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Abstract. General relativistic Gauss equations for osculating elements for bound

orbits under the influence of a perturbing force in an underlying Schwarzschild space-

time have been derived in terms of Weierstrass elliptic functions. Thereby, the

perturbation forces are restricted to act within the orbital plane only. These equations

are analytically solved in linear approximation for several different perturbations

such as cosmological constant perturbation, quantum correction to the Schwarzschild

metric, and hybrid Schwarzschild/post-Newtonian 2.5 order self-force for binary

systems in an effective one-body framework.

Keywords: General relativistic Gaussian perturbation equations, geodesics, Schwarzschild

metric, osculating orbital elements, self-forces, cosmological constant, quantum correc-

tions, periastron shift, Weierstrass elliptic functions.

1. Introduction

The detection of gravitational waves with LIGO and VIRGO opened the new era

of gravitational wave astronomy [BKK22], which allows us to explore the physics

of Black Holes (BH) and Neutron Stars but also to perform high precision tests of

General Relativity (GR) and alternative theories. In the near future projects like LISA

[ABB+22] are expected to measure gravitational waves from supermassive BH mergers

and also of extreme mass-ratio inspirals (EMRIs). In order to describe theoretically such

inspirals we need to develop various perturbation techniques for near horizon phenomena

[BCN+19].
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Our main aim in this work is to set up a GR version of the Gaussian perturbation

equations for osculating elements using analytic solutions of the geodesic equations in

a certain space-time as reference. One motivation for that is to set up an efficient

description of near BH horizon orbits or for orbits in coalescing binary systems. Then

the perturbation might be an extra force due to the deformation of neutron stars or

BHs, the radiation reaction force, or forces related to modified gravity. In this work we

consider the simplest non-trivial case of bound Schwarzschild geodesics with additional

perturbation forces which act only within the orbital plane. For this case we derive

perturbation equations and solve these equations for several perturbation forces.

A full set of the Gaussian perturbation equations in Newtonian gravity usually

consists of equations for the following six orbital elements: semi-major axis a,

eccentricity e, inclination i, argument of pericenter ω, longitude of the node Ω and

the starting point of the mean anomaly M . The condition that the orbital elements

do not change the unperturbed form of the formulae for the position as well as for

the velocity makes the orbital elements to osculating elements. That means that the

perturbation force does not induce any explicit time-dependence in the position and the

velocity. In the case when the perturbing force is restricted to be in the orbital plane, the

inclination i and longitude of the node Ω are constant, so that we have four osculating

elements only. In GR the set of osculating elements may consist of, for example, e,

semi-latus rectum p, the value of relativistic anomaly at pericenter χ0, i, Ω, the initial

values Φ and T of azimuthal angle ϕ and coordinate time t, see, e.g., [WOE17]. In the

special case of a motion not changing the orbital plane, one has e, p, χ0, Φ, and T , see

[PP08]. In our approach we use several equivalent sets of osculating elements: either

the invariants of Weierstrass elliptic function g2 and g3, the argument of pericenter ϕ0

and GR ”mean anomalies” Ms and Mt, or constants of integration C1 and C2 which

in non-relativistic limit are related to angular momentum and energy, ϕ0, Ms and Mt.

We use Ms =
C1

r2g
(s− s0) and Mt =

C1

C2r2g
(t− t0) instead of the initial values s0 and t0 of

the proper time s and the coordinate time t. In the case of forces that do not depend

explicitly on the proper and the coordinate times, we can evaluate Ms and Mt by their

definitions instead of solving the corresponding equations, which are quite cumbersome.

This is in contrast to choosing t0 and s0 as osculating elements, where we cannot omit

solving the corresponding equations. Our choice of Ms and Mt over s0 and t0 has some

limitations, as we cannot easily extract effects of the external forces on the dynamics of

the coordinate time t itself but only the difference t− t0.

The GR Gaussian perturbation equations are non-linear and coupled, so it is

possible to have analytical solutions only perturbatively in linear or higher order

approximations, which may be relevant for small forces. In contrast to [PP08] and

similar approaches ([WOE17], [OWE16], [WAB+12]) where the perturbation equations

are solved numerically, we obtain analytical expressions for the osculating elements in

linear approximation and, in particular, for the secular perturbations. Furthermore,

we believe that due to the explicit connection between r and ϕ the use of Weierstrass

elliptic functions might be more convenient even for numerical computations compared
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to the Chandrasekhar χ parametrisation. It is also very helpful that, using, e.g.,

Wolfram Mathematica, we can evaluate expressions written in terms of Weierstrass

elliptic functions with an arbitrary precision.

As an application of our new technique, we solve the perturbation equations for

the force induced by the presence of the cosmological constant in the Schwarzschild–de

Sitter metric, for the hybrid Schwarzschild/post-Newtonian 2.5 order self-force defined

in [PP08] and for quantum gravitational correction to a Schwarzschild BH obtained in

[CK21]. In addition, we compare pericenter shifts in Schwarzschild–de Sitter space-

time obtained using our approach with the analytical solution from [HL08b]. This new

scheme can also be applied to space-times with multipole moments, either for testing

space-times solutions for modified gravitational theories or for applying this to satellite

orbits in the frame of GR geodesy in analogy to the discussion of perturbations of Kepler

orbits in the gravitational field of the real Earth [Kau66].

In comparison with post-Newtonian methods (see reviews [ISN20] or [FI07]) our

approach does not have rg
r
as a small parameter, so that in principle it must work closer

to a BH horizon than the post-Newtonian methods based on Gaussian perturbation

equations. We compare our method with two different post-Newtonian results for

the pericenter shift in a Schwarzschild–de Sitter space-time: one obtained as a post-

Newtonian asymptotic of an exact solution [HL12] and the second obtained from solving

a post-Newtonian version of Gaussian equations [KHM03]. From this comparison, we

see that our method works better than the second approach and as well as the first

one for the situation when the body is close to the BH horizon. All three methods’

accuracy exceeds the current observational accuracy for the Solar System. Also, we can

use results from post-Newtonian calculations in order to build hybrid schemes (as in

[KWW93]) from which we can define our perturbing forces (as in [PP08]).

As in the non-relativistic case when there are two integrals of motion related to time

translation invariance and spatial rotation symmetry, there are no secular corrections

to the pericenter rp and apocenter ra distances (or equivalently to eccentricity e and

semi-latus rectum p). Similarly, in the relativistic case if the metric is independent of the

coordinate time t and the azimuthal angle ϕ, then there are two conserved quantities,

which lead to the absence of secular corrections to the pericenter rp and apocenter ra
distances. Due to this, in the cases of quantum corrections and the cosmological constant

induced force discussed later, we have secular corrections only to the pericenter shift.

The paper is organised as follows. In section 2 we introduce solutions of the

Schwarzschild geodesic equations which play the role of the zeroth order solutions of

our perturbation technique. We also define constants of integration which in the next

sections will be treated as osculating elements. In section 3 we derive the GR Gaussian

perturbation equations for bound Schwarzschild geodesics and perturbation forces acting

within the orbital plane only. Then in section 4 we describe the strategy of solving our

equations with small perturbing forces. In sections 5, 6 and 7 we solve our perturbation

equations for the force induced by the cosmological constant in the Schwarzschild–

de Sitter space-time, for quantum gravitational correction to a Schwarzschild space-
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time, and for hybrid Schwarzschild/post-Newtonian 2.5 order self-force. In addition,

in section 5 we compare the secular corrections with the analytically given motion in

a Schwarzschild–de Sitter space-time obtained in [HL08b]. In section 8 we discuss our

results. In Appendix A we give some necessary definitions of elliptic functions, and in

Appendix B we prove the equivalence of two different exact solutions of Schwarzschild

geodesics in terms of Weierstrass elliptic functions. Appendix C gives useful integrals

which appear in calculations of sections 5, 6 and 7. Finally, in Appendix D we present

some cumbersome explicit expressions for sections 3, 5, 6 and 7.

2. Geodesic equations in a Schwarzschild space-time and their solutions in

terms of Weierstrass elliptic functions

The motion of a test particle in GR is defined by the geodesic equations:

d2xi

ds2
+ Γi

kl

dxk

ds

dxl

ds
= 0, (1)

where Γi
kl = 1

2
gij (∂kgjl + ∂lgjk − ∂jgkl) are Christoffel symbols, gij is the space-time

metric with signature (+,−,−,−), ds =
√

gijdxidxj is the proper time interval, and

the indices run from 0 to 3. The Schwarzschild metric is given by

g00 = 1− rg
r
, g11 = − 1

1− rg
r

, g22 = −r2 , g33 = −r2 sin2 θ . (2)

The velocity of light c = 1, and rg is the Schwarzschild radius.

In this paper we restrict to forces which act within the orbital plane, so that for

convenience we can fix θ = π
2
. The corresponding set of geodesic equations then is

0 = ẗ+
rg

r(r − rg)
ṫṙ (3)

0 = r̈ +
(r − rg) rg

2r3
ṫ2 − rg

2r(r − rg)
ṙ2 − (r − rg) ϕ̇

2 (4)

0 = ϕ̈+
2

r
ϕ̇ṙ , (5)

where an overdot denotes a derivative with respect to the proper time s.

