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Abstract

Distribution shifts, where statistical properties differ between training and test datasets, present
a significant challenge in real-world machine learning applications where they directly impact model
generalization and robustness. In this study, we explore model adaptation and generalization by
utilizing synthetic data to systematically address distributional disparities. Our investigation aims
to identify the prerequisites for successful model adaptation across diverse data distributions, while
quantifying the associated uncertainties. Specifically, we generate synthetic data using the van der
Waals equation for gases and employ quantitative measures such as Kullback-Leibler divergence,
Jensen-Shannon distance, and Mahalanobis distance to assess data similarity. These metrics en-
able us to evaluate both model accuracy and quantify the associated uncertainty in predictions
arising from data distribution shifts. Our findings suggest that utilizing statistical measures, such
as the Mahalanobis distance, to determine whether model predictions fall within the low-error ”in-
terpolation regime” or the high-error ”extrapolation regime” provides a complementary method
for assessing distribution shift and model uncertainty. These insights hold significant value for
enhancing model robustness and generalization, essential for the successful deployment of machine
learning applications in real-world scenarios.

1 Introduction

In machine learning, ensuring model accuracy and reliability is paramount for successful deployment
in real-world applications. However, challenges arise when the statistical properties of the data differ
between training and test datasets, a phenomenon commonly referred to as distribution shift [16]. This
presents significant challenges in dynamic systems where data distributions evolve over time, as well
as in transfer learning scenarios where models encounter disparate data distributions [15]. Despite
efforts to align source and target domains, practical constraints often lead to distributional disparities,
impacting model accuracy and reliability in real-world applications [3].

Numerous examples illustrate the implications of distribution shift for machine learning models
across various domains. Consider, for example, a scenario where machine learning models monitor the
performance of wind turbines in a wind farm. Covariate shift occurs if environmental factors affecting
turbine performance, such as wind speed, wind direction, and temperature, differ between historical
training data and current operational data due to changes in weather patterns or site conditions.
Conversely, target drift arises if the relationship between these environmental factors and turbine
performance changes over time due to factors like aging equipment or modifications in operational
protocols.

Similarly, in medical image analysis, models trained to detect tumors or diseases from X-rays may
fail when deployed in different hospitals with varying equipment, leading to potential misdiagnoses
and harmful outcomes for patients [2]. Autonomous vehicles may encounter unforeseen scenarios not
adequately represented in training data, posing substantial risks to passenger safety and public trust
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in autonomous driving technology [13]. Recommendation systems deployed in online platforms may
provide biased or inaccurate suggestions when user preferences evolve over time or when operating
in new contexts, leading to sub-optimal user experiences and potential ethical concerns [17]. These
examples underscore the critical importance of addressing distribution shift and its impact on model
performance in real-world applications spanning numerous industries and domains.

Previous studies by Shimodaira [18] and Liu et al. [10] have also shed light on the detrimen-
tal effects of distributional disparities between training and test datasets on model performance and
generalization. These findings have initiated the exploration of various domain adaptation methods
aimed at mitigating these disparities. For example, adversarial training [5] and discrepancy-based
approaches [11], have emerged as potential solutions to align source and target domain, thereby re-
ducing distributional disparities. Furthermore, data augmentation techniques, including mixup [22]
and generative adversarial networks (GANs) [7], have also been explored to enhance model robustness
against distribution shift.

Additionally, Bayesian methods [6] and conformal prediction [1] offer alternative approaches for
uncertainty quantification in machine learning. Bayesian methods provide a probabilistic framework
for uncertainty estimation, modeling uncertainty as a distribution over parameters or predictions.
Conformal prediction, on the other hand, offers a pragmatic approach by providing prediction intervals
with valid coverage guarantees. Integrating these methods into machine learning pipelines can provide
additional insights into model uncertainty and enhance model robustness in real-world scenarios.

Previous work by Ovadia et al. [14] have also emphasized the importance of quantifying distribution
shift and its impact on model uncertainty. Proper quantitative measures provide valuable insights into
the extent of distributional disparities, and these measures serve as critical tools for assessing the
robustness and generalization abilities of machine learning models.

