w−γ

2
−v−,

T rr
LTE = w+γ

2
+v

2
+ + p+ = w−γ

2
−v

2
− + p−,

(52)

where + stands for quantities in symmetric phase and − for broken phase. By introducing γ ≡ cosh y and γv ≡ sinh y,
Eq. (52) can be cast into

v+
v−

=
e− + p+
e+ + p−

, v+v− =
p+ − p−
e+ − e−

, (53)

where p± and e± are functions of T±. There are total four unknowns in Eq. (53), which can be taken as v± and

Detonation
Deflagration
Hybrid

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.8
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FIG. 4: Left panel: Black lines are solutions of Eq. (51) for v(ξ). Solutions for Eq. (55), (56) and (58) are shown in the blue,
red and orange lines, respectively. Shaded regions are physically forbidden. Right panel: profiles for c2s and T/TN as functions
of ξ for ξw = 0.4 ∼ 0.8. The blue, red and orange lines are solutions of Eq. (53) for detonation, deflagration and hybrid.

T±. Two of them must be input to make the equations solvable. The motion of the fluid has been divided into three
modes[47], i.e. deflagration, hybrid, detonation.

Detonation mode happens when vJ ≤ vw, where the Jouguet velocity vJ is determined by finding the minimal
v+ on v+ > v− branch that satisfies Eq. (53)

vJ = min
v−

v+(T+ = TN , v−), with v+ > v−. (54)

In this mode, the bubble wall is follow by rarefaction wave, while the fluid in front of the bubble wall remains in
steady. Thus we have following relations

T+ = TN , v(ξw) = µ(ξw, v−), where ξw = v+. (55)

Deflagration mode happens when vw ≤ cs,−. In this mode, the fluid behind the bubble wall remains steady,
while a shock front can appear in front of the bubble wall. Thus we have

Tsh,+ = TN , v(ξw) = µ(ξw, v+), where ξw = v−. (56)
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Tsh,+ is the temperature in front of the shock. The location of chock front ξsh can also be determined by Eq. (53)
with relation

v(ξsh) = µ(ξsh, vsh,−), where ξsh = vsh,+. (57)

The shock front in deflagration mode can vanish for a rather small vw, in such case v(ξ) falls to 0 continually at
ξ = cs,+.
Hybrid mode happens when cs,− < vw < vJ . In this mode, the fluid both behind and in front of the bubble wall

has been perturbed. In bubble wall frame, the rarefaction wave begins with fluid velocity v− = cs,−. So we have
relations

vdet(ξw) = µ(ξw, cs,−), and vdef(ξw) = µ(ξw, v+), (58)

where vdet and vdef refer to fluid velocity behind and in front of the wall respectively.
On the left panel of FIG. 4, we show the solutions of Eq. (50) which are depicted in black lines, where shaded

regions are physically forbidden. Three modes are shown by blue, red, and orange lines, respectively. On the right
panel of FIG. 4, we show the profiles of c2s and T/TN . It should be pointed out that for different modes, the relation
between v± and T± versus vw and TN are different.

D. Bubble wall velocity and thickness

We have introduced two different approaches to describe the field-plasma system, the free particle approximation
and the local thermal equilibrium, and they work at different length scales. These two approaches should compatible
with each other. When the bubble radius rw grows to rw ≃ R∗, if the wall does not runaway, the field-plasma system
becomes steady and the wall velocity approaches to its terminal value vw. At this stage, the profile of scalar field
is steady in wall frame, while the profile of fluid variables, i.e. v and T , broaden in r-direction with time as a self-
similar solution. FIG. 5 gives a schematic picture on what happens at this stage for different length scales. Within
region where r = rw ± λmfp, the fluid profile appears to be discontinuities, and the non-equilibrium effect become
significant. The incident, reflected and transmitted particles collide with each other, which makes the deviation
δf ≡ f − feq dissipates in this region. Out of this region, δf vanishes, bring the system back to equilibrium, where
LTE approximation works. If we further look into a narrower region around bubble wall, i.e. in Lw length scale, the
particle collision becomes less important, while the variation in ϕ dominates the motion of particles. In other word,
we should map the coordinate z ∈ (−∞,+∞) into r ∈ (rw − λw, rw + λw), with λw ≳ Lw.

𝑟 = 0 𝑟 ≃ 𝑅∗

𝑣 𝑟

𝑟𝑤 − 𝜆mfp 𝑟𝑤 + 𝜆mfp

𝑧 → +∞𝑧 → −∞

𝛿𝑓

𝜙 𝑧

𝑣𝑤

𝑧 = 0

𝑟 = 𝑟𝑤

𝑅∗

FIG. 5: Different approximation works at different length scale, while the EMT conservation holds everywhere. When vw
approaches its terminal value, the system becomes steady, we assume the profile of δf won’t change with time any more. Thus
energy(momentum) flux should be equal at z = ±∞ and r = rw.