The first integration of (5) and (3) gives

ϕ̇ = C1
1

r2
(6)

ṫ = C2
r

r − rg
, (7)

where C1 and C2 are constants of motion which we are going to treat as osculating

elements in the next section. Instead of solving equation (4) for r(s) it is more convenient

to find r(ϕ). For the connection between r and ϕ we have an equation as an algebraic
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curve of genus one, which can be parametrised in terms of the Weierstrass elliptic

function ℘ [Hag31, Hac10]

r =
rg

℘(1
2
(ϕ+ ϕ0) + ω3) +

1
3

, (8)

where ϕ0 is a further constant of integration (which we also will treat as an osculating

element in the next section) and where ω3 is an imaginary half-period of ℘ which is

necessary in order for ℘ to be a real-valued function. The invariants of ℘, g2 and g3,

play the role of geometrical characteristics of the trajectory and are related to C1 and

C2 according to

g2 = 4

(
1

3
−

r2g
C2

1

)
, (9)

g3 =
4

3

(
2

9
−

(3C2
2 − 2) r2g
C2

1

)
. (10)

For more information about Weierstrass functions see Appendix A or consult classic

textbooks like [WW21]. This is not the only way to write a solution of the equations

of motion (3)-(5) in terms of the Weierstrass elliptic function, see [Sch11], for example.

However, we have shown in Appendix B that these two approaches are equivalent.

It is convenient to introduce a “semi-latus rectum” p and an “eccentricity” e from

the definitions of the pericenter rp and apocenter ra distances

rp =
p

1 + e
(11)

ra =
p

1− e
, (12)

which are related to the roots e2 and e3 of the Weierstrass ℘-function

e2 =
rg
rp

− 1

3
(13)

e3 =
rg
ra

− 1

3
, (14)

that is,

e2 =
e+ 1

p
− 1

3
, (15)

e3 =
1− e

p
− 1

3
. (16)

From (6) and (7) we can define a proper time mean anomaly and a coordinate time

mean anomaly as

Ms =
C1

r2g
(s− s0) =

∫
dϕ(

1
3
+ ℘(v)

)2 , (17)

and

Mt =
C1

C2r2g
(t− t0) =

∫
dϕ(

1
3
+ ℘(v)

)2 (2
3
− ℘(v)

) , (18)
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where s0 and t0 are constants of integration and where v = ϕ+ϕ0

2
+ ω3 is defined as the

true anomaly. Integration of (17) yields

Ms = − 2

℘′2(y)

(
ξ̄1(ϕ,−1

3
)− ℘′′(y)

℘′(y)
ξ̄2(ϕ,−1

3
)

)
, (19)

where we denoted y = ℘−1(−1
3
) and ξ̄j(ϕ, ρ) = ξj(ϕ, ρ)− ξj(0, ρ) and

ξ1(ϕ, ρ) = ζ (v − x) + ζ (x+ v) + 2℘(x)v (20)

ξ2(ϕ, ρ) = 2ζ(x)v + log

(
σ (v − x)

σ (x+ v)

)
, (21)

where here and in the following x = ℘−1(ρ), ζ and σ are the Weierstrass zeta and sigma

functions. A prime denotes a derivative with respect to the argument. Analogously,

for (18) we obtain

Mt = Ms +
2

℘′(y)
ξ̄2(ϕ,−1

3
)− 2

℘′(z)
ξ̄2(ϕ,

2
3
) , (22)

where z = ℘−1(2
3
). We notice that, while ξj are complex-valued functions, the

differences ξ̄j are real-valued.

3. Perturbation equations in GR

The motion of a test particle in GR exposed to an additional force f i is defined by the

equations of motion
d2xi

ds2
+ Γi

kl

dxk

ds

dxl

ds
= f i, (23)

where the orthogonality condition

f iẋi = 0, (24)

is satisfied automatically for arbitrary forces provided that the normalisation

condition ẋiẋ
i = 1 holds true. For the Schwarzschild metric together with the

perturbation force the equations of motion are

ẗ+
rg

r(r − rg)
ṫṙ = f t (25)

r̈ +
(r − rg) rg

2r3
ṫ2 − rg

2r(r − rg)
ṙ2 − (r − rg) ϕ̇

2 = f r (26)

ϕ̈+
2

r
ϕ̇ṙ = fϕ . (27)

In order to write perturbation equations for the osculating elements C1, C2

(or g2, g3), v (or ϕ0) we use the technique inspired by the method of variation of

constants which is widely used in Newtonian celestial mechanics, see, e.g., [Kli16]. First,
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we postulate that the following relations (which satisfy the geodesic equations (3)-(5))

hold even in the case of the presence of a perturbation force

ϕ̇ = C1
1

r2
, (28)

ṫ = C2
r

r − rg
, (29)

r =
rg

℘(v) + 1
3

, (30)

ṙ = − C1

2rg
℘′ (v) , (31)

where now the orbital elements are functions of s for which we will obtain equations.

The orbital elements fulfilling (28)-(31) are called osculating elements.

It is necessary to choose an independent set of osculating elements. Such a set can

be C1(s), C2(s) (or equivalently g2(s), g3(s)) and the true anomaly

v(s) =
ϕ(s) + ϕ0(s)

2
+ ω3(s) (32)

(or equivalently the argument of pericenter ϕ0(s)). In order to obtain equations for

these osculating elements we take the derivative of (28) and (29) with respect to s and

eliminate all second order derivatives using (27) and (25)

Ċ1(s) = r2fϕ, (33)

Ċ2(s) =
(
1− rg

r

)
f t, (34)

or, using orthogonality condition (24), we rewrite the latter in terms of fϕ and f r

Ċ2(s) =
(
1− rg

r

) C1

C2

fϕ − ℘′(v)C1

2rgC2

f r. (35)

Using connection between g2, g3 and C1, C2 – (9), (10) we rewrite (33) and (35) as

ġ2(s) = Ag2
ϕ fϕ, (36)

ġ3(s) = Ag3
r f r + Ag3

ϕ fϕ, (37)

where we denoted

Ag2
ϕ (s) =

r2

rg

(
4

3
− g2

)3/2

, (38)

Ag3
r (s) = 2℘′(v)

(
4

3
− g2

)1/2

, (39)

Ag3
ϕ (s) = −

(
r3 (27g3 − 8) + 108r2g(r − rg)

)
27rgr

(
4

3
− g2

)1/2

. (40)
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In order to obtain an equation for the true anomaly v we take a derivative

of r(ϕ) (30) with respect to s, and replace the derivatives ṙ, ġ2, ġ3,
∂℘
∂g2

and ∂℘
∂g3

using (31), (36), (37) and also (A.6), (A.7) from Appendix A, and finally get after

some simplification (involving some properties of ℘ and ℘′)

v̇(s) =
C1

2r2
+ Av

rf
r + Av

ϕf
ϕ, (41)

where we also denoted

Av
r(s) =

(
4

3
− g2

)1/2
(−6g2 (ζ(v)℘

′(v) + 2℘(v)2) + 2g22 + 9g3 (v℘
′(v) + 2℘(v)))

(g32 − 27g23)
, (42)

Av
ϕ(s) =

3rg
4 (g32 − 27g23) (3℘(v) + 1)2

(
4

3
− g2

)1/2

×

×
(
− 18g3

(
3g3v − 12v℘(v)3 + 4v℘(v)− 4ζ(v)− 6℘(v)℘(v)′

)
v

+ 3g32 − 2g22 (2v + 3℘(v)′)

− 6g2
(
ζ(v)

(
3g3 + 24℘(v)3 − 8℘(v)

)
+ 4

(
3℘(v)2 − 1

)
℘(v)′

) )
. (43)

In the case when the force does not depend on the proper time explicitly instead of

proper time parametrisation it is convenient to use ϕ as a parameter of motion, so we

rewrite our perturbations equations (33) and (35) in terms of ϕ as

C ′
1(ϕ) =

r4

C1

fϕ, (44)

C ′
2(ϕ) =

(
1− rg

r

) r2

C2

fϕ − r2℘′(v)

2rgC2

f r, (45)

or, analogously, (36) and (37) as

g′2(ϕ) =
r4

rg

(
4

3
− g2

)2

fϕ, (46)

g′3(ϕ) =
r2℘′(v)

rg

(
4

3
− g2

)
f r

−
r
(
r3 (27g3 − 8) + 108r2g(r − rg)

)
54r2g

(
4

3
− g2

)
fϕ, (47)

and (41) as

v′(ϕ) =
1

2
+Bv

rf
r +Bv

ϕf
ϕ, (48)

where prime denotes a derivative with respect to ϕ, and

Bv
r (ϕ) = Av

r

r2

C1

, Bv
ϕ(ϕ) = Av

ϕ

r2

C1

. (49)

A full set of perturbation equations for osculating parameters must also contain

equations for Ms and Mt. But due to their cumbersomeness and the fact that in the
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case when the force does not depend explicitly on the proper and coordinate times we

can find Ms and Mt directly via their definitions (17) and (18), we will omit writing

these equations.

The perturbation equations for osculating elements derived above (36), (37) and

(41) are equivalent to equations obtained in [PP08]

∂zα

∂IA
İA = 0,

∂żα

∂IA
İA = fα, (50)

where z = (t, r, ϕ) and IA are five osculating elements. We decided to write our equations

in a manner closer to the standard approach in classical celestial mechanics (see [Kli16])

because, instead of using the Chandrasekhar χ parametrisation, we used the more direct

connection between r and ϕ (8) which allowed us to omit solving a system of linear

algebraic equations for İA (50). It is easy to show that solutions İA of (50) are equivalent

to our system of equations (36), (37) and (41).

4. Solving strategy

In general, for the forces which do not depend on proper time explicitly we can

symbolically write the perturbation equations (36), (37) and (41) as

ġ2(s) = F g2(g2(s), g3(s), v(s)), (51)

ġ3(s) = F g3(g2(s), g3(s), v(s)), (52)

v̇(s) = F v(g2(s), g3(s), v(s)), (53)

where the F j(g2, g3, v) are the RHSs of (36), (37) and (41). This is a set of nonlinear

first order differential equations which cannot be solved analytically for arbitrary forces.

