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MAHLER EQUATIONS FOR ZECKENDORF NUMERATION

OLIVIER CARTON AND REEM YASSAWI

Abstract. We define generalised equations of Z-Mahler type, based on the Zeckendorf
numeration system. We show that if a sequence over a commutative ring is Z-regular,
then it is the sequence of coefficients of a series which is a solution of a Z-Mahler equa-
tion. Conversely, if the Z-Mahler equation is isolating, then its solutions define Z-regular
sequences. This is a generalisation of results of Becker and Dumas. We provide an ex-
ample to show that there exist non-isolating Z-Mahler equations whose solutions do not
define Z-regular sequences. Our proof yields a new construction of weighted automata
that generate classical q-regular sequences.

1. Introduction

Christol’s theorem states that a series f(x) =
∑

n fnx
n with coefficients in the finite

field Fq is algebraic over the field of rational functions Fq(x) if and only if the sequence
(fn)n>0 is q-automatic, i.e., fn is a finite-state function of the base-q expansion of n [Chr79,
CKMFR80]. In this article we extend Christol’s theorem to sequences that are finite-state
functions of the Zeckendorf numeration.

Christol’s theorem is firmly anchored in algebra, and its beauty lies in the fact that
it connects algebraicity of series over finite fields to automata theory. However, it falls
short of being a complete characterisation of automatic sequences, as it only characterises
q-automaticity when q = pk is a prime power. One way of generalising Christol’s theorem
is by replacing, on the one hand, algebraic equations with Mahler equations, and on the
other, automaticity with regularity, as done by Becker and Dumas [Bec94,Dum93]. This
larger context allows us to move from the setting of finite fields to that of commutative
rings.

We can trace the passage from a polynomial to a Mahler equation as follows. Assuming
that q = pk, if (fn) is q-automatic, then Christol’s theorem tells us that

∑

n fnx
n is the

root of a polynomial over Fq(x). It follows that
∑

n fnx
n must also be a root of an Ore

polynomial, P (x, y) =
∑d

i=0Ai(x)y
qi.
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Now more generally let R be any commutative ring and let q > 2 be any natural number.
Define the linear operator Φ : RJxK → RJxK as Φ(f(x)) = f(xq). Let Ai(x) ∈ R[x] be
polynomials. The equation

P (x, y) =

d∑

i=0

Ai(x)Φ
i(y) = 0(1)

is called a q-Mahler equation, and if f ∈ RJxK satisfies P (x, f(x)) = 0, then it is called
q-Mahler. If q is a power of a prime, and R = Fq, then, using the fact that elements
of Fq are left invariant by the Frobenius operator x 7→ xq, a q-Mahler functional equation
is nothing but an Ore polynomial, and so the notions of being algebraic and q-Mahler
coincide. In other words, the notion of a series being a solution of a q-Mahler equation is
a generalisation of a series being algebraic.

Regular sequences, introduced by Allouche and Shallit in [AS92], are a generalisation
of automatic sequences to infinite rings. Just as automatic sequences are generated by
deterministic automata, regular sequences are generated by weighted automata. By a
weighted automaton, we mean a nondeterministic automaton where each transition is
labeled from an alphabet B and in addition carries a weight from a ring R; see Section 2.2
for a precise definition. Thus, a word w on B is assigned a weight by the automaton,
namely, the sum of weights of all possible paths with w as label. Furthermore, as automatic
sequences are characterised as having a finite kernel, so regular sequences are characterised
as having a finitely generated kernel, and in fact Allouche and Shallit defined regular
sequences this way. The equivalence of these two definitions follows from a classical result
about weighted automata [BR11, Proposition 5.1] and [AS92, Theorem 2.2].

Becker [Bec94] and Dumas [Dum93] generalise Christol’s theorem as follows: a q-regular
series is q-Mahler, and conversely, if a Mahler equation is isolating, i.e., A0(x) ≡ 1 in (1)
then its roots are q-Mahler. They also give examples of non-isolating Mahler equations
whose solutions are not q-regular. Finding a complete characterisation of regular sequences
is still open in general, although it has been solved in [BCCD19] for R = C. See also [CS18]
for a general exposition of regular sequences, as well as recent developments.

Our first contribution, which is Theorem 15, is a direct construction of a weighted
automaton computing the coefficients of the solution of an isolating q-Mahler equation,
which in addition avoids the use of the Cartier operators. The construction is first given
in the classical setting of the base-q numeration system. It can be used to obtain the
result of Becker and Dumas, or indeed one direction of Christol’s theorem in Corollary 16.
Given an isolating Mahler equation P and f0 ∈ R, we can define a weighted automaton
A = A(P, f0); see Section 2.4.3. We show the following.

Theorem 1. Let P be an isolating q-Mahler equation over the commutative ring R. Let
f(x) =

∑

n>0 fnx
n satisfy P (x, f(x)) = 0. Then the weighted automaton A = AP,f0

generates f .

Furthermore we bound the cardinality of the state set of A as a function of P ’s exponent
and height ; see Theorem 15.
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The base-q numeration system is a fundamental underpinning of Christol’s theorem. The
main result of this paper is to extend Christol’s theorem to the setting of the Zeckendorf
numeration system, where each integer is written as a sum of Fibonacci numbers. We define
(fn) to be Z-regular if there exists a weighted automaton that computes fn by reading the
canonical Zeckendorf expansion of n. The main obstacle to extending the work of Allouche
and Shallit, Becker and Dumas, i.e., to characterising Z-regular sequences as solutions of
some generalised Mahler equation, is that the Zeckendorf numeration does not yield a ring.
In particular, when moving from base-q to Zeckendorf numeration, the natural replacement
of the map n 7→ qn is not linear, and this latter property is crucial in the construction of
our automata in Theorem 15.

While the Zeckendorf analogue of n 7→ qn is not linear, we show, by using work of
Frougny [Fro92], that its non-linearity can be calculated by a deterministic automaton.
From this, we introduce a linear operator Φ : RJxK → RJxK on series which plays the role
of the Frobenius operator x 7→ xq for q-Mahler equations, and with it we define Z-Mahler
equations, analogously as in (1). Our main result is

Theorem 2. Let R be a commutative ring, let P (x, y) ∈ R[x, y] be an isolating Z-Mahler
equation. If f =

∑

n>0 fnx
n is a solution of P (x, f(x)) = 0, then there is a weighted

Z-automaton A which generates f .

Furthermore in Theorem 30, we bound the state set of A as a function of P and the
golden ratio ϕ, which is intimately connected to the Zeckendorf numeration. Conversely
in Corollary 34 we see that Z-regular series are solutions of a Z-Mahler equation. Finally,
as in the classical case, we show in Section 3.4.4, that the restriction to isolating equations
is needed for our construction.

We remark that our results can be generalised to numeration systems generated by
recurrences whose characteristic polynomial is the minimal polynomial of a Pisot number.
In particular one can use general results of Frougny and Solomyak [Fro92,FS92], namely
that normalisation of expansions can be realised by automata.

This paper arose out of a desire to understand whether there was a connection between
two descriptions of certain substitutional fixed points as projections of a more regular
structure in higher dimension. The first result concerns the realisation of Pisot substitu-
tional tilings as a model set. A model set is a projection of a pseudo-lattice in Rn × G
into Rn, via a window in a locally compact Abelian group G. A Meyer set is a finite
set of translates of a model set. The importance of these sets is shown in Y. Meyer’s
work [Mey72, Thm V Chapter VII, Thm IV, page 48] and their relevance to substitutions
was made clear by Lee and Solomyak [LS12], who proved that a substitutional tiling shift
has pure discrete spectrum if and only if the discrete set of control points for the tiling
are a Meyer set. The second result is Furstenberg’s theorem [Fur67], which tells us that
algebraic functions in FqJxK are projections, onto one dimension, of Laurent series expan-
sions of rational functions in Fq(x, y). Combining Furstenberg’s theorem with Christol’s
theorem [Chr79, CKMFR80], we conclude that these projections are codings of length-q
substitutional fixed points.
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Solutions of equations of Mahler type have provided a useful source of transcendental
numbers. Indeed, Mahler started this line of investigation by showing that if α is algebraic
with 0 < |α| < 1, and if f(z) is the solution of the 2-Mahler equation Φ(f(x)) = f(x)− x,
then f(α) is transcendental [Mah82]. This approach has been greatly generalised and is now
known as Mahler’s method, see the book [Nis96] by Nishioka devoted to the foundations
of this area, as well as the more recent survey article [Ada19] by Adamczewski. It would
be interesting to investigate whether analogous results exist for Z-Mahler equations.

In Section 2 we set up notation, and define weighted automata, regular sequences, and
Mahler equations. For the case of base-q numeration, q ∈ N, we describe the correspon-
dence between q-regular sequences and q-Mahler equations. In Section 2.4.3, we define a
universal weighted automaton, and in Theorem 15 we show that, by varying the weights,
we can generate any solution of any isolating q-Mahler equation. In Corollary 16 we re-
cover Christol’s theorem in the special case where the ring equals Fq. We then focus on
the Zeckendorf-numeration. In Section 3.2 we define an operator n 7→ φ(n) and show
in Corollary 23 that the non-linearity of φ can be calculated. In Section 3.4 we define
Z-Mahler equations. By merging the ideas behind the weighted automata generating so-
lutions of q-Mahler equations and the automaton computing the linearity defect of φ, we
show in Theorem 30 that any solution of an isolating Z-Mahler equation is Z-regular. In
the standard Section 3.4.2, we show that Z-regular sequences define solutions of Z-Mahler
equations. In Section 3.4.3 we give a result analogous to that of Dumas for q-numeration,
slighting relaxing the notion of Z-isolating which guarantees Z-regularity. Finally in Sec-
tion 3.4.4 we give an example of a non-isolating Z-Mahler equation which has non-regular
solutions. We end by describing some open problems.

2. Mahler equations and weighted automata

2.1. Basic notation. We will work with numeration systems U = (un)n>0 with u0 = 1,
and where each natural number can be represented using strings of symbols from a digit
set B, i.e., for each n there is a k and bk, . . . , b0 from B with n =

∑k

i=0 biui. For the
numeration systems we consider, every natural number has a canonical representation,
which is the greatest representation for the lexicographic ordering, and we use (n)U to
denote this canonical representation. Also, given a word on the digit set, we use [w]U to
denote the natural number that has w as a (possibly non-canonical) representation in that
system. Despite these definitions, we are permitted to sometimes pad (n)U with leading
zeros, eg, when we have to compare the expansions of several integers at a time.

In this article we only work with base-q numerations and the Zeckendorf numeration.
However we note that our work generalises to numerations where addition is not unrea-
sonable, such as systems where U is defined using a linear recurrence, whose characteristic
polynomial is the minimal polynomial of a Pisot number.