Despite these different approaches work at different length scales, the conservation of energy and momentum always
holds. And since the system is steady, the profile of ϕ and δf should not vary with time. In other words, in the
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bubble wall frame, the energy and momentum accumulated in |r− rw| < λmpf region are constant. While the energy
and momentum flux at r = rw ± λw should be equal, and their value should match the flux at the discontinuity in
LTE approximation. Thus we come up with a method described in the following part of this subsection.

For the convenience, we define the following quantities

T 0z
ϕ=0 ≡

(
T zz
t+ + T 0z

t−

)
ϕ=0

T 0z
ϕ=ϕ∗

≡
(
T zz
t+ + T 0z

t−

)
ϕ=ϕ∗

T zz
ϕ=0 ≡

(
T zz
t+ + 2T zz

r + T zz
t− − Vvac

)
ϕ=0

T zz
ϕ=ϕ∗

≡
(
T zz
t+ + T zz

t− − Vvac

)
ϕ=ϕ∗

(59)

where the subscript ϕ = 0 denotes the symmetric phase and the subscript ϕ = ϕ∗ denotes the broken phase. Thus
the requirement of energy and momentum flux should be equal on both sides of bubble wall leads to the following
identities {

T 0z
ϕ=0 = T 0z

ϕ=ϕ∗

T zz
ϕ=0 = T zz

ϕ=ϕ∗

(60)

where ∂T zz
ϕ=ϕ∗

/∂ϕ = 0 has been used. The first line of Eq. (60) is the energy flux equation, which always holds

automatically due to energy conservation. However, the second line of Eq. (60) is the momentum flux equation,
which does not always hold. The reason lies in the fact that the translation invariant is broken by the wall. Thus
we need a set of free parameters (vw, βb, βs) to calculate T 0z and T zz and the second line of Eq. (60) can help to
determine one of these three free parameters.

In local thermal equilibrium approximation, we also have components of energy-momentum tensors T 0r
LTE and T rr

LTE,
which only take vw as free parameter. It is possible to determine all these three free parameters (vw, βb, βs) by using
Eq. (60) and by further requiring

T 0z ≃ T 0r
LTE and T zz

ϕ=0 = T zz
ϕ=ϕ∗

≃ T rr
LTE. (61)

To identify T 0z (T zz) and T 0r
LTE (T rr

LTE) can only make sense when the radius of bubble wall is large enough and the
movement of bubble wave can be approximated by two parallel planes separated by a distance Lw, which can be true
when the bubble wall velocity is steady.

In FIG. 6, we demonstrate the bubble wall velocity vw for different particle masses. We find that vw does not
always change monotonically with particle masses, because vw is determined not only by a driven force due to the
pressure difference, but also by the friction due to the interaction between particles and the scalar field.

It is useful to examine the pressure difference normalized by energy density, which is defined as follows

pdr
eN

≡ p(ξ = 0)− p(ξ = 1)

e(ξ = 1)
, (62)

where p and e is read of from Eq. (45). In our work, when particle masses are large enough, both vw and pdr/eN tend

to decrease. In such case, we found uw and pdr/eN follows power law, with the slope ≃ 0.41, where uw ≡ vw/
√
1− v2w,

as shown in FIG. 7.
As a comparison, we calculated uw as a function of pdr/eN and αN based on the bag-model. We use the method

as Li Li et al. used in [39]. In that work, the authors treat pdr/wN (or pdr/eN , equivalently) and αN as two known
variables, and solve for α+ and ξw as unknown. In order to check the deviation between different method, we first
solve for ξw using Eq. (61), calculating pdr/wN and αN , then feed them into [39]’s formula

pdr
wN

= 3αN

(
1 +

9

4
αN

)
ξ2w,ana, (63)

and solve for ξw,ana, the result is shown by dash-dotted line in FIG. 7. Eq. (63) is an analytical approximation based
on the bag-model

p± =
1

3
a±T

4 − V±, e± = a±T
4 + V±. (64)

Following the same procedure as in [39], we also solve the exact ξw,bag for the bag-model, using the same set of
pdr/wN and αN as input. The exact result for the bag-model is shown in FIG. 7 with dotted line. For the case
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FIG. 6: The bubble wall velocity vw as a function of scalar particle masses are demonstrated.
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FIG. 7: The uw as a function of pdr/eN is shown. Solid lines correspond to the cases where we vary masses of different particle
species. The dashed line is a power law with slope 0.41. (Dash-)dotted line is the numerical (analytical) result given by Li Li
et al. group’s work [39].