In the case when the forces are small we can solve equations (51)-(53) in linear

approximation

ġ2(s) = F g2(g2, g3, v), (54)

ġ3(s) = F g3(g2, g3, v), (55)

v̇(s) = F v(g2, g3, v), (56)

where g2, g3, and also ϕ0 and ω3 in the true anomaly v on the RHSs are now constants.

Thus, the RHSs depend only on ϕ(s) which allows us to reparametrise them in terms

of ϕ

g′2(ϕ) = F̄ g2(g2, g3, v), (57)

g′3(ϕ) = F̄ g3(g2, g3, v), (58)

v′(ϕ) = F̄ v(g2, g3, v), (59)

so that it is in principle possible to integrate these equations.



Gaussian orbital perturbation theory for Schwarzschild geodesics 10

4.1. Secular corrections

In order to obtain secular perturbations, we expand the RHSs of (54)-(56) in a proper

time Fourier series

ġ2(s) = F g2
0 +

∞∑
k ̸=0

F g2
k eikMs , (60)

ġ3(s) = F g3
0 +

∞∑
k ̸=0

F g3
k eikMs , (61)

v̇(s) = F v
0 +

∞∑
k ̸=0

F v
k e

ikMs , (62)

where k = 2πn
Ms(4ω1)

and n ∈ N . Ms(4ω1) is given in Appendix D.1. We can integrate

these equations neglecting all oscillatory terms as

g2(s) = g2 + (s− s0)F
g2
0 , (63)

g3(s) = g3 + (s− s0)F
g3
0 , (64)

v(s) = v0 + (s− s0)F
v
0 , (65)

where the zeroth harmonics are given by

F g2
0 =

1

Ms(4ω1)

∫
Ps

F g2(s)dMs, (66)

F g3
0 =

1

Ms(4ω1)

∫
Ps

F g3(s)dMs, (67)

F v
0 =

1

Ms(4ω1)

∫
Ps

F v(s)dMs, (68)

where
∫
Ps

is an integral over a period Ps = Ms(4ω1).

The same we can do for the coordinate time. We first define the coordinate time

linearised perturbation equations according to

ġ2(t) = Gg2(g2, g3, v), (69)

ġ3(t) = Gg3(g2, g3, v), (70)

v̇(t) = Gv(g2, g3, v), (71)

and then write the coordinate time Fourier series

ġ2(t) = Gg2
0 +

∞∑
k ̸=0

Gg2
k eikMt , (72)

ġ3(t) = Gg3
0 +

∞∑
k ̸=0

Gg3
k eikMt , (73)

v̇(t) = Gv
0 +

∞∑
k ̸=0

Gv
ke

ikMt , (74)
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where the zeroth harmonics are given by

Gg2
0 =

1

Mt(4ω1)

∫
Pt

Gg2(t)dMt, (75)

Gg3
0 =

1

Mt(4ω1)

∫
Pt

Gg3(t)dMt, (76)

Gv
0 =

1

Mt(4ω1)

∫
Pt

Gv(t)dMt, (77)

and
∫
Pt

is an integral over a period Pt = Mt(4ω1) which is also given in Appendix D.1.

Thus, we have the secular perturbations

g2(t) = g2 + (t− t0)G
g2
0 , (78)

g3(t) = g3 + (t− t0)G
g3
0 , (79)

v(t) = v0 + (t− t0)G
v
0. (80)

In addition, there is a connection between the proper and coordinate times secular

perturbations

Gj
0 =

Ms(4ω1)

Mt(4ω1)C2

F j
0 . (81)

Using the same approach we can analogously write the secular perturbations for

C1(s) and C2(s) instead of g2(s) and g3(s). We wrote our general perturbation scheme

for v(s) but for calculations with specific forces it is more convenient to use ϕ0(s) or

ϕ̄0(s) = ϕ0(s) + 2ω3(s) instead. When FC1
0 and FC2

0 are vanishing there are no secular

perturbations of e, p, ra, rp. Then the only non-zero secular correction F ϕ̄0

0 gives an

additional pericenter shift per revolution

∆ =
Ms(4ω1)

2

r2g
C1

ReF ϕ̄0

0 . (82)

5. Perturbation force from a Schwarzschild–de Sitter metric

Though there is an analytical solution for the geodesic equations in the Schwarzschild–

de Sitter space-time [HL08a, HL08b] we treat here the influence of the cosmological

constant as perturbation and apply our perturbation scheme in order to discuss the

performance of the new ansatz.

The non-vanishing metric elements for the Schwarzschild–de Sitter space-time are

g00 = 1− rg
r
− Λ

r2

3
, g11 = − 1

1− rg
r
− Λ r2

3

, g22 = −r2, g33 = −r2 sin2 θ, (83)

where Λ is the cosmological constant. Performing a series expansion for small Λr2g of

the geodesic equations we obtain the corresponding perturbation force for an underlying

Schwarzschild metric

fϕ = 0, (84)

f t =
Λr

3
ṫṙ
(2− 3 rg

r
)

(1− rg
r
)2
, (85)
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where we do not show the explicit expression for f r which is quite cumbersome. Using

the orthogonality condition f iẋi = 0, we can express f r through f t and avoid using

it completely. In the following subsections we integrate the linearised perturbation

equations for C1(ϕ), C2(ϕ) and v(ϕ) (44, 45, 48) with this force.

5.1. Solutions for the osculating elements C1 and C2

As postulated in section 3, we use ṫ and ṙ as in the homogenous case (29) and (31).

Insertion into f t (85) yields

f t = −ΛC1C2r

6rg

℘′(v)(2− 3 rg
r
)(

1− rg
r

)3 . (86)

Equations for C1(ϕ) and C2(ϕ) — (44) and (45) with this force are

C ′
1(ϕ) = 0, (87)

C ′
2(ϕ) =

(
1− rg

r

) r2

C1

f t, (88)

from which we can see that C1(ϕ) = const, so we have only one equation

C ′
2(ϕ) = −Λr3C2

6rg

(2− 3 rg
r
)(

1− rg
r

)2℘′(v). (89)

We solve (89) in linear approximation by Λr2g

C2(ϕ) = C2 + Λr2g
C2

6
a(ϕ), (90)

where here and throughout the text C2 and other osculating elements without the

argument are constants. Solving then the equation for a(ϕ)

a′(ϕ) = −r3

r3g

(2− 3 rg
r
)(

1− rg
r

)2℘′(v), (91)

we have

a(ϕ) = 2 (α(ϕ)− α(0)) , (92)

where

α(ϕ) =
3

(1 + 3℘(v))2
+

1

1 + 3℘(v)
+

1

2− 3℘(v)
. (93)

5.2. Solution for argument of pericenter

Next we integrate the equation for v (48) writing it in terms of f t:

v′(ϕ) =
1

2
−
(
1− rg

r

) C2

C1

2rg
℘′(v)

Bv
rf

t. (94)
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We rewrite this as an equation for ϕ̄0(ϕ) = ϕ0(ϕ) + 2ω3 instead of v(ϕ)

ϕ̄′
0(ϕ) = Λr2g

3 (18g2 + 27g3 − 32)

g32 − 27g23
× (95)

× (1− 3℘) (6g2 (ζ℘
′ + 2℘2)− 9g3 (v℘

′ + 2℘)− 2g22)

(2− 3℘)2(1 + 3℘)3
,

as it is more convenient to solve. Here we omitted the arguments of ℘(v), ℘′(v)

and ζ(v) for simplicity. We integrate equation (95) in linear approximation, using

formulas (C.11)-(C.17) from Appendix C as

ϕ̄0(ϕ) = ϕ̄0 + Λr2g
3 (18g2 + 27g3 − 32)

g32 − 27g23
b(ϕ), (96)

where

b(ϕ) = 2 (β(ϕ)− β(0)) , (97)

and β(ϕ) is defined in Appendix D.2.

5.3. Secular perturbations and comparison with other results

For the proper time secular perturbations we have

FC2
0 =

1

Ms(4ω1)

∫
Ps

FC2(s)dMs =
1

Ms(4ω1)

∫ 4ω1

0

FC2(ϕ)
r2

r2g
dϕ = 0 (98)

and

F ϕ̄0

0 =
1

Ms(4ω1)

∫
Ps

F ϕ̄0(s)dMs =
1

Ms(4ω1)

∫ 4ω1

0

F ϕ̄0(ϕ)
r2

r2g
dϕ =

= Λr2g
2

Ms(4ω1)

C1

r2g

3 (18g2 + 27g3 − 32)

g32 − 27g23
(β(4ω1)− β(0)) . (99)

We do not show the explicit expression for F ϕ̄0

0 because it is too complicated. However,

it can be easily calculated from the definition (D.3) of β(ϕ). Also for the coordinate time

secular perturbations we can use the relation between the proper time and coordinate

time secular corrections (81). Due to vanishing of FC1
0 and FC2

0 there are no secular

perturbations of e, p, ra, rp. The only non-zero secular correction F ϕ̄0

0 gives an additional

pericenter shift per revolution (82)

∆Λ = Λr2g
3 (18g2 + 27g3 − 32)

g32 − 27g23
(β(4ω1)− β(0)) . (100)

We compare this with the pericenter shift from the exact solution of the geodesic

equations in a Schwarzschild–de Sitter space-time obtained in [HL08b]

∆SdS = 2π − 2

∫ zk+1

zk

udu√
P5(u)

, (101)
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where we rewrite P5(u) in terms of our g2 and g3 as

P5(u) = u5 − u4 +
1

108
u2
(
36Λr2g + 9g2 − 27g3 − 4

)
+

1

108
(36− 27g2)u

3 +
Λr2g
3

4− 3g2
12

, (102)

and zi are the zeros of P5(u). Since Λr2g is small and for Λ = 0, ∆SdS = ∆S = 2π − 4ω1

(where ∆S is pure Schwarzschild pericenter shift), we can define the part of the pericenter

shift ∆HL
Λ which arises when Λ ̸= 0 as

2

∫ zk+1

zk

xdx√
P5(x)

= 4ω1 +∆HL
Λ . (103)

For the Sun–Mercury system we have rg = 2953.25008m, the initial conditions ra =

6.981708938652731 ·1010 m, rp = 4.600126052898539 ·1010 m and taking Λ = 10−51m−2,

using numerical integration of (103) we have ∆HL
Λ = 4.04333923643109 · 10−22 and from

our secular correction (100) we have ∆Λ = 4.0433392020640 · 10−22. This demonstrates

the good accuracy of our method. As we can see from Table 1 for initial conditions nearer

to the BH horizon, our method also gives good accuracy compared to the analytical

results.

