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Abstract. This paper presents a novel self-supervised two-frame multi-
camera metric depth estimation network, termed M2Depth, which is de-
signed to predict reliable scale-aware surrounding depth in autonomous
driving. Unlike the previous works that use multi-view images from
a single time-step or multiple time-step images from a single camera,
M2Depth takes temporally adjacent two-frame images from multiple
cameras as inputs and produces high-quality surrounding depth. We first
construct cost volumes in spatial and temporal domains individually and
propose a spatial-temporal fusion module that integrates the spatial-
temporal information to yield a strong volume presentation. We addi-
tionally combine the neural prior from SAM features with internal fea-
tures to reduce the ambiguity between foreground and background and
strengthen the depth edges. Extensive experimental results on nuScenes
and DDAD benchmarks show M2Depth achieves state-of-the-art perfor-
mance. More results can be found in project page.

Keywords: Depth Estimation · Surrounding Depth · Self-supervised
Learning

1 Introduction

Depth estimation aims to recover the 3D structure of the real world from 2D
images, playing a fundamental role in various applications. In recent years, with
the development of autonomous driving, using depth estimation methods to get
the 3D representation of the driving scenes shows tremendous attraction, as
replacing the expensive depth sensor (e.g. Lidar) with vehicle-mounted cameras
is cost-effective.

Many previous works [12, 15, 37, 44] focus on estimating depth from a sin-
gle RGB image. Though flexible and concise, such methods suffer from ob-
taining consistent scale-aware depth (i.e. metric depth) among multi-frame and
multi-camera when applied in driving scenes. In order to simultaneously predict
the surrounding depth, recent methods [16, 38] feed multiple images from 360o

vehicle-mounted cameras into 2D encoder-decoder network to capture the spa-
tial information between surround cameras. However, these methods use only
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Fig. 1: Point clouds comparison on DDAD [14] dataset. By transforming the predicted
depth into point clouds, we show that our method achieves more consistent and ac-
curate estimation compared with SurroundDepth [38]. The visualized point clouds are
fused using the surrounding depth of one frame, and the blue boxes highlight the chal-
lenging area spanning multiple cameras.

one frame and ignore the temporal information, still facing the challenge of pre-
dicting consistent metric depth. Some existing methods [23,34] show that taking
temporally adjacent frames as inputs could help get reliable depth under the
single camera setting. Nevertheless, few works explore and leverage the spatial-
temporal information to strengthen the surrounding depth estimation in driving
scenes.

In this paper, we propose a novel self-supervised Two-frame Multi-camera
M etric depth estimation network, named M2Depth, to predict consistent scale-
aware surrounding depth. The key insight of M2Depth is that we believe com-
bining the spatial-temporal info could boost the surrounding depth estimation,
as the spatial info provides an important world scale (from calibrated extrinsic
between adjacent cameras) and the temporal info benefits the depth consis-
tency. As shown in Fig. 1, M2Depth is able to recover the 3D point clouds with
coherence between multiple cameras, while the existing method struggles with
keeping multi-camera consistency. Specifically, M2Depth determines depth by
constructing 3D cost volumes within the spatial-temporal domain and apply-
ing constraints across multiple cameras, which is different from existing meth-
ods [12, 16, 21, 37, 38]. Following the classical plane-sweeping algorithm [7], we
construct temporal volumes by utilizing temporal adjacent frames, while the
spatial volumes are built by leveraging each view and its overlapped spatial
adjacent views. Building accurate cost volumes faces several challenges. First,
getting reliable relative pose and depth annotations is difficult, thus we design a
pose estimation branch to predict the relative vehicle pose between two frames
and train M2Depth in a self-supervised manner. Second, the depth range in
driving scenes is typically large, we consequently design a mono prior branch
to estimate coarse depth to narrow down the depth search range. The initial
3D cost volumes are constructed in the spatial domain and temporal domain
separately, which consist of the co-visibility information on the spatially and
temporally adjacent views. To jointly use the spatial-temporal clues, we propose
a novel spatial-temporal fusion (STF) module, which fuses the initial volumes
with visibility-aware weights. As a result, the fused volumes integrate the space-
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time correlation between multiple frames and multiple cameras, which will be
then decoded to produce the final depth.

Additionally, we observe that the feature learning of M2Depth is unstable as
it actually learns to simultaneously estimate the relative pose, monocular prior,
and the multi-camera depth under weak supervision. Specifically, we find that
the depth estimation method of constructing spatial-temporal volume through
pixel matching lacks consistency within instances and discrimination between
instances for features. Due to poor features that lack the discrimination between
instances, the quality of the depth map decreases. Inspired by the Segment Any-
thing Model (a.k.a. SAM) [22], we propose to inject the strong neural prior from
pretrained SAM features into depth estimation to strengthen the feature learn-
ing. The key insight is that SAM is able to capture fine-grained inter-view and
intra-view semantic information, which is critical for surrounding depth estima-
tion. We thus design a multi-grained feature fusion (MFF) module to integrate
SAM features. To the best of our knowledge, M2Depth is the first to use the
SAM feature in a depth estimation task.

We train and validate M2Depth on two large-scale multi-camera depth esti-
mation benchmarks, i.e. DDAD [14] and nuScenes [5], and the extensive exper-
imental results demonstrate M2Depth achieves state-of-the-art performance in
multi-camera metric depth estimation task.

In summary, our main contributions are as follows:

– We present M2Depth, a novel self-supervised two-frame multi-camera metric
depth estimation network, which achieves state-of-the-art performance on
multiple surrounding depth estimation benchmarks.

– For the first time, we propose to construct spatial-temporal 3D cost volumes
and design a spatial-temporal fusion (STF) module for surrounding depth
estimation, which strengthens the depth accuracy by fusing the spatial-
temporal information.

– We introduce the strong SAM prior into the depth estimation task and
propose a multi-grained feature fusion (MFF) module to integrate SAM
features with internal features for enhancing the depth quality in detail.