In Section 2, we work with base-q numerations, with U = (qn)n>0, whose digit set is
{0, 1, . . . , q−1}, and the canonical representation (n)q is that for which the most significant
digit is non-zero. In Section 3, we work with the Zeckendorf numeration, Z = (Fn)n>0

defined by the Fibonacci numbers, where the digit set is {0, 1} and where the canonical
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representation (n)Z has no consecutive occurrences of the digit 1; see [AS03, Section 3.8]
for a summary.

2.2. Automata. In this section we recall the notion of a weighted automaton. There are
many variants of automata. The main result (Theorem 30) of this paper is phrased using
weighted automata, but we also use other kinds automata, such as deterministic automata
with an output function or even classical automata. The inputs of automata are words,
that is, sequences of symbols from an alphabet, but each numeration system U associates
with each integer n a word, its canonical representation (n)U , that can be fed as input to
an automaton. This allows automata to deal with integers instead of words.

We assume the reader to be familiar with the basic notions concerning automata; oth-
erwise we refer the reader to [Sak09] for a complete introduction. An automaton B is a
tuple 〈S,B,∆, I, F 〉 where S is the state set, B is the input alphabet, ∆ is the transition
relation and I and F are the sets of initial and final states. A transition (p, b, q) ∈ ∆
is a labelled directed edge between states and is written p b−→ q. A word w = b1 · · · bn
is accepted if there is a sequence q0

b1−→ q1 · · · qn−1
bn−→ qn of consecutive transitions such

that q0 ∈ I and qn ∈ F . The automaton is deterministic if I = {s0} is a singleton, and
if p b−→ q and p b−→ q′ in ∆ implies q = q′. In that case, the relation ∆ is a function
∆ : S ×B → S; it can be extended to a function from S × B∗ to S by setting ∆(q, ε) = q
and ∆(s, b1 · · · bn) := ∆(∆(s, b1 · · · bn−1), bn). If the set F of final states is replaced by an
output function τ : S → A, where A is the output alphabet, then the automaton defines
the function from B∗ to A which maps the word w to τ(∆(s0, w)). Given a numeration
system U , a sequence (an)n>0 is called U-automatic if there is a deterministic automaton
〈S,B,∆, {s0}, τ〉 such that an = τ(∆(s0, (n)U)) for each n > 0. For the numeration sys-
tems that we study in this article, this definition is equivalent to requiring the existence
of an automaton such that an = τ(∆(s0, w)) whenever n = [w]U , for each n > 0. If (n)U
is read starting with the most significant digit, we say that (an)n>0 is obtained in direct
reading, otherwise we say that it is obtained in reverse reading. If (an)n>0 is U -automatic,
then we will also say that f(x) :=

∑

n>0 anx
n is U-automatic.

If U is the classical base-q numeration, U -automatic sequences are called q-automatic,
and these sequences have been extensively studied [AS03]. In [Sha88] Shallit studied more
general U -automatic sequences; see also work by Allouche [All92] and Rigo [Rig00].

Let R be a commutative ring. A weighted automaton A with weights in R is a tuple
〈S,B,∆, I, F 〉, where S is a finite state set, B is an alphabet, I : S → R and F : S → R are
the functions that assign to each state an initial and a final weight and ∆ : S×B×S → R is
a function that assigns to each transition, i.e., to each labelled edge, a weight. A transition
(s, b, s′) such that ∆(s, b, s′) = r ∈ R is written s b:r−→ s′. A path γ in A is a finite sequence
s0

b1:r1−−→ s1, s1
b2:r2−−→ s2, · · · , sn−1

bn:rn−−−→ sn of consecutive transitions. The label of such
a path is the word w = b1 · · · bn and the path is written s0

w:r−−→ sn where r = r1 · · · rn.
This notation is consistent with the notation s b:r−→ s′ for transitions since a transition can
be viewed as a path of length 1. The weight weightA(γ) of the path γ is the product
I(s0)rF (sn) = I(s0)r1 · · · rnF (sn). Furthermore, the weight of a word w ∈ B∗ is the sum
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of the weights of all paths with label w and it is denoted weightA(w), i.e.,

weightA(w) =
∑

γ=s0
w:r
−−→sn

weightA(γ).

If the input alphabet is B = {0, 1, . . . , q− 1}, we say that A is a weighted q-automaton.
In our figures, non-zero initial and final weights are given over small incoming and

outgoing arrows. Missing transitions implicitly have zero weight. If a state has zero initial
weight, it will not have an initial arrow, likewise for states with final weight zero.

Recall the two-element Boolean semiring B = {0, 1}, where the sum and the product
are max and min respectively. A non-deterministic automaton 〈S,B,∆, F 〉 is a weighted
automaton where R = B.

Let A be a q-weighted automaton and let U be a numeration system with digit set
{0, 1, . . . , q − 1}. Define the sequence (an)n>0 by an := weightA((n)U), where (n)U is read
starting with the most significant digit. Then we say that the sequence (an)n>0 and the
generating function f(x) :=

∑

n>0 anx
n are U-regular, generated by A. The notion of a

q-regular sequence was introduced by Allouche and Shallit, that it is equivalent to this
definition is shown in [AS92, Theorem 2.2]. Rigo studied automatic sequences for abstract
numeration systems, using automata with output. While he did not define U -regularity, it
is quite natural to extend regularity to other numeration systems.

Example 3. In Figure 1 we give a weighted automaton with weights in F2 that generates
the Thue-Morse sequence with the base-2 numeration. As the state s is the only state with
a nontrivial initial weight, and the state t is the only state with a nontrivial final weight,
then, to compute the n-th term, one sums in F2 the weights of all paths with label (n)2
from the state s to the state t. Note that there are as many such paths as the number of
occurrences of the digit 1 in (n)2. Since each such path has weight 1, the sum in F2 is the
number of 1’s in (n)2 mod 2.

s t1 1

0:1
1:1

1:1

0:1
1:1

Figure 1. A weighted automaton that generates the Thue-Morse sequence
(an), where an = weightA((n)2). The weight of an edge is given in red, and
the blue numbers are the digits we read in (n)2.

2.2.1. Matrix representations of weighted automata. Let A be a weighted automaton and
let n be its number of states. Then A can also be represented by a triple 〈I, µ, F 〉 where
I is a row vector over R of dimension 1 × n, µ is a morphism from B∗ into the set of
n × n-matrices over R, with the usual matrix multiplication, and F is a column vector
of dimension n × 1 over R. The vector I is the vector of initial weights, the vector F is
the vector of final weights and, for each symbol b, µ(b) is the matrix whose (p, q)-entry
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is the weight r ∈ R of the transition p b:r−→ q. Note that with this matricial notation,
weightA(w) = Iµ(w)F .

Example 4. The weighted automaton pictured in Figure 1 is represented by 〈I, µ, F 〉
where I = (1, 0), F = (0, 1)t and the morphism µ from {0, 1}∗ to the set of 2× 2-matrices
over F2 is given by

µ(0) =

(
1 0
0 1

)

and µ(1) =

(
1 1
0 1

)

.

The following result can be proved as in [AS92, Theorem 2.10]. It will be used in
Section 3.4.4 to show that the solution of a non-isolating Z-Mahler equation is not Z-
regular.

Lemma 5. If the sequence (an)n>0 is complex valued and U-regular, then there is a positive
constant c such that an = O(nc).

2.2.2. From weighted automata to automatic sequences. It is known that any weighted
automaton with weights in a finite ring defines an automatic sequence; see for example
[AS03, Sec. 4.3]. Nevertheless, for completeness we include a proof, which is a slight
generalization of the power set construction, and which yields a deterministic automaton
from a non-deterministic one.

Proposition 6. Let A be a weighted q-automaton with weights in a finite commutative
ring R. Then, for each of direct and reverse reading, there exists a q-deterministic au-
tomaton B with initial state s0 and output τ : S → R such that for each word w, the
equality weightA(w) = τ(∆(s0, w)) holds.

Proof. Let n be the number of states of A, and let 〈I, µ, F 〉 be a matrix representation of
dimension n of the weighted automaton A as given in Section 2.2.1. The weight of a word
w ∈ B∗ is by definition Iµ(w)F .

Consider the automaton B defined as follows. Its state set S is the finite set of all row
vectors of dimension 1× n over R. Its initial state is the vector I. Set ∆(q, b) := qµ(b) for
each row vector q and each digit b. Finally define the function τ : S 7→ R as τ(q) = qF
for each q ∈ S. It is now routine to check that the automaton B defines, in direct reading,
the same automatic sequence as the weighted automaton.

A reverse deterministic automaton is obtained similarly by taking S to be the set of
column vectors of dimensions n × 1 over R, by taking F as initial state and, setting
∆(q, b) := µ(b)q. �

Corollary 7. Let A be a weighted q-automaton with weights in a finite commutative ring R,
and let U be a numeration system with digit set {0, 1, · · · , q − 1}. Then the U-regular
sequence generated by A is U-automatic.

2.3. Robustness of weighted automata. As we saw in Proposition 6, there is a direct
link from sequences generated by weighted automata using a numeration system U to
U -regular sequences. The purpose of this section is to show that the class of U -regular
sequences is closed under the Cauchy product as soon as addition in U can be realized
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by an automaton. Obtaining this result is made easier by the use of weighted automata.
Looking ahead, it is particularly interesting when Christol’s theorem does not hold as for
the Zeckendorf numeration system.

An unambiguous automaton is a weighted automaton over the ring Z of integers such
that each weight, including initial and final weights, is either 0 or 1, and such that the
weight of each word is either 0 or 1. The first condition implies that the weight of each
path is in {0, 1}. The second condition implies that for each word w, there is at most one
path labelled by w having a positive weight. If there is such a path, the word is said to be
accepted.

Let u and v be two words over alphabets A and B respectively such that |u| = |v|.
We denote by u ⊗ v the word w over the alphabet A × B such that |w| = |u| = |v| and
wi = (ui, vi). An unambiguous automaton realizes addition in a numeration system if it
accepts all words of the form (m)U ⊗ (n)U ⊗ (m+ n)U for non-negative integers m and n,
where the expansions (m)U and (n)U have been possibly padded with leading zeros to have
the same length as (m + n)U , i.e., we momentarily relax our notation and use (m)U to
refer to any representation of m. For example, the automaton pictured in Figure 2 realizes
addition in base 2.

0 1

0
0
0

1
0
1

0
1
1 0

0
1

1
0
0

0
1
0

1
1
1

1
1
0

Figure 2. A automaton recognising addition base-2. A string over {0, 1}3,

whose letters here are written as column vectors
x
y
z
, is accepted in direct

reading if and only if it equals (m)2 ⊗ (n)2 ⊗ (m+ n)2.

Recall that the Cauchy product, or convolution of two series f(x) =
∑

n>0 fnx
n and

g(x) =
∑

n>0 gnx
n is the series h(x) =

∑

n>0 hnx
n where hn =

∑

i+j=n figj for each n > 0.

Theorem 8. Suppose that there is an unambiguous automaton realizing addition in the
numeration system U . If the sequences f1 = (f1,n)n>0 and f2 = (f2,n)n>0 are generated
by weighted automata in U , then the Cauchy product of f1 and f2 is also generated by a
weighted automaton in U .

