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Abstract—In the domain of RIS-based indoor localization,
our work introduces two distinct approaches to address real-
world challenges. The first method is based on deep learn-
ing, employing a Long Short-Term Memory (LSTM) network.
The second, a novel LSTM-PSO hybrid, strategically takes
advantage of deep learning and optimization techniques. Our
simulations encompass practical scenarios, including variations
in RIS placement and the intricate dynamics of multipath effects,
all in Non-Line-of-Sight conditions. Our methods can achieve
very high reliability, obtaining centimeter-level accuracy for the
98

th percentile (worst case) in a different set of conditions,
including the presence of the multipath effect. Furthermore, our
hybrid approach showcases remarkable resolution, achieving sub-
millimeter-level accuracy in numerous scenarios.

I. INTRODUCTION

Reconfigurable Intelligent Surfaces (RISs) are a transfor-

mative technology in wireless communications. They are

composed of electromagnetic elements based on metasurfaces

that can be individually programmed to control the wireless

propagation environment [1], [2]. These elements, often called

unit cells, can manipulate the phase and amplitude of reflected

electromagnetic waves. This characteristic, in addition to being

low-cost, high-efficiency solutions [3], makes RISs a promis-

ing solution for the future of communications with 6G [4].

In the context of localization, Smart Radio Environments

enabled by RISs are promising for improving localization

accuracy by addressing complex scenarios such as NLOS

(Non-Line-of-Sight) and multipath effect. This is achieved by

using the known position of an RIS to assist in positioning

user equipment (UE). RIS-based localization systems offer

significant advantages, especially in the context of Beyond-

5G networks, where the demand for accuracy extends to the

millimeter level range [5]. This is attributed to their remarkable

capability to achieve very high precision.

This paper is organized as follows: Section II summarizes

existing approaches on RIS based localization; Section III

presents our theoretical framework and model; Section IV de-

tails our methodology for addressing the problem of RIS-based

localization; Section V describes the experimental setup and

analyses our simulation results; finally, Section VI concludes

the paper.

This work has been supported by the Smart Networks and Services
Joint Undertaking (SNS JU) under the European Union’s Horizon Europe
research and innovation programme under Grant Agreement No 10109710
(TERRAMETA).

II. RELATED WORK

This section presents a brief analysis of state-of-the-art

RIS-based localization approaches. Recently, several studies

have directed their focus toward exploring RIS-based systems.

Among these, some have specifically focused on developing

algorithms for RIS-aided localization systems or improving

localization accuracy for said systems. Dardari et al. [6]

proposed two algorithms for indoor localization under near-

field operation and assuming NLOS between a receiver and

transmitter, achieving accuracy in the millimeter range in an

area of 8×9m2. Zhang et al. [7] focused on developing an

algorithm that optimizes RIS phase configuration, achieving

an accuracy of 6 cm in a search space of 1m3. Keykhosravi

et al. [8] proposed a method that estimates the position of

a moving target by also estimating its radial velocity and

compensating during the estimation. The method achieved ac-

curacy in the sub-centimeter range, and they also showed that

it’s possible to achieve high accuracy for both static and mobile

devices. Additionally, some papers have also implemented AI

techniques in this context. Nguyen et al. [9] studied how the

localization error in a RIS-based system behaved employing

genetic algorithms (GA), neural networks (NN), and k-nearest

neighbor (k-NN), showing that feature selection with k-NN

yields the best results. Zhang et al. [10] employed an NN to

optimize the phase configuration of the RIS, achieving a local-

ization error in the centimeter range in a space of 0.125m3.

This approach is focused on improving beamforming. In our

previous work [11], we have also proposed one approach

that leveraged Particle Swarm Optimization (PSO) and GA to

estimate UE position, achieving an 85th percentile of 5mm
regarding localization error, where we considered an area of

72m2. In this paper, we evaluate the use of NNs to improve

localization for the same operating model and demonstrate

improvements in terms of reliability, marking a significant step

toward achieving robust and accurate UE position estimation.

III. SYSTEM MODEL

This study addresses the challenge of narrowband local-

ization of the UE position in NLOS conditions using RIS

in a downlink scenario. In this setup, the UE estimates its

position by capitalizing on reflections from the RIS. The

communication system adopts Orthogonal Frequency Division

Multiplexing (OFDM) for signal transmission and reception.

http://arxiv.org/abs/2405.01965v1


The main objective is to assess the efficacy of RIS in improv-

ing the precision of UE localization, specifically in NLOS

scenarios within a downlink framework and OFDM-based

communication system.