2 Related Works

2.1 Multi-frame Depth Estimation

Unlike the monocular depth estimation (MDE) works [2, 12, 24, 47] that solely
use single frame to predict depth, multi-frame depth estimation works [1, 3, 15,
37, 39, 41] take as inputs the adjacent frames to enhance depth quality, which
yields great improvements in practical applications. MonoRec [39] constructs a
cost volume based on multiple frames from a single camera to estimate depth. It
additionally requires a visual odometry system [41] to provide inter-frame pose
and sparse depth as supervision signals. Manydepth [37] learns adaptive cost
volume from input data and proposes consistency loss for moving objects. Some
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Fig. 2: Overview of M2Depth. Given images {Ict}Cc=1 and {Ict−1}Cc=1 from multiple cam-
eras and two frames, M2Depth first estimates the pose of the front camera Pt→t−1,
which will be used to infer the poses of all other cameras {P0

t→t−1}Cc=1. In mono prior
estimation, the multi-grained feature fusion (MFF) module aggregates the internal
features {Cc

t}Cc=1 from image encoder and the SAM features {Sc
t}Cc=1 from SAM en-

coder to improve feature expression in multi-grained. The depth prior and constraints
across multiple cameras are employed to construct 3D cost volumes {Vc

t}Cc=1 within
the temporal-spatial domain, which will be then used by the spatial-temporal fusion
(STF) module to strengthen the accuracy and consistency of cost volumes. Finally, the
depth decoder takes as inputs the {Vc

t}Cc=1 and {Sc
t}Cc=1 to produce the surrounding

depth.

methods [10, 23, 34] attempt to estimate a depth prior and then encode it into
multi-frame cues.

Despite utilizing multiple frames as input, these methods still struggle to
produce reliable surrounding depth when applied in multi-frame multi-camera
scenarios. In contrast, our approach imposes spatial constraints via the overlaps
among multiple cameras, achieving consistent scale-aware surrounding depth
estimation.

2.2 Multi-camera Depth Estimation

Intelligent vehicles are typically equipped with multiple surrounding cameras,
thus recovering the surrounding 3D environment from mounted cameras turns
into a fundamental task in autonomous driving. FSM [30] pioneers the expansion
of self-supervised monocular depth estimation to surrounding views by using
temporal texture constraints as supervision. SurroundDepth [38] employs the
cross-view transformer module to perform feature interaction in surrounding
views. EGA-Depth [31] optimizes the computational cost of the attention mod-
ule, enabling the utilization of higher-resolution feature maps. VFDepth [21]
constructs a unified volumetric feature representation to estimate the surround-
ing depth and canonical vehicle pose.

Unlike the aforementioned methods that use a single frame to predict depth,
we construct cost volumes using multi-camera and two frames in the spatial-
temporal domain. It is noteworthy that the concurrent work R3D3 [29] uses the
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SLAM algorithm [33] and a sequence of frames to estimate vehicle pose and opti-
cal flow, which will be then utilized to produce depth. Such a manner inevitably
needs many frames as inputs and consumes more computation. On the contrary,
our method could use only two frames to achieve comparable performance.

2.3 SAM and Applications

Segment Anything Model [22] (SAM) is an effective, promptable transformer-
based model for image segmentation, trained on the SA-1B dataset [22], which
comprises over 1 billion masks on 11M licensed and privacy respecting images. Its
exceptional performance in fine-grained semantic segmentation establishes SAM
as a prominent player in numerous tasks, such as tracking [6], image inpaint-
ing [43], video text spotting [18], medical image domain [4,27,46]. SAMFeat [40]
applies SAM to segmentation-independent visual tasks and improve local feature
description by using feature-level distillation.

To the best of our knowledge, we are the first to apply SAM in the depth
estimation task. By leveraging the SAM feature, we extract fine-grained semantic
information from and enhance the accuracy of surrounding depth.

3 Methods

3.1 Problem Formulation

This paper focuses on the surrounding depth estimation task in autonomous
driving, where the cameras are mounted on ego vehicles and provide 360o visual
observations. We define that there are C cameras with known intrinsics {Kc}Cc=1

and extrinsics {Tc}Cc=1, which associate the cameras with the ego vehicle. Given
images of the current frame {Ict}Cc=1 and the previous frame {Ict−1}Cc=1 from
surrounding cameras, M2Depth produces the scale-aware surrounding depth
{dc

t}Cc=1 at the current timestamp t. It is noteworthy that the ground truth
relative pose of the vehicle between two frames is not required, M2Depth is able
to predict the relative pose with scale, which is inherently stored in {Tc}Cc=1 and
the overlap between adjacent views.

3.2 Network Overview

The overall architecture of M2Depth is illustrated in Fig. 2. The input images
{Ict}Cc=1 and {Ict−1}Cc=1 are first used to perform pose estimation and mono prior
estimation. Specifically, the pose encoder takes the images of the front view
(I0t and I0t−1) as input and learns to predict the 6-Dof relative pose between
I0t and I0t−1. Unlike previous methods that concatenate surrounding views to
directly predict the ego pose [38] or construct 4D volumes to estimate optical flow
and calculate the ego pose [29], our approach simplifies the ego pose estimation
problem by estimating the front camera’s pose P0

t→t−1, thus the ego pose Pt→t−1

can be derived by:
Pt→t−1 = (T0)−1P0

t→t−1T
0, (1)
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where (T0)−1 indicates the inverse matrix of T0, and T0 is the extrinsic matrix
between the front camera and ego vehicle.