In this study, we aim to address a gap in understanding distribution shift and its impact on model
performance by investigating the role of synthetic data in evaluating model robustness. Leveraging
synthetic data generated using the Van der Waals equation for gases, we systematically quantify
distributional disparities and assess their impact on model performance and uncertainty.

1.1 Research Questions

This study aims to answer the following fundamental questions surrounding the challenges with data
distribution shifts:

• How can we quantify the degree of distribution shift and data similarity?

• How well can machine learning models generalize across different data sets?

• What uncertainties arise from differences in data distribution between train and test data, and
how can we quantify this?

By systematically investigating these questions through a comprehensive analysis of data similarity
measures and model uncertainty metrics, we aim to advance our understanding of distribution shift
and provide actionable insights for enhancing the robustness and generalization of machine learning
models in real-world applications.

Paper Structure

The paper is structured as follows:

• Section 2 provides an overview of the main objectives and outlines the methodology employed
in the study.

• Section 3 introduces the various measures and metrics used for quantifying data similarity and
their application within our study.

• Section 4 introduces the architecture of our model and details the Monte Carlo Dropout method
for assessing model uncertainty.

• Section 5 describes the process of generating our synthetic dataset using the van der Waals
equation.
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• Section 6 presents the technical details and results of our analysis.

• Section 7 concludes the paper by summarizing the main outcomes and discussing the conclusions
drawn from our experiments.

2 Objectives and Methodology

To investigate these research questions in further detail, we perform two different experiments, both
based on generating synthetic data where we have full control of the distributional properties across
the different datasets. Further details and methodology, including data generation and analysis, is
described in the following sections for experiments 1 and 2 respectively.

2.1 Experiment 1: Changes in Feature-Target Correlations

Objective: Experiment 1 aims to explore how variations in feature-target correlations impact model
accuracy and how data similarity can be quantified. By systematically varying the feature-target cor-
relations across different datasets, we seek insights into the sensitivity of model performance to these
variations.

Significance: Understanding the effect of feature-target correlations and distribution shift on model
accuracy is crucial for developing robust models and for assessing their ability to generalize to unseen
data beyond the training set.

Methodology: To investigate this, we employ the ”ideal gas” approximation to generate synthetic
training data. Subsequently, we generate datasets for different gases, each with properties that de-
viate from ideal gas behavior, approximated by the Van der Waals equation. In addition to visual
comparisons of the data distributions, we explore measures such as the Kullback-Leibler Divergence
and Jensen-Shannon Distance to quantify data similarity. Subsequently, we train a machine learning
model using the ideal gas data and proceed to predict the properties of the other gases, assessing how
distribution shift impacts model accuracy.

2.2 Experiment 2: Feature Distribution Drift

Objective: Experiment 2 aims to investigate changes in the feature distribution and their impact on
model accuracy and uncertainty, with a focus on quantifying these properties.

Significance: In real-world dynamical systems, variations in pressure, temperature, or other proper-
ties over time can induce shifts in the feature distribution, referred to as covariate shift. Detecting
when the model operates beyond the bounds of its training distribution and understanding the impli-
cations for prediction accuracy and uncertainty are thus crucial for maintaining model reliability in
practical applications.

Methodology: We simulate changes in the feature distribution between the training and test datasets
using the ideal gas approximation. For each data point in the test set, we measure the deviation of its
feature values from the training data distribution using the Mahalanobis distance. Subsequently, we
analyze model predictions and evaluate how distribution shift influences both accuracy and uncertainty.
During inference, we employ Monte Carlo Dropout as an estimate of the model’s uncertainty, which
is then correlated with the degree of distribution shift quantified through the Mahalanobis distance.

3 Quantifying Data Similarity

A key aspect of our study involves quantifying the similarity between the various datasets generated
by the van der Waals equation. In this section, we provide a brief theoretical background on the
key metrics used to quantify data similarity and distributional shifts, namely KL-Divergence, Jensen-
Shannon Distance, and Mahalanobis Distance. These metrics allow us to quantify the extent to which
one dataset diverges from another. We can thus evaluate the overall difference or similarity of the
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various data distributions, and how this affects the model’s ability to generalize beyond the training
data.