∆Λ ∆HL
Λ ∆PN,HL

Λ ∆PN,KHM
Λ

Sun–Mercury 4.04333 · 10−22 4.04333 · 10−22 4.04333 · 10−22 4.04333 · 10−22

Sun–Neptune 1.94306 · 10−16 1.94306 · 10−16 1.94306 · 10−16 1.94306 · 10−16

ra = 60, rp = 40 7.9971 · 10−46 8.0257 · 10−46 8.0095 · 10−46 7.6952 · 10−46

ra = 60, rp = 30 5.64630 · 10−46 5.6686 · 10−46 5.6530 · 10−46 5.3981 · 10−46

ra = 60, rp = 20 3.6855 · 10−46 3.7019 · 10−46 3.6856 · 10−46 3.4824 · 10−46

ra = 60, rp = 10 2.0609 · 10−46 2.0714 · 10−46 2.0491 · 10−46 1.8853 · 10−46

ra = 60, rp = 5 1.3429 · 10−46 1.3504 · 10−46 1.3093 · 10−46 1.1495 · 10−46

Table 1: Pericenter shifts per one revolution from our approach ∆Λ (100), exact solution

from [HL08b] ∆HL
Λ (103) and post-Newtonian results from [HL12] (104) and from

[KHM03] (105) for different initial conditions and fixed rg = 1, Λ = 10−51, ϕ0 = 2ω1.

In addition, in Table 1 we compare our result with the post-Newtonian pericenter

shift per revolution obtained as an asymptotic of the exact analytical solution given in

[HL12]

∆PN,HL
Λ = 2πd3

√
1− e2

Λ

rg
+

4π (2− e2) d2√
1− e2

Λ, (104)

where d = ra+rp
2

is the semi-major axis, and with the result obtained in [KHM03] from

solving the post-Newtonian analogue of Gaussian perturbation equations

∆PN,KHM
Λ = 2πd3

√
1− e2

Λ

rg
, (105)
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∆Λ ∆PN,HL
Λ 1− ∆Λ

∆PN,HL
Λ

ϕ0 = 0 7.995120968946 · 10−46

8.009523689361 · 10−46

0.001798199365

ϕ0 =
1
3
ω1 7.995349480728 · 10−46 0.001769669356

ϕ0 =
2
3
ω1 7.995872474588 · 10−46 0.001704372856

ϕ0 =
4
3
ω1 7.996805572986 · 10−46 0.001587874244

ϕ0 = 2ω1 7.997107022468 · 10−46 0.001550237863

Table 2: Pericenter shifts per one revolution from our approach ∆Λ (100), and from the

post-Newtonian approach (104) for different values of the argument of pericenter ϕ0,

and rg = 1, Λ = 10−51, ra = 60, rp = 40.

∆Λ ∆PN,HL
Λ 1− ∆Λ

∆PN,HL
Λ

ϕ0 = 0 1.293073798734 · 10−46

1.309393097286 · 10−46

0.012463253843

ϕ0 =
1
3
ω1 1.328221084176 · 10−46 0.0143791707235

ϕ0 =
2
3
ω1 1.340122721108 · 10−46 0.023468600747

ϕ0 =
4
3
ω1 1.342725722866 · 10−46 0.025456545974

ϕ0 = 2ω1 1.342944505857 · 10−46 0.0256236333005

Table 3: Pericenter shifts per one revolution from our approach ∆Λ (100), and from the

post-Newtonian approach (104) for different values of the argument of pericenter ϕ0,

and rg = 1, Λ = 10−51, ra = 60, rp = 5.

which is equal to the first term in (104). From Table 1, we see that for the Solar System

initial data the post-Newtonian approaches work perfectly and our method agrees with

them. From Table 1, Fig. 1 and Fig. 2 we see that for initial data which is closer to a

BH horizon our method gives at least one order advantage to post-Newtonian results

obtained from solving perturbations equations (105) and has approximately the same

accuracy as the post-Newtonian asymptotic (104) of the analytical solution for small

eccentricity and is getting closer to the exact analytical shift (103) for high eccentricity.

The pericenter shift per revolution (100) depends on ϕ0, in contrast to the post-

Newtonian ones (104) and (105), which is a limitation of accuracy of our method. In

Tables 2 and 3 we compare pericenter shift per revolution from our method (100) and

the post-Newtonian asymptotics of the exact solution (104) for several initial values of

the argument of pericenter ϕ0. We can see that although this dependence is quite weak

for a small eccentricity (in Table 2 the difference is only 0.02% for different ϕ0), it is

stronger for a larger eccentricity (in Table 3 the difference is 1.5% for different ϕ0).
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Figure 1: Pericenter shifts per one revolution from our approach ∆Λ (100) – black dots

and from two post-Newtonian approaches: ∆HL
Λ (104) – yellow line and ∆KHM

Λ (105) –

blue line, as functions of pericenter distance rp for fixed rg = 1, Λ = 10−51, ϕ0 = 0 and

for two different values of apocenter distance ra.
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(a) p = 20
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45
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Figure 2: Pericenter shifts per one revolution from our approach ∆Λ (100) – black dots

and from two post-Newtonian approaches: ∆HL
Λ (104) – yellow line and ∆KHM

Λ (105) –

blue line, as functions of eccentricity e for fixed rg = 1, Λ = 10−51, ϕ0 = 0 and for two

different values of semi-latus rectum p.

6. Quantum gravitational correction to a Schwarzschild black hole

In the effective field theory approach to quantum gravity (see [Don12]) we need to

consider additional terms in Einstein–Hilbert action like

S =

∫
d4x

√
g

(
Λ +

1

16πG
R + c1R

2 + c2RµνR
µν + ...

)
, (106)

where R is the scalar curvature, Rµν is the Ricci curvature tensor and cj are parameters

of the theory which in principle can be experimentally measured. Here we neglect Λ.

As is shown in [Cal18] and [CEM17] at second order in curvature, quantum corrections

do not contribute to the Schwarzschild metric. But at third order in the curvature, as
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it was obtained in [CK21], we can write the quantum corrected Schwarzschild metric

g00 = 1− rg
r
+ 5ϵρ4

r3g
r7
, (107)

g11 = − 1

1− rg
r
+ ϵρ4

r2g
r6

(
27− 49 rg

2r

) , (108)

g22 = −r2, (109)

g33 = −r2 sin2 θ, (110)

where we introduced a constant ρ which has the dimension of a distance and a

dimensionless parameter ϵ as ϵρ4 = 128G2πc6. The dimensionless parameter c6 is the

coefficient of the terms in the gravitational Lagrangian cubic in the curvature [CK21].

In order for the terms with c6 in g00 and g11 to be small compared to the Schwarzschild

terms, c6 must be much less than M4G2

40π
. It is convenient to define the constant ρ

as ρ4 =
r4g
5

so that ϵ ≪ 1 for all c6 ≪ M4G2

40π
, which allows us to use ϵ as a small

parameter for our calculations in this section. As in the previous section, one gets

from the expansion of the geodesic equations with respect to the small parameter ϵ the

corresponding perturbation force for the Schwarzschild metric

fϕ = 0, (111)

f t = ϵ
5ρ4ṫṙr3g(7− 6 rg

r
)

r8(1− rg
r
)2

. (112)

In analogy to the previous section, we express f r through f t and use only f t. In the

following subsections we integrate the linearised perturbation equations for C1(ϕ), C2(ϕ)

and v(ϕ) (44, 45, 48) with this force.