In monocular prior estimation (Sec. 3.3), the I0t is fed into a trainable image
encoder and a frozen SAM encoder, where the output features are then fused
in multi-grained feature fusion (MFF) module. MFF aims to integrate the fine-
grained semantic information in SAM features with the depth cues in internal
features, which helps M2Depth understand the 3D environment. As a result, the
prior decoder takes fused features as inputs and produces the mono prior depth
{dc

tprior}Cc=1, which plays the role of depth guidance in volume construction.
After obtaining the relative vehicle pose Pt→t−1 and the mono prior {dc

tprior}Cc=1,
M2Depth constructs the spatial-temporal cost volumes (Sec. 3.4). Specifically,
we use the plane-sweeping algorithm [7] to construct the initial cost volume.
We first employ a feature pyramid network [25] to extract matching features
{Fc

t}Cc=1 from {Ict}
C
c=1. As for the temporal domain, we warp the feature Fc

t−1,
which is decoded from Ict−1, to Fc

t according to the sampled depth values dct to
get the temporal volume Vc

t,tp, where dct is appointed based on dc
tprior. Simi-

larly, the spatial volumes Vc
t,sp are constructed using spatial adjacent views Fcl

t

and Fcr
t , where the cl and cr represent the adjacent left and right camera of

the reference camera. The initial volumes {Vc
t,tp}Cc=1 and {Vc

t,sp}Cc=1 will be fed
into the spatial-temporal fusion (STF) module, which fuses the spatial-temporal
information and yields the final volumes {Vc

t}Cc=1. Subsequently, we decode the
{Vc

t}Cc=1 into depth probability distribution volumes, and produce the estimated
depth {dc

t}Cc=1 by calculating the depth expectation.

3.3 Mono Prior Estimation

Following the plane sweep paradigm, the two-frame depth estimation problem
can be transformed into a feature matching task [8,13], where the depth samples
would significantly affect final depth quality. Unfortunately, the total depth range
in driving scenarios is typically large. As a result, it requires a lot of depth
samples to predict precise depth, which would cost tremendous computation
in multi-camera settings. To handle this problem, we use a monocular prior
estimation branch to produce coarse guidance for cost volume construction.

Specifically, given surrounding views in the current timestamp {Ict}
C
c=1, we

first use a CNN encoder and a SAM encoder [22] to extract internal features
{Cc

t}Cc=1 and SAM priors {Sc
t}Cc=1, respectively. Then we use the Multi-grained

Feature Fusion (MFF) module to fuse {Cc
t}Cc=1 and {Sc

t}Cc=1, and finally use a
CNN decoder to generate mono depth prior {dc

tprior}Cc=1.

Multi-grained Feature Fusion The detailed structure of the MFF module is
illustrated in Fig. 3, which is the key part of depth prior estimation. Given an
internal feature Cc

t ∈ RH×W×C and a SAM feature Sc
t ∈ RH×W×C′

of a certain
camera, we first use convolution layers to align the dimension of Sc

t with Cc
t ,

which will be then combined and fed into the Fattn to yield attention weights
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Fig. 3: Details of the multi-grained feature fusion (MFF) module. MFF takes the
internal features {Cc

t}Cc=1 and the SAM features {Sc
t}Cc=1 as inputs, and utilizes a Fattn

block to yield the weight map, which fetches the complementary info between {Cc
t}Cc=1

and {Sc
t}Cc=1, and will be used in Ffusion block to produce the fused feature {Mc

t}Cc=1.

Wc
t :

Wc
t = Fattn(C

c
t ,S

c
t) = σ(f3×3(δ(f3×3(Cc

t + Sc
t)))), (2)

where the σ refers to the sigmoid function, δ refers to the ReLU [28] function,
and f3×3 denotes the convolution layer with kernel size of 3 × 3. Intuitively,
the Wc

t fetches the complementary info between Sc
t and Cc

t , and performs as a
feature guidance in feature fusion:

Mc
t = Ffusion(C

c
t ,S

c
t ,W

c
t ) = f3×3(C+Wc

t ⊙ Sc
t), (3)

where Mc
t represents the fused features and ⊙ denotes the Hadamard product.

As introducing SAM features into mono prior estimation helps get better perfor-
mance, we further utilize SAM features in the depth decoding phase in a similar
manner to mono prior estimation, more details can be found in supplementary
materials, and experimental evaluation is conducted in Sec. 4.

3.4 Spatial-temporal Cost Volume

Taking Ict ∈ RH×W×3 of a certain camera for example, we denote its spatial
adjacent views as Iclt , I

cr
t and its last frame as Ict−1. In this section, we use the

estimated relative pose Pt→t−1 pose and the known camera extrinsics {Tc}Cc=1

to construct the spatial-temporal cost volume {Vc
t}Cc=1.

Initial Volume Construction Taking the aforementioned images as input, we
first employ a Feature Pyramid Network (FPN) [25] to extract image features
Fc

t ∈ RH
4 ×W

4 ×3. As for spatial cost volume, we warp Fcl
t and Fcr

t into the current
camera’s frustum according to the camera intrinsics, extrinsics, and the depth
samples. The warping operation between a pixel p in reference view c and its
corresponding pixel p̂ in adjacent views c′ ∈ {cl, cr} under depth sample d is
defined as:

p̂ = Kc′ · [Rc→c′ · ((Kc)−1 · p · d) + tc→c′ ], (4)

where the transformation matrix Pc→c′ = [R|t]c→c′ can be written as:

Pc→c′ = (Tc′)−1 ·Tc, (5)
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Fig. 4: Overview of the volume construction and STF module. Given the reference
image feature Fc

t and its temporal-spatial adjacent features, we first warp the adjacent
features to reference view to form the initial volumes Vc

t,sp and Vc
t,tp in spatial do-

main and temporal domain respectively. After that, STF fuses the initial volumes by
computing the correlation between Fc

t and Vc
t,sp, Vc

t,tp and produces the weight maps
Wc

t,sp, Wc
t,tp, which will be used as fusion weights to guide the volume fusion.

Afterward, we combine the warped features to form the initial spatial vol-
umes {Vc

t,sp}Cc=1. The temporal volume {Vc
t,tp}Cc=1 can be constructed similarly.

