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Abstract

The rapid proliferation of large language
models and natural language processing
(NLP) applications creates a crucial need
for uncertainty quantification to mitigate
risks such as hallucinations and to enhance
decision-making reliability in critical appli-
cations. Conformal prediction is emerging
as a theoretically sound and practically use-
ful framework, combining flexibility with
strong statistical guarantees. Its model-
agnostic and distribution-free nature makes
it particularly promising to address the cur-
rent shortcomings of NLP systems that stem
from the absence of uncertainty quantifica-
tion. This paper provides a comprehensive
survey of conformal prediction techniques,
their guarantees, and existing applications
in NLP, pointing to directions for future re-
search and open challenges.

1 Introduction

Natural language processing (NLP) is witness-
ing an explosive growth in applications and pub-
lic visibility, namely with large language mod-
els (LLMs) being deployed in many real-life ap-
plications, ranging from general-purpose chatbots
to the generation of medical reports (Min et al.,
2023). However, the widespread use of these mod-
els brings important concerns: hallucinations are
frequent (Ji et al., 2023; Guerreiro et al., 2023),
models are poorly calibrated (Vasudevan et al.,
2019; Desai and Durrett, 2020), evaluation is lim-
ited and sometimes affected by data contamina-
tion (Sainz et al., 2023; Golchin and Surdeanu,
2024), explanations are often unreliable (Zhao
et al., 2024; Wiegreffe and Pinter, 2019), and mod-
els often exhibit undesired biases (Gallegos et al.,
2024). Reliable uncertainty quantification is key
to addressing some of these concerns: NLP sys-
tems should not only provide accurate answers but
also “know when they do not know”.

Unfortunately, most NLP systems return only
single predictions (i.e., point estimates), without
reliable confidence information. Systems that
quantify uncertainty are much less common and
typically limited in various ways: they often make
incorrect distribution-based assumptions ignoring
the complex nature of the underlying data and
model (Xiao and Wang, 2019; He et al., 2020;
Glushkova et al., 2021; Zerva et al., 2022); they
are often poorly calibrated (i.e., they predict a con-
fidence level that does not match its error probabil-
ity; Kuleshov et al. 2018); and they may be com-
putationally too demanding, thus inapplicable to
large-scale models (Hu et al., 2023).

Conformal prediction (CP; Vovk et al. 2005)
has recently emerged as a promising candidate to
bypass the issues above: unlike other uncertainty
quantification frameworks, it offers statistical
guarantees of ground-truth coverage with minimal
assumptions. CP methods are model-agnostic and
distribution-free, assuming only data exchange-
ability (as described in §2.3). Moreover, exten-
sions of CP that handle non-exchangeable data
have recently been proposed (Gibbs and Candes,
2021; Barber et al., 2023). Popular CP variants are
also efficient: they do not require model retrain-
ing and can be used online or offline, given an ad-
ditional relatively small calibration set.1 Finally,
equalized variants of CP (Romano et al., 2020) can
also reduce biases and unfairness, by distributing
coverage evenly across protected attributes.

The flexibility and strong statistical guarantees
of CP have attracted considerable interest, with
an increasing number of publications in computer
science.2 It is therefore timely to present a sur-
vey of conformal methods for NLP, revealing the

1For most purposes, a reasonable calibration set size is of
the order of 1000 samples (Angelopoulos and Bates, 2023).

2The number of arXiv papers in the field of computer sci-
ence containing the expression "conformal prediction" has
been steadily rising, from 16 papers in 2018 to 224 in 2023.
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Figure 1: Survey roadmap: CP variants and their use in NLP applications with examples in the literature.

theory and guarantees behind these methods and
outlining opportunities and challenges for them to
tackle important problems in the field.

Scope. This survey provides a comprehensive
overview of CP techniques for NLP tasks (Fig-
ure 1). After briefly explaining CP and some rele-
vant extensions (§2 and §3), we review direct ap-
plications thereof in NLP (§4). Finally, we look at
possible threads of future investigation and current
open issues concerning the use of CP in NLP (§5).

What this survey is not about. This is not a
general survey on uncertainty quantification and
does not include techniques not based on CP .
Comprehensive reviews of uncertainty quantifica-
tion in NLP were recently published by Baan et al.
(2023) and Hu et al. (2023). Also, our survey is
focused on NLP applications; Angelopoulos and
Bates (2023) and Shafer and Vovk (2008) have
published comprehensive surveys on CP.

2 Conformal Predictors

This section briefly explains CP and presents some
definitions and results needed for understanding
the applications mentioned below. In what fol-
lows, we use upper case letters (X,Y, ...) for ran-
dom variables, lower case letters (x, y, ...) for
specific values they take, and calligraphic letters
(X ,Y, C, ...) for sets.