6.1. Solutions for the osculating elements C1 and C2

After insertion of ṫ and ṙ from (29) and (31) into f t (112) one gets

f t = −ϵ
5

2

ρ4

r8
r2g
C2C1℘

′(v)(
1− rg

r

)3 (7− 6
rg
r

)
. (113)

Eqns. (44) and (45) for C1(ϕ) and C2(ϕ) with this force give

C ′
1(ϕ) = 0, (114)

C ′
2(ϕ) =

(
1− rg

r

) r2

C1

f t. (115)

Clearly, C1(ϕ) = const, so that we have only one equation

C ′
2(ϕ) = −ϵ

5

2

ρ4

r6
r2g

C2℘
′(v)(

1− rg
r

)2 (7− 6
rg
r

)
. (116)
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We solve (116) in linear approximation by ϵ

C2(ϕ) = C2 + ϵa(ϕ), (117)

which gives

a′(ϕ) = −5

2

ρ4

r6
r2g

C2℘
′(v)(

1− rg
r

)2 (7− 6
rg
r

)
. (118)

After integration we have

a(ϕ) =
5C2ρ

4

r4g
(α(ϕ)− α(0)) , (119)

where

α(ϕ) = ℘6(v) + 3℘5(v) +
13℘4(v)

3
+

113℘3(v)

27
+

29℘2(v)

9

+
181℘(v)

81
+

1

℘(v)− 2
3

. (120)

6.2. Solution for for argument of pericenter

Next we integrate the equation for the true anomaly v (48) depending on f t:

v′(ϕ) =
1

2
−
(
1− rg

r

) C2

C1

2rg
℘′(v)

Bv
rf

t. (121)

We rewrite this as an equation for ϕ̄0(ϕ) = ϕ0(ϕ) + 2ω3 instead of v(ϕ)

ϕ̄′
0(ϕ) = 4ϵC2

2

5ρ4

r8
r3g

(1− rg
r
)2

(
7− 6

rg
r

)
Bv

r , (122)

as it is more convenient to solve. Then in linear approximation

ϕ̄0(ϕ) = ϕ̄0(0) + ϵb(ϕ), (123)

using formulas (C.1)-(C.17) from Appendix C we integrate (122) and obtain

b(ϕ) = C2
2

ρ4

r4g

20(3g2 − 4)

3 (g32 − 27g23)
(β(ϕ)− β(0)) , (124)

where β(ϕ) is defined in Appendix D.3.

6.3. Secular perturbations

For proper time secular perturbations we have

FC2
0 =

1

Ms(4ω1)

∫
Ps

FC2(s)dMs =
1

Ms(4ω1)

∫ 2ω1

−2ω1

FC2(ϕ)
r2

r2g
dϕ =

= − 1

Ms(4ω1)

∫ 2ω1

−2ω1

ϵ
5

2

ρ4

r6
C2C1℘

′(v)(
1− rg

r

)2 (7− 6
rg
r

)
dϕ = 0 (125)
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and

F ϕ̄0

0 =
1

Ms(4ω1)

∫
Ps

F ϕ̄0(s)dMs =
1

Ms(4ω1)

∫ 2ω1

−2ω1

F ϕ̄0(ϕ)
r2

r2g
dϕ =

= ϵC2
2C1

ρ4

r6g

20(3g2 − 4)

3 (g32 − 27g23)

1

Ms(4ω1)
(β(2ω1)− β(−2ω1)) . (126)

We also give an explicit expression for F ϕ̄0

0 in Appendix D.3. Also for the coordinate time

secular perturbations we can use the relation between the proper time and coordinate

time secular corrections (81).

Due to vanishing of FC1
0 and FC2

0 there are no secular perturbations of e, p, ra, rp so

that there are no inspirals induced by quantum corrections in linear approximation. The

only non-zero secular correction F ϕ̄0

0 gives an additional pericenter shift per revolution

(82) that in principle may be observed for supermassive BH as in [AAB+20], which

could allow us to estimate parameter c6. As an example, for initial conditions rg = 1,

ra = 60, rp = 50, ϕ0 =
π
5
and ϵρ4 = 0.1 we have ∆qc = 1.176835 · 10−7 and for different

rp = 10 we have ∆qc = 0.000227034. Comparison with the pure Schwarzschild shifts

∆S = −0.180262 and ∆S = −0.6376871 shows that the additional pericenter shifts are

very small, even for such initial conditions when the test particle is quite close to the

BH horizon.

7. Hybrid Schwarzschild/post-Newtonian 2.5 self-force

There are a lot of approaches to the two-body problem in GR. One of them is the

self-force technique (see [BP18]) which can be used for the case when the two bodies

have very different masses. In this approach, the smaller body moves in the metric

of the larger one, but with an additional perturbation force which take into account

the gravitational field of both masses. This additional so-called self-force depends on

the mass ratio. In [PP08] the authors developed a version of a self-force calculation,

considering a binary non-spinning system of two bodies of masses m1 and m2 governed

by the hybrid Schwarzschild/post-Newtonian 2.5 order equations of motion proposed in

[KWW93]. Here “hybrid” means that the post-Newtonian series has two types of terms:

one type depends on the mass ratio m1

m2
and the other type is independent of it and equals

to the first terms of the post-Newtonian expansion for the Schwarzschild metric. In the

hybrid approach, we take the full post-Newtonian series for the Schwarzschild metric in

place of the mass ratio independent part of the post-Newtonian expansion. In [PP08] the

hybrid Schwarzschild/post-Newtonian 2.5 equations of motion have been rewritten as a

self-force problem for Schwarzschild geodesics. If the mass ratio is small, we can define

a small dimensionless parameter ϵ = µ
m1+m2

, where µ = m1m2

m1+m2
is the reduced mass. We

also use rg = 2(m1 +m2) (where we set G = 1) and µ = rgϵ

2
. The perturbative force is
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given by

f r = − µ

r2
(A+ Bṙ) , (127)

fϕ = − µ

r2
Bϕ̇, (128)

where

A =
ṫ2

(1− rg
2r
)2
Â, (129)

B =
ṫ4

(1− rg
2r
)2

(
1

1− rg
r

Â+
(
1− rg

r

)
B̂

)
, (130)

and

Â = A1 + A2 + A2.5, (131)

B̂ = B1 +B2 +B2.5, (132)

with the definitions for Aj

A1 = −2
rg

2r − rg
+ 3u2 − 3

2

(
dr

dt

)2

, (133)

A2 =
87

4

r2g
(2r − rg)2

+ 3u4 − 13

2

rg
2r − rg

u2 − 9

2
u2

(
dr

dt

)2

+
15

8

(
dr

dt

)4

− 25
rg

2r − rg

(
dr

dt

)2

, (134)

A2.5 = −8

5

rg
2r − rg

dr

dt

(
17

3

rg
2r − rg

+ 3u2

)
, (135)

and for Bj

B1 = 2
dr

dt
, (136)

B2 = −1

2

dr

dt

(
15u2 − 41

rg
2r − rg

− 9

(
dr

dt

)2
)
, (137)

B2.5 =
8

5

rg
2r − rg

(
3rg

2r − rg
+ u2

)
. (138)

Here u2 = δij
dxi

dt

dxj

dt
= ( rg

2
− r)2

(
dϕ
dt

)2
+
(
dr
dt

)2
is the square of the velocity in harmonic

coordinates xj which we rewrote in Schwarzchild coordinates.

7.1. Solutions for the osculating elements g2, g3, v

We solve perturbation equation for g2 (46) in linear approximation in ϵ using formulas

(C.1)-(C.17) from Appendix C:

g2(ϕ) = g2 +
ϵ

54

(
4a1(ϕ)−

C2
1

108C2
2r

2
g

a2(ϕ) +
27C1

C2rg
a2.5(ϕ)

)
, (139)
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where

aj(ϕ) = αj(ϕ)− αj(0), (140)

and the αj are given in Appendix D.4. Analogously, for g3 from (47) we have

g3(ϕ) = g3 +
ϵ

162

(
−8b1(ϕ)−

C2
1

54C2
2r

2
g

b2(ϕ) +
81C1

C2rg
b2.5(ϕ)

)
, (141)

where

bj(ϕ) = βj(ϕ)− βj(0), (142)

and the βj are given in Appendix D.4. Also, rewriting equation for v (48) as an equation

for ϕ̄0 we have a formal solution

ϕ̄0(ϕ) = ϕ̄0 +
ϵrg
2
(c1(ϕ) + c2(ϕ) + c2.5(ϕ)). (143)

Owing to the presence of terms v℘′(v)
1+3℘(v)

and ζ(v)℘′(v)
1+3℘(v)

the cj(ϕ) cannot be integrated

analytically but, instead, have to be calculated numerically.

7.2. Secular perturbations

For the proper time secular perturbations of g2 and g3 we have

F g2
0 =

1

M(4ω1)

ϵ

2

1

rg

C2
1

C2

a2.5(4ω1), (144)

F g3
0 =

1

M(4ω1)

ϵ

2

1

rg

C2
1

C2

b2.5(4ω1), (145)

where due to periodicity of a1(ϕ), a2(ϕ) and b1(ϕ), b2(ϕ) there are only order 2.5

corrections. For ϕ̄0 we have

F ϕ̄0

0 =
1

M(4ω1)
C1

ϵrg
2
(c1(4ω1) + c2(4ω1) + c2.5(4ω1)). (146)

Also for coordinate time secular perturbations, we can use the relation between proper

time and coordinate time secular corrections (81).

Due to non-vanishing of F g2
0 and F g3

0 we have non-zero secular corrections to e,

p, ra, rp which lead to inspirals as we can see in Figs. 3-5, where we plot the secular

evolution of the apocenter and pericenter distances and also the eccentricity for various

initial conditions. The secular perturbation for ϕ̄0 contributes only to an additional

pericenter shift per revolution ∆sf (82). Fixing the parameters and initial conditions

µ = 1
10
, ϕ0 = π

5
, rg = 1, ra = 60, rp = 55 we have ∆sf = −1.7866, for rp = 40 we have

∆sf = −0.0239023, and for rp = 10 we have ∆sf = 0.0784699. Comparison with the

pure Schwarzschild shifts ∆S = −0.170952, ∆S = −0.206085 and ∆S = −0.6376871,

respectively, one gets that these additional pericenter shifts are close or even larger than

the pure shifts for such extreme initial conditions. For more realistic mass ratios the

additional pericenter shifts will be much smaller.
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Figure 3: Secular evolution of apocenter (blue line), pericenter (yellow line) distances (a)

and eccentricity (b) with parameters µ = 1
10
, rg = 1 and initial conditions ϕ0 = π

5
,

ra = 60, rp = 55. Dashed lines are the corresponding initial conditions. The time is

given in terms of the proper time mean anomaly Ms in units of Ms(4ω1).
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Figure 4: Secular evolution of apocenter (blue line), pericenter (yellow line) distances (a)

and eccentricity (b) with parameters µ = 1
10
, rg = 1 and initial conditions ϕ0 = π

5
,

ra = 60, rp = 40. Dashed lines are the corresponding initial conditions. The time is

given in terms of the proper time mean anomaly Ms in units of Ms(4ω1).

