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THE PRIMITIVE SPECTRUM OF C∗-ALGEBRAS OF ÉTALE GROUPOIDS
WITH ABELIAN ISOTROPY

JOHANNES CHRISTENSEN AND SERGEY NESHVEYEV

Abstract. Given a Hausdorff locally compact étale groupoid G, we describe as a topological
space the part of the primitive spectrum of C∗(G) obtained by inducing one-dimensional rep-
resentations of amenable isotropy groups of G. When G is amenable, second countable, with
abelian isotropy groups, our result gives the description of PrimC

∗(G) conjectured by Van Wyk
and Williams. This, in principle, completely determines the ideal structure of a large class of
separable C∗-algebras, including the transformation group C∗-algebras defined by amenable
actions of discrete groups with abelian stabilizers and the C∗-algebras of higher rank graphs.

Introduction

The primitive spectrum PrimA of a C∗-algebra A consists of the ideals that can be realized
as kernels of irreducible representations. When equipped with the Jacobson topology, this space
contains crucial information about the C∗-algebra, as it completely determines the ideal structure
of A. A complete description of the Jacobson topology is often a difficult task even for C∗-
algebras with a relatively simple representation theory, see, e.g., [BP94,NT12]. Our goal in this
paper is to describe the topological space PrimA for a fairly large class of groupoid C∗-algebras.

The groupoid C∗-algebras belong to what can be loosely called algebras of crossed prod-
uct type. The “Mackey machine”, since its inception in the works of Clifford [Cli37] and
Mackey [Mac58], has been the main tool to study representations of such algebras. One
of the biggest achievements of the theory is the proof of the Effros–Hahn conjecture, which
states [EH67] that every primitive ideal of a separable transformation group C∗-algebra C0(X)⋊
G defined by an action G y X of an amenable group is induced by an irreducible representation
of one of the stabilizers. This conjecture was proved, in a generalized form, by Sauvageot [Sau79]
and Gootman–Rosenberg [GR79]. Their techniques were then extended to groupoid crossed
products by Renault [Ren91] and Ionescu–Williams [IW09b].

Therefore we know by now that if G is an amenable second countable Hausdorff locally compact
étale groupoid, then as a set the primitive ideal space PrimC∗(G) is a quotient of the set Stab(G)̂
of pairs (x, J), where x ∈ G(0) and J ∈ PrimC∗(Gx

x). Although this is a very powerful result, in
order to completely understand the ideal structure of C∗(G) one still needs to solve two related
problems: determine when two points in Stab(G)̂ have identical images under the induction
map Ind: Stab(G)̂ → PrimC∗(G) and describe the Jacobson topology on PrimC∗(G). Note
that the problems are related, because two points have identical images in PrimC∗(G) if and
only if the closures of these images coincide.

Effros and Hahn themselves proved in [EH67] that if an action G y X of a discrete amenable
group is free, so that Stab(G ⋉ X )̂ = X, then as a topological space Prim(C0(X) ⋊ G) is
homeomorphic to the space (G\X)∼ of quasi-orbits of the action, that is, (G\X)∼ is the quotient
of X such that two points x, y ∈ X have identical images if and only if Gx = Gy. More generally,
Williams proved in [Wil81] that if all stabilizers are contained in one abelian subgroup H ⊂ G,

then Stab(G⋉X )̂ can be given the topology of a quotient of X × Ĥ and Prim(C0(X)⋊G) is
homeomorphic to the quasi-orbit space (G\Stab(G⋉X )̂ )∼.
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It is then tempting to say that there should exist a natural topology on Stab(G)̂ such
that in the amenable case the induction map Ind: Stab(G)̂ → PrimC∗(G) induces a home-
omorphism Ind∼ of (G\Stab(G)̂ )∼ onto PrimC∗(G). Making sense of this for a large class of
groupoids, beyond the already mentioned cases, has proved to be difficult. All available general
results of this sort involve significant restrictions on the local structure of the isotropy bundle.
These results cover, for example, transformation groupoids defined by proper actions [EE11],
groupoids with isotropy groups Gx

x that vary continuously in x ∈ G(0) [Goe12] and groupoids
with abelian isotropy groups that vary continuously except for “jump discontinuities” [VWW22].

In the last paper ([VWW22]) Van Wyk and Williams tried to formalize this problem for
groupoids with abelian isotropy. They introduced a topology on Stab(G)̂ and cautiously
wrote that, under the assumptions of second countability and amenability, they expect the
map Ind∼ : (G\Stab(G)̂ )∼ → PrimC∗(G) to be a homeomorphism in most circumstances.

Almost at the same time Katsura [Kat21] succeeded in describing the primitive spectrum
for C∗-algebras of singly generated dynamical systems. These C∗-algebras can be defined as
groupoid C∗-algebras associated with a partially defined local homeomorphism σ : dom(σ) ⊂
X → X. On a superficial level the corresponding groupoids Gσ may seem similar to transfor-
mation groupoids Z⋉X, but they are known to have a considerably more complicated isotropy
structure. The class of C∗-algebras C∗(Gσ) includes graph C∗-algebras, and so the results of
Katsura subsume in particular earlier results on the ideal structure of Cuntz–Krieger algebras
and their generalizations, see [HS04] and the references there for the history of the problem.

From the groupoid point of view the main result of [Kat21] can be interpreted as a description
of the pre-images of closed subsets of PrimC∗(Gσ) in Stab(Gσ )̂ . Katsura, however, does not
use groupoids, working instead with C∗-correspondences, and it is not obvious (but is true, see
Section 3.5) that this description agrees with the conjecture of Van Wyk and Williams, according
to which this should give the Gσ-invariant closed subsets of Stab(Gσ )̂ .

Very recently, Brix, Carlsen and Sims [BCS23] studied the topology on the primitive spectrum
for the Deaconu–Renault groupoids GT defined by k-tuples T = (T1, . . . , Tk) of commuting local
homeomorphisms Ti : X → X. For k = 1 this gives the subclass of the groupoids Gσ discussed
above such that σ is globally defined. The main result of [BCS23] describes the topology on
PrimC∗(GT ) under the assumption of existence of “harmonious families of bisections”. It is
shown in [BCS23] that this assumption is weak enough to cover many examples of one or two
commuting local homeomorphisms, but it remains unclear how often it is satisfied for k ≥ 3. It
should be said that it is not at all obvious (but is again true, see Section 3.3) that the results
of [BCS23] agree with the conjecture of Van Wyk and Williams.

In this paper we prove that Ind∼ : (G\Stab(G)̂ )∼ → PrimC∗(G) is a homeomorphism for
all amenable second countable étale groupoids G with abelian isotropy groups. Our approach
draws on the insight from [NS23] and [CN23], but is in itself elementary and relies only on basic
properties of the Jacobson topology. In fact, it allows us to prove a more general result. Given
an étale groupoid G, with no additional assumptions of amenability or second countability, we
introduce a topological space Char(G) consisting of pairs (x, χ), where x ∈ G(0) and χ : Gx

x → T

is a character. Induction gives us a map Ind: Char(G) → PrimC∗(G). Our main result says
roughly that every convergent net Ind(xi, χi) → Ind(x, χ) in PrimC∗(G) comes, up to replacing
(xi, χi) by another point on its G-orbit, from a converging net in Char(G). When Gx

x is amenable,
the converse is also true.

The paper is organized as follows. In Section 1 we fix our notation and quickly review basic
facts about étale groupoids, Jacobson and Fell topologies, and quasi-orbit spaces.

In Section 2 we introduce the topological space Char(G). We first define the topology similarly
to [VWW22], but then reformulate it in a form more amenable to analysis. It is actually this
reformulated form that we found when we studied primitive spectra, and then realized that it is
equivalent to the construction by Van Wyk and Williams. We then discuss the induction map,
prove our main result (Theorem 2.6) and draw some consequences.
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Once one knows for a groupoid G with abelian isotropy that the spaces (G\Stab(G)̂ )∼ and
PrimC∗(G) are homeomorphic, it is in principle possible to completely understand the ideal
structure of C∗(G): the ideals are in a one-to-one correspondence with the G-invariant closed
subsets of Stab(G)̂ . However, the topology on Stab(G)̂ is complicated, and in practice get-
ting a good grasp on how such G-invariant sets look like can easily become a herculean task.
In Section 3 we collect several classes of examples where the space Stab(G)̂ has a bit more
transparent structure and our results can be formulated in a more explicit form. These are first
of all transformation groupoids defined by group actions with abelian stabilizers and groupoids
injectively graded by an abelian group, which includes the Deaconu–Renault groupoids Gσ, GT .
In particular, the results from [Wil81,Kat21,BCS23] we discussed above fall into one of these
classes and we show how they can be relatively quickly deduced from our results (at least for
the second countable spaces in the case of [Kat21]).

In Section 4 we apply results of Section 3 to graph algebras. As was already mentioned, a
complete description of the primitive spectrum of Cuntz–Krieger algebras of countable directed
graphs was obtained by Hong and Szymański [HS04] as a culmination of a long line of research.
In Section 4.1 we give an equivalent description based on analysis of quasi-orbits of the canonical
shift map on the path space of the graph. A key observation, valid for all local homeomorphisms
of second countable spaces, is that every quasi-orbit is represented either by an aperiodic path
or by a periodic path with a discrete orbit. In both cases the orbit closures are then not too
difficult to understand in graph-theoretic terms.

In Section 4.2 we briefly consider higher rank graphs. A parametrization of the primitive ideals
of the corresponding Cuntz–Krieger algebras follows, in principle, from [CN23, Theorem 6.1]
(which generalizes an earlier result of Sims and Williams [SW16, Theorem 3.2]), and then results
of the present paper describe the topology on the spectrum. But in practice a lot of work is still
needed to formulate this explicitly in terms of the underlying graph. To simplify matters, in this
paper we consider only higher rank graphs that are row-finite and have no sources. For such
graphs, a description of the open subsets of the primitive spectrum has been given in [BCS23]
under the assumption of existence of harmonious families of bisections, which is always satisfied
for graphs of rank ≤ 2. We prove a related result that is both more explicit and requires no extra
assumptions. Nevertheless, even for row-finite graphs without sources the picture is not nearly
as complete as in the rank one case discussed in Section 4.1. We leave it to future research to
determine whether one can get a significantly better description or that the more complicated
nature of higher rank graphs does not simply allow that.

1. Preliminaries

1.1. Étale groupoids and their C∗-algebras. Throughout the paper we work with Hausdorff
locally compact étale groupoids G. In the following we will briefly introduce our notation for
such groupoids, and we refer the reader to [SSW20] for more background information. For a
number of results we have to assume that G is in addition second countable or amenable, but
we will make these assumptions explicitly every time they are needed.

As usual we denote by s : G → G(0) and r : G → G(0) the source and range maps. The
assumption of étaleness means that these maps are local homeomorphisms. Recall that a subset
of G on which s and r are injective is called a bisection of G. We let Gx := s−1(x), Gx := r−1(x)

and we define the isotropy group at x ∈ G(0) to be Gx
x := Gx ∩ Gx. We denote by [x] := r(Gx)

the G-orbit of x in G(0). The isotropy bundle is defined by

Iso(G) := {g ∈ G : s(g) = r(g)}.