Specifically, the warping operation in the temporal domain is defined as:

p̂ = Kc · [Rc
t→t′ · ((Kc)−1 · p · d) + tct→t′ ], (6)

where the p̂ denotes the corresponding pixel in the previous frame, and the
Pc

t→t′ = [Rc|tc]t→t′ is obtained according to Eq. (1):

Pc
t→t′ = (Tc)−1 ·Pt→t′ ·Tc. (7)

During the construction of the initial volumes, we employ {dprior}Cc=1 as the
depth guidance and appoint the depth samples in an adaptive range, more details
of the depth samples can be found in supplementary materials.

Spatial-temporal Volume Fusion By constructing the initial cost volumes,
we approach depth estimation as a feature-matching task, where we try to find
the best matching feature among the sampled volume features. To strengthen the
matching quality using the spatial-temporal information, we propose a spatial-
temporal fusion module, which is depicted in Fig. 4.

Given the reference feature Fc
t and the initial volumes Vc

t,sp and Vc
t,tp, STF

produces the fusion weight maps by computing the group-wise correlation [17].
Let p denote the pixel in the reference feature, to compute the correlation be-
tween Fc

t(p) and Vc
t,sp(p), we first divide C feature channels evenly into G

groups, Fc
t(p)

g and Vc
t,sp(p)

g, thus the g-th group correlation Crct,sp(p)
g can be

computed as:

Crct,sp(p)
g =

G

C
< Fc

t(p)
g,Vc

t,sp(p)
g >, (8)

where < a, b > indicates the inner product of a and b, and the group correlation
Crct,tp(p)

g between Fc
t(p)

g and Vc
t,tp(p)

g can be obtained with the same manner.
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The maximum correlation along group dimension will serve as the final fuse
weight Wc

t,sp and Wc
t,tp, which will be used to fuse the final spatial-temporal

volume Vc
t :

Vc
t = Wc

t,spV
c
t,sp +Wc

t,tpV
c
t,tp. (9)

Depth Prediction The constructed {Vc
t}Cc=1 are finally input to a depth en-

coder to produce the final depth {dc
t}Cc=1, which also takes the SAM features

{Sc
t}Cc=1 as context feature. The key operation is that the depth decoder first

transforms the {Vc
t}Cc=1 into probability volumes {Pc

t}Cc=1, where the Pc
t(p) rep-

resents the probability distribution among sampled depth of each pixel p. The
final depth can be obtained by:

dc
t(p) =

D∑
i=1

di ·Pc
t(p, i), (10)

where the di indicates the i-th sampled depth and the Pc
t(p, i) is the probability

of p at i-th depth. Please refer to the supplementary materials for more details
about the architecture of the depth decoder.

3.5 Loss Function

Photometric Loss Following the common practice in self-supervised monocular
depth estimation works [12,31,38], we optimize M2Depth by using the per-pixel
photometric error Lphoto as:

Lphoto =
α

2
(1− SSIM(Ia, Ib)) + (1− α)||Ia − Ib||1, (11)

where SSIM is the structural similarity between two images [36], Ia and Ib in-
dicate the ground truth image and the reconstructed image respectively. It is
noteworthy that M2Depth uses Lphoto in both spatial domain and temporal do-
main, where the spatial photometric error additionally provides the important
scale information.

Depth Smoothness Loss As in previous works [11,12,38], we use the edge-aware
smoothness loss [11] to prevent estimated depth from shrinking:

Lsmooth = |∂xd|e−|∂xI| + |∂yd|e−|∂yI|. (12)

Depth Edge Loss Inspired by [32], we employ edge information derived from
images to enhance the quality of depth edges. Given an RGB image I and its
depth map d, we utilize a pre-trained edge detection model [19] to extract the
edge map Eimg from I. Subsequently, the edge map Edepth of d can be calculated
by depth gradient. The depth edge loss is defined as:

Ledge = FL(Eimg,Edepth) (13)

where FL denote the focal loss [26].
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SfM Loss Although the Lphoto in spatial domains could constrain the scale of
estimated depth and pose, it relies on good initialization. Following the previous
works [16, 38], we use SfM to generate sparse depth between spatially adjacent
views to endow the network with an initial rudimentary estimation of scale-aware
depth. More details of SfM loss Lsfm can be found in supplementary materials.

Total Loss The overall loss function can be written as:

L = λ1Lphoto + λ2Lsmooth + λ3Ledge + λ4Lsfm, (14)

where the λ1, λ2, λ3, λ4 are weights of different losses, we set λ1 = 1.0, λ2 = 1.0e-
3, λ3 = 1.0e-2, λ4 = 1.0e-2, and the λ4 is set to 0 after initialization.

4 Experiments

4.1 Implementation Details

We implement M2Depth using PyTorch and train the model using Adam as
optimizer with a learning rate set to 10−4, β1 = 0.9 and β2 = 0.999. For the
pose estimation, we employ a ResNet-34 [20] model to predict the axis-angle and
translation of the front camera. For the depth prior estimation branch, we employ
the ResNet-34 [20] model to predict internal features and use the frozen SAM
encoder provided by MobileSAM [45] for saving memory. All of our experiments
are conducted using 8 NVIDIA V100 GPUs.

4.2 Dataset

We train and evaluate M2Depth on two public datasets including DDAD [14]
and nuScenes [5].

The dense depth for autonomous driving (DDAD) dataset [14] is an au-
tonomous driving benchmark that consists of 150 training and 50 validation
scenes in complex and diverse urban environments. Following the previous work [29,
38], we downsample the images from their initial resolution of 1216 × 1936 to
384× 640 and evaluate depth up to 200m averaged across all cameras.

The nuScenes dataset [5] comprises 700 training, 150 validation, and 150 test-
ing urban scenes. Following the previous work [38], we downsample the images
from the initial resolution of 900× 1600 to 352× 640 and evaluate depth up to
80m averaged across all cameras.