Proof. Let B be the digit alphabet of the numeration system U . Suppose that the unam-
biguous automaton A = (Q,B3,∆, I, F ) realizes addition in U . Let the sequences f1 and f2
be generated by the weighted automata B1 = (S1, B,∆1, I1, F1) and B2 = (S2, B,∆2, I2, F2)
respectively. We construct a new weighted automaton B whose state set is Q × S1 × S2.
The initial (respectively final) weight of a state (q, s1, s2) of B is I1(s1)I2(s2) (respectively
F1(s1)F2(s2)) if q is initial (respectively final) in A, and 0 otherwise. Its transition set ∆
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is given by

∆ =






(q, s1, s2)

b:α1α2−−−→ (q′, s′1, s
′
2) : ∃b1, b2 ∈ B

q b1,b2,b−−−→ q′ in A
s1

b1:α1−−−→ s′1 in B1

s2
b2:α2−−−→ s′2 in B2






.

A path (q, s1, s2)
w:α−−→ (q′, s′1, s

′
2) in B corresponds first to a choice of a path s w,u1,u2−−−−→ s′

in A giving two words u1 and u2 such that [w]U = [u1]U + [u2]U , and second to a choice of
two paths s1

u1:α1−−−→ s′1 and s2
u2:α2−−−→ s′2 in B1 and B2 such that α = α1α2. From this remark

and the choices of initial and final weights in B, it follows that the weight of a word w is
the sum, over all decompositions [w]U = [u1]U + [u2]U of the products α1α2 of the weights
α1 and α2 of u1 and u2. Note that the commutativity of the ring is here essential. �

2.4. q-Mahler equations and weighted automata.

2.4.1. From weighted automata to q-Mahler equations. Given a weighted q-automaton gen-
erating (an)n>0, there is a standard technique to obtain a Mahler equation for which
∑

n>0 anx
n is a solution, similar to the techniques described in the proof of Christol’s

theorem in [AS03, Theorem 12.2.5]. We illustrate with a simple example.

Example 9. Consider again the Thue-Morse sequence (bn)n>0, whose weighted automaton
is given in Figure 1. We interpret the state t to be the formal power series t(x) =

∑

n bnx
n

in F2JxK, where bn = weightA((n)2) ∈ F2. Similarly the state s corresponds to the series
s(x) =

∑

n>0 anx
n in F2JxK, whose coefficients would be generated by the automaton if s

were the only final state with weight 1. As we read (n)2 starting with the most significant
digit, we have,

a2n = an and a2n+1 = an.

b2n = bn and b2n+1 = bn ⊕ an(2)

where the symbol ⊕ denotes the sum in F2.
Since F2JxK has characteristic 2, then (2) implies that

(3) t(x) = (1 + x)t(x2) + xs(x2) and s(x) = (1 + x)s(x2).

Again using that F2JxK has characteristic 2, we have

(4) t(x2) = (1 + x)2t(x4) + x2s(x4) and s(x2) = (1 + x2)s(x4).

Now substituting (4) in (3), we obtain

xt(x) = (x+ x2 + x3 + x4)t(x4) + (x2 + x3)s(x4)

= (1 + x)3t(x4) + x2(1 + x)s(x4) + (1 + x4)t(x4)

= (1 + x)t(x2) + (1 + x4)t(x4),

i.e., the Thue-Morse power series is a solution of the 2-Mahler equation P (x, y) = xy +
(1 + x)Φ(y) + (1 + x4)Φ2(y) = 0.
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2.4.2. Reformulating isolating q-Mahler equations. Given an isolating q-Mahler equation
P (x, y) = y −

∑d

i=1Ai(x)Φ
i(y), we write

(5) Ai(x) =
h∑

j=0

αi,jx
j for 1 6 i 6 d,

where αi,j ∈ R for each i, j. Let f(x) =
∑

n>0 fnx
n satisfy P (x, f(x)) = 0. To find the

coefficients fn of f , we obtain from (5) that

fn =
∑

kqi+j=n
16i6d, 06j6h

αi,jfk =
∑

kqi+j=n

αi,jfk ,(6)

where the last equality follows if we set αi,j = 0 for i, j outside the prescribed bounds.
Therefore we can drop the superfluous constraints on the indices.

Note that if we set n = 0 in (6), we get the following equation satisfied by the coeffi-
cient f0 = f(0).

f0 =

(
h∑

i=0

αi,0

)

f0.(7)

Therefore, if it were to be the case that f0 = f(0) for some solution f of P (x, f(x)) = 0,
Equality (7) must hold. In this case we say that f0 is P -compatible. Conversely, if f0 is
P -compatible, then, again using (6), there is a unique series f such that P (x, f(x)) = 0

and f(0) = f0. Clearly, if
∑h

i=0 αi,0 = 1, then any f0 ∈ R is P -compatible. Also, if R is an

integral domain, then
(∑h

i=0 αi,0

)
f0 = f0 is equivalent to either

∑h

i=0 αi,0 = 1 or f0 = 0.
In (6) we have reduced solving a functional equation to a linear problem, to which

weighted automata are well suited. The identity (6) motivates the definition of the au-
tomaton associated to a Mahler equation that we will use in Section 2.4.3, and it is also
what makes the proof of Proposition 14 work.

2.4.3. From isolating q-Mahler equations to weighted automata. In this section, we define a
weighted automaton which directly computes the coefficients of the solution of a q-Mahler
equation. Note that we will avoid the need for Cartier operators Λi, 0 6 i 6 q−1 ( [AS03,
Definition 12.2.1]); this is relevant, because when we move to more general numeration
systems in Section 3, the property Λ0(fg

p) = Λ0(f)g that Cartier operators enjoy does not
hold there. This automaton is given in two steps. First we describe a universal weighted
automaton with an infinite number of states. The structure of this universal automaton is
fixed and does not depend on the ring R; furthermore it can accommodate any q-Mahler
equation P . Given such an equation, which has finitely many non-zero coefficients, only
finitely many states of this universal automaton are needed to compute the solution, and
the weights of its transitions are given by the coefficients occurring in P .

Let (αi,j)i>1,j>0 and f0 be elements of the commutative ring R. Define the state set S

S := {si,j : 0 6 i < ∞ and 0 6 j < ∞}.
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Let B = {0, 1, . . . , q − 1} be the input alphabet, and define the transition set ∆

∆ :=
{

si,j
b:1
−→ si+1,qj+b : b ∈ B, 0 6 i, j

}

∪

{

si,j
b:αi+1,qj+b−k

−−−−−−−→ s0,k : b ∈ B, 0 6 i, j, k and 0 6 qj + b− k

}

.

We set the initial and final weights I and F as

I(si,j) :=

{

f0 if j = 0

0 otherwise,
and F (si,j) :=

{

1 if i = j = 0

0 otherwise.

Then we call the automaton A := 〈S,B,∆, I, F 〉 the universal weighted q-automaton as-
sociated to (αi,j)i>1,j>0. If needed, we can specify that A depends on the choice of initial
condition f0.

We think of this weighted automaton as universal because only the edge weights depend
on (αi,j)i>1,j>0. Given a finite set of coefficients (αi,j)16i6d,06j6h, in particular, those asso-
ciated to a q-Mahler equation with coefficients as in (5), we extend them to (αi,j)i>1,j>0 by
setting αi,j = 0 if i > d or j > h. The following lemma shows that if there are finitely many
non-zero coefficients αi,j, only finitely many states of the universal automaton are useful.
Useful means here that they occur in a path with non-zero weight. Note that such a path
must end in s0,0 since this state is the only one with non-zero final weight. Lemma 10 also
provides an explicit upper bound of the number of useful states.

Lemma 10. Let P be an isolating q-Mahler equation with exponent d and height h. If
either i > d or j > h

q−1
, then the state si,j does not occur in a path with non-zero weight.

Proof. Let si,j
b:α−→ si′,j′ be a transition in the universal weighted q-automaton associated

to (αi,j)i>1,j>0 where αi,j = 0 if j > h or i > d. We claim that if α 6= 0 and j > h
q−1

then

j′ > h
q−1

. If si,j
b:α−→ si′,j′ is a transition of the form si,j

b:1−→ si+1,qj+b, the claim is clear. If

it is a transition of the form si,j
b:α−→ s0,j′, with α = αi+1,qj+b−j′, then, since α is assumed

non-zero, we have qj + b− j′ 6 h, and so

j′ > qj + b− h > q

(
h

q − 1

)

− h =
h

q − 1
.

The statement of the lemma follows. �

In view of Lemma 10, and because s0,0 is the only state with a non-zero final weight, we
define the weighted automaton associated to a q-Mahler equation P and initial condition f0
is defined as follows.

Let q > 2 be a natural number. Let P (x, y) = y −
∑d

i=1Ai(x)y
qi be an isolating q-

Mahler equation whose coefficients Ai(x) ∈ R[x] are as in (5). Set h̃ := ⌈ h
q−1

⌉ − 1. If we

truncate the universal weighted q-automaton associated to (αi,j)i>1,j>0 and f0 to the state
and transition sets

S := {si,j : 0 6 i 6 d− 1 and 0 6 j 6 h̃}
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and

∆ :=

{

si,j
b:1
−→ si+1,qj+b : b ∈ B

0 6 i 6 d− 2

0 6 qj + b 6 h̃

}

∪






si,j

b:αi+1,qj+b−k

−−−−−−−→ s0,k : b ∈ B
0 6 i 6 d− 1

0 6 j, k 6 h̃
0 6 qj + b− k 6 h






,

The automaton A := 〈S,B,∆, I, F 〉 is called the weighted automaton associated to P
and f0, A = A(P, f0).

In other words, the weighted automaton associated to P is a restriction of the universal
q-automaton to a subgraph which will contain all paths in the universal automaton that
have non-zero weight and end at s0,0. Because of this, we will frequently relax some of the
constraints on the indices. Note also that while this definition does not require f0 to be
P -compatible, the latter will be a condition for all our results.

Example 11. In Figure 3 we give the weighted automaton associated to the 2-Mahler
equation f(x) = A1(x)f(x

2) where A1(x) is the polynomial of degree 3 α1,0+α1,1x+α1,2x
2+

α1,3x
3. We will see in Proposition 14 that setting α1,0 = 1 and f0 ∈ R, this automaton

generates the unique solution f(x) =
∑

n>0 fnx
n ∈ RJxK of the equation f(x) = A1(x)f(x

2)
such that f(0) = f0.

s0,0 s0,1 s0,2
f0

1

0:α1,0

1:α1,1

1:α1,0

0:α1,2

1:α1,3

0:α1,1

1:α1,2
0:α1,0

1:α1,1

0:α1,3

0:α1,2

1:α1,3

Figure 3. The weighted automaton for f(x) = (α1,0 + α1,1x+ α1,2x
2 + α1,3x

3)f(x2)

Example 12. Figure 17 depicts the weighted automaton associated to a 2-Mahler equation
of exponent 2 and height 3, that is, the equation

f(x) = A1(x)f(x
2) + A2(x)f(x

4)

where A1(x) = α1,0 + α1,1x+ α1,2x
2 + α1,3x

3 and A2(x) = α2,0 + α2,1x+ α2,2x
2 + α2,3x

3.