of a phase transition in radiation dominance epoch, with αN ≲ 0.1, our result (dashed line) does not deviate much
from the bag-model (dotted line). The reason is there are enough degree of freedom for passive species, the effective
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relativistic degree of freedom a± and sound velocity cs,± does not change much after bubble wall passes. In such
case, the bag-model is still a good approximation for hydrodynamics when solving vw. However, in [39], one knows
pdr/eN and αN a priori to solve for ξw, which is not true in our case. Thus solving ξw barely with knowledge of
hydrodynamics is still impossible in our work.
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FIG. 8: The entropy production rate ∆Sz/sN , αN , and pdr/eN , are shown as a function of uw, with mH0
3

varying from 0.125

TeV to 2 TeV, at the left panel. At the right panel, we compare the value of vw in our method with that of W.Y. Ai’s matching
method [38]. In the shaded region, Ai’s method leads to runaway solutions.

In [38], W.Y. Ai et al. provided a method to calculate ξw by adding an additional matching condition at bubble
wall, i.e. one can assume

Sz
LTE = s+γ+v+ = s−γ−v− (65)

if the entropy difference is small enough, i.e. when ∆s/s+ ≪ 1. We check the entropy production rate in our work,
finding that ∆Sz

LTE/sN follows almost the same power law as pdr/eN , up to some coefficient, as FIG. 8 shows in left
panel. We also calculate ξw with combing Eq. (65) and (52), and find the result is much larger, while the bubble wall
will even runaway in some region, as shown in the right panel of FIG. 8. Thus, entropy production rate can not be
neglected, even if for small value.

IV. GRAVITATIONAL WAVE

The stochastic gravitational waves generated by FOPT can be described in three parts [28]: collision of bubble
walls, sound waves(SW) and MHD turbulence. In this work, the bubble wall has reach its terminal velocity, thus the
contribution from bubble collision can be neglected

h2ΩGW ≃ h2ΩSW. (66)

The contribution from sound wave can be written as[63]

h2ΩSW(f) ≃ 2.65× 10−6

(
H∗

β

)(
κvα

1 + α

)2(
100

g∗

)1/3

vw

(
f

fSW

)3[
7

4 + 3(f/fSW)2

]7/2
Υ, (67)

where f is the frequency and the pivot frequency is given by

fSW ≃ 1.9× 10−2 1

vw

(
β

H∗

)(
T∗

100GeV

)( g∗
100

)1/6
mHz. (68)

The efficiency factor κv is the fraction of vacuum energy that is converted to bulk motion is calculated from [10, 47]

ακv =
3

eNξ3w

∫
w(ξ) γ2v2ξ2 dξ , where eN = e+(TN ). (69)
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The suppression factor Υ accounts the finite lifetime of sound wave in the medium, as suggested in [64]

Υ = 1− 1/
√

1 + 2τSWH∗, (70)

where lifetime τSW can be estimated as [65]

τSWH∗ ∼ H∗R∗/Ūf , (71)

with Ūf the root-mean-square of the bulk fluid velocity [10]

Ū2
f =

3

wN (1 + α)ξ3w

∫
w(ξ) γ2v2ξ2 dξ =

eN
wN

κvα

1 + α
, where wN = w+(TN ). (72)
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FIG. 9: Predicted GW spectra for vw calculated from Eq. (61) are shown as solid curves, while the dashed curves denote the
results by taking a constant vw = 1. Four different values of mH0

3
, i.e. 0.125 TeV, 0.75 TeV, 0.375 TeV, 2 TeV, are taken for

each pair of curves. For each pair of solid and dashed curves of the same color, model parameters are the same. Sensitivity
curves for detectors, like LISA, BBO, DECIGO and Taiji, are shown in shaded regions.

We calculated the GW spectra, the result are shown in FIG. 9. The solid curves are the predicted spectra for H0
3

mass from 0.125 TeV to 2 TeV. In the earlier work [58], a constant vw = 1 was taken. The predicted spectra of the
earlier work are given as dashed curves. It is observed that the smaller the parameter mH0

3
, the larger is the amplitude

of GW. It is found that when vw is determined dynamically, the GW spectra can have higher peaks when compared
with the case if we take vw = 1. The enhancement can be attributed to the fact that the κv factor takes its maximum
value when cs ≲ vw. The relation of κv versus vw for different mH0

3
are shown in FIG. 10. Compared with the case

vw = 1, the value of κv can vary in drastically when the dynamic vw from Eq. (61) are adopted. For the best case in
this work, κ2

v can be enhanced by 1 ∼ 2 order of magnitude due to this effect. However, since Υ factor dependent on
vw and κv, this enhancement becomes less efficient in the determination of the peak amplitudes of GW spectra.

