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Depending on their mechanism of self-propulsion, active particles can exhibit a time-dependent,
often periodic, propulsion velocity. The precise propulsion velocity profile determines their mean
square displacement and their effective diffusion coefficient at long times. Here we demonstrate
that any periodic propulsion profile results in a larger diffusion coefficient than the corresponding
case with constant propulsion velocity. We investigate in detail the case of periodic exponentially
decaying velocity pulses, expected in propulsion mechanisms based on sudden absorption of finite
amounts of energy. We show both analytically and with numerical simulations that in these cases
the effective diffusion coefficient can be arbitrarily enhanced with respect to the case with constant
velocity equal to the average speed. Our results may help interpret in a new light observations on
the diffusion enhancement of active particles.

I. INTRODUCTION

Systems of self-propelled micro/nanoparticles in fluids are currently the focus of considerable attention. These
comprise swimmers which cyclically deform in a non-reciprocal manner (be it by internal consumption of energy or
by external actuation) and particles which propel due to self-phoretic mechanisms [1]. Understanding the dynamics
of self-propelling particles at the micro and nanoscales is essential to explain a wide range of biological processes,
including cellular communications and transport [2], or the behavior of catalytic enzymes [3] among others. The
interest in these systems is also due to their disruptive potential applications in different fields such as medicine or
biotechnology, since they could be used as efficient drug-delivery vectors [4–6], as non-invasive microsurgery vehicles [6],
or in water purification devices [7]. Furthermore, such systems present fundamental challenges, both in connection
to their propulsion mechanisms and their non-equilibrium collective behavior [1, 8].

In particular, numerous works have been devoted to investigate the statistical dynamics of self-propelled particles [1,
8–10]. Being a system intrinsically out of equilibrium, understanding the dynamical behavior of active particles
constitutes a great challenge, even in the dilute regime. In this endeavor, the vast majority of studies consider
models with constant propulsion velocities. For example, one of the most studied descriptions of self-propelling
micro/nanoparticles is given by the active brownian particle (ABP) model. This model describes the dynamics of
self-propelled particles in the overdamped regime, often assuming a constant propulsion velocity, and under the action
of stochastic forces of thermal origin which affect both the translational and orientational degrees of freedom of the
swimmer [11]. Despite its simplicity, the ABP model contains essential ingredients of self-propulsion and has led
to a wealth of novel interesting behaviors of active particles [8, 12–14]. In particular, the ABP model reproduces
the different dynamical regimes in the mean square displacement (MSD) observed for non-interacting self-propelling
particles, which becomes diffusive in the long time limit with an effective diffusion coefficient Deff which can be orders
of magnitude larger than the normal passive diffusivity [11].

Nevertheless, there exist a number of reasons to investigate the effect of a time-dependent propulsion velocity
on the dynamics of active particles: (i) Measurements on swimming microorganisms reveal that their propulsion
velocity follows an approximately periodic –not constant– profile [15, 16]. (ii) In systems of self-phoretic particles,
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temporal inhomogeneities in the environment (in solute concentration for self-diffusiophoresis; of temperature for
self-thermophoresis) can lead to time-dependent propulsion velocities. (iii) In addition, in self-phoretic systems which
are externally activated (through, e.g. electromagnetic radiation) time-dependent velocity profiles can be prescribed
at convenience [17–19]. (iv) Time-dependent propulsion velocity profiles could also appear in particles propelled by
chemical reactions catalyzed at asymmetric surfaces as a result of reactive momentum transfer[20]. (v) A propulsion
velocity which decays in time can also be expected in vibrationally excited molecules as they dissipate the excess
energy anisotropically into the surrounding solvent [21].

Indeed, the propulsion through time-dependent velocities can lead to distinct and interesting dynamical behaviors.
Some of such effects were studied already in earlier works. In Ref. [9], Lauga demonstrated that micro/nanoswimmers
undergoing periodic reciprocal motion (with back and forth propulsion velocity) may present enhanced diffusivities
above the normal passive diffusion due to the effect of rotational diffusion. This result thus implies that Purcell’s
scallop theorem [22] cannot be extended to lengthscales where the effect of the fluctuating environment is of relevance.
Babel and co-workers investigated the statistical dynamics of two-dimensional swimmers with three different time-
dependent self-propulsion velocity profiles, unveiling a complex and qualitatively different behavior from the constant
velocity case [10]. Other works have analyzed the effects of self-propulsion velocities undergoing stochastic transitions
between different dynamical states [23, 24], or the effect of non-thermal noise in the propelling velocity of the
swimmer [25].

In this article we consider swimmers self-propelled by general time-dependent velocities in a fluctuating environ-
ment through an extension of the active brownian particle (ABP) model. We provide expressions to calculate the
experimentally accessible MSD and the effective diffusion coefficient (Deff) for a general velocity profile. We then
present a general expression for the time-dependence of the MSD and Deff for any periodic propulsion velocity profile
in terms of the parameters of its Fourier series expansion. From this expression we show that any periodic propulsion
profile always results in a larger diffusion coefficient than the corresponding case with constant propulsion velocity
(equal to the average velocity). We also apply such formalism to derive explicit solutions for the MSD and Deff for
several time dependent velocity profiles, including results for a harmonic time-dependent profiles and periodic profiles
of exponentially decaying pulses. In particular, we demonstrate both analytically and with numerical simulations that
in the case of periodic exponentially decaying velocity pulses Deff can be substantially enhanced with respect to the
case with constant velocity for cases where both the time of rotational diffusion and the decay time of the velocity
pulse are smaller than the period of the pulses.

The rest of the article is organized as follows: in section II we introduce the basic model and formalism to investigate
the case of the one dimensional swimmer under an arbitrary time-dependent propulsion velocity profile; as an example
of application, results for harmonic profiles are obtained. In section III, the formalism is extended to higher dimensions,
the harmonic velocity profile revisited, and a general solution for periodic profiles in terms of Fourier series expansion
is discussed. In section IV the particular case of periodic profiles of exponentially decaying pulses is thoroughly
investigated using analytical closed-forms and numerical simulations. This analysis allows us to identify regions in
the parameter space where the effective diffusion is significantly enhanced with respect to the corresponding constant
velocity profile case.

II. ONE DIMENSIONAL SWIMMER

The one dimensional case, thanks to its simplicity, serves to highlight the fundamental issues (both physical and
mathematical) involved in the study of a swimmer subject to time dependent propulsion. As is well known, in the
low Reynolds number regime friction dominates the dynamics, and the swimmer can be described as an overdamped
brownian particle subject to an additional velocity drift [26, 27], representing propulsion, and which here will be
considered to be time dependent

dx

dt
=
√

2DT ζx + v(t), (1)

with the random noise (ζx) being characterized by a zero average and delta correlation function (so that
∫ t

0
dτ ⟨ζx(t)ζx(τ)⟩ =

1/2).
This equation can be formally integrated as

∆x(t) =

∫ t

0

dτ
[√

2DT ζx + v(τ)
]
, (2)

from which the time derivative of the square of the displacement from equilibrium follows

1

2

d
[
∆x2

]
dt

= ∆x
dx

dt
= 2DT

∫ t

0

dτ ζx(t)ζx(τ) +
√
2DT ζx(t)

∫ t

0

dτ v(τ) + v(t)
√

2DT

∫ t

0

dτ ζx(τ) + v(t)

∫ t

0

dτ v(τ). (3)
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To obtain the mean square displacement (MSD) we perform, as usual, an average over realizations of the random
noise (denoted by the subscript ζ), which results in a substantial simplification

d⟨∆x⟩2ζ
dt

= 2DT + 2v(t)

∫ t

0

dτ v(τ). (4)

The constant velocity (v(t) = v) case can be immediately solved for,〈
∆x2(t)

〉
= 2DT t+ v2t2, (5)

displaying diffusive dynamics at short times followed by ballistic (super-diffusive) motion at long times.
Time varying velocity is our focus of interest and here a careful consideration of averaging needs to be made. In

principle one could insert a given velocity profile (defined in the interval [0,∞)) directly into Eq. 4, but this choice
will generally produce formulas dependent on initial conditions, with an unnecessary increase in complexity. Here we
perform an average over origins along the swimmer’s trajectory, in line with a common experimental measurement
procedure (equivalent to an averaging over independent particle trajectories). No such sampling was required in the
constant velocity case (or for a simple brownian particle), as all origins along the trajectory are indistinguishable, but
now each origin (or particle) may be characterized by a distinct propulsion velocity. This additional average (denoted
with <>v) will only affect the second term in Eq. 4

d⟨∆x⟩2ζv
dt

= 2DT + 2

〈
v(t)

∫ t

0

dτ v(τ)

〉
v

. (6)

-v0

0

v0
(a)

v0 sin(ωt)

0

v0

(b)

v0[1 + sin(ωt)]T = 2π
ω

0 t
0

v0

(c) v0| sin(ωt)|

FIG. 1. Representation of the different sinusoidal velocity profiles studied in this work. (a) zero mean velocity harmonic profile;
(b) shifted harmonic profile with non-zero mean velocity;(c) absolute value of sine function (abs-sin in text).