This is a closed subgroupoid of G.

The space Cc(G) of continuous compactly supported functions on G is a ∗-algebra with con-
volution product

(f1 ∗ f2)(g) :=
∑

h∈Gr(g)

f1(h)f2(h
−1g)

3



and involution by f∗(g) := f(g−1). If f ∈ Cc(W ) for an open bisection W ⊂ G, then for every
representation π : Cc(G) → B(H) we have

‖π(f)‖ ≤ ‖f‖∞.

This implies that we can define a norm on the ∗-algebra Cc(G) by ‖f‖ = supπ ‖π(f)‖, where
the supremum is taken over all representations of Cc(G). We denote by C∗(G) the C∗-algebra
obtained by completing Cc(G) in this norm.

Take a point x ∈ G(0) and a subgroup S ⊂ Gx
x . Then every unitary representation π : S →

U(H) on a Hilbert space H can be induced to a representation Indπ = IndGS π of C∗(G) as
follows. The underlying space IndH of Indπ consists of the functions ξ : Gx → H such that

ξ(gh) = π(h)∗ξ(g), g ∈ Gx, h ∈ S,

and ∑

g∈Gx/S

‖ξ(g)‖2 < ∞.

The space IndH is then a Hilbert space with the inner product

(ξ1, ξ2) :=
∑

g∈Gx/S

(ξ1(g), ξ2(g)), ξ1, ξ2 ∈ IndH.

For f ∈ Cc(G) we have
(
(Indπ)(f)ξ

)
(g) :=

∑

h∈Gr(g)

f(h)ξ(h−1g), g ∈ Gx, ξ ∈ IndH. (1.1)

We write out the following standard observation for future reference.

Lemma 1.1. Let G be a Hausdorff locally compact étale groupoid, let x ∈ G(0), g ∈ Gx and let
S ⊂ Gx

x be a subgroup. Then the right translation by g defines a unitary equivalence between the

representations IndGS π and IndG
gSg−1 π(g

−1 · g).

Proof. Let Hx be the Hilbert space underlying Indπ and let Hr(g) be the Hilbert space underlying

Indπ(g−1 · g). The map V : Hr(g) → Hx defined by

(V ξ)(g′) := ξ(g′g−1), g′ ∈ Gx, ξ ∈ Hr(g),

is a unitary operator satisfying V ∗(IndGS π)V = IndG
gSg−1 π(g

−1 · g). �

1.2. Weak containment and the Jacobson topology. By an ideal in a C∗-algebra we always
mean a closed two-sided ideal. We refer the reader to [Ped18] for an in-depth treatment of
primitive ideals. Given a C∗-algebra A, recall that the Jacobson topology on its set of primitive
ideals is the topology in which the closed sets have the form

hull(J) := {I ∈ PrimA : J ⊂ I},

where J ⊂ A is an ideal. Therefore the closure of a set C ⊂ PrimA is hull(
⋂

I∈C I).
Given a nondegenerate representation π : A → B(H), denote by Sπ(A) the collection of

states on A of the form (π(·)ξ, ξ), where ξ ∈ H is a unit vector. As in [Fel60], we say that a
representation π is weakly contained in a representation ρ, if Sπ(A) is contained in the weak∗

closure of the convex hull of Sρ(A). If π has a cyclic unit vector ξ, it suffices to check that
(π(·)ξ, ξ) lies in that closed convex hull.

Lemma 1.2 ([Fel60, Theorem 1.4]). Assume A is a C∗-algebra, π and πi (i ∈ I) are irreducible
representations of A. Then the following conditions are equivalent:

(1) kerπ lies in the closure of (ker πi)i∈I in PrimA;
(2) π is weakly contained in

⊕
i∈I πi;

(3) Sπ(A) is contained in the weak∗ closure of
⋃

i∈I Sπi
(A).

From the equivalence of (1) and (2) we get the following well-known observation.
4



Lemma 1.3. Assume A is a C∗-algebra, π is an irreducible representation of A and (πi)i is a
net of irreducible representations of A. Then kerπi → kerπ in PrimA if and only if for every
subnet (πij )j the representation π is weakly contained in

⊕
j πij .

Proof. The “only if” implication follows by Lemma 1.2, since a subnet of a convergent net
converges towards the same limit. For the “if” implication, observe that if U is a neighbourhood
of ker π such that there does not exist an index i0 with ker πi ∈ U for all i ≥ i0, then J :=
{i | kerπi /∈ U} defines a subnet such that π is not weakly contained in

⊕
j πij by Lemma 1.2. �

1.3. Fell topology. Assume X is a topological space. Denote by Cl(X) the set of closed subsets
of X. The Fell topology on Cl(X) is defined using as a basis the sets

U(K; (Ui)
n
i=1) := {A ∈ Cl(X) : A ∩K = ∅, A ∩ Ui 6= ∅ for i = 1, . . . , n},

where K ⊂ X is compact and Ui ⊂ X are open. As is shown in [Fel62], the space Cl(X) is
always compact. It is Hausdorff when X is locally compact.

If G is a locally compact group, then the subset Sub(G) ⊂ Cl(G) of closed subgroups of G is
closed, hence it is compact in the relative topology, which is called the Chabauty topology.

We will mainly use the Fell topology for discrete spaces X. In this case a net (Ci)i converges
to C ∈ Cl(X) if and only if the indicator functions 1Ci

converge to 1C pointwise, and all the
above statements become straightforward to verify.

1.4. T0-ization. Recall that a topological space X is T0 when for any pair of distinct points
in X there exists an open set containing only one of them. When X is a topological space and R
is an equivalence relation on X, we remind that the quotient space X/R is equipped with the
topology in which a subset of X/R is open exactly when its pre-image under the quotient map
X → X/R is open.

Following [EH67], for a topological space X, we denote by X∼ its T0-ization, also known as
the Kolmogorov quotient of X, the topological space obtained by identifying points of X that
have identical closures. If p : X → X∼ is the quotient map and F ⊂ X is a closed subset, then it
follows by definition that p−1(p(F )) = F . Hence p is both closed and open, and p establishes a
bijection between the closed subsets of X and the closed subsets of X∼, equivalently, a bijection
between the open subsets of X and the open subsets of X∼. The space X∼ is a T0-space, and
every continuous map from X into a T0-space factors through a continuous map from X∼.

The following lemma will be useful to recognize the spaces X∼.

Lemma 1.4. Assume X and Y are topological spaces, with Y a T0-space, and p : X → Y is a
surjective continuous map. Assume also that R is an equivalence relation on X satisfying the
following properties:

(i) if x1 ∼R x2, then p(x1) = p(x2);
(ii) if U ⊂ X is an open set, then its R-saturation

R(U) := {x ∈ X | x ∼R u for some u ∈ U}

is again open in X;
(iii) if x ∈ X and A ⊂ X are such that p(x) ∈ p(A), then x ∈ R(A).

Then p defines a homeomorphism of (X/R)∼ onto Y . Moreover, the map p : X → Y is open,

and we have p(x1) = p(x2) if and only if R(x1) = R(x2).

Proof. We start by proving that p(x1) = p(x2) if and only if R(x1) = R(x2). If p(x1) = p(x2),

then, for every x ∼R x1, we have p(x) = p(x2) by (i), hence x ∈ R(x2) by (iii). Therefore

R(x1) ⊂ R(x2). For the same reason the opposite inclusion holds, so R(x1) = R(x2). Conversely,

if R(x1) = R(x2), then

p(x1) ∈ p
(
R(x2)

)
⊂ p(R(x2)) = {p(x2)}.

For the same reason p(x2) ∈ {p(x1)}. As Y is a T0-space, it follows that p(x1) = p(x2).
5



Since p factors through X/R and Y is a T0-space, we get a surjective continuous map

p∼ : (X/R)∼ → Y . Now we observe that if R(x1) = R(x2), then the images of x1 and x2
in X/R have the same closures, hence their images in (X/R)∼ are equal. It follows that p∼ is a
bijection. It remains to show that p is open, since then p∼ is open as well.

Take an open set U ⊂ X and consider the set F := X \ R(U), which is closed by (ii). If

p(x) ∈ p(F ), then by (iii) we have x ∈ R(F ). But the set F is already R-saturated and closed,
hence x ∈ F . This shows that the set p(F ) is closed and p(U)∩p(F ) = ∅. Hence p(U) = Y \p(F )
is open. �

We remark that once it is proved that (X/R)∼ → Y is a homeomorphism, the fact that
p : X → Y is open follows from openness of the quotient maps X → X/R and X/R → (X/R)∼.
Even more, we have the following property.

Corollary 1.5. In the setting of Proposition 1.4, the map p establishes a bijection between the
R-saturated open subsets of X and the open subsets of Y .

Proof. By definition, the quotient map X → X/R establishes a bijection between the R-
saturated open subsets of X and the open subsets of X/R. By properties of T0-ization we
also know that the map X/R → (X/R)∼ defines a bijection between the open subsets of X/R
and the open subsets of (X/R)∼. By combining these two facts we get the result. �

Corollary 1.6. Assume X is a topological space and R is an equivalence relation on X such
that the R-saturation of every open set is open. Then (X/R)∼ is the quotient of X obtained by
identifying points that have identical closures of their R-equivalence classes.

Proof. Consider the quotient maps q : X → X/R and p : X → (X/R)∼. Assume p(x) ∈ p(A)

for some x ∈ X and A ⊂ X. Since the map X/R → (X/R)∼ is closed, the set p(A) is the image

of the closed set q(A). By the definition of T0-ization it follows that q(x) ∈ q(A). Since q is

open, q(X \R(A)) is an open set that does intersect q(A). It follows that x ∈ R(A). Therefore
we can apply Lemma 1.4 to p : X → (X/R)∼ and conclude that p(x1) = p(x2) if and only if

R(x1) = R(x2). �

2. Primitive ideals induced by characters

2.1. The spaces Char(G), Stab(G)̂ and the induction map. Assume G is a Hausdorff

locally compact étale groupoid. Denote by Char(G) the sets of pairs (x, χ), where x ∈ G(0) and

χ : Gx
x → T is a character. For every open set U ⊂ G(0), compact set K ⊂ Iso(G) and open set

V ⊂ T, consider the subset O(U,K, V ) ⊂ Char(G) defined by

O(U,K, V ) := {(x, χ) : x ∈ U, χ(K ∩ Gx
x) ⊂ V }.

Consider the topology on Char(G) with a basis consisting of finite intersections of the sets
O(U,K, V ). When G has abelian isotropy groups, we denote this space by Stab(G)̂ .

The topological space Stab(G)̂ for transformation groupoids defined by proper actions (with
not necessarily abelian stabilizers) was introduced in [EE11]. For (not necessarily étale) groupoids
with abelian isotropy it was introduced in [VWW22], whose definition we follow. We remark that
in [VWW22] this space is denoted by Stab(G). Although this notation is lighter than Stab(G)̂ ,
it seems misleading to us, so we will use the latter one, which is also more in line with [EE11].