V. DISCUSSION AND CONCLUSION

In this work we studied the bubble wall velocity determined by the phase transition dynamics in the MLRSM.
We calculated α, β/H∗ and vw in the first order phase transition parameter space. FIG. 1 demonstrates that the
parameter mH0

3
is the most important parameter in determining the phase transition parameters α and β/H∗. As

shown in FIG. 6, it is found that the bubble wall velocity can be determined in the range 0.2 < vw < 0.5 in the
MLRSM, and its value tends to decrease when the masses of scalars increase. In the model parameter regions with
a very large scalar mass, the relation between bubble wall velocity and the pressure difference can be described by
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FIG. 10: We show the value of κv as a function of vw for different mH0
3
. Solid lines are calculated from Eq. (69), with vw

as a free parameter, dashed lines are calculated from numerical fitted formula given in [47]. Open circles correspond to vw
calculated from Eq. (61).

a power law in the form γwvw ∝ [(pC − pA)/eA]
0.41, as shown in FIG. 7. Compared with previous work [58], where

vw = 1 was taken, we found that the peak amplitudes of GW spectra can be enhanced and the peak frequencies can
be shifted to high.

In order to check the validity of Eq (23), we also calculated Lw. We adopt a tanh ansatz for profile of ϕ(z)

ϕ(Lw; z) =
ϕ∗

2

(
1 + tanh

(
z

Lw

))
, (73)

where ϕ∗ is the local minimum of T zz(T, ϕ, vw). We can define an action F (v) according to Eq. (25)

F =

∫
dz

1

2
(∂zϕ)

2 +

[
Vvac(ϕ) +

∑
i

∫
p2zd

3p

(2π)3Ei
fi(p,x))

]ϕ=ϕ(z)

ϕ=0

. (74)

Inserting Eq. (73) into Eq. (74), then we can solve for Lw by minimizing F . The results are shown in FIG. 11. We
found that the wall thickness as O(2). Since we have vw = 0.2 ∼ 0.5 as our result, the corresponding γ−1

w = 0.8 ∼ 1.
Thus Eq. (23) is valid in our work.

In order to determine the bubble wall velocity, we have combined the energy momentum conservation relations
in the free particle approximation and LTE approximation, as given in Eq. (60). Naively speaking, in the LTE
approximation, one might expect that p− > p+, since the bubble is pushed to expand. However, it turns out that
this is not necessarily to be true. For example, one can easily check this by plugging the first line in Eq. (52) to the
second line, one obtain

T 0r
LTE =

p+ − p−
v− − v+

, and T rr
LTE =

p+v− − p−v+
v− − v+

. (75)

Since T 0r
LTE should always be positive, there should be a sign flip for p+ − p− between the detonation mode and the

deflagration mode. This behavior can be also seen from the lower left panel in FIG. 4, as p ∝ T 4 for αN ≪ 1.
However, the quantity pdr/eN we have used in Eq. (62) is well defined, which is positive both in the detonation mode
and the deflagration mode.

In free particle approximation, we have introduced two parameters β−1
b,s for all particles, based on the ansatz that the

incident particles are in thermal equilibrium. Together with vw, there are three free parameters to solve the matching
equations given in Eq. (60). It is natural to expect that β−1

b,s should have similar behavior with T∓, where T∓ denote
the temperatures on the two sides of bubble wall in the LTE approximation. It turns out that our numerical solutions
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FIG. 11: The kink solutions of scalar field ϕ are demonstrated, and the bubble wall thicknesses Lw ∼ 2T−1
N are shown.

do not support this expectation. In FIG. 12, we show the solutions of β−1
b,s , together with T±, normalized by TN . Our

results demonstrate that there are two relations: 1) β−1
b > TN > β−1

s and 2) T+ > TN > T−, which do not agree with
this expectation.

The underlying reason might be traced to our ansatz which has neglected the collision terms in the Boltzman
equations. The inconsistency might be resolved after taking into account the collisions between the incident particles
with transmitted/reflected particles, within the distance λmfp away from the bubble wall. Generally speaking, the
collision processes inside and outside the bubble wall can be different when the FOPT occurs. For example, massive
particles decaying can only happen in the broken phase. To treat the effects of collision terms in an appropriate way,
we should assume that different particles should have different βb and βs and should solve the coupled Boltzmann
equation numerically [32, 37], which can be done in our future work. Furthermore, the release of vacuum energy during
the FOPT might reheat the particles on and inside the wall. Other physics processes, like the decay of active particles
into the passive SM particles, can increase the temperature of plasma and consequently can affect the distribution
functions of all particles inside the bubble wall. All these effects should be handled appropriately. Obviously, these
effects can change the relation between vw and ∆T zz

i±
and deserve our future study.