A more compact form can be derived for the specific case of periodic velocity profiles, by noting that the average
over origins can be restricted to shifts along a single period (T ), that is

d⟨∆x⟩2ζv
dt

= 2DT + 2
1

T

∫ T

0

ds

{
v(t− s)

∫ t

0

v(τ− s) dτ

}
, (7)

or alternatively

d⟨∆x⟩2ζv
dt

= 2DT + 2

∫ t

0

dτ

{
1

T

∫ T

0

ds v(t− s)v(τ− s)

}
. (8)
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We start with their application to two periodic velocity profiles of particular interest (and to which we will return
for comparison when addressing the multidimensional case). First, we consider a harmonic profile with zero mean
(v(t) = v0 sin(ωt+ θ0)), displayed in Fig. 1(a)), for which integration of Eq. 7 (or Eq. 8) yields

〈
∆x2(t)

〉
= 2DT t+

v20
ω2

[1− cos(ωt)], (9)

a result which in principle was to be expected: a propulsion which periodically switches its direction has a null
impact on diffusion at long times (notice that with the additional averaging over origins the results are independent
of any initial phase, θ0; see section I.A in Supplementary Information, SI). The second case corresponds to harmonic
propulsion as well, but now described by the profile v(t) = v0[1 + sin(ωt)], i.e. a sequence of positive definite pulses
with average ⟨v⟩ = v0 (see Fig. 1(b). We obtain

〈
∆x2(t)

〉
= 2DT t+ v20t

2 +
v20
ω2

[1− cos(ωt)], (10)

i.e., the simple addition of the result for constant velocity and that for (alternate) sinusoidal propulsion. The crucial
point here is the null effect of propulsion velocity fluctuations (in both harmonic cases), it is solely the average velocity
which matters at long times. No benefit is obtained from resorting to a time dependent propulsion velocity, compared
to constant velocity propulsion (as far as it equals the average for time dependent propulsion). This statement will
change for higher dimensions, dramatically if the shape of the pulses is conveniently tailored.

III. HIGHER DIMENSIONS

A. General formalism

The basic change is the introduction of rotational diffusion of the direction of propulsion in addition to center of
mass (CM) overdamped dynamics. The standard dynamical equations in two dimensions are[26, 27]

dx

dt
=
√
2DT ζx + v(t) cos θ, (11)

dy

dt
=
√
2DT ζy + v(t) sin θ, (12)

dθ

dt
=
√

2DRζθ. (13)

We note that now there are several noise processes ({ζx, ζy, ζθ}), and two diffusion coefficients (corresponding to CM
translations, DT , and to rigid body rotations, DR). Again, the time dependence of the propulsion velocity has been
made explicit.

The equations for the CM dynamics can be written in a more compact vectorial notation (valid for any dimension)
as

d⃗r

dt
=
√

2DT ζ⃗ + v(t)ê, (14)

where ê stands for the unit vector pointing along the direction of propulsion, and which itself is subject to the typical
Debye dynamics of a damped spherical rotator, characterized by a correlation function [28]

⟨ê(t) · ê(τ)⟩θ = e−
t−τ
τr . (15)

The new parameter τr is directly related to the rotational diffusion coefficient, although with an additional dependence
on the dimension d (τr ≡ 1

(d−1)·DR
). It is therefore convenient to use τr instead of DR when possible in order to

obtain formulas as general as possible.
At this point it is straightforward to derive (along the lines followed in the one-dimensional case) the corresponding

expression for the MSD and to perform the averages over random noises (subscript ζ for center of mass motion, θ for
rotations),

d⟨∆r⃗2⟩ζθ
dt

= 2d ·DT + 2v(t)

∫ t

0

dτ v(τ) ⟨ê(t) · ê(τ)⟩θ . (16)
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Inserting the rotational time correlation relaxation function (Eq. 15),

d⟨∆r⃗2⟩ζθ
dt

= 2d ·DT + 2v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr . (17)

an expression that underlines the trivial difference between dimensions (d prefactor of the translational diffusion
coefficient, DT ), and which includes the one dimensional case as well (according to the definition of τr the exponentials
cancel out, and Eq. 4 is recovered).

Following the one-dimensional example, we introduce an additional average over origins, which results in

d⟨∆r⃗2⟩
dt

= 2d ·DT + 2

〈
v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr
〉

v

, (18)

the basic expression that will be used throughout.
For constant speed we trivially recover the standard formula[1]

d⟨∆r⃗2⟩
dt

= 2d ·DT + 2v2τr

(
1− e−t/τr

)
. (19)

The exponential transient, with a characteristic time equal to τr, implies that the dynamics (contrary to the, ballistic,

one dimensional behaviour) is diffusive
(〈

[∆r⃗(t)]
2
〉

t→∞−−−→ 2dDefft
)
,

Deff = DT +
v2τr
d

≡ DT +Dex, (20)

where the excess part (Dex) stems from rotation, i.e. although rotation substantially dampens the MSD (compared
with the quadratic superdiffusive regime in 1-d), diffusion is still enhanced with respect to the free case. This simple
expression can be rewritten into a form which will be particularly clarifying when it comes to analyze the results for
time dependent propulsion. It involves the Péclet number (Pe) defined [1]

Pe ≡ |v|√
2DTDR

, (21)

where |v| denotes the absolute value of the propulsion velocity (i.e. speed).
In terms of Pe, Eq. 20 is simply expressed as

Deff = DT

[
1 +

2

d(d− 1)
Pe2
]
, (22)

with an appealing interpretation: Pe can be viewed as encapsulating, in a single dimensionless parameter, the en-
hancement to free diffusion which stems from the interplay between propulsion and rotation. We note that for d = 2
Eq. 22 yields the simple relation Deff = DT

[
1 + Pe2

]
, and Deff = DT

[
1 + Pe2/3

]
for d = 3. For the sake of generality

the explicit dimension dependence will be kept within (although the simulations to be reported will correspond in all
cases to d = 2, and the results compared with the corresponding formulas).

Finally, as it was the case in 1-d, a compact formulation results for periodic velocity profiles〈
v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr
〉

v

=
1

T

{∫ T

0

ds v(t− s)e−t/τr

∫ t

0

v(τ− s)eτ/τr dτ

}
= (23)

=
1

T
e−t/τr

∫ t

0

dτ

{∫ T

0

ds v(t− s)v(τ− s)

}
eτ/τr , (24)

where the only formal change, with respect to one dimension, is the introduction of exponential corrections resulting
from orientational relaxation.

B. Sinusoidal propulsion with zero average velocity

We now revisit the first time dependent case analyzed in 1-d, namely v(t) = v0 sin(ωt). This velocity profile can be
readily integrated after inserting it in Eq. 23 (or Eq. 24). The full MSD reads,
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〈
[∆r⃗(t)]

2
〉
= 2d

[
DT +

v20τr
2d[1 + (τrω)2]

]
t+

v20(ω
2 − τ−2

r )

(ω2 + τ−2
r )2

− v20e
−t/τr

(ω2 + τ−2
r )2

[
(ω2 − τ−2

r ) cos(ωt) + 2
ω

τr
sin(ωt)

]
. (25)

0 5 10 15 20 25 30

t (s)

0

10

20

30

40

50

M
S

D
(µ

m
2
) 0 1 2

0

10

Simulation

Theory

FIG. 2. Mean Square Displacement for a (zero average) sinusoidal velocity profile obtained via simulation (red solid) and via
Eq. 25 (blue dashed). The inset shows the short time behaviour of the MSD. The simulation data lines have an error smaller
than the thickness of the line. Simulations were performed, in 2-d, with DT = 0.22µm2/s, DR = 0.16 rad2/s, v = 10µm/s and
ω = 2π rad/s, corresponding to ⟨Pe⟩ ≃ 24 and F ≃ 0 (see text).

The last two terms correspond to the transient, characterised by a time scale τr, as was also the case for constant
propulsion velocity. Figure 2 illustrates the transition from transient (inset) to stationary behaviour for a particular
instance. The analytical expression perfectly matches numerical simulation (Supplementary Information, SI, contains
a summary of the numerical techniques employed).