The topology on Char(G) can also be described as follows.

Lemma 2.1. Fix a point (x, χ) ∈ Char(G). For every g ∈ Gx
x , choose an open bisection Wg

containing g. Then a base of open neighbourhoods of (x, χ) in Char(G) is given by the sets
Uχ
x (U, ε, (Wg)g∈F ) defined as follows, where ε > 0, F ⊂ Gx

x is a finite set and U is an open

neighbourhood of x in G(0) such that U ⊂
⋂

g∈F r(Wg): the set Uχ
x (U, ε, (Wg)g∈F ) consists of the

points (y, η) such that y ∈ U and for every g ∈ F we have either Wg ∩Gy
y = ∅, or Wg ∩Gy

y = {h}
for some h and |χ(g) − η(h)| < ε.
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Proof. Let us show first that the sets Uχ
x (U, ε, (Wg)g∈F ) are open. Take a point (y, η) ∈

Uχ
x (U, ε, (Wg)g∈F ), so y ∈ U and for every g ∈ F we have either Wg ∩Gy

y = ∅, or Wg ∩Gy
y = {hg}

for some hg and |χ(g) − η(hg)| < ε. Consider the set S ⊂ Gy
y formed by the elements hg. For

every h ∈ S, let Vh :=
⋂

g∈F :hg=hWg. This is an open bisection containing h. Choose a number

δ > 0 such that |χ(g) − η(hg)| + δ < ε for all g ∈ F such that Wg ∩ Gy
y 6= ∅. Choose an open

neighbourhood V of y satisfying the following properties: V̄ is compact, V̄ ⊂ U ∩
⋂

h∈S r(Vh)

and VWgV = ∅ (in other words, r−1(V )∩Wg∩s−1(V ) = ∅) for all g ∈ F such that Wg∩Gy
y = ∅.

For every h ∈ S, consider the compact subset

Kh := Iso(G) ∩ Vh ∩ r−1(V̄ )

of Iso(G) ∩ Vh. We claim that then (y, η) ∈ O ⊂ Uχ
x (U, ε, (Wg)g∈F ), where

O :=
⋂

h∈S

O(V,Kh, {w ∈ T : |w − η(h)| < δ}).

Since Kh ∩ Gy
y = {h} for all h ∈ S, it is clear that (y, η) ∈ O. Next, assume (z, ω) ∈ O. Take

g ∈ F and assume Wg ∩ Gz
z = {h′} for some h′. We must have Wg ∩ Gy

y 6= ∅, since otherwise
VWgV = ∅, contradicting the existence of h′. Let h := hg. Then h′ ∈ Kh by the definition
of Kh. Hence |ω(h′) − η(h)| < δ. By our choice of δ we also have |χ(g) − η(h)| + δ < ε, hence
|ω(h′) − χ(g)| < ε. This proves our claim. Hence Uχ

x (U, ε, (Wg)g∈F ) is an open neighbourhood
of (x, χ).

Assume now that (x, χ) ∈
⋂n

i=1 O(Ui,Ki, Vi). By compactness of the sets Ki we can find an
open neighbourhood U of x and a finite subset F ⊂ Gx

x such that U ⊂
⋂n

i=1 Ui and r−1(U) ∩(⋃n
i=1Ki

)
⊂

⋃
g∈F Wg. Indeed, otherwise we would be able to find a net (gj)j in

⋃n
i=1 Ki such

that it eventually lies outside of every bisection Wg and r(gj) → x. But then by compactness of⋃n
i=1Ki ⊂ Iso(G) we would get a cluster point h of this net with the property h ∈ Gx

x \
⋃

g∈Gx
x
Wg,

which is impossible.
By replacing U by a smaller set if necessary, we may assume that U ⊂

⋂
g∈F r(Wg). By

replacing U by an even smaller set we may also assume that for every index i and every g ∈ F
we have either r−1(U) ∩Ki ∩Wg = ∅ or g ∈ Ki. Finally, let us choose ε > 0 such that

{w ∈ T : |w − χ(g)| < ε} ⊂ Vi (2.1)

for all i and g ∈ F such that g ∈ Ki. We claim that then

(x, χ) ∈ Uχ
x (U, ε, (Wg)g∈F ) ⊂

n⋂

i=1

O(Ui,Ki, Vi).

In order to show this, assume (y, η) ∈ Uχ
x (U, ε, (Wg)g∈F ) and fix an index i. Assuming

Ki ∩ Gy
y 6= ∅, take an element h in this set. Then h ∈ Wg for some g ∈ F , hence |χ(g)− η(h)| <

ε. By our choice of U we must have g ∈ Ki. Then η(h) ∈ Vi by (2.1). It follows that
(y, η) ∈ O(Ui,Ki, Vi), proving our claim. This completes the proof of the lemma. �

As an immediate consequence we get the following description of convergence in Char(G).

Corollary 2.2. Fix a point (x, χ) ∈ Char(G). For every g ∈ Gx
x , choose an open bisection Wg

containing g. Then a net ((xi, χi))i converges to (x, χ) in Char(G) if and only if xi → x in G(0)

and, for every g ∈ Gx
x and ε > 0, there is i0 ∈ I such that for each i ≥ i0 we have either

Wg ∩ Gxi
xi

= ∅, or Wg ∩ Gxi
xi

= {h} for some h and |χ(g)− χi(h)| < ε.

For (x, χ) ∈ Char(G), denote by πχ
x the induced representation IndGGx

x
χ of C∗(G). It is known

and not difficult to check that the representations πχ
x are irreducible, see [IW09a] for a more

general statement in the second countable case. We therefore get a map

Ind: Char(G) → PrimC∗(G), Ind(x, χ) := ker πχ
x .

Lemma 2.3. Assume (x, χ) ∈ Char(G) is a point such that the group Gx
x is amenable. Then the

map Ind: Char(G) → PrimC∗(G) is continuous at (x, χ).
7



Proof. This can be proved along the lines of [VWW22, Corollary 4.6]. Since our étale case does
not really need any sophisticated machinery, we will give an essentially self-contained proof for
the reader’s convenience.

Assume ((xi, χi))i is a net in Char(G) converging to (x, χ). We need to show that Ind(xi, χi) →
Ind(x, χ) in PrimC∗(G). By Lemma 1.3 for this it suffices to show that πχ

x is weakly contained
in

⊕
i π

χi
xi .

For every g ∈ Gx
x , fix an open bisection Wg containing g. By Corollary 2.2, by passing to a

subnet we may assume that for every i ∈ I we are given a number εi > 0 and a finite subset
Fi ⊂ Gx

x such that the following properties are satisfied: εi → 0, Fi ր Gx
x and for every g ∈ Fi

we have either Wg ∩Gxi
xi

= ∅, or Wg ∩Gxi
xi

= {h} for some h and |χ(g)−χi(h)| < εi. Let Si ⊂ Fi

be the subset of points g such that Wg ∩ Gxi
xi

6= ∅. By passing to a subnet we may assume that
Si → S in the Fell topology for some subset S ⊂ Gx

x .
We claim that S is a subgroup of Gx

x . In order to see this, assume g, h ∈ S. Then for all i
large enough we have g, h ∈ Si and gh ∈ Fi. Since WgWh is an open bisection containing gh,
we also have WgWh ∩ r−1(V ) = Wgh ∩ r−1(V ) for a neighbourhood V of x, and hence if xi ∈ V
and g, h ∈ Si, then Wgh ∩ Gxi

xi
6= ∅. Therefore gh ∈ Si for all i sufficiently large, hence gh ∈ S.

Similar arguments show that S contains the unit and is closed under taking inverses.
By construction the subgroup S has the following properties. If g ∈ S, then Wg∩Gxi

xi
= {hg,i}

for some hg,i for all i sufficiently large, and χi(hg,i) → χ(g). While if g ∈ Gx
x\S, then Wg∩G

xi
xi

= ∅
for all i sufficiently large.

We claim that π := IndGS(χ|S) is weakly contained in
⊕

i∈I π
χi
xi . In order to show this, define

unit vectors ζ and ζi in the underlying spaces of the representations π and πχi
xi by

ζ(g) :=

{
χ(g), if g ∈ S,

0, if g ∈ Gx \ S,
ζi(g) :=

{
χi(g), if g ∈ Gxi

xi
,

0, if g ∈ Gxi
\ Gxi

xi
.

Since ζ is a cyclic vector for the representation π, in order to prove the claim it suffices to show
that the states ϕi := (πχi

xi (·)ζi, ζi) converge weakly∗ to ϕ := (π(·)ζ, ζ). For this it suffices to check
that ϕi(f) → ϕ(f) for all f ∈ Cc(W ), where W runs through a collection of open bisections
covering G. It is enough to consider the bisections W satisfying one of the following properties:

(1) W = Wg for some g ∈ S;
(2) W = Wg for some g ∈ Gx

x \ S;

(3) x /∈ s(W ) ∩ r(W ).

In the first case we have ϕ(f) = χ(g)f(g) and, for i large enough, ϕi(f) = χi(hg,i)f(hg,i).
Hence ϕi(f) → ϕ(f) by the definition of S and continuity of f , since hg,i → g. In the second
case we have ϕ(f) = 0 and ϕi(f) = 0 as long as i is large enough so that Wg ∩ Gxi

xi
= ∅. Thus,

ϕi(f) → ϕ(f). In the third case we have ϕ(f) = 0 and ϕi(f) = 0 as long as i is large enough

so that xi /∈ s(W ) ∩ r(W ). Therefore we again have ϕi(f) → ϕ(f). This completes the proof of

weak containment of IndGS(χ|S) in
⊕

i∈I π
χi
xi .

Now, since Gx
x is amenable, the representation χ of Gx

x is weakly contained in Ind
Gx
x

S (χ|S)

by [Gre69, Theorem 5.1]. Hence πχ
x = IndGGx

x
χ is weakly contained in IndGGx

x
Ind

Gx
x

S (χ|S) ∼

IndGS(χ|S). �

Denote by Chara(G) ⊂ Char(G) the subset of pairs (x, χ) such that Gx
x is amenable, and

endow Chara(G) with the relative topology. The groupoid G acts on Char(G) and Chara(G) by
g(x, χ) := (r(g), χ(g−1 · g)) for g ∈ Gx. Using either Lemma 2.1 or Corollary 2.2, it is easy to
verify the following.

Lemma 2.4 (cf. [VWW22, Corollary 3.8]). The action of G on Char(G) is continuous.

By Lemma 1.1, the map Ind factors through G\Char(G). Using the fact that PrimC∗(G) is a
T0-space, we then get the following corollary to Lemma 2.3.
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Corollary 2.5. The map Ind induces a continuous map G\Chara(G) → PrimC∗(G), hence a
continuous map

Ind∼ : (G\Chara(G))
∼ → PrimC∗(G).

2.2. Main results. The following is the key result of the paper.

Theorem 2.6. Let G be a Hausdorff locally compact étale groupoid. Assume (x, χ) ∈ Char(G)
and A ⊂ Char(G) are such that Ind(x, χ) ∈ IndA in PrimC∗(G). Then (x, χ) ∈ GA in Char(G).