Remark 13. The aim is to generate a sequence (fn)n>0 by feeding (n)q into a q-weighted
automaton. We claim that the automaton associated to P will generate the same sequence
even if we allow leading zeros in (n)q. It is sufficient to show that Iµ(0) = I. The only
states with non-zero initial weight are si,0. The transitions between these states with b = 0
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s0,0 s0,1 s0,2

s1,0 s1,1 s1,2

f0

f0

1

0:α1,0

1:α1,1

1:α1,0

0:1
1:1

0:α1,2

1:α1,3

0:α1,1

1:α1,2

0:α1,0

1:α1,1

0:1

0:α1,3

0:α1,2

1:α1,3

0:α2,0

1:α2,1

1:α2,0

0:α2,2

1:α2,3

0:α2,1

1:α2,2

0:α2,0

1:α2,1
0:α2,3

0:α2,2

1:α2,3

Figure 4. The automaton for a 2-Mahler equation of exponent 2 and height 3.

are si,0
0:αi+1,0−−−−→ s0,0 and si,0

0:1−→ si+1,0 for 0 6 i 6 d− 2. Thus

Iµ(0) = (

d
︷ ︸︸ ︷

f0, . . . f0 |0 . . . 0)











α1,0 1 0 . . . 0
α2,0 0 1 . . . 0
...

αd−1,0 0 0 . . . 1
αd,0 0 0 . . . 0

0

M2











= I,

where 0 represents the appropriate dimension matrix all of whose entries are zero, and

where we have used the property that
(
∑d

i=1 αi,0

)

f0 = f0.

Given a state s in the automaton A(P, f0), define

weight∗A,s(w) =
∑

s0
w:r
−−→s

I(s0)r,

where the sum is taken over all possible paths that end at s. The following proposition
states the main property of the automaton associated to a given Mahler equation, showing
that it indeed computes the solution of the equation.

Proposition 14. Let R be a commutative ring, let P (x, y) ∈ R[x, y] be an isolating q-
Mahler equation of exponent d and height h, and let f =

∑

n>0 fnx
n be a solution of

P (x, f(x)) = 0. If A is the weighted automaton associated to P (x, y) and f0 ∈ R, if
w ∈ {0, . . . , q − 1}∗ and if i and j are integers with 0 6 i 6 d− 1 and 0 6 j 6 ⌈ h

q−1
⌉ − 1,

then

weight∗A,si,j
(w) =

{

fk if kqi + j = [w]q

0 otherwise.
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Proof. The proof is by induction on the length of the word w. If w is the empty word ε,
then weight∗A,si,j

(ε) = I(si,j); this equals f0 if j = 0 and equals 0 otherwise, so the claim is

proved for w = ε since [ε]q = 0.
For |w| > 0, we consider first the easier case i > 0 and then the case i = 0.
Let i > 0. In this case there is a unique incoming transition si−1,j′

b:1−→ si,j to si,j if
j ≡ b mod q and qj′ + b = j, and no incoming transition otherwise. In the latter case
the statement follows trivially, so in what follows we assume that there is an incoming
transition. Using the inductive hypothesis,

weight∗A,si,j
(wb) = weight∗A,si−1,j′

(w)

= fk where qi−1k + j′ = [w]q

By multiplying qi−1k+j′ = [w]q by q and then adding b, we obtain qik+j = q[w]q+b = [wb]q
and the statement of the proposition is proved in this case. Notice here that we use linearity
of the map m 7→ qm.

Next we consider the case i = 0. We have

weight∗A,s0,j
(wb) =

∑

i′,j′

αi′+1,qj′+b−j weight
∗
A,si′,j′

(w)

=
∑

qi
′
k+j′=[w]q

αi′+1,qj′+b−jfk,

where the first equality follows by the definition of the allowed transitions in A and the
second equality follows by the inductive hypothesis. Setting i = i′ + 1 and ℓ = qj′ + b− j,
the equation qi

′

k + j′ = [w]q becomes qik + ℓ = [wb]q − j, and we have

weight∗A,s0,j
(wb) =

∑

qik+ℓ=[wb]q−j

αi,ℓfk

= f[wb]q−j ,

where the last equality follows from (6). �

Theorem 15. Let R be a commutative ring, and let P (x, y) ∈ R[x, y] be an isolating q-
Mahler equation of exponent d and height h. Then the automaton A associated to P and f0
satisfies

weightA(w) = f[w]q ,

where f =
∑

n>0 fnx
n is a solution of P (x, f(x)) = 0.

Consequently if R is finite, then there exists a deterministic automaton with at most

|R|⌈
h

q−1⌉d states that generates f(x).

Proof. Given P (x, y) = y −
∑d

i=1Ai(x)y
qi, with Ai defined by Equation (5), let A be

the weighted automaton associated to P ; by definition it has at most ⌈ h
q−1

⌉d states. Let

[w]q = n. By Remark 13, f[w]q = fn, so it suffices to check the statement for w = (n)q.
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By Proposition 14, we have weight∗A,s0,0
(w) = fn. As s0,0 is the only state with a non-zero

final weight, and weight∗A,q(w) = (Iµ(w))q, we have

weightA(w) = Iµ(w)F = weight∗A,s0,0
(w) = fn.

The second statement follows by determinising, either in reverse or in direct reading, the
automaton A, as in Proposition 6. �

For the case of automatic sequences over R = Fq, with q = pj, our approach gives a
novel proof of one implication in Christol’s theorem, and construction of a deterministic
automaton generating (fn), without the use of Cartier operators.

Corollary 16. Let R be the finite field Fq. If
∑

n fnx
n ∈ FqJxK is algebraic over Fq(x),

then there is a deterministic automaton that generates (fn)n>0.

Proof. If
∑

n fnx
n ∈ FqJxK is algebraic, then standard techniques imply that it is the root

of an Ore polynomial. If f is the root of an Ore q-polynomial P (x, y) =
∑d

i=0Ai(x)y
qi, then

the series g := f/A0 is the root of the isolating Ore Polynomial Q(x, y) =
∑d

i=0Bi(x)y
pi

where B0 = 1 and Bi = AiA
qi−2
0 . By Theorem 15 we can construct a weighted automaton

B that generates g. Then, we apply Theorem 8, which allows us to construct a weighted
automaton A of the Cauchy product f = A0g. Now using Proposition 6, A can be deter-
minised, to yield automata that can generate (fn)n>0 in either reverse or direct reading. �

3. Mahler equations for Zeckendorf numeration

In this section we investigate links between generalized Mahler equations and weighted
automata in the Zeckendorf numeration. Our principal result in this section, Thm 30, is a
version of Becker’s theorem, which says that a solution of an isolating Z-Mahler equation,
as defined in (9), has coefficients computed by a weighted automaton reading integers in
the Zeckendorf base. Conversely, any such weighted automaton generates a solution of
a Z-Mahler equation, which is possibly non-isolating. The gap between the two results
is similar to the one in [Bec94]. The notion of Z-Mahler equation that we introduce
is based on a linear operator Φ, defined on power series, which is the analogue of the
operator f(x) 7→ f(xq) in base-q numeration. This operator Φ is defined thanks to a
function φ : N → N which plays the role of the function n 7→ qn. The main obstacle to our
extension of Becker’s result is that φ is not linear.

3.1. The Zeckendorf numeration. Recall that the Fibonacci numbers satisfy the recur-
rence Fn = Fn−1+Fn−2 with initial conditions F−2 = 0 and F−1 = 1. The strictly increasing
sequence (Fn)n>0 defines the Zeckendorf numeration system: every natural number has a

unique expansion as n =
∑k

i=0 biFi where bi ∈ {0, 1} for each i and bibi+1 = 0 for each
i. We write (n)Z := bk · · · b0. Conversely, given any finite digit set B ⊂ Z and any word

w = wk . . . w0 ∈ B+, let [w]Z denote the natural number n such that n =
∑k

i=0wiFi. Note
that (n)Z is the canonical Zeckendorf expansion of n, but conversely, the map w 7→ [w]Z
can be applied to any word over a finite digit set B ⊂ Z. Thorough descriptions of
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the properties of addition in this numeration system can be found in Frougny’s exposi-
tion [Lot02, Chapter 7].

Example 17. The following weighted automaton generates (an)n>0, where an equals the
number of representations of n as a sum of distinct Fibonacci numbers. Note that each
non-zero weight (in red in the figure) is equal to 1. This implies that the weight of a path
is either 0 or 1. This weight is 1 if the path starts and ends at state 0. The number of such
paths labeled by (n)Z is exactly an.

0

1

2
1

1

0:1
1:1 1:1

0:1

0:1
1:1

0:1

3.2. The function φ and its almost-linearity. The following function is the analogue,
in the Zeckendorf numeration, of the map n 7→ qn in base-q. Define φ : N → N as
φ(n) := [w0]Z , where w = (n)Z . In particular φ(Fn) = Fn+1. By definition,

φ

(
k∑

i=0

biFi

)

:=
k∑

i=0

biFi+1

where (n)Z = bk · · · b0. Furthermore, the above equality holds for any word w over {0, 1}
such that [w]Z = n even if there are consecutive digits bi such that bi = bi+1 = 1. The
function φ and the map w 7→ [w]Z are linked by the equation [wb]Z = φ([w]Z) + b for any
word w over {0, 1} and any digit b ∈ {0, 1}.

If (m)Z = bk · · · b0 and (n)Z = ck · · · c0 with possibly some leading zeros, m and n are
said to have disjoint support if bici = 0 for 0 6 i 6 k. If (m)Z and (n)Z have disjoint
support, then φ(m+n) = φ(m) +φ(n). However, the function φ is not linear, for example
φ(2) = 3 6= 4 = φ(1) + φ(1). Nevertheless, φ is almost linear: In Lemma 19 we show that
φ(m + n) − φ(m) − φ(n) belongs to {−1, 0, 1} for each m,n > 0. We write φ2 for the
function φ ◦ φ. Note that if (n)Z = w, then (φ2(n))Z = w00 and (φ2(n) + 1)Z = w01. We
give below the first few values of φ(n) and φ2(n) + 1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ(n) 0 2 3 5 7 8 10 11 13 15 16 18 20 21

φ2(n) + 1 1 4 6 9 12 14 17 19 22 25 27 30 33 35

The sets A1 = {φ(n) : n > 0} and A2 = {φ2(n) + 1 : n > 0} form a partition of N, as A1

and A2 are the sets of integers whose Zeckendorf expansion ends with 0 and 1 respectively.
In fact, Lemma 18 below implies that A1 and A2 are translations of the Beatty sequences
B1 = {⌊ϕn⌋ : n > 1} and B2 = {⌊ϕ2n⌋ : n > 1} which are known to form a partition
of N \ {0} as 1

ϕ
+ 1

ϕ2 = 1.
The following lemma will allow us to bound the non-linearity of φ in Lemma 19.
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Lemma 18. For n > 0 an integer, we have φ(n) = ⌊ϕn+ϕ−1⌋ and φ2(n) = ⌊ϕ2n+ϕ−1⌋.