3.1 Kullback-Leibler Divergence (KL-Divergence)

KL-Divergence serves as a measure of relative entropy between two probability distributions [9]. Given
two probability distributions P (x) and Q(x), KL-Divergence is defined as:

DKL(P∥Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(1)

KL-Divergence quantifies the information lost when Q(x) is used to approximate P (x). It is non-
negative and equals zero if and only if the distributions are identical.

In machine learning and statistics, it has been widely used in tasks such as domain adaptation,
transfer learning, and anomaly detection to quantify the dissimilarity between data distributions [19].
In the context of comparing data distribution shifts in this study, KL-Divergence thus provides a
quantitative measure of how much one dataset, P (x), differs from another, Q(x).

3.2 Jensen-Shannon Distance

The Jensen-Shannon Distance is a symmetric measure of the similarity between two probability dis-
tributions. It is derived from the KL-Divergence and is defined as:

DJS(P,Q) =
1

2
DKL(P∥M) +

1

2
DKL(Q∥M) (2)

where M is the average distribution of P and Q.
Unlike KL-Divergence, which is a divergence measure, Jensen-Shannon Distance is a proper metric.

It combines elements of KL-Divergence to evaluate the overall difference or similarity between datasets
in a more balanced manner. Furthermore, it is bounded between 0 and 1, where 0 indicates identical
distributions and 1 indicates completely different distributions. This bounded nature of the Jensen-
Shannon Distance provides some advantages when used as a metric to quantify data distribution
similarity. In the machine learning literature, Jensen-Shannon Distance is often employed in tasks
such as clustering, generative modeling, and classification to assess the similarity between probability
distributions arising from different datasets or model predictions [8].

3.3 Mahalanobis Distance

In statistical analysis and pattern recognition, the Mahalanobis distance is a metric used to measure the
distance between a point and a distribution [12]. Unlike Euclidean distance, which treats all dimensions
equally, the Mahalanobis distance adjusts for the covariance structure of the data, providing a more
accurate measure of similarity or dissimilarity.

Mathematically, the Mahalanobis distance DM (x) for a data point x from a distribution with mean
vector µ and covariance matrix S is defined as:

DM (x) =
√
(x− µ)TS−1(x− µ) (3)

Here:

• x is the vector representing the data point.

• µ is the mean vector of the distribution.

• S is the covariance matrix of the distribution.

In this study, we utilize the Mahalanobis distance to quantify the similarity of data points in the test
set from the training distribution. By assessing whether model predictions fall within the known data
distribution (interpolation) or extend beyond it (extrapolation), we obtain a deeper understanding of
the model’s ability to generalize and extrapolate beyond the training data.
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4 Model Architecture and Uncertainty Quantification

The selected model architecture in this study is deliberately kept simple, allowing us to focus on
the core research objectives related to data distribution shifts and uncertainties rather than complex
modeling approaches. The model architecture includes the following components:

1. Input Layer: This layer defines the shape of the input data.

2. Dense Layers: The model includes three dense layers with 64, 64, and 32 neurons respectively.
Each neuron in a dense layer is connected to every neuron in the previous layer. The activation
function used in these layers is chosen as the Exponential Linear Unit (ELU).

3. Custom Dropout Layer: This model incorporates a custom dropout layer with a dropout
rate of 0.1, randomly setting 10% of input units to zero. The custom layer also enables dropout
during inference to facilitate the Monte Carlo Dropout technique, as discussed in Section 4.1.

4. Output Layer: The final layer consists of a single neuron, representing the output of the model.
It does not apply any activation function, which is standard for regression models where the goal
is to predict continuous numerical values.

For additional details about the technical implementation, readers are directed to the code available
on GitHub: https://github.com/veflo/uncert_quant

4.1 Assessing Model Uncertainty with Monte Carlo Dropout

In this study, we employ Monte Carlo Dropout as a technique to estimate model uncertainty during
inference. This approach is particularly relevant for capturing epistemic uncertainty arising from the
model’s lack of knowledge or understanding about certain regions of the input space [4].