2.1 Definitions and Ingredients

Consider a prediction task where X and Y are
the input and output sets, respectively. The most
common procedure is to learn/train a mapping
f : X → Y , which, given an input xtest ∈ X ,
unseen during training, returns a point prediction
ŷtest = f(xtest) ∈ Y , hopefully close to the “true"

target ytest, according to some performance met-
ric. A weakness of point predictions is the ab-
sence of information about uncertainty. In con-
trast, for the same input xtest, a conformal predic-
tor yields a prediction set Cα(xtest) ⊆ Y , ideally
small, which includes the target ytest with some
high (user-chosen) probability, say 1− α.

Consider an example involving a pretrained
model which classifies a clinical report x ∈ X
with a label, e.g., a disease y ∈ Y . This is a high-
risk scenario requiring strong reliability guaran-
tees. For a random test report (Xtest), a con-
formal predictor yields a set Cα(Xtest) of pos-
sibly multiples labels, with the guarantee that3

P [Ytest ∈ Cα(Xtest)] ≥ 1 − α. Figure 2 illustrates
the CP procedure for the mentioned task, which
we describe next in detail.

Split4 CP (Vovk et al., 2005) is built with three
ingredients: a trained predictor, f : X → Y;
a calibration set, Dcal = {(x1, y1), ..., (xn, yn)},
independent from the set used to train the predic-
tor; and a non-conformity score, s : X ×Y → R.
The non-conformity score measures how unlikely
an input-output pair (x, y) ∈ X × Y is, com-
pared to the remaining data. Consequently, given a
test sample xtest, predictions y ∈ Y yielding pairs
(xtest, y) deemed likely to occur in the data should
have a low non-conformity score, and should thus
be included in the prediction set Cα(xtest).

The choice of non-conformity score is task-
dependent. For example, for a classifier outputting
an estimate p(y|x) of the posterior probability for

3Note that the probability is over (Xtest, Ytest), not condi-
tioned on a particular Xtest = xtest. We discuss conditional
coverage in §3.1.

4Although split (a.k.a. inductive) CP was developed after
the full (a.k.a. transductive) variant (described in §3.4), it is
more widely used due to its computational efficiency.



Figure 2: Example of CP for medical report classification (K possible labels).

each possible label y ∈ Y (e.g., via a softmax
output layer), a common and natural choice is
s(x, y) = 1− p(y|x), with lower values of s(x, y)
implying that the sample is more conformal with
the previously seen data.

2.2 Procedure
The procedure for generating Cα(xtest) for new,
unseen test instances xtest is as follows:

1. Compute (s1, ..., sn), the non-conformity
scores for Dcal, where si = s(xi, yi);

2. Set q̂ to be the ⌈(n + 1)(1 − α)⌉/n empirical
quantile of the set of scores;

3. Output the prediction set, using the quantile q̂,
as Cα(xtest) = {y ∈ Y : s(xtest, y) ≤ q̂}.

Steps 1 and 2 are often referred to as calibra-
tion, and step 3 as prediction. The intuition is that
the prediction set includes all predictions corre-
sponding to samples that are more conformal than
a sufficiently large fraction of the calibration set.

2.3 Theoretical Guarantees
As shown by Vovk et al. (2005), a conformal pre-
dictor, as defined in the previous subsection, gen-
erates prediction sets with coverage guarantees,

P [Ytest ∈ Cα(Xtest)] ≥ 1− α, (1)

provided the data is exchangeable. Exchangeabil-
ity means that the joint probability of the ran-
dom variables generating the data is invariant un-
der permutations thereof. Formally, a sequence
(Z1, ..., Zn) is said to be exchangeable if

(Z1, ..., Zn)
d
=

(
Zπ(1), ..., Zπ(n)

)
(2)

for any permutations π of {1, ..., n}, where d
=

stands for identically distributed. Exchangeability
is a weaker requirement than the variables being
independent and identically distributed (i.i.d). In
fact, random variables that are i.i.d. are necessar-
ily exchangeable; however, variables may be ex-
changeable without being independent, although
they need to be identically distributed. The cover-
age guarantee is provided by the following theo-
rem (Vovk et al., 2005):

Theorem 1 Let (Z1, ..., Zn, Ztest) be an
exchangeable sequence of random vari-
ables, where Zi = (Xi, Yi) ∈ X × Y , and
Cα : X → 2Y a conformal predictor as de-
scribed in §2.2. Then, Cα satisfies

1−α ≤ P [Ytest ∈ Cα(Xtest)] ≤ 1−α+
1

n+ 1
.

A predictor satisfying the coverage inequality
given in Theorem 1 is said to be valid.5 Note
that as the size of the calibration set increases, the
probability of coverage tends to exactly 1−α. It is
worth noting that the CP procedure we described
is model-agnostic and distribution-free, i.e., it
makes no assumption about the data distribution,
requiring only data exchangeability.