The proof is an easy application of Binet’s formula, which we include for completeness.

Proof. Let ϕ̄ = −1/ϕ be the algebraic conjugate of ϕ; we prove the first equality. From
Fn = 1√

5
(ϕn+2 − ϕ̄n+2) it follows that ϕFn − Fn+1 = −ϕ̄n+2.

Suppose that n =
∑k

i=0 Fni
for a sequence n0, . . . , nk of integers such that ni+1 > ni + 1

for each integer 0 6 i 6 k − 1.

ϕn− φ(n) =

k∑

i=0

(ϕFni
− Fni+1) = −

k∑

i=0

ϕ̄ni+2

We now bound the summation
∑k

i=0 ϕ̄
ni+2. Since ϕ̄ is negative, odd powers of ϕ̄ are

negative while even powers are positive, so

−ϕ̄2 =
ϕ̄3

1− ϕ̄2
=
∑

n>1

ϕ̄2n+1 <

k∑

i=0

ϕ̄ni+2 <
∑

n>1

ϕ̄2n =
ϕ̄2

1− ϕ̄2
= −ϕ̄.

It follows that

0 = ϕ̄+ ϕ− 1 < ϕn+ ϕ− 1− φ(n) < ϕ̄2 + ϕ− 1 = 1

Since φ(n) is an integer, this completes the proof of the first equality. The proof of the
second one uses ϕ2Fn − Fn+2 = −ϕ̄n+2 and follows the same lines. �

We define the linearity defect δ of φ by δ(m,n) = φ(m + n) − φ(m) − φ(n) for each
non-negative integers m and n. It turns out that although φ is not linear, its linearity
defect is small, as the following lemma shows.

Lemma 19. For natural numbers m,n, we have −1 6 δ(m,n) 6 1.

Proof. We apply the relation φ(k) = ⌊ϕk + ϕ− 1⌋, obtained in Lemma 18, to k = m+ n,
k = m and k = n:

ϕ(m+ n) + ϕ− 2 < φ(m+ n) < ϕ(m+ n) + ϕ− 1,

1− ϕm− ϕ < −φ(m) < 2− ϕm− ϕ and

1− ϕn− ϕ < −φ(n) < 2− ϕn− ϕ.

Adding these three relations gives −ϕ < φ(m+n)−φ(m)−φ(n) < 3−ϕ, and the statements
follows as 1 < ϕ < 2. �

3.3. Regularity of the linearity defect. We will sometimes use 1̄ to denote −1, in
particular when −1 is an element of an alphabet. Set B := {0, 1} and B̄ := {1̄, 0, 1}.
Lemma 19 tells us that δ(m,n) ∈ B̄. Next, we obtain a more precise version of Lemma 19,
as we will later need to use an automaton that, given m > n, computes δ(m− n, n).

The following theorem is proved in [Lot02, Proposition 7.3.11, Chapter 7]. Recall that a
set of words K is regular if there is a deterministic automaton B = 〈S,B,∆, {s0}, F 〉 such
that ∆(s0, w) is in an accepting state if and only if w ∈ K.
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Theorem 20. For any finite set C ⊂ Z, the set {w ∈ C∗ : [w]Z = 0} is regular.

Let u = um · · ·u0 and v = vn · · ·u0 be words in C∗. By padding with leading zeros, it
can be assumed that m = n. We denote respectively by u ⊞ v and u ⊟ v the two words
(um + vm) · · · (u0 + v0) and (um − vm) · · · (u0 − v0). Note that this definition is slightly
ambiguous as padding u and v with more leading zeros yields a word with more leading
zeros. However, it does not hurt as we are only interested in [u ⊞ v]Z and [u ⊟ v]Z . Note
that both operations are associative. It is easily verified that [u ⊞ v]Z = [u]Z + [v]Z and
[u⊟ v]Z = [u]Z − [v]Z .

Note that equality u0 ⊞ u0 = (u ⊞ v)0 holds for words u, v ∈ C∗ and similarly for the
operation ⊟. The equality [(m)Z0⊞(n)Z0]Z = φ(m)+φ(n) also holds for integers m,n > 0.
Let L = {(m)Z : m > 0} ⊂ B∗ be the set of canonical expansions.

Next we discuss the regularity of δ. For b ∈ B̄, define

Xb := {(m)Z ⊟ (n)Z : m > n > 0 and δ(m− n, n) = b}.

Proposition 21. The sets X1̄, X0 and X1 are pairwise disjoint and regular.

The fact that the three sets X1̄, X0 and X1 are pairwise disjoint means that whenever
(m)Z ⊟ (n)Z = (m′)Z ⊟ (n′)Z , then δ(m − n, n) = δ(m′ − n′, n′). We remark that using
similar methods, we can also show that the sets {(m)Z ⊞ (n)Z : m,n > 0 and δ(m,n) = b},
for b ∈ B̄, are also pairwise disjoint and regular. The proof of Proposition 21 is based on
the following key lemma which gives a characterization of δ(m− n, n) = k.

Lemma 22. Let b ∈ B̄. Then for m > n > 0

δ(m− n, n) = b ⇐⇒ ∃w ∈ L such that

{

[w ⊟ ((m)Z ⊟ (n)Z)]Z = 0

[w0⊟ ((m)Z0⊟ (n)Z0)]Z = −b.

Proof. Suppose that δ(m − n, n) = b and let w be equal to (m − n)Z . Then [w ⊟

((m)Z ⊟ (n)Z)]Z = [w]Z−m+n = 0, and [w0⊟ ((m)Z0⊟ (n)Z0)]Z = [w0]−φ(m)+φ(n) =
−δ(m− n, n) = −b.

Conversely, suppose that there exists w ∈ L satisfying both required equalities. The
first equality [w ⊟ ((m)Z ⊟ (n)Z)]Z = 0 implies that [w]Z = m− n and [w0]Z = φ(m− n).
Combined with w ∈ L, it shows that w = (m − n)Z . The second equality yields [w0 ⊟

((m)Z0⊟ (n)Z0)]Z = [w0]Z − φ(m) + φ(n) = −δ(m− n, n). �

Now we come to the proof of Proposition 21.

Proof of Proposition 21. By Lemma 22, the value of δ(m−n, n) is determined by the word
(m)Z ⊟ (n)Z . This shows that the three sets X1̄, X0 and X1 are pairwise disjoint. It
remains to show that they are regular. We will prove that X0 is regular, the proofs for X1̄

and X1 being similar.
The construction of a non-deterministic automaton accepting X0 is based on the state-

ment of Lemma 22. Such an automaton reads (m)Z ⊟ (n)Z , and non-deterministically
“guesses” the word w ∈ L given by Lemma 22. In particular, it checks that both equalities
[w ⊟ ((m)Z ⊟ (n)Z)]Z = 0 and [(w0 ⊟ ((m)Z ⊟ (n)Z))0] = 0 hold. This means that each
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of its transitions reads a symbol b′ ∈ B̄ of (m)Z ⊟ (n)Z , and guesses a symbol b ∈ B of w.
Non-deterministic guessing is done by having two transitions reading a given symbol b′, one
making the guess b = 0 and another one making the guess b = 1. Note that (m)Z ⊟ (n)Z
has entries from B̄ and w has entries from B, so w ⊟ ((m)Z ⊟ (n)Z) has entries from
C := {1̄, 0, 1, 2}. In order to check both required equalities, the automaton simulates a
deterministic automaton accepting Y = {u ∈ C∗ : [u]Z = 0} for C = {1̄, 0, 1, 2}. If the read
symbol is b′ and the guessed symbol for w is b, the automaton simulates the automaton
for Y with entry b− b′. The automaton also stores in its states the last guessed b to check
that there are no consecutive digits 1s in w.

We give below a more formal description of a non-deterministic automaton B accept-
ing X0. Let C = {1̄, 0, 1, 2} and let C = 〈Q,C,∆C, {q0}, F 〉 be a deterministic automaton
accepting {u ∈ C∗ : [u]Z = 0}, whose existence is guaranteed by Theorem 20. The input
alphabet of B is B̄ since B is fed with words of the form (m)Z ⊟ (n)Z for m,n > 0. The
state set of B is the set Q×{0, 1} and its unique initial state is (q0, 0). Its transition set ∆
is defined as follows.

∆ := {(p, 0)
b′

−→ (q, 0) : ∆C(p,−b′) = q}

∪ {(p, 1)
b′

−→ (q, 0) : ∆C(p,−b′) = q}

∪ {(p, 0)
b′

−→ (q, 1) : ∆C(p, 1− b′) = q}

Each transition reads a symbol b′ of the input word (m)Z⊟(n)Z and guesses a symbol b ∈ B
for the word w (see Lemma 22). The corresponding symbol of w ⊟ ((m)Z ⊟ (n)Z) is thus
b− b′. The second component of each state is equal to the last guessed b to check that w
does not contain two consecutive 1s. The set of final states is

F ′ := {(q, x) : q ∈ F and ∃q′ ∈ F with (q, x)
0
−→ (q′, 0)},

so that both statements are verified. The first condition q ∈ F guarantees the first equality
[w ⊟ ((m)Z ⊟ (n)Z)]Z = 0. The second condition guarantees the second equality [(w ⊟

((m)Z ⊟ (n)Z))0] = 0. �

Corollary 23. There exists a deterministic automaton D = (Q, B̄,Γ, q0, τ) with an output
function τ : Q → B̄ such that Γ(q0, 0) = q0 and τ(Γ(q0, (m)Z ⊟ (n)Z)) = δ(m − n, n) for
all m > n > 0.

Proof. It suffices to combine the three deterministic automata for X1̄, X0 and X1 obtained
in Proposition 21. �

It should be noted that the set {(m)Z ⊟ (n)Z : m > n > 0} is strictly contained in B̄∗.
Indeed, it only contains words with no consecutive occurrences of either the digit 1 or the
digit 1̄. This gives us some freedom in the construction of an automaton D satisfying the
statement of the previous corollary, and it explains why in D, one cannot follow all possible
words. We give in Figure 5 an automaton with 5 states computing the defect δ(m− n, n);
the value of the output function τ appears inside the states.
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q0|0 q1|0 q2|0

q3|1̄ q4|1
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1
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Figure 5. An automaton computing δ(m− n, n), given (m)Z ⊟ (n)Z .

3.4. Z-Mahler equations and weighted automata. The following definition of the
operator Φ is exactly analogous to that for base-q defined in Section 1, but it is based
on the function φ rather than the function n 7→ qn. Let R be a commutative ring. The
Z-Mahler operator Φ : RJxK → RJxK is defined as follows.

(8) Φ
(∑

n>0

fnx
n
)

:=
∑

n>0

fnx
φ(n).