4.3 Experimental Results

This paper focuses on scale-aware surrounding depth estimation task, thus we
only report the scale-aware results and mainly compare M2Depth with the re-
cent self-supervised surrounding depth estimation methods, including FSM [16],
SurroundDepth [38], VFDepth [21] and R3D3 [29], without comparing with the
numerous MDE methods [2, 12,35,37].
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Table 1: Quantitative results on DDAD dataset [14] (evaluate depth up to 200m) and
nuScenes dataset [5] (evaluate depth up to 80m). We present the mean accuracy across
all views using the metrics from [9]. The Frame stands for the number of frames in the
training\testing phase. FSM* indicates the implementation from [21]. R3D3* denotes
the results using the official code and the same frame setting with us. (Bold figures
indicate the best and underlined figures indicate the second best)

Method Dataset Frame Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

R3D3 [29]

D
D

A
D

[1
4]

6\5 0.169 3.041 11.372 - 0.809 - -

FSM [16] 3\1 0.201 - - - - - -
FSM* [16] 3\1 0.228 4.409 13.433 0.342 0.687 0.870 0.932
VFDepth [21] 3\1 0.218 3.660 13.327 0.339 0.674 0.862 0.932
SurroundDepth [38] 3\1 0.208 3.371 12.977 0.330 0.693 0.871 0.934
R3D3* [29] 3\2 0.311 5.473 14.094 0.385 0.604 0.814 0.903
Ours 3\2 0.183 2.920 11.963 0.299 0.756 0.897 0.947

R3D3 [29]

nu
Sc

en
es

[5
]

6\5 0.253 4.759 7.150 - 0.729 - -

FSM [16] 3\1 0.297 - - - - - -
FSM* [16] 3\1 0.319 7.534 7.860 0.362 0.716 0.874 0.931
VFDepth [21] 3\1 0.289 5.718 7.551 0.348 0.709 0.876 0.932
SurroundDepth [38] 3\1 0.280 4.401 7.467 0.364 0.661 0.844 0.917
R3D3* [29] 3\2 0.498 5.489 11.740 0.746 0.155 0.375 0.613
Ours 3\2 0.259 4.599 6.898 0.332 0.734 0.871 0.928

Table 2: Per-camera evaluation on DDAD dataset [14]. SD is the abbreviation of Sur-
roundDepth [38]. R3D3* indicates the results using its official code and the same frame
setting with us. Our method achieves superior overall performance across multiple cam-
eras to existing works. According to the memory and computation analysis, M2Depth
achieves a good balance between overall performance and computational efficiency.

Abs.Rel. ↓ Memory & Computation
Method Front F.Left F.Right B.Left B.Right Back Avg. Memory(MB) Flops(G) Time(s)

FSM [16] 0.130 0.201 0.224 0.229 0.240 0.186 0.201 - - -
SD [38] 0.152 0.207 0.230 0.220 0.239 0.200 0.208 3042 237.106 0.215
R3D3* [29] 0.234 0.284 0.355 0.347 0.392 0.255 0.311 8371 2621.738 0.378
Ours 0.146 0.182 0.200 0.198 0.203 0.169 0.183 5546 866.019 0.295

Results on DDAD Following the common practice, we report the quantitative
results of Abs.Rel., Sq.Rel., RMSE, RMSE log and δ as shown in Tab. 1.
The specific definition of the evaluation metrics can be found in supplementary
materials. Previous works [21, 38] typically use three frames [t − 1, t, t + 1] for
training, where the t + 1 frame is only used in computing loss, we follow this
paradigm to train M2Depth. It is noteworthy that the R3D3 [29] takes sequence
frames as input, we test its results with 2 frames using their official code for a
fair comparison.

As shown in Tab. 1, M2Depth achieves significant improvement on all metrics
compared with existing methods when tested in a similar setting. To be specific,
our method outperforms the SOTA method of single-frame surrounding depth
estimation, SurroundDepth [38], by 12.02% on Abs. Rel. and 13.38% on Sq. Rel.,
indicating that our usage of spatial-temporal volumes substantially improves
the depth quality. We also compare the visualization results of M2Depth and
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Fig. 5: Qualitative comparison of predicted surrounding depth on DDAD dataset [14].
Given the input surrounding images (the top row), we show the visualized depth maps
and depth errors of SurroundDepth [38] and M2Depth. The depth maps are visualized
in the range of [0, 50m]. Our method is able to produce more accurate depth with less
error and sharper depth edge across multiple cameras.

SurroundDepth in Fig. 5, where the estimated surrounding depth and depth
errors show our method produces more accurate and consistent depth predictions
among multiple cameras in challenging scenarios. In Tab. 2, we show the per-
camera evaluation results on DDAD. In terms of Abs.Rel., our method is able to
predict more accurate depth in nearly all cameras, demonstrating the superior
performance of M2Depth.

Results on nuScenes In Tab. 1, we evaluate the proposed M2Depth on the evalu-
ation set of nuScenes dataset [5], where the quantitative results show our method
significantly outperforms the existing method in terms of multiple metrics in sim-
ilar setting. Compared with R3D3 [29] that use 5 frames as input, our method
utilizes only 2 frames and achieves comparable performance on Abs. Rel. and
superior performance on other metrics. As the test data in nuScenes dataset [5]
is more challenging than DDAD dataset [14], the aforementioned results indicate
that M2Depth achieves state-of-the-art overall performance.

Memory and Computation Analysis. As shown in Tab. 2, compared with R3D3 [29]
and SurroundDepth [38], M2Depth achieves a good balance between overall per-
formance and computational efficiency. According to the results, our method
consumes much less memory and FLOPs than R3D3 [29] while achieving com-
petitive performance.
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Table 3: Quantitative results of the ablation study on DDAD dataset [14]. M.P. stands
for mono prior, S.Vol. and T.Vol. indicate the spatial volume and temporal volume,
the STF is the proposed spatial-temporal fusion module. Jointly constructing spatial-
temporal cost volumes significantly improves the depth quality compared with the
mono prior depth, and the STF further increases the capabilities of M2Depth on nearly
all metrics.