Our system model is based on the one proposed by Dardari

et al. [6]. In this model, we consider a large 1D RIS, composed

of K tiles. We consider that due to the large dimensions of

the RIS, it is operating under the near-field propagation regime

as a whole, however, each tile will operate under the far-field

propagation regime. Each tile is separated from each other

by a distance d, and they are composed of Ne = Nx × Ny
unit cells. Here, we consider a configuration where each cell

of a given tile receives the same input, resulting in the same

ideal discrete phase. The BS sends T OFDM pilot symbols

represented by xt with t = 1...T . We can select the phase

response of each tile a priori to the execution, so it’s possible

to define a predetermined sequence of phases for each pilot

symbol. The phase response of a given cell for a specific pilot

symbol is expressed as ψt,k. The solid angles, illustrated in

Figure 1, for each tile in relationship to the UE and BS are

expressed as Θk = {θk, φk}, where k = 1...K . In addition to

these angles, the normalized power radiation per unit cell can

be defined as [6], [12]:

F (Θ) =

{

cosq(θ) φ ∈ [0, 2π), θ ∈ [0, π/2]

0 otherwise
(1)

Given this, the reflection coefficient of each tile k for a

given pilot symbol t can be expressed as:

βt,k =
√

F (Θik)F (Θ
r
k)AF (Θ

i
k)AF (Θ

r
k)Gce

jψt,k (2)

With the superscripts i and r referring to the incident angle

(BS-RIS) and the reflected angle (RIS-UE), respectively, and

the array factor AF (Θ) modeled as [6], [13]:

AF (Θ) =
1√
Ne

sin(πNxdx
λ

sin θ sinφ)

sin(πdx
λ

sin θ sinφ)

sin(
πNydy
λ

sin θ cosφ)

sin(
πdy
λ

sin θ cosφ)
(3)

In this equation, dx and dy represent the distances in each

axis between cells, and for a boresight cell gain (Gc) of 5 dBi,
the associated normalized power radiation parameter (q) is set

to 0.57 [6].

Fig. 1. Tile’s Coordinate System

Finally, we can represent the signal measured by the UE (in

NLOS) for the pilot symbol t as:

yt = xtf
(mp) + xt

K
∑

k=1

βt,kh
(r)
k + wt (4)

Where wt ∼ CN (0, σ2) models the measurement noise,

with σ2 as the noise power. Furthermore, we can also define

xt = 1, ∀t = 1...T , since the symbol is known at the UE.

In this equation, h
(r)
k is the cascaded channel coefficient (BS-

RIS-UE), and f (mp) is the multipath component of the direct

link, which will be zero in the case where this effect is not

considered. Both components are explained thoroughly in [6].

IV. PROPOSED APPROACH

In this section, we delve into the details of our methodology,

highlighting the sequential steps involved in utilizing deep

learning to improve localization accuracy further.

The Direct Position algorithm employs the following cost

function minimization:

p̂ = arg min
{p,φ0}

T
∑

t=1

ã2t
σ2

sin2
(

φ̃t − φt(p) − φ0

)

(5)

With ãt and φ̃t being the magnitude and phase of the measured

signal yt, φ0 is the phase offset between the BS and UE,

which is also a parameter to be estimated. Finally, φt(p)
is the phase of pilot symbol t, which depends only on the

true UE position p. Therefore, estimating the UE position is

equivalent to minimizing Equation (5) as a function of the set

of phases φ̃t, since this set has a univocal relationship to the

true position. This hypothetical phase can be calculated as:

φt(p) = arg

(

K
∑

k=1

βt,k · h(dp)n,k (p, φ0)

)

(6)

In this equation, h
(dp)
n,k (p, φ0) is the cascaded channel of

Equation (4), when not considering the multipath effect. Dar-

dari et al. [6] factored out p, φ0 to show that the cascaded

channel is a function of these unknown variables.

The goal is to use the signal measured by the UE and

the reflection coefficients of the RIS tiles to estimate the UE

position. Since we want to obtain a position in two axes where

each axis has a predetermined range, this can be modeled as

a regression problem. The choice of regression technique now

depends on the data being processed.