Note that, unlike the q-Mahler case, we do not have Φ(fg) = Φ(f)Φ(g) in general, as
the function φ is not linear. Nevertheless, as φ is linear over integers with disjoint support,
we have that Φ(fg) = Φ(f)Φ(g) if for each pair of non-zero coefficients fm 6= 0 and gn 6= 0,
m and n have disjoint support.

The equation

P (x, y) =
d∑

i=0

Ai(x)Φ
i(y) = 0,(9)

withAi defined as in (5), is called a Z-Mahler equation, and if f ∈ RJxK satisfies
∑d

i=0Ai(x)Φ
i(f) =

0, then it is called Z-Mahler ; we also say that f is a solution of the functional equation P .
As in the case of standard Mahler equations, d is the exponent of the equation P , and the
maximum degree h of the polynomials A0(x), . . . , Ad(x) the height of P . Also, in analogy
to (6), a solution y =

∑

n>0 fnx
n to (9) satisfies

fn =
∑

φi(k)+j=n

αi,jfk .(10)

and where here also we set αi,j = 0 for i, j outside the bounds given by the equation.
For example, the polynomial f(x) = 1 + x is the solution of the Z-Mahler equation

(1 + x2)f(x) = (1 + x)Φ(f(x)) because Φ(f(x)) = 1 + x2. The following is a slightly less
trivial example, inspired by [Bec94, Proposition 1].
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Example 24. We return to Example 17, whose automaton computes the number an of
representations of n as a sum of distinct Fibonacci numbers. Consider the series f(x) :=
∑

n>0 anx
n; we also have f(x) :=

∏

n>0(1 + xFn). This series f(x) is the solution of

the equation f(x) = (1 + x)Φ(f(x)). It can be indeed verified that Φ(
∏

n>0(1 + zFn)) =
∏

n>0(1+zFn+1) =
∏

n>1(1+zFn) because the terms of the product have disjoint exponents.

It is not a coincidence that the solution in Example 24 can be computed using a weighted
automaton, as we will see next.

3.4.1. From isolating Z-Mahler equations to weighted automata. As in the case of q-Mahler
equations, a Z-Mahler equation P (x, y) is isolating ifA0 = 1, i.e., P (x, y) = y−

∑d

i=1Ai(x)Φ
i(y).

The aim of this section is to show that any solution of an isolating Z-Mahler equation is
Z-regular, i.e., if f(x) =

∑

n>0 fnx
n is the solution of P with initial condition f0, then there

exists a weighted automaton A such that fn = weightA((n)Z) for each integer n > 0.
The construction of the weighted automaton is similar to the one we gave in Section 2.4

for q-Mahler equations, but it is more involved due to the non-linearity of the function φ.
Now we describe the weighted automaton A computing the solution of an isolating

Z-Mahler equation. Recall that B = {0, 1}, B̄ = {1̄, 0, 1} and C = {1̄, 0, 1, 2}. Let
D = (Q, B̄,Γ, {q0}, τ) be a deterministic automaton given by Corollary 23, with τ : Q → B̄
such that τ(Γ(q0, (m)Z⊟(n)Z)) = δ(m−n, n) for all integers m > n > 0; it can be assumed
that Γ(q0, 0) = q0.

We now come to the definition of the weighted automaton associated to a Z-Mahler
equation. Let P (x, y) =

∑d

i=0Ai(x)Φ
i(y) = 0 be an isolating Z-Mahler equation with

Ai(x) =
∑h

j=0 αi,jx
j for 1 6 i 6 d. Set

h̃ :=

⌊
h+ 3− ϕ

ϕ− 1

⌋

and g := |(h̃)Z |.

We define the state set S as

S := {si,j,q,u : 0 6 i 6 d, 0 6 j 6 h̃, q ∈ Q and u ∈ Bg}.

Define the function δ̂ : S → B̄ by

δ̂(si,j,q,u) = τ(Γ(q, u⊟ (j)Z)).

Note that if q 6= q0, the automaton in Figure 5 can be fed with any word in B̄∗, i.e.,
τ(Γ(q, u⊟(j)Z)) is well defined. If q = q0, we will see in the second statement of Lemma 27

that then we will only be concerned with states si,j,q0,u where [u]Z > (j)Z in which case δ̂



22 O. CARTON AND R. YASSAWI

is also well defined. Define the transition set ∆ as follows.

∆ :=







si,j,q,au
b:1
−→ si+1,ℓ,Γ(q,a),ub :

0 6 i 6 d− 1,

0 6 j 6 h̃

0 6 ℓ = φ(j) + δ̂(si,j,q,au) + b 6 h̃
a, b ∈ B, u ∈ Bg−1







∪







si,j,q,au
b:αi+1,ℓ−k

−−−−−−→ s0,k,Γ(q,a),ub :

0 6 i 6 d− 1

0 6 j, k 6 h̃

0 6 ℓ = φ(j) + δ̂(si,j,q,au) + b
0 6 ℓ− k 6 h

a, b ∈ B, u ∈ Bg−1







.

We set the initial and final weights I and F as

I(si,j,q,u) :=

{

f0 if j = 0, q = q0 and u = 0g,

0 otherwise.

F (si,j,q,u) :=

{

1 if i = 0 and j = 0,

0 otherwise.

We call the automaton A := 〈S,A,∆, I, F 〉 the weighted automaton associated to P
and f0, A = A(P, f0).

The first two components i and j of a state si,j,q,u in A play the same role as in the
base-q case. We will show how the last two components are needed to track the linearity
defect. The following lemma describes the evolution of the third and fourth components
of the states along a path.

Lemma 25. Let si′,j′,q′,u′

w:r−−→ si,j,q,u be a path in the automaton A(P, f0). Then u is the
suffix of length g of u′w and q = Γ(q′, v) where vu = u′w, that is, v is the prefix of length |w|
of u′w.

Proof. The proof is a straightforward induction on the length of w. The base case |w| = 0 is
trivial and the induction step follows directly from the definition of the transition set ∆. �

Rephrasing Lemma 25 when q′ is the initial state q0 of D and u′ = 0g gives Corollary 26.
In particular, it tells us that if si,j,q,u is accessible from a state with non-zero initial weight,
then the word u must be a suffix of the input word w. This implies that u cannot have
consecutive occurrences of the digit 1. We have not taken this into account, in the definition
of S, in order to simplify the definition of A. However this fact is used to bound the number
of states of A in Lemma 32.

Corollary 26. Let si′,j′,q0,0g
w:r−−→ si,j,q,u be a path in the automaton A(P, f0). Then u is

the suffix of length g of 0gw and q = Γ(q0, v) where vu = 0gw, that is, v is the prefix of
length |w| of 0gw.
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The following lemma states that the function δ̂ indeed tracks the linearity defect, starting
from the initial state on input of any word w, as a function of the state where it arrives.
Note that the proof of this lemma also justifies the definition of g.

Lemma 27. Let si′,0,q0,0g
w:r−−→ si,j,q,u be a path in the automaton A(P, f0).

a) There exists k > 0 such that φi(k) + j = [w]Z and thus j 6 [w]Z .

b) δ̂(si,j,q,u) = τ(Γ(q, u⊟ (j)Z)) is well-defined and δ̂(si,j,q,u) = δ([w]Z − j, j).

Proof. The two statements are simultaneously proved by induction on the length of the
word w. If the word w is empty, then j = 0 and the two statements trivially hold because
φi(0) = 0 for each i > 0.

Now we suppose that w = w′b where b is the last digit of w. The path si′′,0,q0,0g
w:r−−→ si,j,q,u

can then be decomposed

si′′,0,q0,0g
w′:r′
−−→ si′,j′,q′,u′

b:r′′
−−→ si,j,q,u.

For the first statement, we distinguish two cases depending on the form of the last transition
si′,j′,q′,u′

b:r′′−−→ si,j,q,u.
We first suppose that this last transition of the path is a transition of the form si′,j′,q′,u′

b:1−→

si,j,q,u where i = i′ + 1 and j = φ(j′) + δ̂(si′,j′,q′,u′) + b. By the induction hypothesis,

δ̂(si′,j′,q′,u′) = δ([w′]Z − j′, j′) and there exists an integer k > 0 such that φi′(k) + j′ = [w′].
Applying φ to the equality φi′(k) = [w′]Z − j′ yields φi(k) = φ([w′]Z − j′) = φ([w′]Z) −
φ(j′)− δ([w′]Z − j′, j′) = φ([w′]Z) + b− j = [w]Z − j.

Next we suppose that this last transition of the path is a transition of the form si′,j′,q′,u′

b:αi′+1,ℓ−j−−−−−−→

s0,j,q,u where ℓ = φ(j′) + δ̂(si′,j′,q′,u′) + b. By definition, we have j 6 ℓ and ℓ = φ([w′]Z) −
φ([w′]Z − j′)+ b, and thus j 6 ℓ 6 φ([w′]Z)+ b = [w]Z . Since i = 0, φi(k)+ j = [w]Z where
k = [w]Z − j. This completes the proof of the first statement.

The only missing transition in the automaton pictured in Figure 5 is the transition
with label 1̄ leaving state q0. If the state q in si,j,q,u is equal to q0, then [u]Z = [w]Z .
Therefore j 6 [u]Z and the most significant digit of u ⊟ (j)Z must be 1. This shows that

δ̂(si,j,q,u) = τ(Γ(q, u⊟ (j)Z)) is always well-defined.
Let m be the length of w = w′b. By Corollary 26, one has q = Γ(q0, v) where vu = 0gw

and |v| = m. This can be rewritten q = Γ(q0, v ⊟ 0m). The function δ̂ is defined by

δ̂(si,j,q,u) = τ(Γ(q, u⊟(j)Z)). Since |(j)Z | 6 g, Γ(q, u⊟(j)Z) = Γ(q0, vu⊟0m0g−|(j)Z |(j)Z) =

Γ(q0, w ⊟ 0m−|(j)Z |(j)Z). It follows that δ̂(si,j,q,u) = δ([w]− j, j). �

The following lemma is used in the proof of Proposition 29 below.

Lemma 28. Let si′′,0,q0,0g
w′:r′−−→ si′,j′,q′,au

b:r−→ si,j,q,ub be a path in the automaton A(P, f0)
where w′ is a word and b is a digit. If i > 1 then the state si′,j′,q′,au is unique and does not
depend on i′′.

Proof. By Corollary 26, au must be the suffix of length g of 0gw′ and the state q′ is given
by q′ = Γ(q0, v) where vau = 0gw′. Since i > 1, the last transition must be transition of

the form si′,j′,q′,au
b:1−→ si,j,q,ub where i = i′ + 1 and j = φ(j′) + δ̂(si′,j′,q′,u′) + b. This shows
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that i′ = i − 1 and that r = 1. It remains to show that j is also unique. By Lemma 27,
δ̂(si′,j′,q′,u′) is equal to δ([w′]Z − j′, j′) and the equality j = φ(j′) + δ̂(si′,j′,q′,u′) + b can be
rewritten φ([w′]Z − j′) = φ([w′]Z) + b − j. Since the function φ is one-to-one, there is at
most one integer j′ satisfying this equality. Note that this proof does not depend on i′′, so
the statement follows. �

We bring this together now to obtain the following version of Proposition 14.