No. M.P. S.Vol. T.Vol. STF Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

1 ✓ 0.216 3.758 13.200 0.338 0.686 0.863 0.929
2 ✓ ✓ 0.212 3.662 12.959 0.326 0.696 0.872 0.936
3 ✓ ✓ ✓ 0.197 3.379 12.341 0.313 0.738 0.886 0.941
4 ✓ ✓ ✓ ✓ 0.194 3.331 12.347 0.311 0.741 0.886 0.941

4.4 Ablation Study

In this section, we conduct ablation studies on DDAD [14] to analyze the effec-
tiveness of each module of M2Depth.

Spatial-temporal Volume In Tab. 3, we evaluate the performance using different
cost volumes, where the base model uses none of the spatial volume (S. V ol.),
temporal volume (T. V ol.) and STF module. By fusing the spatially adja-
cent views, S. V ol. improves 2.55% on the Sq. Rel. metric and 3.55% on the
RMSE log metric. When further injecting the temporal information into cost
volumes, the T. V ol. achieves more than 7% improvement on Abs. Rel and
Sq. Rel. The aforementioned results show that integrating the spatial-temporal
information is able to significantly strengthen the depth quality.

Spatial-temporal Fusion Compared with directly using features that warp from
previous frames or adjacent views, the proposed STF module fuses the volume
features within the spatial-temporal domain, where the updated feature inte-
grates the global information with spatial- and temporal- features and conse-
quently strengthens the feature expressiveness. Compared to only using infor-
mation from a single domain, our volumes achieve better performance.

Table 4: Ablation studies of Ledge, MFF and
D. D. on DDAD dataset [14], where Ledge indi-
cates the depth edge loss, MFF stands for multi-
grained feature fusion module, D. D. represents
the depth decoding with SAM features.
Ledge MFF D. D. Abs. Rel. ↓ Sq. Rel. ↓ RMSE ↓ δ < 1.25 ↑

0.194 3.331 12.347 0.741
✓ 0.192 3.224 12.447 0.741
✓ ✓ 0.188 3.032 12.213 0.748
✓ ✓ 0.191 3.262 12.175 0.748
✓ ✓ ✓ 0.183 2.920 11.963 0.756

Multi-grained Feature Fusion As
shown in Tab. 4, we conduct the
ablation study to evaluate the
effectiveness of the MFF mod-
ule, which enhances feature learn-
ing by combining SAM features
with internal features. According
to the quantitative results, intro-
ducing MFF into mono prior es-
timation achieves improvement in
nearly all metrics. We also show
the visualized features in Fig. 6,
where the internal features repre-
sent the geometric distance infor-
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mation and the SAM features contain semantic instance information. By com-
bining the internal features and SAM features in latent space, the fused features
derive a comprehensive understanding of the surrounding environment.

Internal Feature SAM Feature Fused Feature
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Fig. 6: Visualization results of different features
in M2Depth on DDAD dataset [14]. The inter-
nal feature is from the internal image encoder,
the SAM feature is from the frozen SAM en-
coder [45], and the fused feature is produced by
the MFF module.

As mentioned in Sec. 3.3, we
further integrate SAM priors in
depth decoding and conduct ex-
perimental comparison in Tab. 4,
where the results show that uti-
lizing SAM features in both MFF
and depth decoding achieves the
best performance of M2Depth.

Edge Loss and Others The abla-
tion study of Ledge is performed
in Tab. 4, where the results indi-
cate Ledge is able to improve the
Abs. Rel. and Sq. Rel.. We also
perform ablation studies for other
hyper-parameters and candidate designs, please refer to supplementary materials
for more results and analysis.

5 Conclusion

Limitation Currently, M2Depth constructs as many volumes as the number of
cameras, which consumes a lot of memory when increasing the cameras. In the
future, we’d like to build a unified cost volume to represent the surrounding
environment.

Conclusion In this paper, we propose M2Depth which is designed for the self-
supervised two-frame multi-camera metric depth estimation task in autonomous
driving. Different from the previous methods that use single frame or single
camera, M2Depth takes two-frame from multi-camera as inputs and learns to
construct spatial-temporal cost volumes, which is the first method to exploit
spatial-temporal fusion in constructing cost volumes. We additionally propose
a novel multi-grained feature fusion module to combine the SAM priors with
internal features. Experimental results on two public benchmarks indicate that
M2Depth achieves state-of-the-art performance.
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A Implementation Details

A.1 Depth Decoder

The detailed structure of the depth decoder is illustrated in Fig. 7. Given the
spatial-temporal volume {Vc

t}Cc=1 and the SAM feature {Sc
t}Cc=1 from SAM en-

coder [45], we first transform {Vc
t}Cc=1 into probability volumes{Pc

t}Cc=1 by 3D
CNNs. Then, we calculate the spatial-temporal depth {dc

t,st}Cc=1 using depth
samples. Subsequently, we utilize {Sc

t}Cc=1 as context features to compute the
upsampling mask {Mc

up}Cc=1. Finally, by integrating {Mc
up}Cc=1 and {dc

t,st}Cc=1,
we can obtain the final depth {dc

t}Cc=1.

Conv Conv Upsampling

Depth Decoder

Fig. 7: Overview of Depth decoder. Given the spatial-temporal volume {Vc
t}Cc=1 and

the SAM feature {Sc
t}Cc=1 as inputs, we initially compute the spatial-temporal depth

{dc
t,st}Cc=1. Subsequently, the {dc

t,st}Cc=1 is upsampled with the mask {Mc
up}Cc=1 which

are calculated from {Sc
t}Cc=1 to procure the final depth {dc

t}Cc=1

.

A.2 Adaptive Depth Sample

Following the plane sweep paradigm, the selection of depth samples directly
affects the depth quality. Previous methods [8,13,42] usually adopt a wide-range
sampling strategy for the entire scene, which improves the accuracy of depth
estimation to some extent, but also brings a huge computational burden.