2.4 Relation to Hypothesis Testing
The CP procedure described above can be seen
from a hypothesis-testing perspective. For each
possible label, the tested hypothesis is whether
the point (xtest, y) is conformal with the observed

5Altough there are other definitions of validity in the CP
literature (Vovk et al., 2005), this is the most common one,
termed conservative coverage validity.



data, and the non-conformity measure is used as
the test statistic. As an alternative to defining the
threshold q̂ using a preset α, we can think in terms
of empirical p-values (Vovk et al., 2005). Define
the p-value of a new sample (xn+1, yn+1) as

p-value(xn+1, yn+1) =∣∣{j∈{1, .., n} : s(xj , yj) ≥ s(xn+1, yn+1)}
∣∣+ 1

n+ 1
,

the (adjusted) proportion of calibration points that
are not less conformal than the observation. As
in hypothesis testing, the p-value can be seen as
the empirical probability of obtaining the observed
score, under the null hypothesis that the observa-
tion is conformal. Using the p-value approach, the
procedure to generate prediction sets for xtest is:

1. compute p-values for all labels y ∈ Y;

2. generate prediction set as Cα(xtest) = {y ∈ Y :
p-value(xtest, y) > α}.

A disadvantage of this approach is that it needs
access to the calibration scores at test time. On the
other hand, the p-values do not need a preset α and
can be used to evaluate predictions, as shown next.

2.5 Efficiency Metrics
When assessing the quality of a conformal pre-
dictor, an important aspect beyond validity is ef-
ficiency: the prediction sets should be relatively
small and adaptive: easier cases should yield
smaller sets than harder observations. The effi-
ciency of a conformal predictor depends on the
trained predictor f and the chosen non-conformity
score, which is typically based on some heuris-
tic notion of prediction uncertainty, e.g., using the
softmax output of a model (§2.1).

Consider a separate test set Dtest =
{(xn+1, yn+1), ..., (xn+k, yn+k)}. Some metrics,
called a priori, do not require access to the test set
labels. This is the case of the average prediction
set size (or interval width, in regression tasks):
S(α) = 1

k

∑k
i=1 |Cα(xn+i)|, computed as a func-

tion of α. Using the test set labels, an informative
a posteriori metric is the observed fuzziness,
computed as the average of p-values for the false
labels: OF = 1

k

∑k
i=1

∑
y ̸=yn+i

p-value(xn+i, y),
which should be as small as possible, since correct
predictions should have high conformal scores,
whereas incorrect labels should have low scores.
These metrics can also be useful to evaluate
adaptivity and bias, by comparing them over

different partitions of the dataset, e.g., split by a
particular feature.

2.6 Pointwise Metrics

Conformal predictors provide point-level uncer-
tainty metrics that can be used even in the forced
prediction approach, i.e., producing as single pre-
diction ŷi, the label with the highest p-value (typ-
ically coinciding with the original output of the
point predictor), rather than the predicted set.
Two common metrics in this case are credibility,
Cred(xi, ŷi) = p-value(xi, ŷi), and confidence,
Conf(xi, ŷi) = 1 − max

y ̸=ŷi
p-value(xi, y). These

metrics make use of the calibration set to mea-
sure uncertainty and can be extremely useful, even
if disregarding the full prediction set produced by
the conformal predictor.

3 Extending Conformal Prediction

CP has extended beyond classic conformal predic-
tors, with developments that allow handling chal-
lenges such as conditional coverage, dispensing
with exchangeability, or obtaining guarantees be-
yond coverage. This section briefly presents the
core ideas of some of the extensions that are most
relevant for NLP applications.

3.1 Conditional Conformal Predictors

In many high-risk, critical settings, it may be im-
portant to obtain sample-conditional coverage,

P [Ytest ∈ Cα(Xtest)|Xtest = xtest] ≥ 1− α, (3)

for every xtest ∈ X , i.e., provide a uniform up-
per bound for each prediction error. This, how-
ever, is not achievable under the proposed general
setting, although, in practice, the error probabil-
ity in some situations may be close to α (Vovk,
2012; Gibbs et al., 2023; Barber et al., 2020). The
study of conditional CP is an active area of re-
search with solutions to obtain coverage guaran-
tees conditional on protected attributes and dataset
partitions (Jin and Ren, 2024; Gibbs et al., 2023;
Feldman et al., 2021). This is extremely important
for dealing with with class imbalance or fairness
and bias concerns.

Vovk et al. (2005) introduced Mondrian con-
formal predictors: conditional predictors that
provide coverage guarantees over different data
categories, e.g.: partitions of the data by label or
by a given feature. For example, in classification,



it may be of interest to have

P [Ytest ∈ Cα(Xtest)|Ytest = y] ≥ 1− α, (4)

for all y ∈ Y , which is a class-conditional guaran-
tee. The procedure described in §2.2 is adapted
to compute quantiles (or p-values) within each
class. This is simply achieved by computing class-
specific quantiles q̂k based on the non-conformity
scores of the calibration samples from each class
k. Finally, the prediction set is given by

Cα(xtest) = {y ∈ Y : s(xtest, y) ≤ q̂y}.