Neural networks are composed of neurons connected by

weights. Each neuron produces an output by performing a

linear combination of their inputs and weights and adding

a bias. To introduce non-linearity, the output is then passed

through an activation function. The simplest models of NN

are called Feed Forward Neural Networks (FFNN). This

architecture is often insufficient to predict complex patterns,

especially in regression problems [14], [15]. Another widely

used architecture type is the Convolution Neural Network



(CNN). CNNs are composed of convolutional layers, pooling

layers, and fully connected layers. Even though these networks

are very powerful, they are usually applied in the context

of computer vision since they are better suited to image

data [16], [17]. Another type of network is called Recurrent

Neural Network (RNN). These networks are used when the

data is affected by a sequential dependency. Applications

include financial data analysis and speech pattern recognition.

These networks use cyclic connections, constructing a type

of memory [18], [19]. The main limitation of these models

is that they suffer from vanishing gradients. The vanishing

gradient is a phenomenon that occurs during the training of

deep neural networks using the backpropagation algorithm.

When the gradients become too small, updating the network’s

parameters may become impossible or inefficient. To address

this issue, Hochreiter et al. [20] proposed the Long Short-Term

Memory (LSTM) model. Considering that the input intended

for this model follows a sequence, we considered that LSTM

was the fittest model.

A. Data Processing

The dataset was generated in a simulation environment

where the UE positions (the target outputs for the model) were

randomly drawn from a uniform distribution. For each posi-

tion, the reflection coefficient and the corresponding measured

signal were recorded. This process was repeated 105 times,

resulting in a highly diverse dataset, making data augmentation

techniques unnecessary. For every sample, the inputs yt, βt,k,

can be represented as complex matrices of sizes T × 1 and

T × K , respectively. Although NN implementations dealing

with complex numbers exist [21], [22], this is not the standard

case. This is due to the added complexity of the training

and generally because using real numbers has been very well

established. To address this issue, each matrix was divided

into two matrices corresponding to the phase and magnitude

of the original values. Subsequently, the four inputs comprising

phase and magnitude information were normalized to conform

to a N (0, 1) distribution. In addition to normalizing the inputs,

we also decided to normalize the outputs (x, y). This decision

ensures a consistent scale for both output dimensions, pro-

moting equal weighting of importance by the neural network.

Following this step, all the input tensors were concatenated.

Finally, the dataset was split into 80/10/10 (training, validation,

and testing), and to improve the NN’s generalization capability,

we divided the dataset into batches of 32 samples.

B. Model

The proposed architecture begins with a flattening layer

to transform the input into a one-dimensional tensor. Sub-

sequently, a bidirectional LSTM layer is employed with an

input size of 2 · T × (K + 1), a hidden size of 500. This

bidirectional LSTM layer enables the model to capture both

forward and backward temporal dependencies, enhancing its

ability to discern intricate patterns within the sequential data.

To reduce overfitting, we added a dropout rate of 40% in this

layer. This layer produces an output of 1000 (hiddensize×2)

TABLE I
MODEL SUMMARY

Layer Output Activation

Input (Flatten) 2 · T × (K + 1) -
LSTM (Bidirectional) 1000 -
FC1 2048 ReLU
FC2 512 ReLU
FC3 64 ReLU
Output (FC4) 2 Linear

and is responsible for detecting features, followed by a se-

quence of fully connected layers, contributing to the feature

extraction process. The subsequent fully connected layers

have dimensions (1000 × 2048), (2048 × 512), (512 × 64),
respectively. Nonlinearity is added using the ReLU activation

function f(x) = max(0, x) Finally, the model concludes

with a final fully connected layer with two output neurons

using a linear activation function suitable for regression tasks.

The architecture is implemented and executed on a NVIDIA

GeForce GTX 970 using the cuda package in PyTorch. Since

the model learns to predict a position by analyzing tens

of thousands of positions in the room, this method can be

considered as a fingerprinting-based technique.

C. Training

In terms of training, the Mean Squared Error (MSE) loss

is utilized, and the model parameters are updated using the

Adam optimizer [23] with a learning rate of 0.001. The train-

ing process involves iterating through a specified number of

epochs, and the model is updated after iterating through all the

samples in a batch. After each epoch, the model’s performance

is evaluated on the validation dataset. The learning rate is

dynamically adjusted using a scheduler tied to the validation

loss. It undergoes a 20% reduction when the validation loss

does not improve for 10 consecutive epochs. The training loop

involves setting the model to training mode, calculating and

backpropagating the loss, optimizing the model parameters,

and then switching to evaluation mode for validation. The

model with the best validation loss is saved. The model is

saved based on the best validation loss rather than the training

loss, as the two events may not coincide. This practice ensures

the retention of the model that exhibits the best performance

on unseen data.