Dropout is a regularization technique commonly used during model training. It works by randomly
”dropping out” (i.e., setting to zero) a fraction of the units in a layer during each training iteration.
This prevents units from co-adapting too much and ensures that the network learns a more robust and
generalizable representation of the data. Typically, dropout is turned off during inference to obtain
deterministic predictions. However, in Monte Carlo Dropout, dropout is kept active during inference,
and multiple forward passes through the network are performed for the same input, resulting in different
predictions yi sampled from the model’s predictive distribution:

yi ∼ p(y|x, θ) (4)

where θ represents the model parameters.
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ŷ

Figure 1: Neural Network with Dropout, as indicated by red nodes
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We can then aggregate this ensemble of predictions and calculate the mean, µ, and standard
deviation, σ, as follows:

µ =
1

N

N∑
i=1

yi (5)

σ =

√√√√ 1

N

N∑
i=1

(yi − µ)2 (6)

where N is the number of forward passes.
By performing Monte Carlo Dropout during inference and investigating the correlation between

model uncertainty and the degree of distribution shift, as quantified through the Mahalanobis distance,
we thus aim to gain insights into the model’s ability to generalize to unseen data with different statistical
properties.

5 Data Generation using the van der Waals Equation

The van der Waals equation is an equation of state for gases that provides a more accurate description
of the behavior of real gases, especially at high pressures and low temperatures, where the assumptions
of the ideal gas law start to break down [21].

To generate synthetic datasets for our experiments, we utilize this equation to simulate the behavior
of gases under various conditions. Specifically, we employ the equation to generate datasets for differ-
ent gases, each exhibiting deviations from ideal gas behavior, thus creating a range of feature-target
correlations.

The van der Waals equation is given by:(
P +

aN2

V 2

)
(V −Nb) = NRT (7)

Where:

• P is the pressure of the gas (in atmospheres, atm)

• V is the volume of the gas (in liters, L)

• T is the temperature of the gas (in kelvin, K)

• N is the number of moles of the gas (in moles, mol)

• a and b are van der Waals constants specific to each gas (a = [L
2
atm/mol

2
, b = [L/mol])

• R is the gas constant (0.0821 L·atm
mol·K )

The term aN2

V 2 corrects for the attractive forces between gas molecules, while the term Nb corrects for
the volume occupied by the gas molecules themselves. It’s important to note that the van der Waals
constants a and b vary depending on the specific gas and are experimentally determined.

In table 1 below, we have listed these constants for a selection of common gases that we have used
in this study. For our data generation process, we first generate the variables for Temperature (T ),
Volume (V ), and Moles (N) from Gaussian distributions with defined mean (µ) and variance (σ2).
Specifically, we generate T , V , and N as follows:

T ∼ N (µT , σ
2
T ) (8)

V ∼ N (µV , σ
2
V ) (9)

N ∼ N (µN , σ2
N ) (10)

We can then plug the gas constants and parameter distributions into the van der Waals equation
to calculate the corresponding Pressure (P ), which serves as our target variable for the synthetic
dataset. We define the parameters for generating synthetic datasets as indicated in the tables below
for experiments 1 and 2, respectively:
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Gas a [L2 atm/mol2] b [L/mol]
Ideal Gas 0 0

Hydrogen (H2) 0.244 0.0266
Helium (He) 0.0346 0.0237
Neon (Ne) 0.211 0.0174
Argon (Ar) 1.355 0.032
Xenon (Xe) 4.00 0.051

Nitrogen (N2) 1.390 0.0391
Oxygen (O2) 1.360 0.0318

Carbon Dioxide (CO2) 3.610 0.0427
Methane (CH4) 2.250 0.0428

Table 1: Van der Waals constants for gases used in this study. Adapted from standard references on
thermodynamics or physical chemistry.