Assuming exchangeability (Eq. 2), the above
procedure is guaranteed to satisfy (Eq. 4). This
label-conditional example is a particular case of
Mondrian conformal predictors, which applies
to any mapping of the data into Mondrian tax-
onomies (Vovk et al., 2005). The same rationale
can be used to obtain coverage across different
partitions of the data, such as across a particular
feature stratification.

3.2 Beyond Exchangeability
All theoretical guarantees presented so far are
rooted in the assumption of data exchangeabil-
ity (Eq. 2). However, this assumption is unre-
alistic in many NLP applications: for example,
it is incompatible with the conditional nature of
most language generation methods. Several ex-
tensions have been proposed which handle non-
exchangeable data, which includes the cases of
covariate and label shift (Tibshirani et al., 2019;
Podkopaev and Ramdas, 2021), time series (Cher-
nozhukov et al., 2018; Xu and Xie, 2021; An-
gelopoulos et al., 2023), and other types of shift
(Gibbs and Candes, 2021).

Recently, Barber et al. (2023) provided predic-
tion guarantees without the exchangeability as-
sumption. Let Zi = (Xi, Yi) ∈ X × Y be as
defined in §2.3, Z = (Z1, ..., Zn, Zn+1) be a se-
quence of n calibration samples followed by a test
sample, and Zi denote Z after swapping Zi with
Zn+1. Barber et al. (2023) proved that

P [Ytest ∈ Cα(Xtest)] ≥ 1−α−
n∑

i=1

w̃i dTV(Z,Z
i),

(5)
where w̃i := wi/(1 +

∑N
i=1wi) are weights

(with wi ∈ [0, 1]), and dTV(Z,Z
i) is the total-

variation distance between the distributions of Z
and Zi. Choosing higher weights for calibration

samples such that Z and Zi have similar distribu-
tions yields tighter bounds. Some open challenges
related to this topic are discussed in §5.

3.3 Conformal Risk Control

While coverage guarantees are useful in many
tasks, there are cases where the adequate notion
of error control is not captured solely by guaran-
teeing that the prediction set contains the ground
truth. Some extensions of CP address these cases.

Angelopoulos et al. (2024) consider multilabel
classification, where each Yi ∈ 2Y \ {∅} is a set
of labels. The loss function to be controlled is thus
defined on pairs of sets of labels, ℓ : (2Y \ {∅})×
(2Y \ {∅})→ R, and assumed to satisfy mono-
tonicity: A ⊆ B ⇒ ℓ(A, Y ) ≥ ℓ(B, Y ), for any
Y ⊆ Y . They define prediction sets Cλ(x) = {y ∈
Y : f(y|x) ≥ 1− λ}, where f(y|x) ∈ [0, 1] is the
softmax output of class y, given by predictor f for
input x, and a parameter λ. Invoking loss mono-
tonicity yields λ ≤ λ′ ⇒ ℓ(Cλ, Y ) ≥ ℓ(Cλ′ , Y ),
for any Y ⊆ Y .

In this setting, and given some desired upper
bound β on the expected loss, Angelopoulos et al.
(2024) propose a criterion to select a value λ̂, such
that the following bound holds:

E
[
ℓ
(
Cλ̂(Xtest), Ytest

)]
≤ β. (6)

If ℓ is the miscoverage loss, i.e., Ytest is a singleton
and ℓ

(
C, Ytest

)
= 1− |C ∩ Ytest|, the standard cov-

erage guarantee in Eq. 1 is recovered, with β = α.
This is also related to (but different from) previ-

ous work by Bates et al. (2021) and Angelopoulos
et al. (2022), who prove bounds of the form

P
(
E
[
ℓ(Ytest, Cλ̂(Xtest))

]
≤ β

)
≥ 1− δ, (7)

where δ is a parameter and ℓ does not need to
be monotone. Angelopoulos et al. (2024) pro-
vide comprehensive comparison of these so-called
learn-then-test (LTT) methods. Finally, it is also
possible to combine some of the ideas of §3.2 and
§3.3 to obtain non-exchangeable conformal risk
control (Farinhas et al., 2024).

3.4 Other CP Variants

Full conformal prediction. Introduced by Vovk
et al. (2005), full CP differs from the split version
in two aspects: it does not use a separate calibra-
tion set, but the entire training set; and it involves
model refitting—given a new instance, a model is



trained for each possible label6 and used with the
full data set to compute the non-conformity scores
and obtain the prediction set. A clear disadvan-
tage of full conformal prediction is the high com-
putational cost of retraining. However, it has ad-
vantages: full conformal predictors can be used if
there is a limited amount of data and model re-
training is not too expensive, providing the same
validity guarantees (Lei et al., 2018).

Cross-validation and jackknifing. The goal of
these methods is to achieve a balance between
statistical and computational efficiency. Cross-
conformal predictors (Vovk, 2015) apply the
cross-validation rationale to split conformal pre-
dictors. Each cross-validation fold is used as a
calibration set once and the p-values are computed
using all folds. These predictors, although lack-
ing proven validity guarantees, have shown good
empirical results (Vovk et al., 2018). Inspired by
this idea, Barber et al. (2021) propose the so-called
jackknife+, a leave-one-out scheme, and prove va-
lidity for regression under some conditions.