Proposition 29. Let R be a commutative ring, let P (x, y) ∈ R[x, y] be an isolating Z-
Mahler equation of exponent d and height h, and let f =

∑

n>0 fnx
n be a solution of

P = 0. If A(P, f0) is the weighted automaton associated to P (x, y) and f0 ∈ R, and if
w ∈ {0, 1}∗ has no consecutive occurrences of the digit 1, then

weight∗A,si,j,q,u
(w) =







fk whenever







φi(k) + j = [w]Z ,

q = Γ(q0, w), and

u is the suffix of 0gw

0 otherwise.

Note that i, j and w being given, there exists at most one integer k that satisfies the
equation φi(k) + j = [w]Z , as the function φ is one-to-one. This means that the integer k
implicitly given by φi(k) + j = [w]Z is well-defined.

Proof. The proof is by induction on the length of the word w. If w is the empty word ε,
then weight∗A,si,j,q,u

(ε) = I(si,j,q,u); this equals f0 if j = 0, q = q0 and u = 0g, and equals 0

otherwise, so the claim is proved for w = ε since [ε]Z = 0.
For |w| > 0, we consider first the easier case of a state si,j,q,ub with i > 1. We are only

concerned with states, and transitions into these states that are part of a path starting at
an initial state. By Lemma 28, there is a unique such transition si0,0,q0,0g

w:r−−→ si−1,j′,q′,au
b:1−→

si,j,q,ub. Here j = φ(j′)+ δ̂(si−1,j′,q′,au)+ b = φ(j′)+ b+ δ([w]Z − j′, j′), by Lemma 27. Then

weight∗A,si,j,q,ub
(wb) = weight∗A,si−1,j′,q′,au

(w) = fk,

where φi−1(k) + j′ = [w]Z . Applying φ to this last equality, we obtain

φi(k) = φ([w]Z − j′)

= φ([w]Z)− φ(j′)− δ([w]Z − j′, j′)

= [wb]Z − b− φ(j′)− δ([w]Z − j′, j′)

= [wb]Z − j,

from which the statement of the proposition follows for the case i > 0.
Now we consider the case case i = 0, so that our state is s0,j,q,ub. As the transitions that

concern us are of the form si′,j′,q′,au
b:αi′+1,ℓ′−j−−−−−−→ s0,j,q,ub, henceforth we will implicitly only

sum over states si′,j′,q′,au which satisfy this. Also, as we are only concerned with paths that
commence at an initial state, we have by Lemma 27 that ℓ′ = φ(j′) + δ([w]Z − j′, j′) + b.
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Thus

weight∗A,s0,j,q,ub
(wb) =

∑

i′,j′,q′,a

αi′+1,ℓ′−j weight
∗
A,si′,j′,q′,au

(w)

=
∑

φi′(k)+j′=[w]Z

αi′+1,ℓ′−jfk

where to obtain the last equality we have applied the inductive hypothesis. Since φ is
one-to-one, the equality φi′(k) = [w]Z − j′ is equivalent to the equality

φi′+1(k) = φ([w]Z − j′) = φ([w]Z)− φ(j′)− δ([w]Z − j′, j′)

= φ([w]Z)− ℓ′ + b.

Setting ℓ = ℓ′ − j, we obtain φi′+1(k) + ℓ = [wb]− j and thus

weight∗A,s0,j,q,ub
(wb) =

∑

φi′+1(k)+ℓ=[wb]−j

αi′+1,ℓfk

=
∑

φi(k)+ℓ=[wb]−j

αi,ℓfk

= f[wb]Z−j

where in the penultimate line we set i = i′ + 1, and where we used Equation 10 to get to
the last line. �

The following theorem states that the automaton A(P, f0) defined above indeed com-
putes the unique solution of the equation P (x, f(x)) satisfying f(0) = f0.

Theorem 30. Let R be a commutative ring, and let P (x, y) ∈ R[x, y] be an isolating Z-
Mahler equation of exponent d and height h. Then the automaton A = A(P, f0) associated
to P and f0 satisfies

weightA(w) = f[w]Z

where f =
∑

n>0 fnx
n is a solution of P (x, f(x)) = 0. Consequently if R is finite, then

there exists a deterministic automaton, and a constant C, depending only on ϕ, with at
most |R|Cdh2

states that generates f(x).

In the classical q-numeration, if P is an isolating Ore polynomial over Fq of degree qd

and height h, then a minimal deterministic automaton generating a solution of P will have
at most |Fq|

dh states. This should be compared to the bound above, where the exponent
Cdh2 = 320dh2 has an extra factor of 320h, with 320 being a function of ϕ (see Lemma 32).
This extra factor arises because we need to carry extra information, in the form of a word
of length g, which is used to compute the linearity defect.

Proof. The proof of the theorem follows directly from Proposition 29. The states with
a non-zero final weight are the states of the form s0,0,q,u whose final weight is given by
F (s0,0,q,u) = 1. For each input word w, that is, with no consecutive occurrences of the
digit 1, there exists exactly one state s0,0,q,u where weight∗A,s0,0,q,u

(w) is non-zero. This
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unique state is the state s0,0,q,u where u is the suffix of length g of 0gw and q is given by
q = Γ(q0, w). Therefore weightA(w) is equal to weight∗A,s0,0,q,u

(w) where u and q satisfy the

required properties. Therefore weightA(w) = f[w]Z . The bound on the number of states
follows from Lemmas 31 and 32 below. �

The following lemma is the analog of Lemma 10. It justifies the choice h̃ = h+3−ϕ

ϕ−1
, as

this is an upper bound on indices for states that are the range of paths of positive weight.

Lemma 31. If j >
h+3−ϕ

ϕ−1
= hϕ + 3ϕ − ϕ2 then there are no paths with positive weight

from si,j,q,u to s0,0,q′u′.

Proof. Let si,j,q,u
b:α−→ si′,j′,q,u be a transition in the weighted automaton A associated

to (αi,j)i>1,j>0 where αi,j = 0 if j > h. We claim that if α 6= 0 and j >
h+3−ϕ

ϕ−1
then

j′ > h+3−ϕ

ϕ−1
. If si,j,q,u

b:α−→ si′,j′,q′,u′ is a transition of the form si,j,q,u
b:1−→ si+1,ℓ,q′,u′ then

ℓ = φ(j) + δ̂(si,j,q,u) + b and the claim is clear. Indeed, if j = 0, then δ̂(si,j,q,u) = 0 and if
j > 0, then φ(j) > j+1. If it is a transition of the form si,j

b:αi+1,ℓ−j′−−−−−−→ s0,j′ where ℓ = φ(j)+

δ̂(si,j,q,u)+b, then, since αi+1,ℓ−j′ is assumed non-zero, we have φ(j)+ δ̂(si,j,q,u)+b−j′ 6 h,
and so

j′ > φ(j)− 1− h > jϕ+ ϕ− 3− h >
h + 3− ϕ

ϕ− 1

The statement of the lemma follows. �

The following lemma provides an upper bound of the number of states of A.

Lemma 32. Let A be the weighted automaton associated to a Z-Mahler equation of height
h and exponent d. Then the number of states |S| of A is bounded by 320dh2 and asymp-
totically, |S| 6 5ϕ4dh2(1 + o(1)) as h tends to ∞.

Proof. Recall that one can take the automaton D, that computes δ(m − n, n), to have

at most 5 states. Now h̃ = ⌊h+3−ϕ

ϕ−1
⌋ 6 4h and asymptotically, as h → ∞, we have

h̃ = ϕh(1 + o(1)). The number of words of length g with no consecutive occurrences
of 1 is equal to the Fibonacci number Fg+1. Since Fn+1 6 2Fn for each n > 0 and

Fn+1 = ϕFn(1 + o(1)) and because Fg−1 6 h̃ by definition of g, then Fg+1 6 4h̃ and

asymptotically, Fg+1 is bounded by ϕ2h̃(1 + o(1)). The number of states is thus bounded

by 5 · 4h̃ · dh̃ = 20dh̃2 6 320dh2 and asymptotically, is bounded by 5ϕ4dh2(1 + o(1)). �

3.4.2. From weighted automata to Z-Mahler equations. This section is almost standard, but
we include it for completeness. We first redo Example 9, considering again the automaton
of Figure 1, except that here we use it to generate the term an := weightA((n)Z). The
weights of this automaton are in the field F2 but the computation of the equation satisfied
by t(x) =

∑

n>0 anx
n can be carried out in any ring R. Let t(x) =

∑

n>0 anx
n, and s = s(x)

in RJxK be defined similarly as in Example 9. Instead of (3), we have

(11) t = Φ(t) + xΦ2(t) + xΦ2(s) and s = Φ(s) + xΦ2(s).
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Here, we need to shift twice to add 1 without carry. Applying Φ to the equations (11), we
have

Φ(t) = Φ2(t) + Φ(xΦ2(t)) + Φ(xΦ2(s))

= Φ2(t) + x2Φ3(t) + x2Φ3(s),

as x and Φ2(t) or Φ2(s) have disjoint support, and similarly,

Φ(s) = Φ2(s) + x2Φ3(s)

Φ2(t) = Φ3(t) + x3Φ4(t) + x3Φ4(s), and

Φ2(s) = Φ3(s) + x3Φ4(s).

Re-arranging, we obtain

t = (1 + x+ x2)Φ3(t) + (x3 + x4)Φ4(t) + (x+ x2)Φ3(s) + (x3 + 2x4)Φ4(s)

Φ(t) = (1 + x2)Φ3(t) + x3Φ4(t) + x2Φ3(s) + x3Φ4(s)

from which we obtain

xt− (1 + x)Φ(t) + (1− 2x2)Φ2(t) + 2x2Φ3(t) + x5Φ4(t) = 0

i.e., the Z-Thue-Morse power series is a solution of the isolating Mahler Z-equation P (x, y) =
xy − (1 + x)Φ(y) + (1− 2x2)Φ2(y) + 2x2Φ3(y) + x5Φ4(y).

Lemma 33. Let F = {s1, . . . , sm} be a family of formal power series such that there exist
two families of coefficients (αi,j)16i,j6m and (βi,j)16i,j6m satisfying for each 1 6 i 6 m,

si =
m∑

j=1

αi,jΦ(sj) + x
m∑

j=1

βi,jΦ
2(sj).

Then for each pair of integers k, n with 0 6 k 6 n, there exist two families of polynomials
(pk,ni,j )16i,j6m and (qk,ni,j )16i,j6m such that for each 1 6 i 6 m,

Φk(si) =
m∑

j=1

pk,ni,j Φ
n(sj) +

m∑

j=1

qk,ni,j Φ
n+1(sj)

Proof. Note that the hypothesis is the case k = 0 and n = 1 of the statement. The proof
is by induction on the difference n− k. The case n = k is trivial and gives

pk,ki,j :=

{

1 if i = j

0 otherwise
and qk,ki,j := 0

For n = k + 1, we start from the hypothesis

si =
m∑

j=1

αi,jΦ(sj) + x
m∑

j=1

βi,jΦ
2(sj).
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to get the following equality by applying Φk to both members.