8. Summary, discussion, and outlook

A new perturbation technique for osculating elements in a Schwarzschild space-time in

terms of Weierstrass elliptic functions has been developed. The osculating elements

are defined as usual. Then, restricting to the case of perturbation forces within

the orbital plane, the general relativistic Gaussian perturbation equations for the

osculating elements g2, g3, ϕ0 have been set up. These equations have been solved for

several perturbation forces in linear approximation, leading to secular corrections of the

osculating elements. The equations for the osculating elements Ms and Mt representing

the mean proper and coordinate time anomalies are very complicated. However, in

the case when the disturbing force does not depend on the proper and coordinate times



Gaussian orbital perturbation theory for Schwarzschild geodesics 23

0 5 10 15 20

Ms

Ms 4ω1

10

20

30

40

50

60

ra

rg
,
rp

rg

(a)

5 10 15 20

Ms

Ms 4ω1

0.55

0.60

0.65

0.70

e

(b)

Figure 5: Secular evolution of apocenter (blue line), pericenter (yellow line) distances (a)

and eccentricity (b) with parameters µ = 1
10
, rg = 1 and initial conditions ϕ0 = π

5
,

ra = 60, rp = 10. Dashed lines are the corresponding initial conditions. The time is

given in terms of the proper time mean anomaly Ms in units of Ms(4ω1).

explicitly, the procedure considerably simplifies and one can evaluateMs andMt directly

by their definitions.

As a test model, the perturbation related to the additional influence due to the

cosmological constant defined by geodesic motion in a Schwarzschild–de Sitter space-

time has been considered. The linearised perturbation equations in that case have been

solved. From these solutions, one obtains an additional pericenter shift. This result

has been compared with two known post-Newtonian results: an asymptotics of an exact

solution of the geodesic equations [HL12] and a solution of the post-Newtonian Gaussian

equations [KHM03]. This comparison shows that the new method works better than

the post-Newtonian Gaussian equations approach and gives approximately the same

accuracy as the post-Newtonian approximation of the exact solution.

As an example of possible applications of the new method, the quantum correction

to the Schwarzschild metric obtained in [CK21] has been considered. This correction

leads to a particular perturbation force. As another practical application for modelling

the inspiral of binary systems, the self-force within a hybrid Schwarzschild/post-

Newtonian 2.5 order formalism as introduced in [PP08] has been considered. For the

corresponding perturbation force, the linearised solutions lead to secular corrections,

which in principle can be observed.

Despite the fact that in the weak field regime of, e.g., in planetary systems the

post-Newtonian approach works perfectly and also is considerably simple to handle,

for extreme mass-ratio inspirals and for near to BH horizon physics it is inevitable to

use approaches like the new parturbation scheme presented here, or higher order post-

Newtonian approximations, or the scheme presented in [PP08]. The advantage of the

scheme presented in this paper is that one very quickly arrives at high precision result,

however, at the cost of first doing calculations involving elliptic functions.

Our technique could be modified for the application to the problem of motion
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of photons in strong gravity regime. This then would easily include the multiple

orbiting of light around a BH. A further possible future direction of applications is to

investigate modified GR and alternatives to GR, and their impact on geodesic motion.

Also, it is interesting to consider the influence of quantum gravitational effects, non-flat

asymptotics etc. on motion. One may also consider perturbation forces not restricted

to the orbital plane as they may appear for neutron stars, with additional multipole

moments originating in the rotation of the stars. In order to do so, we need to expand

our GR Gaussian perturbation scheme to include equations for the other osculating

elements, namely the inclination i and the ascending node Ω. And finally, since also

all geodesics around a Kerr BH are known [Hac10] which are all also given in terms of

Weierstrass elliptic functions, one may think about a perturbation theory based on the

solutions of Kerr geodesics.
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Appendix A. Elliptic functions

In this appendix a short introduction to elliptic functions is given which consists of the

formulas that are widely used in this manuscript. For a broader view in this topic, see

for example [WW21], [Law13] or other classical textbooks on elliptic functions.

The Weierstrass elliptic ℘-function is a doubly periodic meromorphic function which

can be defined as parametrisation of the elliptic curve

℘′2(v) = 4℘3(v)− g2℘(v)− g3 = 4(℘(v)− e1)(℘(v)− e2)(℘(v)− e3), (A.1)

where g2, g3 are the so-called invariants of this elliptic curve, and e1, e2, e3 are the

zeros of ℘′ given by ei = ℘(ωi), where ωi are half-periods of ℘(v). It is useful to define

Weierstrass zeta function ζ(v)

℘(v) = − d

dv
ζ(v), (A.2)

and Weierstrass sigma function σ(v)

ζ(v) =
d

dv
log σ(v). (A.3)

We widely use the quasi-periodic property of the ζ(v) function with quasi-periods 2ωi

ζ(v + 2ωi) = ζ(v) + 2ηi, (A.4)
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where ηi = ζ(ωi). For σ(v) there is also a simple formula for the 2ωi shifts

σ(v + 2ωi) = −e2ηi(z+ωi)σ(v). (A.5)

In order to use the Weierstrass ℘-function for physics, we need to introduce the

region of v where ℘(v) is a real-valued function. As is shown in [Law13], ℘(v) is a

real-valued function if and only if the half-period ω1 is real and the other half-period ω3

is imaginary. The domains where ℘(v) is a real-valued function are then v ∈ (ix+ ω1),

(x + ω3), (x), (ix) where x ∈ R. Following [Hag31], in this paper the imaginary half-

period shift ℘(x+ ω3) is taken.

In addition, the derivatives of ℘(v; g2, g3) with respect to its invariants g2 and g3
are used in section 3 [WR],

∂℘(v; g2, g3)

∂g2
=

2g22℘− 36g3℘
2 + ℘′ (g22v − 18g3ζ) + 6g3g2
4 (g32 − 27g23)

, (A.6)

∂℘(v; g2, g3)

∂g3
=

12g2℘
2 − 18g3℘+ ℘′ (6g2ζ − 9g3v)− 2g22

2 (g32 − 27g23)
. (A.7)

Here, for simplicity, the arguments of ℘(v; g2, g3), ℘
′(v; g2, g3), ζ(v; g2, g3) on the RHS

have been omitted.

Appendix B. Comparison of Hagihara’s and Sharf’s solutions

We prove the equivalence of Hagihara’s [Hag31] and Sharf’s [Sch11] solutions of the

geodesic equations in a Schwarzschild space-time. Let’s consider Hagihara’s solution

r =
rg

1
3
+ ℘(u

2
+ ω̂3)

, (B.1)

where ω̂3 is a half-period of ℘(u, 16g2, 64g3). Using the homogeneity of ℘ [WW21]

℘(λu, λ−4g2, λ
−6g3) = λ−2℘(u, g2, g3), (B.2)

we have

℘
(u
2
, 16g2, 64g3

)
= 4℘(u, g2, g3), (B.3)

and for r

r =
3rg

1 + 12℘(u+ ω3)
, (B.4)

where ω3 is a half-period of ℘(u, g2, g3). In order to transform expression (B.4) for r into

the corresponding expression from [Sch11] we can use the half-period addition formula

[WW21]

℘(u+ ω3) = e3 +
(e3 − e1)(e3 − e2)

℘(u)− e3
, (B.5)

where the zeros e1, e2 and e3 can be expressed through the pericenter and apocenter

coordinates as defined in [Sch11]

r1 =
3rg

12e3 + 1
, r2 =

3rg
12e2 + 1

. (B.6)
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This leads to

r = r1 −
3r1 (r1 − r2) (−2r2rg − r1rg + r1r2)

−3r21rg − 3r2r1rg + 3r22rg + 3r2r21 − 2r22r1 + 12r22r1℘(u)
. (B.7)

After defining r3 according to [Sch11]

r3 =
r1r2rg

−r2rg − r1rg + r1r2
, (B.8)

we finally can write

r = r1 −
3r1 (r1 − r2) (r1 − r3)

4℘(u)(3r2r1 + 3r3r1 + 3r2r3) + 3r21 − 2r2r1 − 2r3r1 + r2r3
, (B.9)

which is exactly the expression from [Sch11].