Density-based conformal prediction.
Hechtlinger et al. (2019) propose a different
approach to the conformal procedure, based on
p(x|y) instead of the typical p(y|x) to build more
cautious predictors that should output the null set
when underconfident. This method can be useful
to abstain from answering when given an outlier
observation. They show promising results using
adversarial attacks on different tasks.

Venn-Abers predictors. This class of proba-
bilistic predictors has guarantees proved by Vovk
and Petej (2014). They produce one probability
distribution per possible label and provide guar-
antees that one of the predictive distributions is
perfectly calibrated, with no assumptions on the
model or data distribution. Venn-Abers have been
shown to be a good calibration tool with the
added benefit that the distance between the dif-
ferent probability distributions provides calibrated
uncertainty quantification (Johansson et al., 2023).
A more efficient split variant is proposed by Lam-
brou et al. (2014), and Manokhin (2017) presents
a multi-class generalization.

6For regression, discretization is typically used.

4 Applications in NLP

CP has been used in several NLP tasks, both to
get validity/calibration guarantees on predictions;
or within a pipeline, e.g.: to safely prune interme-
diate outputs with guaranteed coverage, achieving
computational speedups. This section reviews sev-
eral such applications organized by use case.

4.1 Text Classification and Sequence Tagging

For classification and tagging tasks, models are of-
ten accurate but lack reliable confidence estimates.

Binary text classification. Maltoudoglou et al.
(2020) build a conformal predictor on top of a
BERT classifier (Devlin et al., 2019) for binary
sentiment classification. They show that the con-
formal predictor with forced prediction retains the
original model’s accuracy while providing useful
accompanying measures of credibility and confi-
dence. For the same task, Messoudi et al. (2020)
use density-based CP (§3.4). They report good
performance and empirical validity, highlighting
the usefulness of having such a predictor by con-
sidering noisy and outlier observations: the CP set
contains both classes for the noisy example and
is empty for the outliers, showing the desired dis-
criminatory power. Zhan et al. (2022) automate
identification of literature on drug-induced liver
injury, using conformal prediction to manage pre-
diction uncertainty and guaranteeing reliability.

Giovannotti (2022) uses Venn-Abers predictors
(§3.4) with different transformers model architec-
tures on several binary tasks, such as paraphrase
detection, sentiment analyses, and Boolean ques-
tion answering, obtaining good calibration results
with evenly distributed probability distributions.

Classification with conditional coverage.
Mondrian CP (§3.1) has been successfully ap-
plied to unbalanced classification tasks, such as
sentiment analysis, with good efficiency results
(Norinder and Norinder, 2022). Giovannotti and
Gammerman (2021) compare split, Mondrian and
cross-conformal (Vovk, 2015) CP on unbalanced
paraphrase detection and report that the theoreti-
cally expected efficiency drop for Mondrian CP is
small, making it useful in practice.

POS tagging. Dey et al. (2022) present promis-
ing results by showing that CP based on the soft-
max outputs of a BERT model for POS tagging
yields practical prediction sets even at high confi-



dence levels on a large test set: at the 99% confi-
dence level, fewer than 4% of the prediction sets
had more than one answer.

Multilabel tasks. CP has been used for multil-
abel text classification, where multiple labels can
be assigned to an input. In the label powerset
approach (Tsoumakas et al., 2010), which treats
each possible combination of labels as a class,
there is an added challenge due to the large out-
put space. Paisios et al. (2019) show how CP can
be used in this setting, exploring different task-
appropriate non-conformity scores. The forced
prediction method (§2.6) shows negligible perfor-
mance drops (as a consequence of part of the train-
ing data being set aside for calibration) while pro-
viding reliable credibility measures; moreover, the
prediction sets were tight and well-calibrated at
high confidence levels. Maltoudoglou et al. (2022)
build on top of the aforementioned work and pro-
pose an efficient computational approach that al-
lows a higher number of possible labels to be
considered. Fisch et al. (2022) tackle the multi-
label case under the need to limit false positive
predictions—a type of constraint that arises nat-
urally in many highly sensitive tasks—by using a
computationally efficient method that provides the
desired coverage and constraint guarantees for an
NER task, reporting prediction sets of useful size.

A different approach has been considered in
tasks such as document retrieval, where it may be
of interest to obtain prediction sets with at least
one admissible correct answer. Fisch et al. (2021b)
present an efficient conformal procedure to find
such sets. They exploit the fact that simpler and
lighter models can be used first in the pipeline
to reduce the number of output candidates, pro-
ducing a sequence of conformally valid candidates
that are passed on to more complex models, show-
ing that the final output is guaranteed to yield the
user desired coverage.