Appendix A: Particle masses and thermal corrections

In this appendix, we provide the mass formula for scalar and vector bosons and fermions which can contribute to
the effective potential.

For real components of neutral scalar particles, in the basis of Re{ϕ0
1, ϕ

0
2,∆

0
R,∆

0
L}, the mass matrix elements are

MRe
11 (T, vR) = −µ2

1 + α1/2 v
2
R +Π11(T ),

MRe
22 (T, vR) = −µ2

1 + (α1 + α3)/2 v
2
R +Π11(T ),

Π11(T ) = T 2/24 (9/2g2L + 9/2g2R + 20λ1 + 8λ3 + 12α1 + 6α3 + 6y2t + 6y2b ),

MRe
12 (T, vR) = −2µ2

2 + α3/2 v
2
R +Π12(T ),

Π12(T ) = T (α2 + λ4 + ytyb),

MRe
33 (T, vR) = −µ2

3 + 3ρ1v
2
R +Π33(T ),

Π33(T ) = T 2/24 (12g2L + 6g2B−L + 16ρ1 + 8ρ2 + 6ρ3 + 8α1 + 4α3 + 12y2N ),

MRe
44 (T, vR) = −µ2

3 + ρ3/2 v
2
R +Π44(T ),

Π44(T ) = T 2/24 (12g2R + 6g2B−L + 16ρ1 + 8ρ2 + 6ρ3 + 8α1 + 4α3 + 12y2N ).

(A1)
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FIG. 12: The solutions of β−1
b,s/TN and T±/TN are demonstrated.

For imaginary components of neutral scalar particles, in the basis of Im{ϕ0
1, ϕ

0
2,∆

0
R,∆

0
L}, the mass matrix elements

are

M Im
11 (T, vR) = MRe

11 (T, vR), M Im
22 (T, vR) = MRe

22 (T, vR), M Im
12 (T, vR) = −MRe

12 (T, vR),

M Im
33 (T, vR) = −µ2

3 + ρ1v
2
R +Π33(T ), M Im

44 (T, vR) = MRe
44 (T, vR).

(A2)

For charged scalar particles, in the basis of {ϕ±
1 , ϕ

±
2 ,∆

±
R,∆

±
L}, the mass matrix elements are

M±
11(T, vR) = MRe

11 (T, vR), M±
22(T, vR) = MRe

22 (T, vR), M±
12(T, vR) = +MRe

12 (T, vR),

M±
33(T, vR) = −µ2

3 + ρ1 v
2
R +Π33(T ) = M Im

33 (T, vR), M±
44(T, vR) = MRe

44 (T, vR),
(A3)

For double charged scalar particles, in the basis of {∆±±
R ,∆±±

L }, the mass matrix elements are

M±±
11 (T, vR) = −µ2

3 + (ρ1 + 2ρ2) v
2
R +Π33(T ), M±±

22 (T, vR) = M±
44(T, vR). (A4)

By diagonalizing MRe,M Im and M±, one find there is one eigen value for each matrix that barely depend on vR.
These state corresponding to the Higgs doublet in SM. Since we take α1 = α2 = 0, this doublet barely contribute to
the vR phase transition, thus we don’t include them in Eq. (7) and following calculation. There are also degeneracies
in remaining eigen values in mass matrices, only 5 masses are unique, to be explicit, they are

m2
H0

1
= m2

A0
1
= m2

H±
1
∈ MΦ, m2

H0
2
= m2

A0
2
= m2

H±
2
= m2

H±±
1

∈ M∆L
,

m2
η0 = m2

η± ∈ M∆R
, m2

H0
3
∈ M∆R

, m2
H±±

2
∈ M∆R

.
(A5)

Among these states, η0 and η± are corresponding to the pseudo-Nambu-Goldstone bosons in the SU(2)R symmetry
breaking, these states are replaced by longitudinal gauge bosons in the following calculation.

For gauge bosons, W⃗R and BB−L becomes massive W±
R and Z0

R, together with a massless BY after symmetry

breaking, while leaving W⃗L unchanged. The masses for gauge bosons are

m2
W±

R

= g2R/2 v
2
R, m2

Z0
R
=
(
g2R + g2B−L

)
v2R. (A6)

For fermions, we consider three generations of right handed neutrino to have the same mass

mNR
=

√
2yN vR. (A7)
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