Parameter Mean Std
Temperature (T ) µT = 300K σT = 25K

Volume (V ) µV = 50L σV = 5L
Moles (N) µN = 15mol σN = 1mol

Table 2: Parameters used for generating data for experiment 1

Dataset 1:
Temperature µT1 = 273K σT1 = 50K

Volume µV1
= 10L σV1

= 1L
Moles µN1

= 10mol σN1
= 1mol

Dataset 2:
Temperature µT2

= 300K σT2
= 50K

Volume µV2 = 9L σV2 = 1.5L
Moles µN2 = 11mol σN2 = 1mol

Table 3: Parameters used for generating data for experiment 2
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• For experiment 1, we use identical distributions for the input variables (Temperature, Volume
and Moles), but different van der Waals constant for the various gases.

• For experiment 2, we use the ideal gas approximation for both datasets (a = b = 0), but rather
change the distributions for the input variables, as illustrated in table 3

6 Results and Discussion

This section presents a summary of the key findings from the study. For comprehensive details and
access to the code implementation of the analysis methodology, readers are directed to the material
available on GitHub: https://github.com/veflo/uncert_quant

6.1 Experiment 1:

We begin by generating a synthetic dataset for the selection of gases, as described in further detail in
Section 5. The variables Temperature, Moles, and Volume are uniformly generated for all gases, while
the corresponding pressure is calculated using the van der Waals equation. This equation introduces
corrections to the ideal gas approximation, resulting in varying degrees of adjustments based on the
properties of each gas. Figure 2a illustrates the resulting pressure distribution, highlighting subtle
differences among the different gases. In addition to the generated datasets for the other gases, we
have also set aside a small subset of the ideal gas data as an ”in distribution” test set.

(a) Pressure distribution, as calculated from van der
Waals equation. (b) t-SNE visualization

Figure 2: Pressure distribution and t-SNE plot for the various gases

To visualize the degree of similarity between the datasets, we employ t-SNE, a popular technique
for visualizing high-dimensional data [20]. The t-SNE plot, as shown in Figure 2b, reveals no clear
clusters or outliers in this case. However, given the subtle differences between the gases and that the
ideal gas approximation is a fairly accurate description in many scenarios, this result is not unexpected.
To perform a more quantitative investigation of data similarity and distribution shift beyond visual
comparison, we utilize KL-divergence and Jensen Shannon Distance, as introduced in Section 3.

Next, we train our machine learning model using the ideal gas training data, and then evaluate its
generalization to the other datasets. Figure 3 illustrates the model’s predictions vs. actual pressure
values for the different gases. In addition to the visual comparison of the predictions, we also compute
the Mean Absolute Percentage Error (MAPE). In Table 4, we summarize both the KL-divergence, JS
Distance, and MAPE between the ideal gas training dataset and other gases.

From these results, we note that smaller corrections to the van der Waals equation typically yield
lower KL-divergence and JS Distance, indicating greater similarity to the training dataset. Conse-
quently, datasets more closely resembling the ideal gas approximation result in lower prediction errors.
Furthermore, it is worth noting that despite being drawn from the same distribution, we observe a
non-zero KL-divergence and JS distance between the training data and the ”in-distribution” test set,
referred to as ”Ideal Gas (subset).” This observation underscores the inherent statistical variations
resulting from a finite number of generated data points, which in this case were limited to 10,000
samples.
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Figure 3: Predicted vs Real Pressure, Experiment 1

Dataset KL-Div JS Distance MAPE
Ideal Gas (subset) 0.10 0.14 0.48
Nitrogen 0.33 0.26 0.73
Oxygen 0.57 0.33 0.86
Argon 0.52 0.32 0.84
Carbon Dioxide 5.49 0.73 3.30
Methane 1.75 0.49 1.56
Hydrogen 0.31 0.25 0.64
Helium 0.55 0.33 0.76
Neon 0.14 0.17 0.54
Xenon 6.11 0.75 3.55

Table 4: KL-div, JS Distance, and prediction error between the training dataset (Ideal Gas) and the
datasets for the other gases
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This phenomenon reflects a conventional practice in assessing machine learning models, where a
portion of the training data is reserved for testing purposes. However, when the test data originates
from the same distribution as the training data, it often leads to overly optimistic estimates of model
accuracy. These discrepancies often become apparent upon deployment ”in the wild,” where the model
may encounter a different data distribution, resulting in a corresponding degradation in accuracy.