Proof. For (y, η) ∈ Char(G) and z ∈ [y] := r(Gy), we denote by ηz : G
z
z → T the character

η(g−1 · g), where g is any element of Gz
y . In other words, (z, ηz) = g(y, η). Note that ηz is

independent of the choice of g ∈ Gz
y .

For every g ∈ Gx
x , fix an open bisection Wg containing g. Fix a neighbourhood U of x in G(0),

ε > 0 and a finite subset F ⊂ Gx
x . By the description of the topology on Char(G) given in

Lemma 2.1 we need to show that there exist (y, η) ∈ A and z ∈ [y] ∩ U satisfying the following
property: for every g ∈ F , we have either Wg ∩ Gz

z = ∅, or Wg ∩ Gz
z = {h} for some h and

|χ(g) − ηz(h)| < ε.
Denote by H and Hy,η the underlying spaces of the representations πχ

x and πη
y . Consider the

unit vector ζ ∈ H defined by

ζ(g) :=

{
χ(g), if g ∈ Gx

x ,

0, if g ∈ Gx \ G
x
x ,

and the corresponding state ϕ := (πχ
x (·)ζ, ζ) on C∗(G). By replacing U by a smaller neighbour-

hood of x if necessary, we may assume that there are functions fg ∈ Cc(Wg) (g ∈ F ) such that
0 ≤ fg(h) ≤ 1 for all h ∈ Wg, fg(h) = 1 for all h ∈ r−1(U) ∩Wg. Let us also choose a function
f ∈ Cc(U) such that 0 ≤ f ≤ 1 and f(x) = 1. Fix a number α ∈ (0, |F |−1). Let δ > 0 be such
that

if Rew > 1−
δ

α
for some w ∈ T, then |1− w| < ε. (2.2)

Since πχ
x is weakly contained in

⊕
(y,η)∈A πη

y , by Lemma 1.2(3) we can find (y, η) ∈ A and a

unit vector ξ ∈ Hy,η such that

|ϕ(f)− (πη
y(f)ξ, ξ)| < 1− |F |α, |ϕ(fg)− (πη

y(fg)ξ, ξ)| < δ for all g ∈ F. (2.3)

For every z ∈ [y], fix an element rz ∈ Gz
y . We have ϕ(f) = 1 and

(πη
y(f)ξ, ξ) =

∑

z∈[y]

f(z)|ξ(rz)|
2.

Therefore by the choice of f the first inequality in (2.3) implies that
∑

z∈[y]∩U

|ξ(rz)|
2 > |F |α. (2.4)

We also have ϕ(fg) = χ(g), hence the second inequality gives

|χ(g) − (πη
y(fg)ξ, ξ)| < δ for all g ∈ F. (2.5)

For every g ∈ F , let Zg be the set of points z ∈ [y] ∩ U such that Wg ∩ Gz
z = {hg,z} for

some hg,z and |χ(g) − ηz(hg,z)| ≥ ε. We want to show that the set ([y] ∩ U) \
⋃

g∈F Zg is

nonempty. Assume this is not the case. By (2.4) we then get that
∑

g∈F

∑

z∈Zg

|ξ(rz)|
2 ≥

∑

z∈[y]∩U

|ξ(rz)|
2 > |F |α.

It follows that there is g ∈ F such that
∑

z∈Zg

|ξ(rz)|
2 > α. (2.6)
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Now, for every z ∈ Zg consider the unit vector ζz ∈ Hy,η defined by

ζz(g
′) :=

{
η(r−1

z g′), if g′ ∈ Gz
y ,

0, if g′ ∈ Gy \ G
z
y .

From the definition (1.1) of an induced representation we get that, for each z′ ∈ [y],

(πη
y(fg)ζz)(rz′) =

∑

h∈Gz′

fg(h)ζz(h
−1rz′) =

∑

h∈Gz′
z

fg(h)ζz(h
−1rz′).

The last expression is zero for z′ 6= z, since fg is supported on Wg and Wg∩Gz = Wg∩G
z
z = {hg,z},

while for z′ = z we get
fg(hg,z)ζz(h

−1
g,zrz) = ηz(hg,z).

Thus, πη
y(fg)ζz = ηz(hg,z)ζz, and a similar computation reveals that πη

y(f∗
g )ζz = ηz(hg,z)ζz.

Therefore in the representation πη
y the spaces Cζz ⊂ Hy,η for z ∈ Zg are invariant subspaces

for the C∗-algebra Ag ⊂ C∗(G) generated by fg. Define ξ̃ ∈ Hy,η by ξ̃(g′) := 0 if r(g′) ∈ Zg and

ξ̃(g′) := ξ(g′) otherwise. Then the vectors ξ̃ and ζz for all z ∈ Zg are mutually orthogonal and

ξ = ξ̃ +
∑

z∈Zg

ξ(rz)ζz .

It follows that on Ag we have

(πη
y(·)ξ, ξ) =

∑

z∈Zg

|ξ(rz)|
2(πη

y (·)ζz, ζz) + (πη
y (·)ξ̃, ξ̃) .

Applying this to fg we get
∣∣∣∣∣∣
(πη

y (fg)ξ, ξ)−
∑

z∈Zg

|ξ(rz)|
2ηz(hg,z)

∣∣∣∣∣∣
= |(πη

y (fg)ξ̃, ξ̃)| ≤ ‖ξ̃‖2 = 1−
∑

z∈Zg

|ξ(rz)|
2.

Together with (2.5) this gives
∣∣∣∣∣∣
χ(g) −

∑

z∈Zg

|ξ(rz)|
2ηz(hg,z)

∣∣∣∣∣∣
< 1−

∑

z∈Zg

|ξ(rz)|
2 + δ.

It follows that ∑

z∈Zg

|ξ(rz)|
2 Re

(
χ(g)ηz(hg,z)

)
>

∑

z∈Zg

|ξ(rz)|
2 − δ.

This implies that there is z ∈ Zg such that

Re
(
χ(g)ηz(hg,z)

)
> 1−

δ∑
z′∈Zg

|ξ(rz′)|2
> 1−

δ

α
,

where in the last inequality we used (2.6). By our choice (2.2) of δ it follows that

|χ(g) − ηz(hg,z)| < ε.

But this contradicts the definition of Zg.
In conclusion, there must exist an element z ∈ ([y] ∩ U) \

⋃
g∈F Zg. By the definition of the

sets Zg, we have, for every g ∈ F , that either Wg ∩ Gz
z = ∅, or Wg ∩ Gz

z = {h} for some h and
|χ(g) − ηz(h)| < ε. This proves the theorem. �

We can now show that the map Ind∼ defined in Corollary 2.5 is a homeomorphism onto its
image. It is convenient to formulate this in the following formally stronger form.

Corollary 2.7. For any G-invariant subset A ⊂ Chara(G), the map Ind defines a homeomor-
phism of (G\A)∼ onto IndA ⊂ PrimC∗(G). Moreover, the map Ind |A : A → IndA is open, and
Ind(x, χ) = Ind(y, η) if and only if the G-orbits of (x, χ) and (y, η) have identical closures in A
(equivalently, in Char(G)).
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Proof. Consider the surjective map p := Ind |A : A → IndA and the orbit equivalence relation
on X := A. By Lemma 2.3 the map p is continuous, and by respectively Lemma 1.1, Lemma 2.4
and Theorem 2.6 it satisfies the three properties of Lemma 1.4. This finishes the proof. �

If IndA coincides with the entire primitive spectrum, Corollary 2.7 gives a description of
PrimC∗(G). For example, if G is amenable and second countable, then we know that every
primitive ideal is induced from an isotropy group [IW09b]. Hence we get the following result
conjectured in [VWW22].

Corollary 2.8. Assume G is an amenable second countable Hausdorff locally compact étale
groupoid with abelian isotropy groups. Then the map Ind: Stab(G)̂ → PrimC∗(G) defines a
homeomorphism of (G\Stab(G)̂ )∼ onto PrimC∗(G).

We finish the section with a small technical refinement of Theorem 2.6. It can happen that
Ind(x, χ) depends only on the values of χ on a proper subgroup of Gx

x . Not surprisingly, in this
case we can ignore the values of χ outside that subgroup when discussing the topology on the
primitive ideal space, at least when Gx

x is abelian.

Corollary 2.9. Assume G is a Hausdorff locally compact étale groupoid, x ∈ G(0) is a point with

an abelian isotropy group Gx
x , χ ∈ Ĝx

x and Γx ⊂ Gx
x is a subgroup such that Ind(x, ω) = Ind(x, χ)

for all ω ∈ Ĝx
x such that ω = χ on Γx. For every g ∈ Γx, fix an open bisection Wg containing g.

Then Ind(x, χ) belongs to the closure of IndA in PrimC∗(G) for a subset A ⊂ Char(G) if and
only if for every neighbourhood U of x, every ε > 0 and every finite subset F ⊂ Γx, there exist
(y, η) ∈ A and z ∈ [y] ∩ U satisfying the following property: for every g ∈ F , we have either
Wg ∩ Gz

z = ∅, or Wg ∩ Gz
z = {h} for some h and |χ(g)− ηz(h)| < ε.

Here we use the same notation as in the proof of Theorem 2.6: the character ηz : G
z
z → T is

defined by ηz = η(g−1 · g), where g is any element of Gz
y .

Proof. The “only if” part follows from the theorem. For the “if” part, we may assume that A is
G-invariant, since Ind(GA) = IndA. Then we can find a net ((xi, χi))i in A, numbers εi > 0 and
finite subsets Fi ⊂ Gx

x such that the following properties are satisfied: xi → x, εi → 0, Fi ր Gx
x

and for every g ∈ Fi ∩ Γx we have either Wg ∩ Gxi
xi

= ∅, or Wg ∩ Gxi
xi

= {hg,i} for some hg,i and
|χ(g) − χi(hg,i)| < εi.

For every g ∈ Gx
x \ Γx, choose an open bisection Wg containing g. For every i ∈ I, let Si ⊂ Fi

be the subset of points g such that Wg ∩Gxi
xi

= {hg,i} for some hg,i. By passing to a subnet and
arguing as in the proof of Lemma 2.3, we may assume that Si → S for some subgroup S ⊂ Gx

x .
Then Si ∩ Γx → S ∩ Γx. By passing to a subnet we may also assume that for every g ∈ S the

net (χi(hg,i))i converges to some η(g) ∈ T. It is easy to see that η ∈ Ŝ and η = χ on S ∩ Γx. It
follows that we can define a character ω on the subgroup SΓx ⊂ Gx

x by ω(gh) := η(g)χ(h) for
g ∈ S and h ∈ Γx. Extend ω to a character on Gx

x and continue to denote this extension by ω.
By construction, for all g ∈ S we have χi(hg,i) → η(g) = ω(g), while for g /∈ S we have

Wg∩G
xi
xi

= ∅ for all i large enough. This means that (xi, χi) → (x, ω) in Char(G). By Lemma 2.3
we then have Ind(xi, χi) → Ind(x, ω). But since ω = χ on Γx, we have Ind(x, ω) = Ind(x, χ).
Thus, Ind(x, χ) ∈ IndA. �

3. Injectively graded groupoids

3.1. Transformation groupoids. Assume a discrete group G acts by homeomorphisms on a
Hausdorff locally compact space X and denote by Gx the stabilizer group of a point x ∈ X.
Consider the transformation groupoid G := G ⋉ X. As a topological space it is the product
space G × X, while the multiplication on G is defined by (g, hx)(h, x) = (gh, x). In this case
every element g ∈ G defines a bisection {g} ×X of G and as a result the topology on the space
Char(G) has a bit more transparent description: a net ((xi, χi))i converges to (x, χ) in Char(G)
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if and only if xi → x and, for every g ∈ Gx and ε > 0, there is i0 ∈ I such that for each i ≥ i0
we have either gxi 6= xi or |χ(g) − χi(g)| < ε.