To solve this problem, we propose utilizing the mono depth estimation result
as prior information and conducting adaptive sampling in the vicinity of the prior
depth. This method not only significantly reduces the computational complexity,
but also improves the efficiency of depth estimation.

Depth samples Depth prior
Depth sample min/max

Adaptive Depth Samples

Adaptive range/

Fig. 8: We illustrate the examples of the
adaptive depth sample, where the depth
range increases for pixels at a farther dis-
tance, and conversely, decreases for pixels
at a closer proximity.

The method of adaptive depth
sampling is shown in Fig. 8. Specifi-
cally, we determine the range of depth
sampling [dmin(p),dmax(p)] for each
pixel p based on the given depth dinit

and scaling factor α as follow:

dmin(p) = dinit(p)÷ (1 + α), (15)

dmax(p) = dinit(p)× (1 + α), (16)
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It is evident from this formula that the depth range varies with the depth.
When the dinit(p) is large, that is, the object is farther away, the range of depth
sampling will increase accordingly; conversely, when the dinit(p) is small, the
range of depth sampling will decrease. This adaptive depth sampling strategy
is more in line with the depth distribution of actual scenes, thus effectively
improving the quality of depth.

A.3 Structure-from-Motion Loss

Through self-supervised photometric loss Lphoto, we can effectively supervise
the estimated depth and pose. However, during the initial phase of training,
obtaining valid projection results is challenging due to insufficient overlap be-
tween adjacent cameras, which ultimately renders supervision ineffective. To
address this issue, we follow previous methods [16, 38] and obtain scale-aware
depth through triangulation of adjacent cameras utilizing their camera extrin-
sics, which serves as pseudo labels for effective supervision. By doing so, we
successfully enhance the accuracy of depth and pose estimation by leveraging
information from neighboring cameras and extrinsics.

The calculation for Lsfm is as follows:

Lsfm =
1

|M|
∑
p∈M

|d(p)− dsfm(p)|1 , (17)

where M represents the set of valid pixel p in pseudo depth labels dsfm.

A.4 Evaluation Metrics

Following in previous work [16,38], the description of the evaluation metrics we
used is as follows:

Abs.Rel.:
1

|N|
∑
p∈N

|d(p)− d∗(p)|
d∗(p)

, (18)

Sq. Rel.:
1

|N|
∑
p∈N

∥d(p)− d∗(p)∥2

d∗(p)
, (19)

RMSE:
1

|N|

√∑
p∈N

∥d(p)− d∗(p)∥2, (20)

RMSE log:
1

|N|

√∑
p∈N

∥logd(p)− logd∗(p)∥2, (21)

δ < n: fraction of d ∈ d for which max

(
d

d∗
,
d∗

d

)
< n, (22)

where d and d∗ indicate the predicted depth and ground-truth depth respec-
tively. N indicates the all valid pixels p in d∗.
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B Computation Analysis

In Tab. Tab. 5, we show the computation cost of each module. It can be observed
that the cost volume construction and fusion occupy a high proportion of mem-
ory and time, as the grid sample operation is well known to be time-consuming.
Reducing the runtime in V.C.F is an important future work.

Table 5: Computation analysis of each module: Pose Branch (Pose), Image En-
coder (I.E.), SAM Encoder (S.E.), Prior Decoder (P.D.), Volume Construct & Fusion
(V.C.F.), Depth Decoder (D.D.). Experiments are performed on V100.

Pose I.E. S.E. MFF P.D. V.C.F. D.D.

Memory(MB) 139.20 139.07 173.03 51.10 105.39 397.12 196.33
Percent(%) 11.59% 11.58% 14.40% 4.25% 8.77% 33.06% 16.34%
Time(ms) 39.33 3.35 20.65 3.58 1.39 216.35 2.34
Percent(%) 13.71% 1.17% 7.20% 1.25% 0.48% 75.39% 0.81%

C Ablation Study

Design of Pose Estimation Tab. 6 shows that the Front Camera (F. Cam.) can
achieve better results. We take the previous method [38] which concatenates
surrounding views to directly predict the ego pose as the baseline Concat Camera
(C. Cam.). Experiments indicate that the method F. Cam., which predict the
pose of front-view camera P0

t→t−1 and then derive the ego pose Pt→t−1, is more
effective.

Design of Multi-grained Feature Fusion Module In Tab. 7, we evaluate the perfor-
mance of different feature fusion methods in mono prior estimation. Specifically,
we compare the base model, which does not utilize the MFF module, against the
multi-grained feature fusion (MFF) module and the vanilla feature fusion (VFF)
module that blends SAM features with internal features through simple addition.
The results presented in Tab. 7 demonstrate that the incorporation of SAM fea-
tures notably elevates the quality of depth estimation outcomes. Comparing the
MFF module with the VFF module, our multi-grained feature fusion module ex-
hibits superior performance in fusing internal features with fine-grained semantic
information, thereby further augmenting the precision of depth estimation.