(a) KL-Divergence vs. Prediction error (b) JS-Distance vs. Prediction error

Figure 4: Comparison of KL-Divergence and JS-Distance vs. Prediction Error, demonstrating a clear
correlation between the degree of distribution shift and the consequent decline in model accuracy.

As illustrated in Figure 4a, we observe a linear trend between KL-divergence and MAPE, while the
relationship with JS-Distance in Figure 4b appears less pronounced. This discrepancy may result from
JS-Distance being a bounded metric between [0,1], unlike the unbounded nature of the KL-divergence.
However, a deeper understanding of this scaling behavior would require more detailed investigations,
which are beyond the scope of this study.

In summary, the outcomes of Experiment 1 underscore the potential use of KL-divergence and
JS Distance as quantitative indicators of distribution shift, serving as predictors of reduced model
accuracy and increased uncertainty. These metrics thus offer valuable insights for monitoring the
performance and robustness of machine learning models in real-world scenarios, where varying degrees
of distribution shift are frequently encountered.

6.2 Experiment 2

Experiment 2 extends the analysis of Experiment 1 by primarily focusing on quantifying prediction
uncertainty, thereby enhancing the assessment of model reliability. While Experiment 1 simulated
”target drift”, where the correlations between the input variables and the target differ across various
datasets, Experiment 2 focuses on ”covariate shift”. Here, the distribution of the input variables
themselves has changed, while the correlations to the target variable remain constant

Specifically, we generate data using the ideal gas approximation for two datasets, with the differ-
ences being determined by the parameters of the distributions used for data generation. The resulting
data distributions for the generated data are illustrated in Figure 5. Further details on the data
generation process are also described in Table 3 in section 5.

We also here calculate the corresponding KL-divergence and JS-Distance between the ”in distri-
bution” training data vs. the ”out-of-distribution” test set, as presented in Table 5. This is done by
setting aside a subset of the training data as an ”in distribution” test set, following a similar procedure
as in Experiment 1.

Dataset KL-Div JS Distance MAPE
In distribution (subset) 0.26 0.16 0.26
Out of distribution 1.20 0.47 0.60

Table 5: KL-div, JS Distance, and prediction error for the ”in distribution” vs ”out-of-distribution”
datasets
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(a) Volume (b) Moles

(c) Temperature (d) Pressure

Figure 5: Distribution of Volume, Moles, Temperature, and the resulting calculated Pressure for the
train (”in distribution”) vs. test (”out-of-distribution”) datasets

We then proceed to train our machine learning model using the training data and utilize it to make
predictions for both the ”in-distribution” and ”out-of-distribution” test sets. Figure 6 illustrates the
predicted vs. real pressure values. The largest deviations occur in regions of low and high pressure,
where the model encounters data outside the training distribution, as shown in Figure 5d. The associ-
ated prediction error (MAPE) is also provided in Table 5, for comparison between the ”in-distribution”
and ”out-of-distribution” test sets.

Figure 6: Predicted vs. Real Pressure, Experiment 2

6.2.1 Uncertainty Quantification

To evaluate model uncertainty, we employ the Monte Carlo Dropout technique, as discussed in detail
in section 4.1. This technique involves conducting N=100 forward passes through the network for
each input, resulting in multiple predictions yi sampled from the model’s predictive distribution. By
calculating the mean and standard deviation of these predictions for each input data point, we thus
obtain an estimate of the model’s epistemic uncertainty.
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We then compute the Mahalanobis distance, as introduced in section 3.3, which serves as a metric
to assess how far each datapoint deviates from the training data distribution. Figure 7 illustrates the
distribution of Mahalanobis distances for the training data, including the limit indicating the 95th
percentile of this distribution. By computing the Mahalanobis distance for all datapoints in the test
set, we can then gain insights into the error and uncertainty of model predictions relative to their
distance from the training distribution.