Appendix C. Table of integrals

In this appendix, we show some integrals that appear when we solve perturbation

equations with different forces. For integrals of ℘n(v) we use the formulas from [PBM90]∫
℘(v)dv = −ζ(v), (C.1)∫
℘2(v)dv =

g2v

12
+

℘′(v)

6
, (C.2)∫

℘3(v)dv = − 3

20
g2ζ(v) +

g3v

10
+

℘(v)℘′(v)

10
, (C.3)∫

℘n(v)dv =
1

2(2 n− 1)
℘n−2(v)℘′(v) +

(2 n− 3)g2
4(2 n− 1)

∫
℘n−2(v)dv

+
(n− 2)g3
2(2 n− 1)

∫
℘n−3(v)dv. (C.4)

For integrals of v℘n(v)℘′(v) we use integration by parts∫
v℘′(v)dv = v℘(v) + ζ(v), (C.5)∫

v℘(v)℘′(v)dv =
v℘2(v)

2
− 1

2

(
g2v

12
+

℘′(v)

6

)
, (C.6)∫

v℘n(v)℘′(v)dv =
1

n+ 1
v℘n+1(v)−

∫
℘n+1(v)dv. (C.7)

For integrals of ζ(v)℘n(v)℘′(v) we also use integration by parts∫
ζ(v)℘′(v)dv = ζ(v)℘(v) +

∫
℘2(v)dv, (C.8)∫

ζ(v)℘n(v)℘′(v)dv =
1

n+ 1
ζ(v)℘n+1(v) +

1

n+ 1

∫
℘n+2(v)dv. (C.9)
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The same method works for integrals of the form ℘n(v)v∫
v℘(v)dv = −vζ(v) +

∫
ζ(v)dv = −vζ(v) + log σ(v). (C.10)

In addition, we have integrals of v℘′(v)
(ρ−℘(v))n

and ζ(v)℘′(v)
(ρ−℘(v))n

. For n = 2 and n = 3 we get∫
v℘′(v)

(ρ− ℘(v))2
dv =

v

ρ− ℘(v)
+

∫
1

ρ− ℘(v)
dv, (C.11)∫

v℘′(v)

(ρ− ℘(v))3
dv =

v

2(ρ− ℘(v))2
− 1

2

∫
1

(ρ− ℘(v))2
dv, (C.12)∫

ζ(v)℘′(v)

(ρ− ℘(v))2
dv = ζ(v)

1

ρ− ℘(v)
+

∫
℘(v)

ρ− ℘(v)
dv, (C.13)∫

ζ(v)℘′(v)

(ρ− ℘(v))3
dv = ζ(v)

1

2(ρ− ℘(v))2
− 1

2

∫
1

ρ− ℘(v)
dv +

1

2

∫
ρ

(ρ− ℘(v))2
dv. (C.14)

In [PBM90] there are a few typos in integrals of 1
(℘(v)−ρ)n

. We use their correct versions∫
1

℘(v)− ρ
dv = − ξ2(ϕ, ρ)√

4ρ3 − g2ρ− g3
, (C.15)∫

1

(℘(v)− ρ)2
dv =

−1

4ρ3 − g2ρ− g3

(
ξ1(ϕ, ρ)−

ξ2(ϕ, ρ)
(
6ρ2 − g2

2

)√
4ρ3 − g2ρ− g3

)
, (C.16)∫

1

(℘(v)− ρ)n
dv =

℘′(v)

(℘(v)− ρ)n−1

1

((n− 1) (g2ρ+ g3 − 4ρ3))
−

− ((2n− 3) (g2 − 12ρ2))

2(n− 1) (g2ρ+ g3 − 4ρ3)

∫
1

(℘(v)− ρ)n−1dv

+
(12(n− 2)ρ)

(n− 1) (g2ρ+ g3 − 4ρ3)

∫
1

(℘(v)− ρ)n−2dv

− (2(5− 2n))

(n− 1) (g2ρ+ g3 − 4ρ3)

∫
1

(℘(v)− ρ)n−3dv. (C.17)

Appendix D. Exact expressions

In this part of the appendix, we present some exact expressions and definitions that we

used in the main sections.

Appendix D.1. Exact expressions for Ms(4ω1) and Mt(4ω1)

For proper time mean anomaly, using the 2ω1 shift properties (A.4), (A.5) of σ(v)

and ζ(v) functions we can calculate

Ms(4ω1) =
−2

℘′(y)

(
4η1 −

3℘′′(y)(4yη1 + 2iπ) + 4ω1(℘
′(y) + 3℘′′(y)ζ(y))

3℘′(y)

)
(D.1)

and also for coordinate time mean anomaly

Mt(4ω1) = Ms(4ω1) + 8
ω1ζ(y)− η1y

℘′(y)
− 8

ω1ζ(z)− η1z

℘′(z)
. (D.2)
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Appendix D.2. Exact expression for β(ϕ) for the Schwarzschild–de Sitter metric

After integration of (95) and simplification, we obtain for the β introduced in (97)

β(ϕ) = βvv + βζζ + β℘℘
′ + β1

1ξ1(ϕ,−1/3) +

+ β1
2ξ2(ϕ,−1/3) + β2

1ξ1(ϕ, 2/3) + β2
2ξ2(ϕ, 2/3), (D.3)

where

βv =
g3

−27℘3 + 9℘+ 2
+

4 (3g2 (3g2 − 5) + 4)

81 (9g2 − 27g3 − 4)
+

4

81
, (D.4)

βζ = − 2g2
−81℘3 + 27℘+ 6

, (D.5)

β℘ =
2 (g2 (3g2 − 2)− 9g3)

3 (9g2 − 27g3 − 4) (3℘+ 1)2
, (D.6)

β1
1 =

297g32 − 6 (27g3 + 28) g22 + (64− 702g3) g2 + 9g3 (56− 351g3)

27 (−9g2 + 27g3 + 4) 2
, (D.7)

β1
2 =

(99g2 − 54g3 − 116) (g32 − 27g23)

2
√
3 (9g2 − 27g3 − 4) 5/2

, (D.8)

β2
1 =

2 (g2 (3g2 − 8) + 18g3)

27 (18g2 + 27g3 − 32)
, (D.9)

β2
2 = − g32 − 27g23√

3 (−18g2 − 27g3 + 32) 3/2
, (D.10)

where we omitted the argument of ℘(v), ℘′(v) and ζ(v) for simplicity.

Appendix D.3. Exact expression for β(ϕ) for the quantum correction

After integration of (122) and simplification we obtain β introduced in (124) as

β(ϕ) = βvv + βζζ + β℘℘
′ + β1ξ1(ϕ, 3/2) + β2ξ2(ϕ, 3/2), (D.11)

where

βv =
9

2
3
− ℘

− 1

9
℘(3℘(℘(9℘(3℘(℘+ 3) + 13) + 113) + 87) + 181)

+
1

960
g2
(
69g22 + 260g2 + 2320

)
+

1

2592

g2
g3

(g2 (3g2 (135g2 + 452)− 2896)− 15552)

− 9

5
g23 −

1

6
g3 (27g2 + 113) , (D.12)

βζ = − 6
2
3
− ℘

+
2

27
℘(3℘(℘(9℘(3℘(℘+ 3) + 13) + 113) + 87) + 181) +

(
3g3
16

− 29

18

)
g2

+
g3 (351g3 + 181)

9g2
+

1

180
g3 (621g3 + 565)− 21

160
g32 −

13g22
8

, (D.13)
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β℘ = 3g2℘
5 + 9

(
g2 −

g3
2

)
℘4 +

(
g22
4

+ 13g2 −
27g3
2

)
℘3

+

(
3g22
4

− 3g3g2
8

+
113g2
9

− 39g3
2

)
℘2

+

(
7g32
80

+
13g22
12

+
29g2
3

− 9g3g2
8

− 9

5
g23 −

113g3
6

)
℘

+
5g32
16

+
113g22
108

+
181g2
27

− 1

32
g22g3 −

29g3
2

− 27g23
4

− 13g2g3
8

, (D.14)

β1 =
18 (3g22 − 8g2 + 18g3)

18g2 + 27g3 − 32
, (D.15)

β2 =
27 (g32 − 27g23)

(18g2 + 27g3 − 32)℘′(y)
, (D.16)

where we omitted the argument of ℘(v), ℘′(v) and ζ(v) for simplicity.

For the proper time secular perturbation (126) we have an explicit expression

F ϕ̄0

0 = ϵC2
2C1

ρ4

r6g

20(3g2 − 4)

3 (g32 − 27g23)

1

Ms(4ω1)

×
(
η1

(
12ê62g2 + 36ê52g2 + 52ê42g2 +

452

9
ê32g2 +

116

3
ê22g2 +

724ê2g2
27

+36g2

(
1

3ê2 − 2
− 16

18g2 + 27g3 − 32

)
+

1

90
g2g3 (621g3 + 565)− 13g32

4
− 21g42

80

+g22

(
3g3
8

+
216

18g2 + 27g3 − 32
− 29

9

)
+

2

9
g3

(
351g3 +

5832

18g2 + 27g3 − 32
+ 181

))
+ω1

(
−2

9
ê2 (3ê2 (ê2 (9ê2 (3ê2 (ê2 + 3) + 13) + 113) + 87) + 181) g3

+
54g3

2− 3ê2
− 108ζ(y) (g32 − 27g23)

(18g2 + 27g3 − 32)℘′ (y)
+

5g42
16

+
113g32
108

− 181g22
81

+
1

480
(g2 (69g2 + 260) + 2320) g3g2 − 12g2 −

1

3
(27g2 + 113) g23 −

18g33
5

+
16 (9g22 − 60g2 + 64)

18g2 + 27g3 − 32
+ 32

)
+

108 (g32 − 27g23)℘
−1
(
2
3

)
η1

(18g2 + 27g3 − 32)℘′ (y)

)
, (D.17)

where ê2 = ℘(ϕ0

2
+ ω2).