Dealing with limited data. CP has also been
found useful in providing guarantees for tasks with
limited amounts of data. Fisch et al. (2021a) tackle
few-shot relation classification with CP proce-
dures to meta-learn both non-conformity measures
and a threshold predictor from auxiliary tasks with
larger amounts of available data. Not only do the
predicted sets for the final task grant coverage re-
quirements, but they are also small (average set
size smaller than 2 for 95% confidence level). A

different approach is used by Dutta et al. (2023)
for estimating uncertainty in zero-shot biomedi-
cal image captioning using CLIP models (Radford
et al., 2021): they query the Web to get a calibra-
tion set and design a CP protocol that takes into
account the plausibility of each calibration point,
providing promising results with small predicted
test sets with coverage even in the absence of orig-
inal labeled calibration data. In a setting with lim-
ited reliable data, Zhan et al. (2023) use CP to
clean possibly mislabeled training data, based on
a small curated amount of data as a calibration set.
They explore the effects of removing or chang-
ing the label of noisy data identified by the con-
formal procedure and show performance improve-
ments on the text classification downstream task
for different levels of induced noise.

4.2 Natural Language Generation

Despite their impressive capabilities, large lan-
guage models are prone to hallucinations (Huang
et al., 2023; Ji et al., 2023). The strong correlation
between hallucinations and uncertainty unaware-
ness makes CP a promising approach to tackle this
issue. However, its application to language gener-
ation faces two big challenges: (i) the combina-
torially large size of output sets and (ii) the con-
ditional (recursive) nature of language generation,
which violates the exchangeability assumption un-
derlying standard CP.

Sentence-level conformal prediction. Most re-
search on CP for NLP tries to circumvent the is-
sues above by operating at the sentence level, e.g.,
by first sampling multiple options and then refor-
mulating the problem as a multiple choice ques-
tion (Kumar et al., 2023). For instance, an LLM
can be used to generate plans (expressed in natu-
ral language) for a robot to follow but a single plan
alone may result in unfeasible or risky actions.
Ren et al. (2023) build upon the methods presented
in §2 to calibrate the confidence of LLM plan-
ners, providing formal guarantees for task com-
pletion while minimizing human help. Specifi-
cally, they look at the next-token probability to as-
sess the uncertainty of different possible actions
(i.e., they use it to compute the non-conformity
score, as described in §2.2) and generate CP sets.
If the prediction set is not a singleton, the robot
should ask for help; otherwise, it should continue
to execute the plan. Liang et al. (2024) further
enhance this framework by incorporating an “in-



trospective reasoning” step (Leake, 2012), which
leads to tighter prediction bounds, while Wang
et al. (2024) consider teams of robots.

Sentence-level risk control. Quach et al. (2024)
show how LTT (§3.3) can be used to calibrate
a stopping rule for sampling outputs from a lan-
guage model that are added to a growing set of
candidates until they are confident that the set in-
cludes at least one acceptable hypothesis (Fisch
et al., 2021b). Simultaneously, they calibrate a
rejection rule to remove low-quality and redun-
dant candidates. They use Pareto testing (Laufer-
Goldshtein et al., 2023) to efficiently search and
test the high-dimensional hyperparameter configu-
ration. The resulting output sets are not only valid
but also precise (i.e., small). Angelopoulos et al.
(2024) and Farinhas et al. (2024) apply conformal
risk control to open-domain question answering,
whereas Ernez et al. (2023) do it for speech recog-
nition. While the former calibrate the best token-
based F1-score of the prediction set in Eq. 6, the
latter control the word error rate to an adjustable
level of guarantee. Finally, Zollo et al. (2023) dis-
cuss how prompts that perform well on average
on a validation set may be prone to produce poor
generations with high probability in deployment
and propose prompt risk control based on up-
per bounds on families of informative risk mea-
sures.7 Specifically, they bound the worst-case
toxicity (Hanu and Unitary team, 2020) in chat-
bots, the expected loss (pass@K, Kulal et al. 2019)
in code generation, and the dispersion of ROUGE
scores (Lin, 2004) in medical summarization.

Token-level approaches. While the approaches
above focus on full sentences, language models
generate text by successively producing new to-
kens autoregressively. Nucleus sampling (Holtz-
man et al., 2020) samples each token from the
smallest set whose cumulative probability exceeds
a threshold. However, Ravfogel et al. (2023) ob-
serve that LLMs tend to be overconfident—the
prediction sets used in nucleus sampling are not
calibrated (see their Fig. 4)—and this does not im-
prove by scaling up the model size. They pro-
pose conformal nucleus sampling, which cali-
brates prediction sets within bins of similar en-
tropies. As an alternative, Ulmer et al. (2024) take

7They use the terms loss and risk in a distinctive way.
Loss refers to scoring the quality of a single sample gener-
ation (e.g., ROUGE); risk measures some aspect of the distri-
bution of the loss across the population (e.g., mean).

non-exchangeability (§3.2) into account by using
a dynamic calibration step. They use the k-nearest
neighbors and data-dependent relevance weights
based on the squared ℓ2 distance between the em-
bedding representations. This leads to smaller
prediction sets compared to previous approaches
while maintaining the desired coverage level in
machine translation and language modeling.