The G-orbits in Char(G) are simply the G-orbits with respect to the action

g(x, χ) := (gx, χg), (3.1)

where χg := χ(g−1·g) : Ggx → T. Hence Corollary 2.7 identifies the subspace of Prim(C0(X)⋊G)
of primitive ideals obtained by inducing one-dimensional representations of amenable stabilizers
with (G\Chara(G⋉X))∼. Corollary 2.8 in this case gives the following result.

Theorem 3.1. Assume we are given an amenable action of a countable group G on a second
countable Hausdorff locally compact space X such that the stabilizer of every point is abelian.
Then the map Ind: Stab(G⋉X )̂ → Prim(C0(X)⋊G) defines a homeomorphism of (G\Stab(G⋉

X )̂ )∼ onto Prim(C0(X) ⋊G).

The space Stab(G⋉X )̂ admits a better description when all stabilizers are contained in one
abelian subgroup of G, which can then be assumed to be normal. Namely, we have the following
result.

Proposition 3.2. Assume a discrete group G acts on a Hausdorff locally compact space X
and all stabilizers are contained in a normal abelian subgroup H ⊂ G. Let ∆ be the quotient

topological space of X× Ĥ obtained by identifying (x, χ) with (x, η) when χ|Gx = η|Gx. Consider

the actions of G on X × Ĥ and ∆ defined similarly to (3.1). Then the G-equivariant map

X × Ĥ → Stab(G⋉X )̂ , (x, χ) 7→ (x, χ|Gx),

is continuous and open, hence it induces a homeomorphism of ∆ onto Stab(G ⋉ X )̂ and a
homeomorphism of (G\∆)∼ onto (G\Stab(G⋉X )̂ )∼.

When G = G⋉X is amenable and second countable, the last statement follows from [VWW22,
Propositions 8.3] and [Wil81, Corollary 5.11], but this relies on the identification of (G\∆)∼ with
Prim(C0(X) ⋊ G) established in [Wil81]. We will prove the proposition by a direct argument.
Together with our Corollary 2.7 this will provide an alternative proof of [Wil81, Corollary 5.11]
in the case of discrete group actions.

For the proof we need a couple of auxiliary results, which will also be useful later.

Lemma 3.3. Assume H is a discrete abelian group, S is a subgroup of H and (Si)i∈I is a net
of subgroups of H. Then Si → S in the Chabauty topology on Sub(H) if and only if S⊥

i → S⊥

in Sub(Ĥ).

Proof. Assume first that Si → S. By passing to a subnet we may assume that S⊥
i → T⊥ for

some subgroup T ⊂ H, and we need to prove that T = S.

Take h ∈ T . As S⊥
i → T⊥ and Ĥ is compact, the groups S⊥

i eventually lie in every given
neighbourhood of T⊥. In particular, for every ε > 0 we have |1− χ(h)| < ε for all χ ∈ S⊥

i and
all i large enough. But if a group character takes values in the set {z : |1 − z| < 1}, then it is
trivial. Hence, for all i large enough, we have h ∈ (S⊥

i )
⊥ = Si. It follows that h ∈ S. Thus,

T ⊂ S.
Next, take χ ∈ T⊥ and h ∈ S. As S⊥

i → T⊥, for every ε > 0 and all i large enough we can
find χi ∈ S⊥

i such that |χ(h) − χi(h)| < ε. But eventually we have h ∈ Si, so χi(h) = 1 and
we get |χ(h) − 1| < ε. It follows that χ(h) = 1. Therefore χ ∈ S⊥. Thus, T⊥ ⊂ S⊥, and then
S ⊂ T , completing the proof of the equality T = S.

Conversely, assume S⊥
i → S⊥. By passing to a subnet we may assume that Si → T for some

subgroup T ⊂ H, and we need to prove that T = S. But by the first part of the proof we
already know that S⊥

i → T⊥, hence T⊥ = S⊥ and T = S. �

Lemma 3.4. Assume H is a discrete abelian group, (Si)i∈I is a net of subgroups of H converging
to a subgroup T ⊂ H. Assume (χi)i∈I and χ are characters on H, S ⊂ H is a subgroup and
χi(h) → χ(h) for all h ∈ S ∩ T . Then, by possibly passing to a subnet, we can find characters

ηi, η ∈ Ĥ such that ηi|Si
= χi|Si

, η|S = χ|S and ηi(h) → η(h) for all h ∈ H.
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Proof. By passing to a subnet we may assume that χi → ω for some ω ∈ Ĥ. Then ω|S∩T =
χ|S∩T , so χω−1 lies in the annihilator of S ∩ T . By the previous lemma, the annihilators of

Si∩S in Ŝ converge to the annihilator of T ∩S. It follows that, by possibly passing to a subnet,

we can find characters νi ∈ Ŝ such that νi is trivial on Si ∩ S and νi(h) → χ(h)ω(h)−1 for all
h ∈ S. Extend νi to a character on SiS by letting νi(gh) := νi(h) for g ∈ Si and h ∈ S, and
then extend νi to a character on H. We continue to denote the extension by νi.

By construction we have νi ∈ S⊥
i ⊂ Ĥ and νi(h) → χ(h)ω(h)−1 for all h ∈ S. By passing to

a subnet, we may assume that (νi)i converges to some character ν ∈ Ĥ. We let ηi := χiνi and
η := ων. Then ηi|Si

= χi|Si
, ηi → η and η|S = ωχω−1|S = χ|S . �

Proof of Proposition 3.2. It is immediate that the map p : X × Ĥ → Stab(G ⋉ X )̂ , (x, χ) 7→

(x, χ|Gx), is continuous. Assume it is not open. Then there exist a point (x, χ) ∈ X × Ĥ, an
open neighbourhood U × V of this point and a net ((xi, χi))i such that p(xi, χi) /∈ p(U × V ),
but p(xi, χi) → p(x, χ).

By passing to a subnet we may assume that Gxi
→ T for some subgroup T ⊂ H. The

convergence p(xi, χi) → p(x, χ) means then that xi → x and χi(h) → χ(h) for all h ∈ Gx ∩ T .
Note that we actually have T ⊂ Gx, since if hxi = xi for some h ∈ H and all i large enough,
then hx = x. By the previous lemma applied to Si = Hi, T and S = H, by possibly passing

to a subnet, we can then find characters ηi ∈ Ĥ such that ηi|Gxi
= χi|Gxi

and ηi(h) → χ(h)
for all h ∈ H. It follows that for all i large enough we have xi ∈ U and ηi ∈ V , hence
p(xi, χi) = p(xi, ηi) ∈ p(U × V ), which is a contradiction. �

3.2. Groupoids graded by abelian groups. Next we consider a Hausdorff locally compact
étale groupoid G injectively graded by a discrete abelian group Γ, with the grading given by
Φ: G → Γ. By definition this means that Φ is a continuous homomorphism (another name is
1-cocycle) such that its restriction to every isotropy group Gx

x is injective. In this case every

character on Gx
x has the form χ ◦ Φ for some χ ∈ Γ̂. Therefore as a set the space Stab(G)̂ is

a quotient of G(0) × Γ̂. Moreover, the groupoid G acts on G(0) × Γ̂ by g(x, χ) := (r(g), χ) for
g ∈ Gx, and then the map

G(0) × Γ̂ → Stab(G)̂ , (x, χ) 7→ (x, χ ◦ Φ|Gx
x
), (3.2)

is G-equivariant.
We remark that although this map is continuous, it is in general not open, in contrast to

Proposition 3.2. See, for instance, [SW16, Example 3.4], where the map G(0) × Γ̂ → PrimC∗(G)
is surjective and nonopen, and recall that by Corollary 2.7 the map Ind: Stab(G)̂ → PrimC∗(G)

is open as a map onto its image, hence the map G(0) × Γ̂ → Stab(G)̂ in that example is not
open either.

For every x ∈ G(0) and χ ∈ Γ̂, denote by π(x,χ) the representation π
χ◦Φ|Gx

x
x , so

π(x,χ) = IndGGx
x
(χ ◦ Φ|Gx

x
).

By definition, its underlying space is the Hilbert space of functions f : Gx → C such that f(gh) =

χ(Φ(h))f(g) for g ∈ Gx and h ∈ Gx
x and

∑

g∈Gx/Gx
x

|f(g)|2 < ∞.

We can identify this space with ℓ2([x]) by associating to every ξ ∈ ℓ2([x]) the function fξ : Gx → C

by

fξ(g) := χ(Φ(g))ξ(r(g)).

Then π(x,χ) becomes a representation C∗(G) → B(ℓ2([x])) such that

π(x,χ)(f)δy =
∑

g∈Gy

χ(Φ(g))f(g)δr(g), y ∈ [x], f ∈ Cc(G). (3.3)
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Using this notation, Corollary 2.8 (recall also Corollary 2.9 for a more explicit description of
convergence in the Jacobson topology) gives the following result.

Theorem 3.5. Assume G is an amenable second countable Hausdorff locally compact étale
groupoid injectively graded by a discrete abelian group Γ, with grading Φ: G → Γ. Then the map

G(0) × Γ̂ → PrimC∗(G), (x, χ) 7→ ker π(x,χ), is surjective, and the topology on PrimC∗(G) is

described as follows. Fix (x, χ) ∈ G(0) × Γ̂ and, for every g ∈ Gx
x , choose an open bisection Wg

containing g. Then, given a sequence ((xn, χn))
∞
n=1 in G(0)× Γ̂, we have ker π(xn,χn) → ker π(x,χ)

if and only if for every neighbourhood U of x, every ε > 0 and every finite subset F ⊂ Gx
x , there

exists an index n0 such that for each n ≥ n0 we can find y ∈ [xn] ∩ U satisfying the following
property: for every g ∈ F , we have

either Wg ∩ Gy
y = ∅ or |χ(Φ(g)) − χn(Φ(g))| < ε.

Note that we could have formulated the result in terms of nets, but since under our as-
sumptions of second countability the spaces PrimC∗(G) and Stab(G)̂ are second countable
(see [VWW22, Lemma 3.3]), it is enough to deal with sequences.