D. LSTM-PSO Hybrid

After training and testing the deep learning model, we

concluded that it has a good capability of producing estima-

tions reliably near the true position (98th percentile below

22 cm), which is a significant improvement over our previous

work [11]. On the other hand, the model couldn’t achieve

very high resolution. Considering this, we developed a new

algorithm. The algorithm operates by initially providing the

neural network with two inputs. Subsequently, the outputs

undergo a reverse normalization transform to ensure they align

with the scale of the possible positions of the UE. Using

this initial estimate, the algorithm defines a neighborhood
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Fig. 2. LSTM-PSO Hybrid

around the computed point, with the neighborhood size being a

tunable parameter. The final step involves minimizing the cost

function (Equation (5)) using PSO, where the optimization

boundaries are set to the neighborhood of the initial estimate.

This method enables the algorithm to yield high-resolution

solutions due to the bounded global optimization while si-

multaneously instilling a high degree of confidence in the

obtained solution’s accuracy and reliability. Figure 2 illustrates

the architecture of the proposed algorithm.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

The experimental setup is the same as used in the previous

work [11] to ensure a fair comparison between the algorithms.

We consider a room with dimensions 10× 10 × 3 m3. From

now on, the height of the BS and RIS will be represented by

the same symbol, z, because they will always be in the same

plane. The BS will be positioned in the center of the room

with pTX = (0, 5, z), with z variable. The large RIS will be

divided into two segments. The position of the tiles of the first

segment is expressed as pk = (−5, 0, z) to (5, 0, z) and the tiles

from the second segment pk = (5, 0, z) to (5, 10, z), again

with z variable and a 20 cm distance between consecutive

tiles’ centroids. The system operates at 3.5GHz with T = 32
OFDM pilot symbols. We also implement narrowband local-

ization, with a single pilot subcarrier and 2048 subcarriers, and

consider a noise power σ2 = −120.2dBm. Regarding the RIS

architecture, we implemented K = 100 tiles, each comprising

4× 25 unit cells. The UE position p will be drawn according

to a uniform distribution from the following region (−4, 1)
to (4, 10) in the plane z = 1. The physical configuration is

illustrated in Figure 3.

B. Results

In this section, we will provide the results for the per-

formance of the algorithms (LSTM and LSTM-PSO Hybrid)

for different conditions, as well as compare them against the

previously developed methods. Initially, we tested the NLOS

scenario between BS and UE, and the most simple case was

where the multipath effect was not considered and the RIS

and BS were on the same plane as the UE (z = 1).

Table II compares NN architectures using the testing dataset.

This comparison aimed to prove that the LSTM, particularly

a Bidirectional LSTM, is the most suitable architecture to

implement as the ML block in our proposed algorithm. An

important consideration is that the latency of the models is in

the millisecond range, which is a significant improvement from

TABLE II
NN COMPARISON

Model Loss (MSE) Params Epochs Latency

LSTM Bidirectional 0.0003 31.0M 25 5.4ms
LSTM 0.0006 16.0M 25 5.3ms
RNN 0.001 5.6M 25 4.4ms
MLP 0.0007 3.4M 25 4.5ms

any brute-force or even our previously developed optimization

algorithms (more than 10000 times faster).

To gain a comprehensive understanding of the model’s

performance, we generated a dataset that captures all possible

points of the search space with a resolution of 10 cm, resulting

in 7371 simulations. The heatmap in Figure 4 illustrates the

distribution of errors across the dataset, providing a holistic

overview of the model’s behavior with respect to the true

positions. We observe that the LSTM heatmap does not show

any peaks in error, which means that it is very good at

obtaining at least sub-optimal solutions. On the other hand, the

proposed LSTM-PSO Hybrid also does not show large peaks in

error and shows very low error values (below 1mm) in most

of the area. We can also check that the algorithm tends not

to converge on the optimal solution (errors between 1-10 cm)

near the top right and bottom corners, which is something

already observed in [11], and attributed to the narrow field-of-

view of the UE with respect to the RIS.

Figure 5 shows the performance of the two methods devel-

Fig. 3. Top-View Room Configuration [11]
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Fig. 4. Localization error [cm] heatmaps at 1-meter height
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oped in this paper against our previously developed solutions.