4.3 Uncertainty-Based Evaluation

CP can also be used to assist in evaluating
and benchmarking NLP models. Two main ap-
proaches employ CP to that end: (i) using it to
assess the confidence of different models and com-
pare them accordingly; (ii) framing evaluation as
a regression task (i.e., learning to score the model
outputs to predict human perceived quality and us-
ing CP to provide reliable confidence intervals).

Focusing on the former approach, Ye et al.
(2024) apply CP to benchmark the performance
of different LLMs. They use prompt engineer-
ing to turn different generation tasks (question an-
swering, summarization, commonsense inference,
etc.) into multiple-choice questions such that the
models need to predict a letter corresponding to
each candidate output. They subsequently attempt
to quantify the uncertainty of the language model
over the possible labels, conformalizing the soft-
max outputs for each candidate label. They show
that high model accuracy does not necessarily im-
ply high certainty; in some cases, an inverse corre-
lation between accuracy and certainty is observed.
Based on their findings, Ye et al. (2024) propose
an uncertainty-aware metric accounting for both
accuracy and uncertainty (encoded as set size).

Focusing instead on the latter approach, Gio-
vannotti (2023) applies CP to referenceless MT
evaluation (quality estimation) and uses a k-
nearest neighbor model to obtain quality scores
and subsequently use the distances between each
point and its neighbors to form non-conformity
scores. They thus use CP as a method to quan-
tify uncertainty for MT quality estimation. Zerva
and Martins (2023), on the other hand, apply
CP on top of non-conformity heuristics coming
from other uncertainty quantification methods for
reference-based MT evaluation and discuss how
such method choice can impact coverage and
width. They also highlight biases in estimated
confidence intervals, reflected in imbalanced cov-
erage for attributes such as translation language



and quality, demonstrating how these can be ad-
dressed with equalized CP. While focused on MT,
the proposed approaches are applicable to other
NLP evaluation or regression tasks.

4.4 Faster Inference

Given the high computational requirements of
state-of-the-art NLP models and their widespread
use, considerable effort is being put on making
these models more time- and memory-efficient
(Deng et al., 2020). Several strategies for increas-
ing efficiency at prediction time (e.g., early exit-
ing, Liu et al. 2019; Schwartz et al. 2020) focus on
identifying easily classifiable instances and using
a lighter version of the original model to predict
them. Such instances must be reliably identified
and both the original and simplified models should
consistently produce the same results for a given
input with a high probability.

Early exiting transformers fine-tuning.
Schuster et al. (2021) present an extension
of CP to build a method to speed up inference
in transformer models, while guaranteeing an
adjustable degree of consistency with the original
model, with high confidence. The rationale is
to skip directly to the final layer from one of
the previous layers whenever there is enough
confidence. They use a binary meta-classifier to
predict whether the lighter model is consistent
with the original one and use CP to predict the
set of inconsistent models. The final procedure
consists of exiting at the first layer that exceeds
the threshold found by the conformal procedure.
Their method shows reduced inference time in
several classification and regression tasks.

Zero-shot learning. Choubey et al. (2022)
tackle the computational efficiency problem in
zero-shot text classification with pretrained lan-
guage models, looking at the fact that inference
time increases with the number of possible labels.
They use CP on top of a base, simple and fast,
text classifier to reduce the number of possible la-
bels for the final, more complex, language model.
They experiment on different classification tasks,
testing different choices of non-conformity scores
and different base models, exploring the trade-off
between efficiency and accuracy in choosing the
complexity of the base model.

Speeding up inference. To obtain the light-
est possible model while preserving performance,

Laufer-Goldshtein et al. (2023) propose a CP
method to find optimal thresholds to guarantee
several risk constraints with adjustable high prob-
ability, while optimizing another objective func-
tion. They report results on several text classifica-
tion tasks with different objectives, such as min-
imizing prediction cost (searching thresholds on
all pruning directions), while controlling accuracy
reduction (drop in performance from the full to
a lighter model) to a user-chosen degree. Their
method builds upon the LTT procedure (§3.3),
with an efficient technique to reduce the number
of parameter combinations tested, using Pareto-
optimal solutions (Deb and Kalyanmoy, 2001).
The results show significant efficiency gains with
the proposed risk-controlling guarantees.

Schuster et al. (2022) make text generation
more efficient by considering decoder early exit-
ing at the token level, while bounding global effi-
ciency. They leverage the LTT procedure to obtain
risk-controlling solutions with dynamic allocation
of compute per generated token and test their ap-
proach on news summarization, text translation
and open question answering, showing efficiency
gains with the required quality guarantees.

5 Future Directions

We outline in this section some promising future
research directions and open challenges related to
the use of CP and its many variants in NLP tasks.