Although in principle this theorem allows one to parameterize all primitive ideals, it does
not give a clear answer when different points (x, χ) define the same ideal kerπ(x,χ). However,
such an answer is provided by [CN23, Theorem 6.1]: we have ker π(x1,χ1) = kerπ(x2,χ2) if and

only if [x1] = [x2] and χ1 = χ2 on Φ(Iso(G[x1]
)◦x1

) = Φ(Iso(G[x2]
)◦x2

). Here Iso(G[x])
◦ denotes

the interior of the isotropy bundle of the groupoid G[x] obtained by reducing G to the closed

invariant subset [x]. The group Iso(G
[x]
)◦x is called the essential isotropy of G at x in [BCS23].

Using this we can show that in order to prove convergence of a sequence in PrimC∗(G) it
suffices to verify a formally weaker condition, as follows.

Corollary 3.6. In the setting of Theorem 3.5, with a point (x, χ) ∈ G(0) × Γ̂ and open bisec-

tions Wg (g ∈ Gx
x) fixed, assume ((xn, χn))

∞
n=1 is a sequence in G(0) × Γ̂ such that for every

neighbourhood U of x, every ε > 0 and every finite subset F ⊂ Iso(G[x])
◦
x, there exists an in-

dex n0 such that for each n ≥ n0 we can find y ∈ [xn] ∩ U satisfying the following property: for
every g ∈ F , we have

either Wg ∩ Iso(G[y])
◦
y = ∅ or |χ(Φ(g)) − χn(Φ(g))| < ε.

Then ker π(xn,χn) → ker π(x,χ) in PrimC∗(G).

Proof. It suffices to show that we can find a subsequence converging to ker π(x,χ).
In order to ease the notation let us write Γy for Iso(G

[y]
)◦y. Since Φ is locally constant and G is

second countable, the set Φ(G) is countable. Therefore without loss of generality we may assume
that the group Γ is countable. By replacing Wg by smaller bisections we may also assume that
Φ(Wg) = {Φ(g)} for all g ∈ Gx

x .

By passing to a subsequence we may assume that χn → ω for a character ω ∈ Γ̂ and Φ(Γxn) →
T in Sub(Γ) for a subgroup T ⊂ Γ. Choose an increasing sequence of finite subsets Fn ⊂ Gx

x

and a sequence of numbers εn > 0 such that ∪nFn = Gx
x and εn → 0. Similarly to the proof of

Corollary 2.9, by passing to a subsequence and replacing xn by an element on the same orbit,
we may assume that xn → x and for every g ∈ Fn ∩ Γx we have either Wg ∩ Γxn = ∅ or
|χ(Φ(g)) − χn(Φ(g))| < εn.

For every n, let Sn ⊂ Fn be the subset of points g such that Wg ∩ Gxn
xn

6= ∅, and let Rn ⊂ Sn

be the subset of points g such that Wg ∩ Γxn 6= ∅. By passing to a subsequence and arguing
as in the proof of Lemma 2.3, we may assume that Sn → S and Rn → R for some subgroups
R ⊂ S ⊂ Gx

x . Then χn(Φ(g)) → χ(Φ(g)) for all g ∈ Γx ∩ R. At the same time χn → ω, hence

ω = χ on Φ(Γx) ∩ Φ(R). Let η ∈ Γ̂ be any character such that η = χ on Φ(Γx) and η = ω
on Φ(R). We then have χn(Φ(g)) → η(Φ(g)) for all g ∈ R.

Observe next that Φ(S) ∩ T = Φ(R). Indeed, it is clear that Φ(R) ⊂ Φ(S) ∩ T . To prove the
opposite inclusion, take g ∈ S such that Φ(g) ∈ T . Then, for all n large enough, Wg ∩ Gxn

xn
6= ∅
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and Φ(g) ∈ Φ(Γxn). As Φ(Wg) = {Φ(g)} and Φ is injective on Gxn
xn

, this is possible only if
Wg ∩ Γxn 6= ∅. Hence g ∈ R.

We now apply Lemma 3.4 to Φ(S), T and Φ(Γxn) in place of S, T and Sn. By possibly passing

to a subsequence, we can then find characters ηn and η̃ in Γ̂ such that

ηn = χn on Φ(Γxn), η̃ = η on Φ(S), ηn → η̃.

Then, on the one hand, kerπ(xn,χn) = ker π(xn,ηn) and kerπ(x,χ) = kerπ(x,η). On the other hand,
by Theorem 3.5 and the definition of S we have kerπ(xn,ηn) → ker π(x,η). �

For a later use we need yet another reformulation of convergence in PrimC∗(G). First, let us
introduce the following notion.

Definition 3.7. Let Γ be a discrete abelian group and (Sn)
∞
n=1 be a sequence of subsets of Γ.

We say that a sequence (χn)
∞
n=1 in Γ̂ converges to χ ∈ Γ̂ along (Sn)n if, for all γ ∈ Γ, we have

lim
n→∞

1Sn(γ)|χn(γ)− χ(γ)| = 0,

where 1Sn is the characteristic function of Sn.

Corollary 3.8. In the setting of Theorem 3.5, with a point (x, χ) ∈ G(0) × Γ̂ and open bisec-

tions Wg (g ∈ Gx
x) fixed, the following conditions on a sequence ((xn, χn))n in G(0) × Γ̂ are

equivalent:

(1) kerπ(xn,χn) → kerπ(x,χ) in PrimC∗(G);
(2) there exist points yn ∈ [xn] such that yn → x and χn → χ along the sets

Sn := {Φ(g) : g ∈ Gx
x , Wg ∩ Gyn

yn 6= ∅}; (3.4)

(3) there exist points yn ∈ [xn] such that yn → x and χn → χ along the sets

Rn := {Φ(g) : g ∈ Iso(G
[x]
)◦x, Wg ∩ Iso(G

[yn]
)◦yn 6= ∅}. (3.5)

Proof. It is clear that (2)⇒(3). The implication (3)⇒(1) follows from Corollary 3.6. It remains
to show the implication (1)⇒(2). This is a routine consequence of Theorem 3.5. Namely,
assume that ker π(xn,χn) → kerπ(x,χ). Fix a decreasing sequence (Un)n of open sets forming a
neighbourhood basis of x. Choose also an increasing sequence of finite subsets Fn ⊂ Gx

x with
union Gx

x . By Theorem 3.5, for every k ≥ 1, there is nk ≥ 1 such that for all n ≥ nk we can find

a point ykn ∈ [xn] ∩ Uk with the following property: for every g ∈ Fk, either Wg ∩ G
ykn
ykn

= ∅ or

|χ(Φ(g))−χn(Φ(g))| < 1/k. We can assume without loss of generality that nk < nk+1 for all k.
We then take yn := xn for n < n1 and yn := ykn for nk ≤ n < nk+1 and k ≥ 1. �

It should be said that the difference between conditions (2) and (3) in this corollary is not as

big as it may look at first. Namely, by [CN23, Lemmas 5.2 and 6.2], for every G-orbit O ⊂ G(0)

the set of points x ∈ Ō such that Ō = [x] and Gx
x = Iso(G

[x]
)◦x is residual in Ō. In particular, every

primitive ideal has the form ker π(x,χ) for some x and χ such that Gx
x = Iso(G[x])

◦
x. Therefore in

order to describe PrimC∗(G) it suffices to consider only points satisfying the last property, and
for them the two conditions are identical. This will be used in Section 4.1.

3.3. Harmonious families of bisections. Brix, Carlsen and Sims [BCS23] have recently de-
scribed the topology on the primitive ideal space for the Deaconu–Renault groupoids defined by
k-tuples of commuting local homeomorphisms under the assumption of existence of so-called har-
monious families of bisections at each point of the unit space. We will discuss these groupoids in
more detail later. The goal of this section is to show that the description in [BCS23] follows from
our Corollary 3.8 for all amenable injectively graded groupoids for which harmonious families
exist.

Assume therefore as in Section 3.2 that G is an amenable second countable Hausdorff locally
compact étale groupoid injectively graded by a discrete abelian group Γ, with grading Φ: G → Γ.
A harmonious family of bisections at x ∈ G(0) is a collection B = (Bα)α of open bisections Bα
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that contain different elements of Gx
x and satisfy a number of axioms. We refer the reader

to [BCS23, Definition 6.1] for the precise formulation. What is important for us are the following
two consequences of the definition:

(i) every g ∈ Iso(G[x])
◦
x ⊂ Gx

x lies in one of the bisections Bα;

(ii) for every y ∈ G(0) sufficiently close to x, the set

HB(y) := {Φ(g) : g ∈ Gx
x ∩Bα for some α, Iso(G

[y]
)◦y ∩Bα 6= ∅}

is a subgroup of Γ.

For every g ∈ Gx
x , let us fix an open bisection Wg containing g such that if g ∈ Bα for some α,

then Wg = Bα. Then, if (yn)n is a sequence converging to x, we see from properties (i) and (ii)
above that

Rn ⊂ HB(yn) ⊂ Sn,

where the sets Sn and Rn are defined by (3.4) and (3.5). Therefore we can conclude from

Corollary 3.8 that for any sequence ((xn, χn))n in G(0)×Γ̂ the following conditions are equivalent:

(1) kerπ(xn,χn) → kerπ(x,χ) in PrimC∗(G);
(2) there exist points yn ∈ [xn] such that yn → x and χn → χ along (HB(yn))n.

A possible advantage of this formulation is that since the sets HB(yn) are groups (for n large
enough), the convergence along them admits the following more transparent description.

Lemma 3.9. Let Γ be a countable discrete abelian group and (Sn)n be a sequence of subgroups

of Γ. Then a sequence (χn)n in Γ̂ converges to χ ∈ Γ̂ along (Sn)n in the sense of Definition 3.7
if and only if there exist characters νn ∈ S⊥

n such that χnνn → χ.

In other words, for sequences of subgroups of countable groups convergence in the sense of
our Definition 3.7 is equivalent to that in the sense of [BCS23, Definition 9.1].

Proof. It is clear that if νn ∈ S⊥
n and χnνn → χ, then (χn)n converges to χ along (Sn)n.

To prove the other direction, assume that χn → χ along (Sn)n, but there are no charac-
ters νn ∈ S⊥

n such that χnνn → χ. This implies that by possibly passing to a subsequence we

can choose an open neighbourhood V ⊂ Γ̂ of χ such that χn /∈ V S⊥
n for all n. By possibly

passing to a subsequence again, we can assume that Sn → T in the Chabauty topology for some
subgroup T ⊂ Γ. Every γ ∈ T lies in Sn for all n large enough, so χn(γ) → χ(γ). We now use

Lemma 3.4 with H = S = Γ to find, after possibly passing to a subsequence, characters ηn ∈ Γ̂
such that ηn → χ and ηn|Sn = χn|Sn for all n. Then, for all n large enough, we have ηn ∈ V ,
and hence χn = ηn(η

−1
n χn) ∈ V S⊥

n , which is a contradiction. �

This lemma together with the preceding discussion show that [BCS23, Theorem 9.5] follows
from Corollary 3.8.