Design of Depth Decoder For Tab. 8, we train two variants of our depth decoder:
Vanilla Refine (V. Refine) and SAM Refine (S. Refine). The former utilizes con-
text features from FPN [25], whereas the latter employs context features from the
SAM encoder [22]. Through evaluation on the DDAD dataset, S. Refine attains
superior results. The results show that the network necessitates the integration
of more fine-grained information to enhance depth refinement. When compared



4 Y. Zou et al.

Table 6: Ablation study on the design of
pose estimation module comparison. Ex-
periments demonstrate that the method,
which utilizes the front-view camera to
estimate the front-view pose and subse-
quently infer the ego pose, is well-suited
for our depth estimation network and em-
bodies its effectiveness. (Bold figures indi-
cate the best and underlined figures indi-
cate the second best)

Method Abs. Rel. Sq. Rel. RMSE RMSE log δ < 1.25

C. Cam. 0.189 2.942 12.239 0.309 0.732
F. Cam. 0.183 2.920 11.963 0.299 0.756

Table 7: Designs of feature fusion module
comparison. We train MFF as described in
the main paper and train the VFF module
which fuses the internal feature and SAM
feature through direct addition. Experi-
mental results demonstrate that our design
effectively integrates diverse-grained fea-
tures, thereby significantly enhancing the
quality of depth estimation. (Bold figures
indicate the best and underlined figures in-
dicate the second best)

Method Abs. Rel. Sq. Rel. RMSE RMSE log δ < 1.25

Base 0.191 3.262 12.175 0.305 0.748
VFF 0.185 3.044 12.209 0.307 0.746
MFF 0.183 2.920 11.963 0.299 0.756

Table 8: Designs of depth decoder com-
parison. We train SAM Refine (S. Refine)
as described in the main paper and train
Vanilla Refine (V. Refine) using the con-
text feature from FPN [25]. We evaluate
both the network on DDAD and the exper-
iments show that SAM Refine effectively
enhances depth quality. (Bold figures in-
dicate the best and underlined figures in-
dicate the second best)

Method Abs. Rel. Sq. Rel. RMSE RMSE log δ < 1.25

Base 0.192 3.224 12.447 0.312 0.741
V. Refine 0.196 3.313 12.366 0.313 0.734
S. Refine 0.191 3.262 12.175 0.305 0.748

Table 9: Designs of depth sample
comparison. We train Adaptive Sample
(A. Sample), Vanilla Sample (V. Sample)
and Fixed Sample (F. Sample) with 16
samples. We evaluate both the network
on DDAD and the experiments show that
using adaptive methods yields better re-
sults. (Bold figures indicate the best
and underlined figures indicate the second
best)

Method Abs. Rel. Sq. Rel. RMSE RMSE log δ < 1.25

V. Sample 0.362 5.932 14.891 0.422 0.534
F. Sample 0.195 3.054 12.362 0.309 0.721
A. Sample 0.183 2.920 11.963 0.299 0.756

to FPN features, which encompass feature-matching information, SAM features
are deemed more suitable.

Adaptive Depth Sample In Tab. 9, we perform a comparison between the adap-
tive depth samples as described in the main paper (A. Sample), the fixed depth
samples within a fixed depth sampling range (F. Sample), the vanilla depth sam-
ple within the entire space (V. Sample). The experimental results consistently
show that the adaptive method yields better outcomes.

Number of Bins We conduct an ablation study against the number of bins on
DDAD [14] dataset, and the results are shown in Tab. 10. Our results demon-
strate that increasing the quantity of bins does not significantly enhance the
quality of depth. This indicates that the utilization of adaptive depth samples
effectively contributes to improving computational efficiency.
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Table 10: Ablation study on number of
bins. We compare the influence of the dif-
ferent number of bins used to train the
network. (Bold figures indicate the best
and underlined figures indicate the second
best)

Bins Abs. Rel. Sq. Rel. RMSE δ < 1.25 Memory(MB)

8 0.195 3.316 12.349 0.740 3483
16 0.194 3.331 12.347 0.741 3853
32 0.200 3.264 12.491 0.724 4751

Table 11: Ablation study on num-
ber of frames. The experimental results
demonstrate that our method achieves
highly competitive results with just two
frames. (Bold figures indicate the best
and underlined figures indicate the second
best)

Frames Abs. Rel. Sq. Rel. RMSE RMSE log δ < 1.25

(-1, 0) 0.183 2.920 11.963 0.299 0.756
(-2, -1, 0) 0.185 2.956 12.100 0.301 0.747

(-3, -2, -1, 0) 0.186 2.911 12.185 0.303 0.740

More Frames We conduct a multi frames experiment using multiple frames (2
frames, 3 frames, 4 frames) as inputs for depth estimation. Tab. 11 reveals that
increasing the number of frames does not necessarily improve depth accuracy. As
our method is not specifically designed to handle sequence data, increasing the
input frames does not effectively contribute new information. Notably, employing
just two frames is sufficient to produce commendable results.

D Visualized
D.1 SAM Feature Enhanced Depth

As shown in Fig. 9, integrating SAM features gets a notable enhancement in
both the depth prior and the final depth, particularly evident at the edges of the
instance.

Images Prior w/o SAM Prior with SAM Full Model
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Fig. 9: Visualization of produced depth results on DDAD dataset [14]. It can be ob-
served clearly that consistency within instances and discrimination between different
instances for both depths has improved.

D.2 More Depth Results

We visualize more depth results in Nuscenes [5] and DDAD [14] dataset. In
Fig. 10 and Fig. 11, our M2Depth consistently exhibits robustness and effec-
tiveness across diverse scenes. Notably, at the object edges, our method produces
sharper depth predictions.
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D.3 More Depth Error Results

In Fig. 12, we qualitatively compare our method with existing works in terms
of scale-aware depth estimation in DDAD. It can be observed that our method
achieves better results at the overlapping between adjacent views.
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Fig. 10: Qualitative comparison of predicted surrounding depth on NuScenes [5]. We
show a comparison of depth maps from our method to the depth maps of the state-
of-the-art approach SurroundDepth [38]. We observe that our method produces signif-
icantly sharper and more accurate depth predictions, particularly in fine details.
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Fig. 11: Qualitative comparison of predicted surrounding depth on DDAD [14]. We
show a comparison of depth maps from M2Depth to the depth maps of the state-of-the-
art approach SurroundDepth [38]. We observe that our method produces significantly
sharper and more accurate depth predictions, particularly in fine details.
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Fig. 12: Qualitative comparison of predicted surrounding depth on DDAD dataset [14].
Given the input surrounding images (the top row), we show the visualized depth maps
and depth errors of SurroundDepth [38] and M2Depth. Our method is able to produce
more accurate depth with less error and sharper depth edge across multiple cameras.
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