Appendix D.4. Exact expressions for αj(v) and βj(v) for the self-force

For the functions αj defined in (140) we have: for α1

α1(v) =
16 (18g2 + 27g3 − 32)

℘− 2/3
+

2 (18g2 + 27g3 − 32)

(℘− 2/3)2
+

(153g2 + 351g3 + 988)

℘− 5/3

− 4 (18g2 + 27g3 − 32)

(℘− 5/3)2
+ 1125− 81℘2 − 540℘ (D.18)

+ 261 (2g2 + 3g3) log
2/3− ℘

5/3− ℘
− 766 log(2− 3℘) + 2224 log(5− 3℘),
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for α2

α2(v) =
12

5
(3g2 − 964) (5− 3℘)5 − 4 (36g2 − 27g3 − 4441) (5− 3℘)4

+ 4 (261g2 − 702g3 − 26168) (5− 3℘)3

+
3

2
(9g2 (9g2 − 296) + 4 (5157g3 + 82268)) (5− 3℘)2

+ 9 (27g2 (3g2 + 18g3 + 728) + 4 (783g3 − 66484)) (5− 3℘)

+
36 (18g2 + 27g3 − 32) (1035g2 + 4104g3 + 24620)

(5− 3℘)2

+
3 (813483g22 + 18 (125739g3 − 480476) g2 + 27g3 (58131g3 − 465032) + 13333424)

5− 3℘

+
6264 (18g2 + 27g3 − 32) 2

(5− 3℘)3
+

3132 (18g2 + 27g3 − 32) 2

2− 3℘
− 783 (18g2 + 27g3 − 32) 2

(2− 3℘)2

− 2 (18g2 + 27g3 − 32) (28962g2 + 43443g3 − 50786) log(2− 3℘)

−
(
1060371g22 + 1656 (1917g3 − 463) g2 + 27g3 (87453g3 − 57392)− 4664464

)
log(5− 3℘)

+
1

3
(5− 3℘)8 + 216(5− 3℘)6 − 88

7
(5− 3℘)7, (D.19)

for α2,5

α2.5(v) = αv
2.5v + αζ

2.5ζ + α℘
2.5℘

′ + α1
2.5ξ1(v, 2/3) + α2

2.5ξ2(v, 2/3)

+ α1,5
2.5ξ1(v, 5/3) + α2,5

2.5ξ2(v, 5/3), (D.20)

where

αv
2.5 =

6912 (3g2 − 100) (52− 3g2)
2

(45g2 + 27g3 − 500) 2
+

64

225
(3g2 + 2680) g3

− 32 (3g2 (1791g2 − 392392) + 23475536)

8505

− 256 (3g2 − 52) (159g2 − 7892)

15 (45g2 + 27g3 − 500)
, (D.21)

αζ
2.5 = −32 (81g22 + 73620g2 − 2139200)

2025
− 18688g3

105
, (D.22)
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α℘
2.5 =

32

75
(9g2 − 940)℘− 224g2℘

75
+

512 (387g2 − 4468)

45(3℘− 5)3
− 1024 (3g2 − 100)

3(3℘− 5)2

− 64 (63g2 + 38924)

45(3℘− 5)2
− 384g3(57℘− 127)

5(3℘− 5)3

+
31104 (27g32 − 1836g22 + 39312g2 − 270400)

(45g2 + 27g3 − 500) 2(3℘− 5)2

− 384 (1431g22℘− 95832g2℘− 1413g22 + 126024g2 + 1231152℘− 1759888)

5 (45g2 + 27g3 − 500) (3℘− 5)3

+
11456g2
315

− 128℘3

15
− 512℘2

7
− 168448

81
, (D.23)

α1,2
2.5 =

2048

405
(9g2 − 16) +

1024g3
15

, (D.24)

α2,2
2.5 =

4096

405
(9g2 + 116) +

4736g3
15

− 96 (69g22 − 17768g2 + 382480)

5 (45g2 + 27g3 − 500)

+
576 (1431g32 − 169452g22 + 5324112g2 − 48825920)

5 (45g2 + 27g3 − 500) 2

− 46656 (81g42 − 8208g32 + 301536g22 − 4742400g2 + 27040000)

(45g2 + 27g3 − 500) 3
, (D.25)

α1,5
2.5 =

128g2
√
−18g2 − 27g3 + 32√

3
+

2048g3
√
−18g2 − 27g3 + 32

15
√
3

− 145408
√
−18g2 − 27g3 + 32

405
√
3

, (D.26)

α2,5
2.5 = − 16

405
√
3 (−45g2 − 27g3 + 500)7/2

(
10914912405g52

+ 26244 (1468746g3 − 24867475) g42

+ 729
(
74323737g23 − 2426274432g3 + 22294720480

)
g32

+ 78732
(
484056g33 − 22947651g23 + 404829184g3 − 2597071200

)
g22

+ 72
(
184410027g43 − 11573328438g33 + 294821601174g23 − 3524912553600g3

+18327095780000) g2

+ 32
(
57395628g53 − 4397674275g43 + 158978764314g33

−2403878449158g23 + 25048687752000g3 − 107232297500000
))

, (D.27)

where we omitted the argument of ℘(v), ℘′(v) and ζ(v) for simplicity.

Regarding the functions βj defined in (142) we have for β1

β1(v) =
16 (18g2 + 27g3 − 32)

℘− 2/3
+

2 (18g2 + 27g3 − 32)

(℘− 2/3)2

+
(45g2 + 189g3 + 1180)

℘− 5/3
− 4 (18g2 + 27g3 − 32)

(℘− 5/3)2
− 81℘2 − 540℘+ 1125

+ 261 (2g2 + 3g3) log
2/3− ℘

5/3− ℘
− 766 log(2− 3℘) + 2224 log(5− 3℘), (D.28)
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and for β2

β2(v) =
2

5
(72g2 + 135g3 + 5624) (5− 3℘)5 − (882g2 + 1647g3 + 15940) (5− 3℘)4

+ 2 (6012g2 + 11205g3 + 40720) (5− 3℘)3

+
3

2
(81g2 (7g2 + 12 (g3 − 70))− 4 (31239g3 + 51356)) (5− 3℘)2

+
6264 (18g2 + 27g3 − 32)2

(3℘− 5)3
+

3132 (18g2 + 27g3 − 32)2

3℘− 2
+

783 (18g2 + 27g3 − 32) 2

(2− 3℘)2

+ 3
(
7371g22 + 18 (783g3 − 9868) g2 + 108g3 (27g3 − 3055)− 399728

)
(3℘− 5)

+
2113857g22 + 54 (109053g3 − 443852) g2 + 81g3 (50517g3 − 430136) + 37516560

3℘− 5

− 126 (18g2 + 27g3 − 32) (612g2 + 1647g3 + 6472)

(5− 3℘)2

+ 2 (18g2 + 27g3 − 32) (28962g2 + 43443g3 − 50786) log(2− 3℘)

+
(
1136187g22 + 36 (92313g3 − 59242) g2 + 27g3 (89397g3 − 128096)− 2475664

)
× log(5− 3℘)− 1

3
(5− 3℘)8 +

88

7
(5− 3℘)7 − 216(5− 3℘)6, (D.29)

and finally for β2.5

β2.5(v) = βv
2.5v + βζ

2.5ζ + β℘
2.5℘

′ + β1
2.5ξ1(v, 2/3) + β2

2.5ξ2(v, 2/3)

+ β1,5
2.5ξ1(v, 5/3) + β2,5

2.5ξ2(v, 5/3), (D.30)

with the coefficients

βv
2.5 =

32

42525 (45g2 + 27g3 − 500)2

×
(
24786000g42 + 13286025g3g

3
2 − 7005301200g32 − 7381125g23g

2
2 − 7143529320g3g

2
2

+293481986400g22 − 1791153g33g2 − 1532737080g23g2 + 253449861840g3g2

−4001472294400g2 + 1240029g43 + 228165336g33 + 54675991440g23

−1837155075840g3 + 17815770560000) , (D.31)

βζ
2.5 = −16 (1134g22 + 63 (81g3 − 25016) g2 + 421740g3 + 59024000)

42525
, (D.32)
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β℘
2.5 =

32g3 (27℘
4 + 135℘3 − 1125℘2 + 4135℘− 3720)

25(3℘− 5)3
+

64

42525(3℘− 5)3

×
(
5103g2℘

4 − 307395g2℘
3 + 1451925g2℘

2 − 3342195g2℘+ 358110g2 + 102060℘6

+364500℘5 + 1246104℘4 + 7569720℘3 − 87304500℘2 + 287944020℘− 236745040
)

+
512 (2538g22℘− 140256g2℘− 3015g22 + 191640g2 + 1668576℘− 2415920)

5 (45g2 + 27g3 − 500) (3℘− 5)3

− 51840 (27g32 − 1836g22 + 39312g2 − 270400)

(45g2 + 27g3 − 500) 2(3℘− 5)2
(D.33)

β1,2
2.5 = −2048 (18g2 + 27g3 − 32)

1215
, (D.34)

β1,5
2.5 = − 32

1215 (45g2 + 27g3 − 500) 3

(
196961220g42 + 729 (1323243g3 + 678040) g32

+486
(
2641167g23 − 35923554g3 − 446818960

)
g22

+9
(
81271107g33 − 2499601032g23 − 16343517744g3 + 293768080000

)
g2

+2
(
64304361g43 − 5370900210g33 − 44464404384g23

+393527656800g3 − 5409999200000)) , (D.35)

β1,2
2.5 =

128 (11664g22 + 18 (1593g3 − 3136) g2 + 16767g23 − 73440g3 + 63488)

1215
√
−54g2 − 81g3 + 96

, (D.36)

β2,5
2.5 =

16

1215
√
3 (−45g2 − 27g3 + 500) 7/2

(
16889194980g52

+ 6561 (8629443g3 − 161903960) g42

+ 1458
(
52545591g23 − 1844441712g3 + 19415365120

)
g32

+ 243
(
217280637g33 − 10655483904g23 + 215931305952g3 − 1522357408000

)
g22

+ 18
(
998577639g43 − 63667497852g33 + 1892672945136g23

−23511911558400g3 + 139034680000000) g2

+ 4
(
617003001g53 − 42433438086g43 + 2238153693804g33

−27834792540480g23 + 358914076920000g3 − 1680572600000000
))

, (D.37)

where we omitted the argument of ℘(v), ℘′(v) and ζ(v) for simplicity.
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