5.1 CP for Human-Computer Interaction

Some tasks in NLP, such as recommendation and
predictive writing systems, benefit naturally from
prediction sets that can be used to offer sugges-
tions to users. CP is an opportunity for improving
the efficiency and quality of such systems and pre-
diction sets can be used to enhance performance in
decision-making with humans in the loop (Cress-
well et al., 2024). This aspect could be further
explored in NLP, as there are numerous scenarios
involving human feedback, e.g., interactive MT
(Green et al., 2013; Wang et al., 2021) or creation
of human preference data for LLM alignment (Sti-
ennon et al., 2020; Fernandes et al., 2023).

5.2 CP for Handling Label Variation

The complexity and ambiguity of natural lan-
guage, as well as the varied human perspec-
tives, make it hard to disentangle model uncer-
tainty from valid, naturally occurring label vari-



ation (Baan et al., 2024; Plank, 2022; Baan et al.,
2022). It is often the case that multiple outputs
are correct, particularly in tasks involving high
variation in human language production (ques-
tion answering, summarization, and other genera-
tion tasks where several output variants are equiv-
alent) or inherent, plausible disagreement (the
ChaosNLI data that demonstrates valid disagree-
ments in textual inference annotations (Pavlick
and Kwiatkowski, 2019)). While traditional meth-
ods focus on the majority class, or see variation as
model uncertainty, CP yields a more faithful rep-
resentation of label variation. Besides represent-
ing uncertainty, the sets produced by CP provide
multiple “equivalent” labels, allowing for more in-
terpretable and informed predictions. Further re-
search on such scenarios could provide models
that behave better in tasks with high label varia-
tion. Moreover, in such cases, CP can also be used
to achieve diverse prediction sets, avoiding redun-
dancy, as suggested by Quach et al. (2024).

5.3 CP for Fairness
The increased use of NLP systems in global daily
life and high-risk tasks raises concerns about the
fairness of their outputs. Many of these systems
have been shown to be biased (Blodgett et al.,
2020). In tasks such as resume filtering, medical
diagnosis assistance, and several others, these bi-
ases can be extremely harmful, leading to skewed
performance and coverage. CP can be used to
achieve equalized coverage for different popula-
tion groups (Romano et al., 2020), thus “correct-
ing” biases in model predictions without the need
for expensive retraining. The open research prob-
lem of finding conditional guarantees (Gibbs et al.,
2023) to obtain pointwise error bounds can also
contribute towards fairness in NLP applications.

5.4 CP for Dealing with Data Limitations
Learning and quantifying uncertainty with limited
data is challenging, particularly in NLP problems
where manual text labeling can be difficult, time-
consuming, and expensive. Approaches to lever-
age limited data, such as active learning, make
use of uncertainty quantification in order to reduce
the need for manual labelling (Settles, 2009). In
these settings, CP could be used for reliable un-
certainty quantification, e.g., selecting points with
larger prediction sets for manual labelling. The
predicted sets can also be useful to reduce the pos-
sible labels in tasks with high cardinality output

spaces, increasing the performance of subsequent
predictions. Another option is to use CP for data
filtering and cleaning to increase the performance
of LLMs (Marion et al., 2023), using for exam-
ple a small reliable set for calibration, in order to
identify mislabeled or noisy samples.

5.5 CP for Uncertainty-Aware Evaluation
CP is also useful for tackling the current challenge
of model evaluation. There are some concerns re-
garding the current way NLP systems are evalu-
ated: e.g., questioning how confident we can be
in evaluations that result from an LLM scoring
the output of another one. Evaluating a confor-
mal predictor built on top of a predictor can be a
more reliable way to assess model performance.
Another useful application of CP is to compare
different uncertainty heuristics and transforma-
tions of model outputs by designing distinct non-
conformity scores and evaluating the efficiency
(e.g., set size, conditional coverage, observed
fuzziness) of the resulting predictors (§4.3).

5.6 Open Challenges
Despite its numerous applications, using CP in
NLP poses challenges, particularly in generation
tasks, providing exciting areas for further research.

Token level. The non-exchangeability of the
data tackled by Barber et al. (2023), Ulmer et al.
(2024), and Farinhas et al. (2024) still presents an
obstacle since it is not currently easy to: quan-
tify the coverage gap—the bound in Eq. 5 involves
computing a total variation distance between un-
known distributions, which is hard to estimate;
find good strategies for choosing the weights.

Sentence level. The high cardinality of the out-
put space in generation tasks raises a challenge to
typical CP applications. There are open questions
on how to sample the possible outputs and on what
is the impact of considering a finite set of samples.

6 Conclusion

This paper provides an overview of applications of
the conformal prediction framework in NLP tasks,
after a brief introduction to that framework and its
main variants. We showed how conformal predic-
tion is a promising tool to address the uncertainty
quantification challenge in NLP and hope the ex-
isting and possible applications presented in this
survey will motivate future research on the topic.
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