The first term in Eq. 25 defines an effective diffusion coefficient (Deff = DT +
v2
0τr

2d(1+(τrω)2) ) valid in the long-time

limit, which was already obtained in Ref. 9. While we are dealing with a simple case (sinusoidal), it has broad
implications. [9] Namely, the scallop theorem [22] needs to be qualified if orientational fluctuations are not negligible:
a time reversible propulsion sequence can actually enhance the underlying diffusional dynamics (described by DT ).
Finally, the enhancement of diffusion found in two/three dimensions contrasts with the corresponding null effect in
one dimension for a zero mean propulsion profile such as this one.

C. Average Péclet number

The effective diffusion coefficient can also be expressed in terms of the Péclet number, if its definition is extended
to time dependent velocity profiles. We define the average Péclet number as the simple average of Eq. 22

⟨Pe⟩ ≡ ⟨|v|⟩√
2DTDR

. (26)

For the zero average harmonic velocity case, ⟨|v|⟩ = 2v0/π and therefore ⟨Pe⟩2 = 2v20/π
2DTDR. The effective

diffusion coefficient can thus be written

Deff = DT

[
1 +

2

d(d− 1)
⟨Pe⟩2F (τ ′r)

]
, (27)

where a new function has been introduced,

F (τ ′r) ≡
π2

8

1

1 + (τrω)2
. (28)
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Eq. 27 is highly similar to Eq. 22, with the only addition of a multiplicative functional correction (F ) to the
average Péclet number. While ⟨Pe⟩ encapsulates the average enhancement of diffusion, the new multiplicative factor
(F ) reflects the correction to this first, constant velocity (equal to the average speed of the profile), approximation.
This will be the framework adopted within in order to help compare more realistic velocity profiles. While the
corresponding diffusion coefficients will display a substantially higher mathematical complexity, when expressed in
terms of Eq. 27, the only difference with respect to the present case will be that the “fluctuation correction factor”
(F ) is multidimensional (with the dimensionless variables being the set of, scaled, natural timescales of the propulsion
velocity profile). The dimensionless nature of all the functions and variables involved, will make the analysis valid for
any system/scale (as long as the underlying dynamical equations apply).

In the following, propulsion profiles with the same ⟨Pe⟩ will be compared, and thus the focus will be (according to
Eq. 27) on comparison of the respective correction factors (F ). This procedure though needs to be exercised with care.
In most cases the comparison will be between periodic profiles which are indistinguishable in terms of their absolute
value (see for instance panels (a) and (c) in Fig. 1). Their average Péclet numbers are mathematically identical, and
therefore it is fair to directly compare their respective correction factors (F ). A different kind of comparison will
be between profiles with different functional dependence, a basic one being between constant propulsion and a time
varying profile, both with the same ⟨Pe⟩, which in principle constitutes a natural approach. However, since the goal
is to discern which one is optimal in terms of diffusion enhancement, one would actually want to compare profiles
characterized by the same energy expense, a criterion in principle not necessarily identical to the equality of average
Péclet numbers. Both criteria are equivalent though under the reasonable assumption of a linear dependence between
average speed (i.e. ⟨Pe⟩) and average power deposited on the swimmer. Indeed, such linear relationship has been
shown to hold to a very good approximation (Ref. 29, Fig. 2) for nanometric swimmers in water (functionalized
fullerene in bulk liquid water or inside a carbon nanotube), although the range of validity will generally need to be
checked for each particular system.

D. Fourier solution

Let us consider now the effects on the dynamics of ABPs propelled by the general subclass of velocity profiles which
exhibit periodicity in time. We can express such velocity profiles with the corresponding Fourier series expansion

v(t) =

∞∑
n=−∞

cne
inωt with ω ≡ 2π

T
, (29)

where

cn ≡ 1

T

∫ T

0

dt v(t)e−inωt. (30)

When substituted into Eq. 18 we obtain, after some manipulation (see SI), an expression for the MSD that applies
to any periodic propulsion velocity profile

d⟨∆r⃗2⟩
dt

= 2d

[
DT +

c20τr
d

+
2

d

∞∑
n=1

|cn|2
τr

1 + (nωτr)
2

]
−2c20τre

−t/τr+4

∞∑
n=1

|cn|2
e−t/τr

τ−2
r + (nω)

2

[
nω sin(nωt)− τ−1

r cos(nωt)
]
.

(31)
From this full analytic expression for the MSD it is immediate to recover its known long time limit [9], which defines

an effective diffusion coefficient

Deff = DT +
c20τr
d

+
2

d

∞∑
n=1

|cn|2
τr

1 + (nωτr)
2 . (32)

Although it certainly was to be expected, this expression clearly shows [9] how any propulsion velocity will result in
an enhancement of diffusion with respect to free center of mass diffusion (i.e. Deff > DT ), as implied by the positive
definite nature of the corrections (second and third terms). Note that despite Eq. 31 is obtained by averaging over the
particles’ initial phase, the resulting expression for the effective diffusion coefficient, Eq. 32, is valid for any periodic
propulsion velocity profile with no necessity of averaging over the time origins of the particles (see section I.C in SI).

It may have gone unnoticed, and this is central to the present work, that Eq. 32 also implies that any periodic
propulsion profile will always be more efficient than constant propulsion velocity (equal to the average velocity). This
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results from noting that, for any periodic profile, c0 = ⟨v⟩, so the first two terms (DT +
c20τr
d ) are identical to the

diffusion coefficient for the corresponding (constant) average velocity (Eq. 20). Since the third term (infinite sum)
in Eq. 32 is positively defined, regardless of the shape of the (periodic) velocity profile, a diffusion enhancement will
necessarily result with respect to constant velocity.

This observation for the long time dynamics contrasts with the transient dynamics previously described, its as-
sociated time scale (τr) does not differ from what was previously found for constant velocity (Eq. 19), or for zero
average harmonic propulsion velocity (Eq. 25). It is evident now that these two examples were just instances of a
general result: irrespective of the functional form and/or period of the (periodic) velocity propulsion imparted on the
swimmer, the duration of the transient is uniquely determined by rotational diffusion.

To summarize, while resorting to periodic propulsion will not result in any remarkable effect on the transient lifetime,
for the effective diffusion coefficient an advantage is guaranteed in all cases with respect to a constant velocity equal
to the mean velocity of the profile.

We start exploring the scope of this treatment by completing the analysis for harmonic profiles. As a first application
we discuss the profile given by the absolute value of the sinus function (abs-sin from here on, displayed in Fig. 1(c))
since it cannot be solved by direct integration of Eq. 23 (or Eq. 24). Using Eq. 32, the following effective diffusion
coefficient results (see SI) for the abs-sin profile

Deff = DT +
4v20τr
dπ2

[
1 + 2

∞∑
n=1

1

(1− 4n2)2[1 + (2nωτr)2]

]
, (33)

which when rewritten in the generic form Deff = DT

[
1 + 2

d(d−1) ⟨Pe⟩
2
F (τ ′r)

]
, defines the corresponding fluctuation

correction factor for the abs-sin profile

F (τ ′r) = 1 + 2

∞∑
n=1

1

(1− 4n2)2[1 + (4πnτ ′r)2]
, (34)

displayed in Fig. 3, alongside the corresponding curve for a zero average sinusoidal propulsion (Eq. 28). Here, we have
defined the dimensionless parameter τ ′r ≡ ωτr.

10−5 10−3 10−1 101 103 105

τ ′r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
(τ
′ r) Fsin

F|sin|

FIG. 3. Fluctuation correction factors for a null mean velocity sine profile (red) and absolute value sine profile (blue). The
corresponding constant velocity value is shown as a dashed black line.

As it was to be expected from the previous discussion, the abs-sin fluctuation correction factor (blue curve in
Fig. 3) is always larger or equal than what would result from constant velocity (equal to the average speed) propulsion
(horizontal dashed line). This enhancement, though, is rather modest, with a maximum increase of ≃ 20% (from
Eq. 34 it is immediate to see that F (0) = π2/8 ≃ 1.2). This small advantage appears when rotation grows faster,
with the transition being located at τ ′r ≃ 1 (i.e. τr ≃ T ).
Fig. 3 also displays the result for purely sinusoidal (zero mean) propulsion (red curve), corresponding to our previous

result in Eq. 28. For slow rotational diffusion, and/or large period (i.e. τ ′r → ∞), we have F (τ ′r) → 0. This is consistent
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with the notion that if the swimmer does not rotate, the dynamics is in fact indistinguishable from 1-d, where we
found no effect from a harmonic propulsion velocity (see Eq. 9). A dramatic change though occurs for τ ′r ≃ 1: as
rotation speeds up (and/or the period gets larger), this propulsion profile can become as efficient as the corresponding
constant velocity case (dashed line) and even outperform it. Ultimately it becomes as efficient as the abs-sin profile
(overlap of blue and red curves, the limit for τ ′r → 0 is exactly the same as found for abs-sin, π2/8, as can be trivially
checked from Eq. 28). The explanation is rather simple, for fast rotational diffusion one-way or alternate propulsion
directions become indistinguishable.