We can observe that the LSTM model is very reliable, with

a 98th percentile of 22 cm. This is significantly better than

the previously best method (GA-PSO Hybrid) that obtained a

90th percentile of 29 cm. The main limitation of the model is

not being able to achieve very high resolution, with practically

all the errors being above 1 cm. However, while the previous

method had an average estimation time of 60 s, the proposed

LSTM model has a latency around 5ms. Regarding the LSTM-

PSO Hybrid, we can observe even better performance. It

combines the reliability of the NN and the high resolution

of the optimization techniques. We observe high accuracy

having an 80th percentile of 3mm. However, this algorithm

shows the best performance at the higher percentiles. While the

previous methods suffer from completely offset estimates (due

to the cost function being a probabilistic approximation), this

algorithm is much more robust against outliers since it relies

on the NN to capture complex patterns of the measured signals.

Finally, we also confirm that the algorithm performance is

bounded by the NN performance, with a 98th percentile error

of 14 cm, a great improvement from GA-PSO Hybrid that

shows an error of 4.6m for the same metric. Regarding an

ablation study, we analyzed the contribution of each block

separately to the LSTM-PSO Hybrid. We confirmed that the

LSTM primarily ensures high reliability, whereas the PSO

block is crucial for achieving high precision. Additionally, we

observed that the LSTM block alone performs well but with

less precision than the Hybrid method while relying solely on

the PSO algorithm independently is not viable.”

We also compared the behavior of the two methods in a

more realistic scenario where the BS and the RIS are placed

at 3m height, i.e., in the region connecting the ceiling and

walls. Since the signals will differ in this configuration, the NN

model was trained again with a dataset obtained for this sce-

nario. Analyzing Figure 6, we observe that for the NN model,

the localization error keeps in the centimeter range, with a

95th percentile of 32 cm vs 18 cm at 3 and 1-meter height,

respectively. The hybrid method shows a more pronounced

difference, namely in the lower percentiles. However, at the

3-meter height, the method achieves a 70th percentile below
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1mm, making this difference irrelevant in practical systems.

The difference is smaller for the most relevant metrics in the

higher percentiles. The algorithm performs best at z = 1 meter

with an 85th percentile = 7mm vs 2 cm and a 95th percentile

= 7 cm vs 24 cm. Even though the performance is worst for

ceiling placement, the results suggest that the algorithms are

still viable in these conditions.

We also trained the same model now with a dataset obtained

under the multipath regime. Curiously, the NN model does

not show significant differences between both scenarios due

to the ability of the NN to capture patterns even when

there is multipath interference. However, this is not the case

for the hybrid method. We observed a notable decrease in

performance, and interestingly, the hybrid method performed

worse than LSTM in both conditions. This shows that even

though the LSTM can accurately determine the region where

the UE is located, PSO cannot, with most estimations leading

to larger errors. This can be explained because PSO works

on top of the Direct Positioning formulation, which does

not take into account the multipath effect in its probabilistic

estimations.

VI. CONCLUSION

In this study, we explored and advanced the field of indoor

localization algorithms, with a specific focus on deep learn-

ing methods, including the implementation of an innovative



LSTM-PSO Hybrid method. Our goal was not only to enhance

the reliability of existing algorithms but also to assess their

performance in realistic scenarios.

Both approaches demonstrated an extremely high level of

reliability comparable to established methods, surpassing them

by providing a much higher certainty that the estimation

is close to the ground truth. LSTM has an accuracy in

the centimeter range, while the hybrid approach showed an

accuracy below the millimeter level maintaining extremely

high reliability. The LSTM-PSO Hybrid method emerges as

a promising solution, showcasing a balanced fusion of the

reliability inherent in neural networks and the high-resolution

capabilities of optimization techniques. Compared with other

techniques mentioned in Section II that also use AI, our

study achieved higher accuracy. However, it is essential to

recognize the need for further research regarding the challenge

posed by multipath effects. Despite this current limitation, our

study underscores the robustness of deep-learning methods,

particularly the LSTM, revealing its efficacy across various

practical scenarios, including the multipath effect, which is

lacking in current literature. This highlights the potential

of this type of approach as a strong candidate for further

exploration and development in the pursuit of techniques for

RIS-based localization.

Considering a practical system implementation, the meth-

ods show both strong aspects as well as some challenges.

Our methods deliver reliable results in challenging real-life

scenarios and excel in terms of computational efficiency,

highlighted by the NN. This offers a significant advantage

over traditional brute-force approaches when addressing large

search areas. On the other hand, employing Deep Learning

to address this challenge requires environment fingerprinting

for model training, which may be a slow process, contingent

upon the data collection method and environmental conditions.

The model is robust to dynamic environments given adequate

training data. However, like all machine learning models, it

would need retraining if the environment undergoes major

changes not seen during initial training.
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