Φk(si) =

m∑

j=1

αi,jΦ
k+1(sj) + Φk(x)

m∑

j=1

βi,jΦ
k+2(sj),

where we note that the polynomial x and the series Φ2(sj) are indeed disjoint and that

Φk(xΦ2(sj)) = xφk(1)Φk+2(sj) = xFkΦk+2(sj). It follows that

pk,k+1
i,j := αi,j and qk,k+1

i,j := βi,jx
Fk .

Now we suppose k+2 6 n, and assume that the induction hypothesis holds for n−(k+1)
and n − (k + 2); we show the required statement holds for n − k. From the induction
hypothesis applied to Φk+1(sℓ) and Φk+2(sℓ), we have the following equalities:

Φk+1(sℓ) =

m∑

j=1

pk+1,n
ℓ,j Φn(sj) +

m∑

j=1

qk+1,n
ℓ,j Φn+1(sj)

Φk+2(sℓ) =
m∑

j=1

pk+2,n
ℓ,j Φn(sj) +

m∑

j=1

qk+2,n
ℓ,j Φn+1(sj)

Combining these two equalities with the equality

Φk(si) =

m∑

ℓ=1

αi,ℓΦ
k+1(sℓ) + xFk

m∑

ℓ=1

βi,ℓΦ
k+2(sℓ)

we get the following equalities, defining the required polynomials pk,ni,j and qk,ni,j by

pk,ni,j :=

m∑

ℓ=1

αi,ℓp
k+1,n
ℓ,j + xFk

m∑

ℓ=1

βi,ℓp
k+2,n
ℓ,j

qk,ni,j :=

m∑

ℓ=1

αi,ℓq
k+1,n
ℓ,j + xFk

m∑

ℓ=1

βi,ℓq
k+2,n
ℓ,j .

�

Corollary 34. A Z-regular series is the solution of a Z-Mahler equation.

Proof. Suppose that the series f =
∑

n>0 fnx
n is computed by the weighted automaton A,

that is fn = weightA((n)Z) for each n > 0. Let 〈I, µ, F 〉 be a matrix representation of
dimension m of the weighted automaton A as given in Section 2.2.1. For 1 6 i 6 m,
let si be the series computed by the weighted automaton whose matrix representation is
〈I, µ,Gi〉 where Gi is the vector having 1 in its i-th coordinate and 0 in all other coordinates.
Note that f is equal to f =

∑m

i=1 Fisi where Fi is the i-th entry of the column vector F .
Let s0 = 1 be the constant series which is the solution of the equation s0 = Φ(s0). Let
the two families of coefficients (αi,j)16i,j6m and (βi,j)16i,j6m be defined by αi,j := µ(0)j,i
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and βi,j := µ(01)j,i = (µ(0)µ(1))j,i. Note the inversion of the indices i and j. For each
1 6 i 6 m the series si satisfies

si =
m∑

j=1

αi,jΦ(sj) + x
m∑

j=1

βi,jΦ
2(sj) + (Ii −

∑

j 6=i

αi,jIj)Φ(s0)

These equations come from the fact that the Zeckendorf representation of a positive integer
ends either with 0 or 01. The last term of the right hand side deals with the values si(0).
Said differently, each non-negative integer is either of the form φ(k) or φ2(k) + 1 for some
k > 0. Let n be the integer 2m+ 1. By Lemma 33, the series Φk(si) for 0 6 k 6 n + 1 =
2m + 2 and 1 6 i 6 m are linear combinations of the 2m + 2 series Φn(si) and Φn+1(si)
for 0 6 i 6 m. It follows that the 2m+ 3 series Φk(f) for 0 6 k 6 2m+ 2 are also linear
combinations of the 2m + 2 series Φn(si) and Φn+1(si) for 0 6 i 6 m and that the series
Φk(f) for 0 6 k 6 2m+ 2 are not linearly independent.

�

3.4.3. Dumas’ result. As we have noted, Becker and Dumas each showed that a solution
of an isolating q-Mahler equation is q-regular. In fact Dumas obtained a more general
version, which extends to the Z-numeration as follows.

Theorem 35. Let f(x) be the solution of an isolating equation

(12) f(x) =

d∑

i=0

Ai(x)Φ
i(f(x)) + g(x)

where g(x) is Z-regular. Then f is also Z-regular.

A weighted automaton is called normalized if it has a unique state with a non-zero
final weight and there is no transition with non-zero weight going out of this state. The
following result is very classical, see eg [Sak09, Proposition 2.14]. Recall that two weighted
automata are equivalent if they assign the same weight to each word.

Lemma 36. For each weighted automaton with n states, there is an equivalent normalized
weighted automaton with n + 1 states.

Lemma 37. f(x) is Z-regular if and only if xf(x) is Z-regular.

Proof. By Theorem 8, the class of Z-regular functions is closed under taking products.
Therefore if f(x) is Z-regular, then xf(x) is also Z-regular since each polynomial is obvi-
ously Z-regular.

Conversely, suppose that the series xf(x) is computed by the weighted automaton A.
By a variant of Theorem 20, there exists an automaton B over the alphabet B̄ = {−1, 0, 1}
accepting

{w ⊟ w′ : w,w′ ∈ {0, 1}∗ and (w)Z = (w′)Z + 1}

By combining the automaton B and the weighted automaton A, it is possible to construct
a weighted automaton C such that C((n)Z) = A((n − 1)Z) for each n > 1 and C(0) = 0.
This completes the proof of the converse. �
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Now we come to the proof of the theorem.

Proof of Theorem 35. Let us suppose that the series g is computed by the weighted au-
tomaton B. By Lemma 37, there is, for each integer j > 0, a weighted automaton Bj such
that Bj((n)Z) = gn−j for each n > j, and Bj((n)Z) = 0 otherwise. By Lemma 36, it can be
assumed that each weighted automaton Bj is normalized. The weighted automaton to com-
pute the solution f(x) of Equation (12) is obtained by combining the automaton A(P, f0)

with the automata Bj for 0 6 j 6 h̃. The automaton is the disjoint union of these au-

tomata except that for each integer 0 6 j 6 h̃, the unique final state of Bj is removed and
that all transitions ending in that state now end in the states s0,j,q,u for all possible choices
of q and u. �

3.4.4. A Z-Mahler series which is not Z-regular. As in the case for q-Mahler series [Bec94,
Proposition 1], a Z-Mahler series is not necessarily Z-regular, as the following example
shows.

Proposition 38. The solution f(x) =
∑

n fnx
n with f0 = 1 of the Z-Mahler equation

(13) (1− x)f(x) = Φ(f(x)).

is not Z-regular.

In [Bec94, Prop. 1], Becker shows that the solution of the analogous q-Mahler equation
(1−x)f(x) = f(zq) is also not q-regular. The proof that we provide below is different from
the one given in [Bec94]: it is based on the growth of coefficients.

To prove Proposition 38, we define the function λ : N → N, which is the analogue in
Zeckendorf numeration of the function n 7→ ⌊n/q⌋ is base q. If (n)Z = bk · · · b0, set

λ(n) = λ

(
k∑

i=0

biFi

)

:=
k∑

i=1

biFi−1.

The function λ is almost an inverse of the function φ as λ(φ(n)) = n for each integer n >

0, and

φ(λ(n)) =

{

n if n ≡ 0 mod Z

n− 1 otherwise.

The following lemma follows from these relations between the functions λ and φ, and
Lemma 18.

Lemma 39. There is a positive constant c such that λ(n) > n/ϕ−c for each integer n > 0.

Proof of Proposition 38. It follows from (13) that each coefficient fi for i > 0 satisfies the
following equality.

fi =

{

fi−1 + fλ(i) if i ∈ ϕ(N)

fi−1 otherwise
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Summing up these equations for i = 0, · · · , n yields

n∑

i=0

fi =

n−1∑

i=0

fi +

λ(n)
∑

i=0

fi

and thus

fn =

λ(n)
∑

i=0

fi

We now prove by induction on k that for each integer k, there exists a positive constant Ck

such that fn > Ckn
k holds for each integer n > 0. It follows easily from the relation above

that each coefficient fn satisfies fn > 0 and thus fn > fn−1 for n > 1. Since f0 = 1, each
coefficient satisfies fn > 1 and the result is proved for k = 0 with C0 = 1. Suppose that
the statement is true for some k > 0. From the previous equation, we get

fn > Ck

λ(n)
∑

i=0

ik

Using the relation stated in Lemma 39, there is a positive constant Ck+1 such that fn >

Ck+1n
k+1 holds for each n > 0. This proves the statement for k + 1. By Lemma 5, f is

not Z-regular. �

The same technique can be applied to show that solutions of other Z-Mahler equations
are also not Z-regular. For instance, the non-zero solution of the equation (1 − x)f(x) =
1
2
(Φ(f(x)) + Φ2(f(x))), as well as the solution of the equation is (1 − x2)f(x) = Φ(f(x))

are also not Z-regular. It also follows from the proof of Proposition 38] that the solution of
the Z-Mahler equation (1−αx)f(x) = Φ(f(x)) for α > 1 is also not Z-regular because the
coefficients obviously grow faster than the ones of the solution of (1 − x)f(x) = Φ(f(x)).
The same approach does not seem to work for the similar Z-Mahler equation (1+x2)f(x) =
Φ(f(x)) although it’s reasonable to assume that the solution of this equation is also not
Z-regular. Note that the solution of (1 + x)f(x) = Φ(f(x)) turns out to be Z-regular
because it is the polynomial 1− x.

Conclusion

In conclusion, we mention a few open problems. Allouche and Shallit prove in [AS92,
Thm 2.11] that a geometric series f =

∑

n>0 α
nxn is q-regular if and only if α is either

zero or a root of unity. We do not have a similar result for Z-regular series. Using this,
in [BCCD19], the authors characterise q-regular series in terms of the q-Mahler equations
they satisfy. We do not know if there is a similar characterisation for Z-Mahler equations.

In [AB17, Prop 7.8], Adamczewski and Bell give a series which is q-regular but which is
not the solution of an isolating q-Mahler equation (q-Becker in their terminology). We do
not have such an example, of a series which is Z-regular but which is not a solution of an
isolating Z-Mahler equation.

Other questions include whether one can extend existing Cobham type results. For
example, in [AB17] and [SS19], it is shown that a series which is both k- and l-Mahler over
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a field of characteristic zero, with k and l multiplicatively independent, must be rational.
Which series are both k- and Z-Mahler?
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[SS19] Reinhard Schäfke and Michael Singer, Consistent systems of linear differential and difference

equations, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 9, 2751–2792. MR 3985611

Institut universitaire de France et IRIF, Université Paris-Cité, France
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