We could summarize this Section by noting that, while harmonic fluctuations have been the center of attention
when it comes to velocity variations, their contribution (to long time diffusion) is at best marginal with respect to
constant velocity, in any dimension. This adds to an equal time-dependence of the MSD transient towards its long
time behavior, which applies to any periodic profile (harmonic or not).

These considerations are suggestive that there might be no point in trying to exploit a time dependent propulsion
velocity. As noted in the Introduction though, for a wide set of systems a harmonic modelization is probably not
realistic enough, if propulsion is to proceed through short bursts. These are associated in most cases to swimmer-
solvent fast energy transfers which can be produced, as described in the Introduction as well, by a variety of mechanisms
that will depend on the swimmer’s length scale [20, 21, 29]. The consideration of short-lived pulses (when compared
with the period with which they are applied), introduces an additional time scale: while for the harmonic case the
only variable was the ratio between rotational relaxation time and period (τ ′r = τr/T ), now the ratio between pulse
duration and period will constitute a new (dimensionless) variable to consider. Its impact, which does not seem to
have been addressed before, is the focus of next Section.

IV. EXPONENTIAL PROFILE

A propulsion velocity profile made of a train of decaying exponentials is a natural choice, due to both physically
motivated reasons (an exponential decay is to be expected for absorption of finite energy bursts), and to mathematical
simplicity (it only requires the introduction a single new variable, its lifetime τ , and allows for explicit solutions, as
will be shown).

We will thus analyze velocity profiles constituted by an equally time shifted (by a time T ) sequence of signed
instances of the exponential

v(t) = vpe
−t/τ , (35)

where vp stands for the absolute value of the peak velocity (the subscript is added in order to avoid confusion in the
results to be reported). Three different sequences will be considered (sketched in Fig. 4):

(a) Same sign, denoted by the (++) symbol,

(b) Alternating sign (+−),

(c) Random sign (rnd).

As has been the case for harmonic profiles, where sequences with zero and non-zero mean were studied, the last two
cases are representative of sequences with null average velocity ((b) and (c)), while the first one corresponds to an
instance for which propulsion direction is maintained between pulses (sequence (a)). As the functional dependence for
each exponential (“kick”) is identical, all instances automatically have the same average speed and Péclet number, so
that only the fluctuation correction factors need be compared. Finally, we note that the third sequence is characterized
by the lack of periodicity, the first and only example with this characteristic, although it displays time regularity
(equally spaced kicks).
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FIG. 4. Exponential propulsion velocity profiles for: (a) same sign velocity kicks (++); (b) alternate sign (+−); (c) and random
sign (rnd).

A. Analytic solution

We start with the same sign (++) sequence, for which an analytic MSD can be obtained by integrating the general
Fourier solution for its derivative (Eq. 31). The following expression results (see SI),

⟨[∆r⃗(t)]
2⟩ = 2d

DT +
⟨v⟩2 τr

d
+

2

d
⟨v⟩2 τr

∞∑
n=1

1[
1 + (nωτ)

2
][
1 + (nωτr)

2
]
t+ ⟨[∆r⃗(t)]

2⟩trans, (36)

with the transient part given by

⟨[∆r⃗(t)]
2⟩trans = 2 ⟨v⟩2 τ2r

[
e−t/τr − 1

]
+4 ⟨v⟩2 τ2r

∞∑
n=1

[
(nωτr)

2 − 1
][
1− e−t/τr cos(nωt)

]
− 2nωτr sin(nωt)e

−t/τr[
1 + (nωτ)

2
][
1 + (nωτr)

2
]2 (37)

and where the average velocity (⟨v⟩ which, in this case, is also equal to the average speed) is

⟨v⟩ = 1

T

∫ T

0

dτ v(τ) = vp
τ

T

(
1− e−T/τ

)
. (38)

While it has already been stated with full generality, we note in passing that the transient part decays with a time scale
equal to the rotational lifetime, as expected. Regarding our main interest, namely the effective diffusion coefficient,
when expressed in terms of the average Péclet number (see Eq. 27) the following fluctuation correction factor results
in

F++(τ ′, τ ′r) = 1 + 2

∞∑
n=1

1[
1 + (2πnτ ′)2

][
1 + (2πnτ ′r)

2
] . (39)
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As was anticipated, it is now a function of two dimensionless variables (τ ′, τ ′r). The first one is related to the scaled
propulsion relaxation time (τ ′ ≡ τ/T ), while the second one corresponds, as for the cases studied so far, to the
rotational relaxation time (τ ′r ≡ τr/T ).
Given the positive definite character of the sum in Eq. 39, the F++ correction (to diffusion enhancement produced

by a constant velocity, and reflected in ⟨Pe⟩, see Eq. 22) will in all cases be ≥ 1. This is consistent with the general
finding that periodic propulsion is always more efficient (in terms of enhancing diffusion) than constant propulsion
(with the same average speed). This explicit expression allows though for a more in-depth analysis by studying some
of its limits. If any of the two variables is increased (τ ′ → ∞ and/or τ ′r → ∞) the sum will tend to zero and therefore
F++ → 1, that is, if the period T is much smaller than any of the relaxation time scales, there is no advantage in
time variation. For the τ >> T case this can be understood considering that the exponential decay will tend to be
negligible in between kicks, so that the profile will not differ from constant propulsion. The τr >> T limit is identical
with that already found for harmonic pulses, i.e. there is no advantage in velocity variation if rotational diffusion is
slow.

It is the opposite limit though which is of particular interest. If the period is much larger than both relaxation times
(or equivalently τ ′, τ ′r → 0), both denominators within the sum in Eq. 39 will tend to a unit value, and consequently
the sum will diverge. The fluctuation correction factor can thus grow indefinitely, in strong contrast with the harmonic
case (where a maximum value of ≃ 1.2 was found). We consider this a key result of this work, as it shows that the
diffusion enhancement caused by a constant velocity can be largely exceeded if a sequence of exponential kicks is
used instead. It is important to note that this was a double limit and it is not possible to disentangle at the present
stage the separate role of each variable (τ ′, τ ′r), so we postpone a more in depth analysis to Section IVC, including
consideration of the meaning of the apparent divergence.

A similar calculation for an alternate sign (+-) sequence yields (see SI)

F+−(τ ′, τ ′r) = 2

(
1 + e−1/τ ′

1− e−1/τ ′

)2 ∞∑
n=1,3,...

1[
1 + (nπτ ′)2

][
1 + (nπτ ′r)

2
] . (40)

The unit value before the sum found for Eq. 39 is now missing, so the correction tends to zero rather than one for
τ ′, τ ′r → ∞, similarly to the (zero average velocity) sinusoidal case. For τ ′, τ ′r → 0 though, we still find that F+−

diverges. That is, somewhat counter-intuitively, even with alternate sign propulsion the enhancement of diffusion can
be made indefinitely larger than that corresponding to constant propulsion (with velocity equal to the average speed).
Again, it does not seem possible to disentangle the role of each of the variables with the current analytical expression
for F+−.
The remarkable characteristics found for the exponential propulsion profiles call for a detailed analysis of the

two-dimensional parameter space spanned by the fluctuation correction factor, F++/+−(τ ′, τ ′r), including all the
corresponding (idealized) limits. It has been already noted though that this is not generally possible with the analytic
formulas discussed so far. In addition, while ++ and +− sequences are intuitively appealing, they represent two
extremes amongst an infinite number of possible sequences. A random sequence might be of interest as well, as
representative of what lies in between. Unfortunately, the Fourier formalism used so far is unable to treat this case, as
it shows no periodicity. Remarkably, the exponential propulsion pulses allow for the derivation of closed-formulas in
all three cases, a fact directly related to the kernel in the integral (Eq. 18) being also exponential. These alternative
formulas do not render the Fourier approach useless though. Having two different, and independent, explicit solutions
(analytic and closed-form) allows an exhaustive check of their validity without the need to resort to simulation.
Moreover, the Fourier methodology is the only approach which can provide an analytic expression of the full MSD
(including transient) for any periodic pulse profile. Finally, while it has been straightforward to infer from the Fourier
approach the notion that time variation is always more efficient, this fundamental characteristic would not be obvious
from inspection of closed-form formulas for particular profiles.