Remark 3.10. In fact, we get a more precise description of convergence compared to [BCS23, The-
orem 9.5], since in that theorem it is only proved that if ker π(xn,χn) → ker π(x,χ) in PrimC∗(G),

then there exist (yn, ηn) such that ker π(xn,χn) = kerπ(yn,ηn) (equivalently, [xn] = [yn] and
χn = ηn on Φ(Iso(G

[xn]
)◦xn

) = Φ(Iso(G
[yn]

)◦yn)), yn → x and ηn → χ along (HB(yn))n. In this

regard we want to caution the reader that the first paragraph of the proof of [BCS23, Theo-
rem 9.5] may suggest that if ker π(yn,ηn) → kerπ(x,χ) and yn → x, then one would always get
that ηn → χ along (HB(yn))n. However, when the authors invoke [BCS23, Theorem 7.1], they
potentially have to re-pick the sequence.

3.4. Deaconu–Renault groupoids. A rich supply of groupoids injectively graded by an abelian
group is provided by the Deaconu–Renault groupoids defined by (partial) actions of group em-
beddable commutative monoids by local homeomorphisms. We will concentrate on the free
abelian monoids Zk

+, since this will be the setting of the subsequent sections. The corresponding
groupoids for k = 1 were introduced by Deaconu [Dea95] and Renault [Ren00]. For k ≥ 2, these
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groupoids are also on occasion called higher-rank Deaconu–Renault groupoids in the literature.
We follow [RW07, Section 5] in our presentation.

We denote by Z+ the additive monoid {0, 1, 2, . . . } of nonnegative integers. Fix k ≥ 1. Define
the maximum m ∨ n of two elements m,n ∈ Z

k
+ by taking the coordinate-wise maximum.

Assume that X is a locally compact Hausdorff space and, for each n ∈ Z
k
+, we are given open

subsets dom(σn) ⊂ X and ran(σn) ⊂ X and a local homeomorphism σn from dom(σn) onto
ran(σn) satisfying the following conditions:

• dom(σ0) = ran(σ0) = X and σ0 = idX ;
• for all n,m ∈ Z

k
+, we have dom(σm+n) = dom(σn) ∩ (σn)−1(dom(σm)) and

σm+n(x) = σm(σn(x)) for all x ∈ dom(σm+n);

• for all m,n ∈ Z
k
+, we have dom(σm) ∩ dom(σn) = dom(σm∨n).

We then say that Z
k
+ y

σ X is a partial action of Z
k
+ on X by local homeomorphisms. We

remark that in [RW07] this is called a directed semigroup action.
Given such an action, we define a groupoid Gσ ⊂ X × Z

k ×X by setting

Gσ := {(x,m− n, y) ∈ dom(σm)× Z
k × dom(σn) : m,n ∈ Z

k
+, σ

m(x) = σn(y)},

r((x, q, y)) := (x, 0, x), s((x, q, y)) := (y, 0, y) and (x, q, y)(y, p, w) := (x, p+ q, w).

We identify the unit space G
(0)
σ with X. The topology on Gσ is defined by using as a basis the

sets of the form

Z(U,m, n, V ) := {(x,m − n, y) ∈ Gσ : x ∈ U ∩ dom(σm), y ∈ V ∩ dom(σn), σm(x) = σn(y)},

where U, V ⊂ X are open subsets and m,n ∈ Z
k
+. Equipped with this topology, Gσ becomes a

locally compact Hausdorff étale groupoid, and the map

Φ: Gσ → Z
k, (x, l, y) 7→ l,

defines an injective grading on Gσ. If X is second countable, then Gσ is also second countable
and amenable, see [RW07, Theorem 5.13].

By construction the groupoid Gσ has a canonical system of open bisections. For an element
(x,m − n, x) ∈ (Gσ)

x
x, with σm(x) = σn(x), we can in particular consider an open bisection

Z(U,m, n,U) containing it, where U ⊂ dom(σm)∩ dom(σn) is an open neighbourhood of x and
the maps σm and σn are injective on U . As a consequence, in the formulations of results from
Section 3.2 we can use finite subsets of Zk

+ instead of finite collections of bisections. Then, for
example, Theorem 3.5 takes the following form.

Theorem 3.11. Assume Z
k
+ y

σ X is a partial action of Z
k
+ by local homeomorphisms on

a second countable Hausdorff locally compact space X. Consider the corresponding Deaconu–
Renault groupoid Gσ. Then the map X × T

k → PrimC∗(Gσ), (x, z) 7→ ker π(x,z), is surjective,

and the topology on PrimC∗(G) is described as follows. For a sequence
(
(x(l), z(l))

)∞
l=1

in X×T
k,

we have kerπ(x(l),z(l)) → ker π(x,z) if and only if for every neighbourhood U of x, every ε > 0

and every finite set {(m(i), n(i))}Ni=1 ⊂ Z
k
+ × Z

k
+, with σm(i)(x) = σn(i)(x) for all i, there exists

an index l0 such that for each l ≥ l0 we can find y ∈ [x(l)] ∩U satisfying the following property:
for every i = 1, . . . , N , we have

either σm(i)(y) 6= σn(i)(y) or |zm(i)−n(i) − z(l)m(i)−n(i)| < ε.

Here, for z ∈ T
k and n ∈ Z

k
+, we let zn :=

∏k
j=1 z

nj

j . We also use the convention that the

inequality σm(y) 6= σn(y) is true if y /∈ dom(σm) ∩ dom(σn).

Ultimately, one might be more interested in understanding the closed subsets of PrimC∗(Gσ)
than the convergence in this space, since such sets are in a bijective correspondence with the
ideals of C∗(Gσ). In this regard, note that by Corollaries 2.8 and 1.5, the map Ind: Stab(Gσ )̂ →
PrimC∗(Gσ) establishes a bijection between the closed Gσ-invariant subsets of Stab(Gσ )̂ and
the closed subsets of PrimC∗(Gσ).
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It is often more convenient to describe the open Gσ-invariant subsets (but see Section 3.5). In
particular, we have the following result.

Theorem 3.12. Assume Z
k
+ y

σ X is a partial action of Z
k
+ by local homeomorphisms on

a second countable Hausdorff locally compact space X. Consider the corresponding Deaconu–
Renault groupoid Gσ. For a subset Y ⊂ X ×T

k, put Yx := {z ∈ T
k : (x, z) ∈ Y }. Then Y is the

pre-image of a Gσ-invariant open subset of Stab(Gσ )̂ under the map q : X × T
k → Stab(Gσ )̂

given by (3.2) if and only if Y satisfies the following conditions:

(i) if x ∈ dom(σn) for some n ∈ Z
k
+, then Yσn(x) = Yx;

(ii) if x ∈ X and z ∈ Yx, then there exist ε > 0, a neighbourhood U ⊂ X of x and a finite

nonempty set {(m(i), n(i))}Ni=1 ⊂ Z
k
+ × Z

k
+, with σm(i)(x) = σn(i)(x) for all i, such that

the following property holds: for each y ∈ U , we have

{w ∈ T
k : |zm(i)−n(i) −wm(i)−n(i)| < ε for all i with σm(i)(y) = σn(i)(y)} ⊂ Yy.

Therefore we get a bijection Y 7→
⋂

(x,z)∈(X×Tk)\Y ker π(x,z) between the subsets Y ⊂ X × T
k

as above and the ideals of C∗(Gσ).

Proof. Condition (i) says simply that Y is Gσ-invariant. Therefore we need to show only that
for every Gσ-invariant subset Y ⊂ X ×T

k condition (ii) is satisfied if and only if Y = q−1(q(Y ))
and q(Y ) is open in Stab(Gσ )̂ . Assuming that Y = q−1(q(Y )), recall from Lemma 2.1 that a ba-
sis of neighbourhoods of q(x, z) is given by the sets Uχz

x (U, ε, (Wg)g∈F ), where we denote by χz the
character of (Gσ)

x
x defined by z. Taking as our bisections Wg sets Z(U,m, n,U) and untangling

the definitions one sees that condition (ii) is equivalent to saying that Uχz
x (U, ε, (Wg)g∈F ) ⊂ q(Y ).

Finally, observe that once condition (ii) is satisfied, applying it to y = x we see that with every
z ∈ Yx the set Yx contains all elements w ∈ T

k that define the same character as z on (Gσ)
x
x.

Therefore condition (ii) does imply that Y = q−1(q(Y )). �

Remark 3.13. It should be clear that in both theorems we may require in addition that the
elements m(i) − n(i) (1 ≤ i ≤ N) are all different. We may also require that they are different
from zero and therefore allow N = 0 (to deal with points with trivial isotropy), but then in
Theorem 3.12 we should explicitly require that Y = q−1(q(Y )).

3.5. Singly generated dynamical systems. In this section we consider the Deaconu–Renault
groupoids defined by partial actions of Z+, that is, when the action is defined by one local
homeomorphism. In this case the topology on the primitive spectrum has been recently described
by Katsura [Kat21]. Since he does not use groupoids, in order to compare his results with ours
let us first say a few words about the connection between the two settings.

Let X be a Hausdorff locally compact space and σ be a local homeomorphism of dom(σ) ⊂ X
onto ran(σ) ⊂ X. Katsura associates a C∗-algebra C∗(X,σ) to such a local homeomorphism by
considering a universal C∗-algebra generated by the images of a ∗-homomorphism t0 : C0(X) →
C∗(X,σ) and a linear map t1 : Cc(dom(σ)) → C∗(X,σ) satisfying certain conditions [Kat21,
Definition 1.4]. For each pair (x, z) ∈ X × T a representation π(x,z) : C∗(X,σ) → B(ℓ2([x]))

is then introduced by constructing a representation C0(X) → B(ℓ2([x])) and a linear map
Cc(dom(σ)) → B(ℓ2([x])) [Kat21, Definitions 2.3, 2.6].

The C∗-algebra C∗(X,σ) is known to be isomorphic to the C∗-algebra of the Deaconu–Renault
groupoid Gσ associated to σ. Namely, the isomorphism arises from the canonical isomorphism

C0(X) ∼= C0(G
(0)
σ ) and the linear map t1 : Cc(dom(σ)) → C∗(Gσ), given by

t1(f)(x, n, y) =

{
f(x), if n = 1, y = σ(x),

0, otherwise.

It is then easy to check that under this isomorphism Katsura’s representations π(x,z) become
exactly the representations of C∗(Gσ) defined by (3.3).

The main result of [Kat21] is a description of the closed subsets of PrimC∗(X,σ) in terms of
the representations π(x,z). As we discussed in Section 3.4, assuming that X is second countable,
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the map Ind: Stab(Gσ )̂ → PrimC∗(Gσ) establishes a bijection between the closed Gσ-invariant
subsets of Stab(Gσ )̂ and the closed subsets of PrimC∗(Gσ). Therefore from this perspective
[Kat21] describes the pre-images of closed Gσ-invariant subsets of Stab(Gσ )̂ in X ×T under the
map q : X×T → Stab(Gσ )̂ given by (3.2). We are going to show how to obtain this description
directly from the definition of Stab(Gσ )̂ . We will need the following notation to formulate the
result.