Figure 7: Mahalanobis distance for the ”In distribution” dataset

As illustrated in Figure 8a, datapoints with a low Mahalanobis distance, indicating proximity to
the training distribution, generally exhibit lower prediction errors. Conversely, an increase in the
Mahalanobis distance, particularly beyond the 95th percentile cutoff value, signifies a departure from
the training distribution. This correlates with a corresponding rise in prediction errors and the spread
of predictions, indicating increased uncertainty.

This behavior is further explored in Figure 8b, which illustrates the relationship between prediction
error and the standard deviation of predictions, commonly used as an indicator of model uncertainty
in the Monte Carlo Dropout technique. While low standard deviation values often coincide with low

(a) Mahalanobis distance vs. prediction error (b) Standard deviation vs. prediction error

Figure 8: Comparison of Mahalanobis distance and standard deviation as indicators of prediction
uncertainty.

prediction errors, the correlation is less pronounced compared to the Mahalanobis distance.
These findings suggests that the Mahalanobis distance may offer superior, or at least complemen-

tary, insights into prediction uncertainty and error compared to relying solely on the Monte Carlo
Dropout technique. Moreover, the Mahalanobis approach offers significant computational advantages
over Monte Carlo methods. By requiring only a single forward pass per prediction instead of multiple
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iterations, it greatly enhances the practicality and efficiency of the approach.
Importantly, the Mahalanobis distance serves as a metric for assessing prediction reliability on a

per-data-point basis. Data points with Mahalanobis distances well below the cutoff can be considered
relatively accurate and trustworthy, while those exceeding the cutoff may require further investigation
or precautionary measures.

Combining the Mahalanobis approach with Monte Carlo Dropout techniques, or other methods for
uncertainty quantification, holds promise for a more comprehensive assessment of model uncertainty
and determining when model predictions can be trusted or not. This allows for making more informed
decisions based on the trustworthiness of the predictions, thereby enhancing the robustness of machine
learning systems deployed in dynamic real-world environments.

7 Summary and Conclusions

This paper presents two experiments aimed at investigating the impact of distribution shift on machine
learning model performance and uncertainty quantification.

In Experiment 1, synthetic datasets representing different gases were generated, and a machine
learning model was trained using the ideal gas dataset. By quantifying the degree of distribution shift
through the KL-divergence and Jensen Shannon Distance between the various datasets, we observed
a clear correlation between distribution shift and prediction accuracy. Higher errors were evident for
datasets deviating further from the ideal gas distribution, emphasizing the critical role of monitoring
distribution shift for maintaining model performance in real-world applications. Furthermore, we
illustrated how KL-divergence and JS Distance serve as valuable indicators of distribution shift and
predictors of model prediction accuracy degradation.

Experiment 2 focused on uncertainty quantification, particularly in scenarios of covariate shift. By
employing the Monte Carlo Dropout technique for estimating model uncertainty, and by calculating the
Mahalanobis distance, we correlated uncertainty with the distance of test data points from the training
distribution. Our findings revealed that as data points move away from the training distribution, both
prediction error and uncertainty tend to increase. The Mahalanobis distance emerged as a promising
metric for assessing prediction reliability on a per-data-point basis, offering additional insights into
when model predictions can be trusted or not.

While uncertainty quantification methods like Bayesian methods [6] and conformal prediction [1]
offer alternative approaches, each presents its own set of challenges and trade-offs. Bayesian methods
provide a robust framework for uncertainty estimation but face challenges such as computational
complexity and scalability limitations. Conversely, conformal prediction offers a pragmatic alternative
but can be susceptible to shifts in data distribution over time, impacting prediction reliability.

The choice of methodology ultimately depends on the specific requirements of the application and
the inherent trade-offs between computational complexity, interpretability, and performance. Rather
than aiming to replace existing methodologies, this study seeks to explore complementary approaches.
The findings presented here serve as a guide towards identifying appropriate metrics and techniques for
effective and robust monitoring and governance of machine learning applications in real-world scenar-
ios. By understanding the strengths and limitations of different uncertainty quantification methods,
practitioners can make more informed decisions and tailor their approach to suit the demands of their
specific application domains.
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