B. Closed-form solution

A detailed derivation of closed-form solutions for the effective diffusion coefficient can be found in the Appendix, for
each of the sequences considered. As has already been emphasized, the functional forms being identical, the analysis
can be circumscribed to the fluctuation correction factor, for which all three cases can be merged into the single
expression

F (τ ′, τ ′r) =
1

(τ ′ − τ ′r)
(
1− e−1/τ ′)2

[
e−2/τ ′ − e1/τ

′
r−1/τ ′

τ ′ + τ ′r
τ ′rg(τ

′, τ ′r) +
1− e−2/τ ′

2

]
, (41)
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where a new function has been defined (g(τ ′, τ ′r)), which encapsulates the only differences amongst them

g(τ ′, τ ′r) =


1−e1/τ

′

1−e1/τ
′
r

for ++ pulses,

1+e1/τ
′

1+e1/τ
′
r

for +− pulses,

e(1/τ
′−1/τ ′

r) for random pulses.

(42)

SI contains a numerical comparison of the analytic expressions (Eq. 39 for the ++ sequence, Eq. 40 for the +−
sequence) with the corresponding instance of the closed-form formula (Eq. 41), and over several orders of magnitude
for each one of the two scaled variables. A perfect match (within machine precision) is found between both explicit
solutions and for both types of sequence. For random sequences, lacking an analytic expression, it has been nec-
essary to resort to numerical simulations for representative sample cases, as detailed in SI. The agreement is in all
cases compatible with the statistical indeterminacy associated with the limited number of independent trajectories
generated.

C. Parameter space characterization

With the help of the closed-form formulas, it is now straightforward to analyze in full detail the behaviour of
F (τ ′, τ ′r) within the two dimensional parameter space spanned by its dimensionless variables. In order to gain some
insight we start by providing a graphical representation for a necessarily limited portion. Figure 6 displays a contour
plot for each one of the sequences.

Despite the mathematical complexity of Eq. 41 its behavior can be summarized as a monotonic increase of the
correction factor with decreasing value of the two variables (for all three sequences). A first, qualitative, comparison
of Fig. 6(a) and Fig. 6(b) shows that ++ sequences are, as expected somewhat more efficient than +− sequences and,
remarkably, comparison of Fig. 6(b) and Fig. 6(c) also suggests that random sequences are always more efficient than
alternate sequences. These basic observations are confirmed in Fig. 7, where the ratios between fluctuation correction
factors are displayed for all possible pairs (i.e. F+−/F++, F rnd/F++, F+−/F rnd). Panel (a) shows that, as was to
be expected, F++ is always more efficient than F+− (ratio always lower than 1). Similarly, panel (b) shows that
F++ is also more efficient than F rnd. Finally, panel (c) confirms that a random sequence is always more efficient than
an alternate sequence, a logical consequence of the previous relation (F+−/F++ ≤ 1): if a random and an alternate
sequence are compared, while they will display equally alternate pulses for some stretches of time, it will also be the
case that for some stretches of time the random sequence will contain same sign pulses (i.e. ++ or −−), which will
be more efficient than the corresponding alternate stretches.
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FIG. 5. Fluctuation correction factors for exponential ++ profiles (red), +− (blue) and rnd (green) as a function of τ ′
r for a

fixed value of τ ′ = 0.1. Dashed black lines indicate the small and large value limits for each function (see second and fourth
columns in Table I).
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FIG. 6. Contour maps of the fluctuation correction factors for exponential ++ profiles (left), +− (center) and rnd (right).
Notice that the scale for the fluctuation correction factor differs between panel (a) and panels (b,c)), as the correction implied
for F++ is somewhat stronger for the region displayed.
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FIG. 7. Contour maps of the ratios (see labels on the respective ordinate axes), of fluctuation correction factors for exponential
+− and ++ profiles (left), rnd and ++ (center), and +− and rnd (right).

Given the monotonic behaviour of the fluctuation correction factor, we only need to compute the limits of the
closed-form formulas in order to complete the characterization of the whole two-dimensional parameter space. These
limits are collected in Table I, and reveal a more nuanced scenario than is apparent from the figures. It may be
illustrative to start comparing the limits associated to varying τ ′r (for a fixed value of τ ′) with the corresponding
results for harmonic pulses (for which τ ′r was the only variable of the fluctuation correction factor, see Fig. 3 and
related discussion). The full behaviour of the fluctuation correction factor for each sequence is depicted in Fig. 5.
The limit τ ′r → ∞ (rightmost column of Table I) corresponds to slow rotational diffusion compared with the period of
the exponential kicks, and the results do not differ from what was obtained for harmonic signals (in any dimension):
no diffusion enhancement for zero average velocity profiles (F+− = F rnd = 0), and an enhancement indistinguishable
from constant velocity for positive-defined pulses (F++ = 1). If τ ′r is decreased an inflexion point appears for τ ′r ≈ 1,
as for the harmonic case. If it is further decreased (τ ′r → 0, central column in Table I), while there still are similarities
with the harmonic case (all functions tend to the same value as the rotational parameter diminishes), the plateau is
not a constant anymore (as it was for the harmonic case, π2/8), instead it is now a function of pulse lifetime (τ ′).
For the particular instance chosen in Fig. 5 (τ ′ = 0.1, i.e. pulse duration one tenth of time between exponentials T ),
this plateau corresponds to a correction factor of 5: any exponential sequence would in this case result in a five-fold
increase of the correction (Pe2), associated to constant velocity (equal to the average speed).
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TABLE I. Limit values of the fluctuation correction factor for exponential ++ +− and rnd profiles.

τ ′ → 0
(τ << T )

τ ′r → 0
(τr << T )

τ ′ → ∞
(τ >> T )

τ ′r → ∞
(τr >> T )

F++ 1
2τ ′r

e1/τ
′
r+1

e1/τ
′
r−1

1
2τ ′

e1/τ
′
+1

e1/τ ′−1
1 1

F+− 1
2τ ′r

e1/τ
′
r−1

e1/τ
′
r+1

1
2τ ′

e1/τ
′
+1

e1/τ ′−1

2τ ′r
(
1−e1/τ

′
r

)
+1+e1/τ

′
r

1+e1/τ
′
r

0

F rnd 1
2τ ′r

1
2τ ′

e1/τ
′
+1

e1/τ ′−1
τ ′r
(
e−1/τ ′r − 1

)
+ 1 0

One could also ask for the behaviour that results from fixing τ ′r, and allowing for the variation of τ ′ (i.e. a horizontal
cut in Fig. 6, while the previous analysis corresponded to a vertical cut, for each panel). This possibility was not
available for harmonic pulses as their “lifetime” (≈ T/2) was entirely fixed by the associated period (which would
loosely correspond to a constant value τ ′ ∼ 0.5). For exponential pulses the limit τ ′ → ∞ can be found in the second
to rightmost column of Table I. There is no advantage (with respect to constant velocity) for same-sign sequences
(F++ = 1 irrespective of the rotational lifetime). In contrast, for zero average sequences there is always an advantage
(F+−, F rnd ≥ 0), which depends on the rotational lifetime (as long as it is different from zero). We recall that for both
these cases the corresponding average velocity is zero, and it is with respect to this case that the advantage exists.
This advantage never surpasses though the diffusion enhancement obtained from the case at constant velocity (equal
to the average speed), as a simple analysis of the analytic expressions in Table I also confirms). The corresponding
behaviour is illustrated in Fig. 8, with the zero average velocity cases corresponding to the alternate (blue) and random
(green) sequences. When τ ′ is decreased, an inflexion point is found for τ ′ ≈ 1 after which, upon further decrease
of τ ′, the correction factor increases for all three cases, without coalescing (in contrast with the behaviour found in
Fig. 5).
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FIG. 8. Fluctuation correction factors for exponential ++ profiles (red), +− (blue) and rnd (green) as a function of τ ′ for a
fixed value of τ ′

r = 0.5. Dashed black lines indicate the small and large value limits for each function.

The previous discussion focused on horizontal/vertical cuts on Fig. 6 and therefore the limits obtained depended on
the particular value of the variable left fixed. This can be clearly seen from the (monotonic) functions in Table I, only
for a handful of the cases the result is a constant (0,1). It is therefore of interest to obtain the margins of variation
of each limiting function (i.e. compute the double limits).

Before proceeding, it should be noted that these limits describe idealized scenarios. Their physical requirements
should not be forgotten, considering that the associated effective diffusion is related to the product of the correction
factor (F ) and the square of the average Péclet number (⟨Pe⟩). In order to further illustrate this point with an
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example, let us consider the expression of ⟨Pe⟩ for exponential profiles

⟨Pe⟩2 =
v2p

2DTDR
(τ ′)2

(
1− exp−1/τ ′)2

. (43)

We have for instance that a limit τ ′ → 0 (with the reasonable assumption that DT , DR are not modifiable), would
imply that vp should be increased accordingly (in order to maintain ⟨Pe⟩ constant). Of course there will be physical
limits to the maximum value that can be achieved, depending on the workings of the system under study. Therefore
the corresponding idealized limit will, generally, not be reachable. With this important consideration in mind, in
the numerical examples to be discussed below, only modest changes from constant propulsion will be considered (i.e.
F ≳ 1).
With these provisos, the resulting limits are summarized in Table II (none of the double limits depends on the order

taken), and can be grouped into just three distinct (idealized) regimes.

TABLE II. Double limit values of the fluctuation correction factor for exponential ++ +− and rnd profiles.

τ ′r → ∞ (any τ ′) τ ′r → 0, τ ′ → ∞ τ ′r, τ
′ → 0

F++ 1 1 → ∞
F+− 0 1 → ∞
F rnd 0 1 → ∞

1. Frozen orientation regime

The first column in Table II corresponds to the physical scenario where the orientation of the swimmer barely
changes in between kicks. As it was the case for harmonic profiles, no enhancement is observed with respect to a
constant velocity (equal to the average value), for none of the propulsion sequences. The same sign sequence (++) is
equivalent to constant velocity (F = 1), while the zero average sequences (+− and random) have null enhancement
(F = 0) with respect to simple center of mass diffusion. The latter case (+− and random) is aligned with the
scallop theorem, according to which reversible sequences do not produce propulsion, if rotational fluctuations can be
neglected. It is interesting to note that the present results indicate that this statement might need to be generalized
to include random sequences as well, even though they are not time reversible.

Finally, the damping effect of very slow rotational diffusion (with respect to actuation period, T) affects all three
sequences, as the result is independent of the propulsion lifetime. The rightmost column in Table I was actually
summarizing this situation, as no dependence on pulse lifetime (τ ′) was apparent either. In the opposite limit
(τ ′r → 0), the behaviour will critically depend on the pulse’s lifetime, and therefore two distinct limits will need to be
considered.

2. Orientationally randomized constant propulsion regime

The second and last columns in Table II both correspond to fast rotational diffusion (with respect to the propulsion
period), i.e. there is full orientational decorrelation in between kicks. In practical terms this implies that whether
propulsion maintains its direction (with respect to the swimmer axis), or inverts it, will be of no consequence, all
propulsion sequences will be equivalent. This is reflected in the fact that the corresponding boxes (for ++, +−, rnd
sequences), in each of the two last columns (different limits of the pulse lifetime τ ′), have equal values. For both
limits (large/small τ ′) the typical trajectory will be characterised a sequence of identical time intervals during which
the swimmer is respectively propelled with constant/localized propulsion, with velocity direction randomization in
between. As such, a description which applies to both limits might be that of “run-and-tumble” dynamics. One must
be careful to note, though, that this terminology usually implies propulsion times which are not uniformly distributed,
contrary to the present case (with a regular actuation). While a direct identification cannot thus be claimed at this
stage, it seems clear that they constitute closely related instances of the same dynamical behaviour.

In this section we focus on the second column, which corresponds to a large pulse lifetime with respect to the
actuation period (τ ′ → ∞). The large pulse lifetime makes the kick indistinguishable from constant velocity. Conse-
quently, no advantage results (F = 1) with respect to constant velocity dynamics (the middle column is filled with
unit values), and no further analysis is required.
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3. Orientationally randomized propulsion bursts regime

The last column in Table II displays what arguably constitutes the most interesting case, with a correction factor
that diverges in all cases. This core result, a boundless enhancement in diffusion, contrasts with the results previously
discussed for harmonic pulses, for which no remarkable enhancement was found with respect to constant propulsion.
Such marked enhancement might have significant implications, as it suggests a possible strategy to overcome a well-
known roadblock for constant propulsion velocity, namely that as the swimmer is downsized diffusion enhancement
progressively disappears.[1] This conclusion stems from analysis of Eq. 20, where the excess part (v2τr/2, in 2-d) is
inversely proportional to the rotational diffusion coefficient. Assuming a Debye-Einstein dependence for DR (which
holds to a good approximation down to molecular scales), it follows that the excess diffusion coefficient will decrease
as the cubic power of the swimmer radius. Consequently, diffusion enhancement from constant propulsion will become
negligible for small enough swimmers (unless a large enough speed can be sustained).

The present result, though, indicates that such decrease might be mitigated by using a train of exponential impulses
instead of a constant velocity. The rationale at this point seems clear: generally, in order to avoid the damping effect
of rotational diffusion, it is capital that swimmer displacements take place on time scales such that the swimmer has
barely changed its orientation. If rotational diffusion increases as well, this argument demands that the lifetime of the
exponential kicks should decrease accordingly. As the formulas derived here show, the combined effect of this double
limit (τ ′, τ ′r → 0) results in an unbounded increase of the fluctuation correction factor (F → ∞).

It should be kept in mind though that the downside will be a corresponding high (but temporary) peak velocity
(vp), as previously discussed, in order to keep a constant ⟨Pe⟩. A quantitative estimation seems appropriate at this
point. We recall that we are comparing constant propulsion with exponential pulses, such that both have the same
(average) Péclet number. If Eq. 43 is thus equated to Pe2 (for constant propulsion), we obtain a simple relation
between average and peak velocity (in the present τ ′ → 0 limit): v ≈ τ ′vp . In addition, and according to the formulas
displayed in the second column of Table II (which are independent of sequence), if one seeks for instance a five-fold
increase of the effective diffusion coefficient (F = 5) with respect to constant propulsion, a value τ ′ = 0.1 is required
(for the limit case τ ′r → 0). Together with the previous relation linking peak and average speeds, we obtain vp ≃ 10v.
That is, a five-fold enhancement would require a peak speed one order of magnitude larger than the corresponding
constant speed, although the peak velocity just needs to be maintained for less than 10% of the time, compared to
constant velocity. As previously noted, there will be a physical feasibility limit that will depend on the system under
study. Although it might seem a strong requirement, we emphasize that the present estimation corresponds to a
substantial enhancement, a non-negligible advantage could still be obtained with more modest requirements as will
be illustrated within the following section.

In what concerns the dynamics, the (idealized) trajectory that may be expected in this regime is one that begins
with a propulsion outburst which decays exponentially, followed by a period of inactivity (τ ′ → 0 implies τ << T )
during which damped diffusive dynamics (Deff ≈ DT ) dominates, ending with a new propulsion outburst. It is capital
that this second outburst departs in a random direction with respect to the previous propulsion direction (as required
by τ ′r → 0, i.e. small correlation time for rotation).
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D. Numerical simulations
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FIG. 9. Single particle trajectories obtained via stochastic simulations for free diffusion (left), constant velocity with a Pe ≃ 3.72
(center) and exponential ++ with ⟨Pe⟩ ≃ 3.77 and F ≃ 2 (right). In all cases DT = 0.22 µm2/s, DR = 0.16 rad2/s and a total
simulation time of 400 s.

In order to check these ideas and gain further insight into the characteristics of the regimes considered in the previous
section, we provide here an account of selected simulation results in 2-d (the numerical techniques employed are to be
found in SI). Although the discussion so far has been independent of scale, for the simulations we have particularized
to a typical micrometric swimmer of radius R = 1 µm immersed in water (with viscosity η = 10−3 N s/m2 at
T = 300 K). Assuming the validity of the Einstein relations for translational and rotational diffusivity, this results in
DT ≃ 0.22µm2/s, and DR ≃ 0.16rad2/s. The left panel in Figure 9 depicts a sample trajectory with these parameters,
i.e. with no propulsion, and is thus representative of the displacements characteristic of “free” micrometric spherical
particles (over a 400 s time lapse).

The middle panel in Fig. 9 displays a sample trajectory after a constant propulsion velocity has been added. A
value v = 1 µm/s has been chosen, as it corresponds to the lower bound of the range of velocities reported for the
first self-thermophoretic Janus particle described experimentally. [17] It is also a small value if compared with typical
artificial swimmer speeds, which usually fall in the tens of µm/s (as can be gathered for instance from the extensive list
in Table I of Ref. 1). Still, the effects on the dynamics of the micrometric particle are easily discerned in Fig. 9, with a
substantially larger spread of the trajectory when compared with the free particle (leftmost panel). The corresponding
(theoretical) MSD is displayed in Fig. 10 (green line). The associated Péclet number is Pe ≃ 3.77, so the effective
diffusion coefficient that results is Deff = DT

(
1 + Pe2

)
≃ 15DT . In short, even with a rather small value of v, the

effective diffusion coefficient turns out to be a factor ≃ 15 times larger than that characteristic of free diffusion (DT ).

We now turn to the impact of using a time varying propulsion velocity characterized by exponential kicks. The
rightmost panel in Fig. 9 displays a sample trajectory for an exponential ++ sequence. It is equally characterized
by ⟨Pe⟩ ≃ 3.77, and a modest correction factor of value F ≃ 2. This correction factor results from picking τ = 4 s
and T = 40 s, i.e. the time in between pulses is ten times larger than the duration of the pulse itself. In terms
of the corresponding scaled characteristic times, we have that for this choice τ ′ = 0.1 and τr ≃ 0.16, i.e. similarly
small values representative of the idealized scenario discussed in the previous section. It might have been noticed
that the scaled pulse lifetime (τ ′ = 0.1) is identical to the numerical example discussed in the previous section for
order of magnitude estimations, and yet, the corresponding correction factor is now smaller (F (0.1, 0.16) ≃ 2 instead
of the previous F (0.1, 0) ≃ 5). This difference is to be attributed to the fact that for the present, more realistic, case
the associated rotational relaxation time is different from zero (as is evident from comparing the arguments of the
correction function in the previous parenthetical remark). Turning to the effective diffusion coefficient that results
for this set of parameters, according to Eq. 22 we have Deff = DT

[
1 + ⟨Pe⟩2F (0.1, 0.16)

]
≃ 29.5DT , i.e. the factor

for constant velocity (≃ 15) has been doubled. This effect is evident in Fig. 10, where the corresponding MSD (blue
crosses) is compared to constant velocity (green line).
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FIG. 10. Mean Square Displacement for exponential ++ profiles with parameters such that F ≃ 1 (red crosses) and F ≃ 2 (blue
crosses), see Table. III, obtained via stochastic simulations. Theoretical results for constant velocity for the corresponding ⟨Pe⟩
is also shown (green line). In all cases DT = 0.22 µm2/s, DR = 0.16 rad2/s and a total simulation time of 40 s for constant and
F ≃ 1 and for 400 s F ≃ 2 (only 40 s shown). For the exponential sequences vp = 10 µm/s, which corresponds to ⟨Pe⟩ ≃ 3.77.

Direct inspection of the corresponding trajectory (rightmost panel in Fig. 9) shows, in line with what had been
anticipated in the previous section, a sequence of long excursions punctuated by localized tangled knots (during which
rotational diffusion randomizes the swimmer’s orientation). Therefore, besides the doubling of diffusion, the impact
of the correction factor on the trajectory characteristics is remarkable, particularly considering that a rather modest
pulse to period ratio has been considered (τ ′ ≃ τ ′r ≃ 0.1). In particular, the present estimation suggests that for the
Janus particle in Ref. 17, where constant illumination was used, a pulsed sequence might prove to be advantageous,
assuming exponentially decaying pulses. The present, rough, estimation indicates that a sequence of pulses (lifetime
4 s) with a period of 40 s, might result in a doubling of the diffusion coefficient, and a distinct qualitative change of
the trajectories. While the required pulses should be capable of producing a peak speed of 10 µm/s, we note that in
Ref. 17 the ability to produce sustained speeds up to 6 µm/s was reported.

Table III contains the (numerical and theoretical) effective diffusion coefficients for the case just discussed (within
the column with heading τ = 4 s, T = 40 s), and for the constant velocity propulsion as well (first row). In addition,
the results for several other cases are also displayed, corresponding to different sequences (+− and random) and sets
of parameters (τ = 0.1s, T = 1s, for which F ≃ 1). The middle column illustrates how for the latter set of parameters
no difference is found between a ++ sequence (first box) and constant speed (last box), both with an effective diffusion
coefficient Deff ≃ 3.35. In addition, and still for this set of parameters (τ = 0.1 s, T = 1 s), the +− sequence barely
differs from free diffusion (Deff ≃ DT ), while the random sequence is characterized by double this value, consistently
with its superior efficiency. The last column in Table III shows that for τ ′ ≃ τ ′r ≃ 0.1 all sequences are essentially
equivalent. Quantitative agreement between theory and numerical results is excellent in all cases, including the case
of random signed pulses, for which only a closed-formed solution is available. We note that the MSD for the ++
sequence with F ≃ 1 is also displayed in Fig. 10 (red crosses, coincident with constant propulsion). Finally, in order
to provide a more complete picture of the different regimes, trajectories for other values of ⟨Pe⟩ and F can be found
in SI.
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TABLE III. Effective diffusion coefficients obtained via stochastic simulations in 2-d with DT = 0.22 µm2/s and DR =
0.16 rad2/s for the two sets of parameters studied.

τ = 0.1 s
T = 1 s

τ = 4 s
T = 40 s

ct
Dsim 3.34± 0.02 3.34± 0.02
Dtheo 3.35 3.35

++
Dsim 3.33± 0.02 6.38± 0.02
Dtheo 3.35 (F ≃ 1) 6.37 (F ≃ 1.97)

+-
Dsim 0.236± 0.001 6.27± 0.01
Dtheo 0.236 (F ≃ 5 · 10−3) 6.26 (F ≃ 1.93)

rnd
Dsim 0.467± 0.002 6.34± 0.02
Dtheo 0.466 (F ≃ 0.08) 6.32 (F ≃ 1.95)

V. CONCLUDING REMARKS

The goal of this work has been the assessment of optimal propulsion strategies for diffusion enhancement, building
upon the basic finding that a periodic propulsion velocity is in all cases more efficient than the corresponding average
velocity propulsion. This enhancement has been shown to critically depend on the propulsion motif that is repeated.
While a harmonic profile results in a marginal advantage, an exponential profile turns out to allow for controllable
speed-ups. A complete characterization of the parameter landscape associated to a train of exponential impulses
shows that the optimum, idealized, strategy consists of a sequence of delta like propulsion kicks. These should be
sufficiently separated in time so that orientational correlation is lost in between successive impulses. The consideration
that a similar orientational decorrelation does not provide any remarkable advantage for harmonic sequences, leads
to the realization that the ability to control the ratio between pulse lifetime and actuation period is essential. The
potentially large diffusion enhancements that result suggest a possible strategy to dampen the known deleterious
effect of rotational diffusion as the swimmer is downsized. The small molecule limit, in which we are currently
exploring different propulsion mechanisms controlled by external radiation,[21, 29] might constitute an scenario where
such periodic excitation protocol might play a crucial role. Finally, a delta like limit can be reached with different
functional forms, with the present choice (exponential profile) being dictated by recent findings for a variety of
swimmer types and length scales. It is to be expected that equivalent (in the delta limit) profiles, might result in
comparable advantages for realistic parameter sets.
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FIG. 11. Sequence of positively defined exponential pulses shifted by a time δ.

The quantity we will focus on is the derivative of the MSD (Eq. 18) and, in particular, its non-trivial part〈
v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr
〉

v

. (45)

For a time t ∈ [δ + (n− 1)T, δ + nT ], the integral within this average is given by∫ t

0

v(τ)eτ/τr dτ = vpe
βδ
{
a1e

−βT I(0, δ) + a0e
−βT I(δ, δ + T )+ (46)

+ a1e
βT I(δ + T, δ + 2T ) + · · ·+ an−1e

iβT I(δ + (n− 1)T, t)
}
, (47)

as can be easily obtained with the help of Fig. 11, and where the following integral has been defined

I(a, b) ≡
∫ b

a

e(τ
−1
r −β)t dt . (48)

If we now include the prefactor of the integral in Eq. 45, and again for t ∈ [δ + (n− 1)T, δ + nT ],

v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr = v2pe
2βδ+β(n−2)T−(β+τ−1

r )t
{
an−1a−1I(0, δ)+ (49)

+ an−1a0e
βT I(δ, δ + T ) + an−1a1e

2βT I(δ + T, δ + 2T ) + · · · (50)

· · ·+ an−1an−2e
(n−1)βT I[δ + (n− 2)T, δ + (n− 1)T ] + enβT I[δ + (n− 1)T, t]

}
, (51)

which after writing the explicit form of the integrals, and grouping terms, results in

v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr =
v2pe

2βδ+β(n−2)T−(β+τ−1
r )t

τ−1
r − β

{
e(τ

−1
r −β)δan−1

[
a−1 + a0e

T/τr + · · ·+ an−2e
(n−1)T/τr

]
+

(52)

− e(τ
−1
r −β)δan−1e

βT
[
a0 + a1e

T/τr + · · ·+ an−2e
(n−2)T/τr

]
+ (53)

− a−1an−1 + enβT+(τ−1
r −β)t − e(τ

−1
r −β)δe(n−1)T/τr+βT

}
. (54)

Finally, the average over origins <>v amounts to performing an integral 1
T

∫ T

0
dδ for all terms, from which〈

v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr
〉

v

=
v2pe

β(n−2)T−(β+τ−1
r )t

τ−1
r − β

{
e(τ

−1
r +β)T − 1(
τ−1
r + β

)
T

{
an−1a−1 + an−1

(
et/τr − eβT

)
[
a0 + a1e

T/τr · · ·+ an−2e
(n−2)T/τr

]
− eβT+(n−1)T/τr

}
+[

−a−1an−1 + enβT+(τ−1
r −β)t

]e2βT − 1

2βT

}
. (55)

We now particularize to the three cases of interest.
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A. Sequence of pulses with same sign

For the ++ sequence we just need to set ai = 1 in the previous expression (Eq. 55), from which

〈
v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr
〉

v

=
v2pe

β(n−2)T−(β+τ−1
r )t

τ−1
r − β

{
e(τ

−1
r +β)T − 1(
τ−1
r + β

)
T

{
1 +

(
et/τr − eβT

)1− e(n−1)T/τr

1− eT/τr
(56)

− eβT+(n−1)T/τr
}
+
[
−1 + enβT+(τ−1

r −β)t
]e2βT − 1

2βT

}
. (57)

It should be recalled at this point that this formula corresponds to the interval t ∈ [δ + (n− 1)T, δ + nT ]. As
previously noted, the average over origins corresponds to δ spanning a full period (δ ∈ [0, T ]). Consequently, upon
variation of δ, the time t = nT samples all the possible values of the time-shifted exponential profile. Therefore, it
is only required to particularize the formula above to t = nT and perform the limit n → ∞, in order to obtain the
averaged excess diffusion coefficient (Dex), free from transients. The result of this limiting procedure is

〈
v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr
〉

v

t=nT→∞−−−−−−→ v2p(
τ−1
r − β

)

[
e−2βT − e(τ

−1
r −β)T

](
1− eβT

)
T
(
τ−1
r + β

)(
1− eT/τr

) +
1− e−2T/τr

2β

, (58)

from which we can extract the excess contribution to the diffusion coefficient

D++
ex = DT

2

d(d− 1)
⟨Pe⟩2

 (T/τ)
2(

1− τR
τ

)(
1− e−T/τ

)2
(e−2T/τ − eT/τR−T/τ

)(
1− eT/τ

)(
T
τR

+ T
τ

)(
1− eT/τR

) +
1− e−2T/τ

2T
τ

. (59)

The term in braces can be readily identified with one of the instances of the correction factor (F (τ ′, τ ′r)) in Eqs.
(41,42), which has been the subject of a detailed analysis in Sec. IVC. The correctness of this expression has been
checked by comparison with the corresponding analytic (Fourier) formula (Eqs. 39, see SI), and with sample numerical
simulations (see Table III).

B. Sequence of pulses with alternate sign

We start with a slightly more general formulation (that would include the previous, same sign, case), by setting:
ai ≡ A (for i = · · · , 0, 2, · · · ), and ai ≡ B (for i = · · · ,−1, 1, 3, · · · ). The previous case corresponds to A = B = +1,
while for the present case A = −B = +1. When substituted into Eq. 55 we obtain

〈
v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr
〉

v

=
v2pe

β(n−2)T−(β+τ−1
r )t

τ−1
r − β

{
e(τ

−1
r +β)T − 1(
τ−1
r + β

)
T

{
1+ (60)

(
et/τr − eβT

)[
AB + eT/τr · · ·+ABe(n−2)T/τr

]
− eβT+(n−1)T/τr

}
+
[
−1 + enβT+(τ−1

r −β)t
]e2βT − 1

2βT

}
, (61)

which reveals an invariance with respect to the exchange A ↔ B, i.e. the result is the same whether the sequence
starts with a positive pulse (followed by a negative one), or its inverse. We conclude that an average over δ ∈ [0, T ]
is independent of whether the first pulse is positive or negative (as long as they are subsequently alternate in sign).
However, this is just a part of the average that we need to compute here.

If we consider for instance the (−1, 1,−1, · · · ) sequence, a full period consists of a negative amplitude exponential
followed by a positive amplitude exponential. Consequently, we should allow for δ ∈ [0, 2T ] when performing the
average (where we recall that T denotes the duration of a single exponential). As we have seen, though, Eq. 61 is
only valid for an average over δ ∈ [0, T ]. It is still required to allow for δ ∈ [T, 2T ], but this would be equivalent to
shifting the whole sequence by a time T , i.e. turning the sequence into a (+1,−1, · · · ) sequence, and averaging for
δ ∈ [0, T ]. Considering the invariance previously found, this second part of the average will produce the same result.
Therefore, the expression found in Eq. 61 is actually sufficient and no further averaging is required.
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Finally, concerning the upper time limit for the interval t = n∆, n should be even, that is n = 2k in order to ensure
that it corresponds to an integer number of repetitions of the basic +− sequence. With these provisos we obtain〈

v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr
〉

v

=
v2pe

−2βT−2kτ−1
r T

τ−1
r − β

{
e(τ

−1
r +β)T − 1(
τ−1
r + β

)
T

{
1+ (62)

(
et/τr − eβT

)[
−1 + e2kT/τr

1 + eT/τr

]
− eβT+(2k−1)T/τr

}
+
[
−1 + e2kT/τr

]e2βT − 1

2βT

}
. (63)

Finally, taking the limit k → ∞, we get

D+−
ex = DT

2

d(d− 1)
⟨Pe⟩2

 (T/τ)
2(

1− τR
τ

)(
1− e−T/τ

)2
(e−2T/τ − eT/τR−T/τ

)(
1 + eT/τ

)(
T
τR

+ T
τ

)(
1 + eT/τR

) +
1− e−2T/τ

2T
τ

. (64)

The term in braces can be readily identified with one of the instances of the correction factor (F (τ ′, τ ′r)) in Eqs.
(41,42). This expression has also been checked against the analytic (Fourier) formula (Eq. 40, see SI), and against
numerical simulations as well (Table III).

C. Sequence of pulses with random signs

In this case we are not just considering a single sequence (with a variable time shift δ), but all possible sequences
with random amplitude signs (and with δ time shifts as well). That is, and additional average over all possible strings
{ai = ±1} will be required. This can be easily performed by noting that in Eq. 55 only bilinear products of amplitudes
appear (ai ·aj), and that for random strings the following simple relations hold: a2i = 1 (valid with/without averaging)
and < aiaj >= 0 (for i ̸= j). When they are introduced into Eq. 55 (i.e. when the average over strings is performed),
we obtain for t = nT (as for the same sign case)

〈
v(t)e−t/τr

∫ t

0

dτ v(τ)eτ/τr
〉

v

=
v2p(

τ−1
r − β

)

[
e−2βT − e(τ

−1
r −β)T

](
1− eβT

)(
τ−1
r + β

)(
1− eT/τr

) +
1− e−2T/τr

2β

, (65)

i.e. with this extra averaging the expression is simplified to the point that no additional long time limit is required,
as no time dependence remains. This is a remarkable property, implying that the diffusion coefficient can be obtained
from very short time simulations: it is the value at t = nT (for any value of n). In other words, with a simulation of
length T (n = 1, i.e. just one pulse) one can infer the (long time) diffusion coefficient. Supplementary Information
contains a plot where this property is verified for a particular case.

Returning to the closed-form expression, the excess part can be readily identified as

Drnd
ex = DT

2

d(d− 1)
⟨Pe⟩2

 (T/τ)
2(

1− τR
τ

)(
1− e−T/τ

)2
(e−2T/τ − eT/τR−T/τ

)(
T
τR

+ T
τ

) +
1− e−2T/τ

2T
τ

, (66)

which again is an instance of Eqs. (41,42). As already stated, since a corresponding Fourier expression is not available
in this case, only checks against numerical simulations are possible (see Table III).
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