Definition 3.14 ([Kat21, Definition 2.13]). Let x ∈ X. If there exists p ≥ 1 such that σn+p(x) =
σn(x) for some n ≥ 0, then we say that x is periodic, and we define its period p(x) to be the
smallest possible such p. If x is periodic, we denote by l(x) the smallest number l ≥ 0 satisfying

σp(x)+l(x) = σl(x). If x is not periodic, we set p(x) = l(x) = ∞.

Note that if x is periodic, then x lies in the domain of definition of σn for all n ≥ 0 and l(x) is
the number of elements that appear only finitely many times in the sequence x, σ(x), σ2(x), . . . .
It follows that l(x) is the smallest number l ≥ 0 such that σp+l(x) = σl(x) for some p ≥ 1.

Theorem 3.15 (cf. [Kat21, Theorem 7.8]). Assume X is a Hausdorff locally compact space and
σ : dom(σ) ⊂ X → ran(σ) ⊂ X is a partially defined local homeomorphism of X. Consider
the corresponding Deaconu–Renault groupoid Gσ. For a subset Y ⊂ X × T, put Yx := {z ∈ T :
(x, z) ∈ Y }. Then Y is the pre-image of a Gσ-invariant closed subset of Stab(Gσ )̂ under the
map q : X × T → Stab(Gσ )̂ given by (3.2) if and only if Y satisfies the following conditions:

(i) Y is a closed subset of X × T with respect to the product topology;
(ii) Yx = Yσ(x) for all x ∈ dom(σ);

(iii) if Yx0 6= ∅,T, then x0 is periodic, e2πi/p(x0)Yx0 = Yx0 and there exists a neighbourhood V
of x0 such that for all x ∈ V with l(x) 6= l(x0) we have Yx = ∅.

Therefore if X is in addition second countable, then this theorem together Corollary 2.8 give
a classification of ideals of C∗(Gσ) ∼= C∗(X,σ) in terms of subsets of X × T, recovering in this
case the result of [Kat21].

Before we turn to the proof, let us make a few observations about the topology on Stab(Gσ )̂ .

Lemma 3.16. Let (x, z) ∈ X × T and ((xi, zi))i be a net in X × T such that xi → x. Then

(1) if p(x) = ∞ or p(xi) → ∞, then q(xi, zi) → q(x, z) in Stab(Gσ )̂ ;
(2) if l(xi) > l(x) for all i, then q(xi, zi) → q(x, z);
(3) if q(xi, zi) → q(x, z), x is periodic, p(xi) = p and l(xi) = l(x) for all i and some p ≥ 1,

then p(x) divides p and zpi → zp.

Proof. Let us write G for Gσ. If p(x) = ∞, then Gx
x = {x} and we have q(xi, zi) → q(x, z) by

Corollary 2.2. Assume now that p(x) < ∞. Then Φ(Gx
x) = p(x)Z. Consider the open bisections

Wmp(x) :=

{
Z(X, l(x) +mp(x), l(x),X), if m ≥ 0,

Z(X, l(x), l(x) −mp(x),X), if m < 0,

containing the elements of Gx
x . If m 6= 0 and p(xi) → ∞, then Wmp(x)∩G

xi
xi

= ∅ for all sufficiently
large i, so by Corollary 2.2 we have q(xi, zi) → q(x, z). This proves (1).

If Wmp(x)∩G
xi
xi

6= ∅ for some m 6= 0 and i, then σl(x)+|m|p(x)(xi) = σl(x)(xi). By the observation
before Theorem 3.15 it follows that l(xi) ≤ l(x). Therefore if l(xi) > l(x) for all i, then
Wmp(x) ∩ Gxi

xi
= ∅ for all m 6= 0 and we again get q(xi, zi) → q(x, z). This proves (2).

In order to prove (3), notice that since by assumption we have σp+l(x)(xi) = σl(x)(xi) for all i,

we get σp+l(x)(x) = σl(x)(x). Hence p(x) divides p and Gxi
xi

∩Wp 6= ∅ for all i. Then zpi → zp by
Corollary 2.2. �

Proof of Theorem 3.15. We again write G for Gσ. Condition (ii) in the statement of the theorem
is equivalent to G-invariance of Y . Since the map q : X × T → Stab(G)̂ is G-equivariant, it
follows that in order to prove the theorem it suffices to show that the pre-images of closed sets
are characterized by conditions (i) and (iii).
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Assume first that Y ⊂ X × T is the pre-image of a closed set. Since q : X × T → Stab(Gσ )̂
is continuous, condition (i) is obviously satisfied. Assume x0 ∈ X is such that Yx0 6= ∅,T. If the
group Gx0

x0
was trivial, all numbers z ∈ T would induce the same character on Gx0

x0
and we would

have Yx0 = T. It follows that Gx0
x0

is nontrivial and hence x0 is periodic. Since Φ(Gx0
x0
) = p(x0)Z,

the numbers e2πi/p(x0)z and z define the same character on Φ(Gx0
x0
) for all z ∈ T, which implies

that e2πi/p(x0)Yx0 = Yx0 .
To verify the last condition in (iii), assume for a contradiction that one can find a net (xi)i with

xi → x0, l(xi) 6= l(x0) and Yxi
6= ∅ for all i. The net (p(xi))i must be eventually bounded, since

otherwise we would get Yx0 = T by Lemma 3.16(1). Therefore by passing to a subnet we may
assume that p(xi) = p for all i and some p ≥ 1. By passing to a subnet we can then also assume
that either l(xi) = l for all i and some l < l(x0) or l(xi) > l(x0) for all i. If l(xi) > l(x0) for all i,
then Lemma 3.16(2) implies that Yx0 = T, giving a contradiction. Therefore l(xi) = l < l(x0)
for all i. Then σl+p(xi) = σl(xi), and hence by continuity σl+p(x0) = σl(x0), contradicting that
l < l(x0). Thus we reach a contradiction in both cases, which proves that condition (iii) holds
true for Y .

Conversely, assume that Y ⊂ X×T satisfies conditions (i) and (iii). Assume ((xj , zj))j is a net
in Y such that q(xj , zj) → q(x, z) for some (x, z) ∈ X ×T. We need to show that (x, z) ∈ Y , as
then we can conclude that q(Y ) is closed and Y = q−1(q(Y )). By definition we have xj → x. By
passing to a subnet we may assume that zj → w for some w ∈ T. Then w ∈ Yx by condition (i).
If Yx = T, then (x, z) ∈ Y and we are done, so assume Yx 6= T. By condition (iii) we may then
assume that l(xj) = l(x) for all j. The net (p(xj))j must be eventually bounded, since otherwise

using the property e2πi/p(xj)Yxj
= Yxj

, which follows from condition (iii), we would get Yx = T

by condition (i). Therefore by passing to a subnet we may assume that p(xj) = p for all j and
some p ≥ 1.

By Lemma 3.16(3) we can conclude now that zpj → zp. Hence wp = zp, so z = we2πil/p for

some l ≥ 0. By condition (iii) we have zje
2πil/p ∈ Yxj

for all j, hence by condition (i) we get

that z = we2πil/p ∈ Yx, proving that (x, z) ∈ Y . �

Remark 3.17. If X is not second countable, then the map Ind: Stab(Gσ )̂ → PrimC∗(Gσ)
might be nonsurjective, but Corollary 2.7 implies that we still have a one-to-one correspondence
between the closed subsets of Ind(Stab(Gσ )̂ ) ⊂ PrimC∗(Gσ) (in the relative topology) and the
Gσ-invariant closed subsets of Stab(Gσ )̂ . Therefore we get a one-to-one correspondence between
the closed subsets of Ind(Stab(Gσ )̂ ) and the subsets of X × T satisfying conditions (i)–(iii) of
Theorem 3.15. In order to obtain a full classification of closed subsets of PrimC∗(Gσ) from this,
as in [Kat21], it remains to show that for every closed subset A ⊂ PrimC∗(Gσ) we have

A = A ∩ Ind(Stab(Gσ )̂ ).

Equivalently, every primitive ideal in C∗(Gσ) is an intersection of ideals ker π(x,z). This is a
property established in [Kat21, Corollary 4.19].

4. Graph algebras

4.1. 1-graphs. The primitive ideal space for Cuntz-Krieger C∗-algebras of directed graphs has
been completely described by Hong and Szymański [HS04], see also [Gab13] for a correction. In
this section we propose an equivalent description obtained entirely using the groupoid picture
for these C∗-algebras. For the case of row-finite graphs without sources, see also [CS17,BCS23].

Our starting point is an observation about the Deaconu–Renault groupoids defined by one
local homeomorphism. In order to formulate the result we introduce the following notation.

Definition 4.1. Given a partially defined local homeomorphism σ : dom(σ) → ran(σ) of a
Hausdorff locally compact space X, denote by A(σ) ⊂ X the set of aperiodic points and by
P0(σ) ⊂ X the set of periodic points x that are isolated in [x].
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In other words, x ∈ A(σ) if and only if there are no l ≥ 0 and p ≥ 1 such that σl+p(x) = σl(x),
and x ∈ P0(σ) if and only if σl+p(x) = σl(x) for some l ≥ 0 and p ≥ 1 and there exists a
neighbourhood U of x such that if σm(y) = σn(x) for some y ∈ U and m,n ≥ 0, then y = x.
Note that if σ is injective, then P0(σ) is simply the set of periodic points.

Lemma 4.2. The sets A(σ) and P0(σ) are Gσ-invariant subsets of G
(0)
σ = X, and their union

is the set of points x such that Iso((Gσ)[x])
◦
x = (Gσ)

x
x.

Proof. Write G for Gσ. Since

A(σ) = {x : Gx
x = {x}} and P0(σ) = {x : Gx

x 6= {x} and x is isolated in [x]},

it is clear that the sets A(σ) and P0(σ) are invariant.
It is also clear by definition that A(σ) ∪ P0(σ) is contained in the set of points x such that

Iso(G
[x]
)◦x = Gx

x . In order to prove the equality we need to show that if x is periodic and

Iso(G[x])
◦
x = Gx

x , then x ∈ P0(σ). Since the set P0(σ) is invariant, we can further assume

that σp(x) = x, where p := p(x) is the period of x. Then, by definition, we can find open
neighbourhoods U and V of x and a number n ≥ 0 such that

Z(U, p+ n, n, V ) ∩ G[x] ⊂ Iso(G).

We may assume that U ⊂ dom(σp+n) and V ⊂ dom(σn). Then Z(U, p, 0, V ) ⊂ Z(U, p +
n, n, V ), so Z(U, p, 0, V )∩G

[x]
consists entirely of isotropy. Since x, σ(x), . . . , σp−1(x) are different

elements, we may, by possibly choosing a smaller U , assume that U ∩ σj(U) = ∅ for 1 ≤ j < p
and σp(U) ⊂ V .

Suppose now that y ∈ U ∩ [x]. Then (y, p, σp(y)) ∈ Z(U, p, 0, V ) ∩ G
[x]

. Since the last set

consists of isotropy, we get σp(y) = y. Since σp(x) = x and y ∈ [x], it follows that y = σl(x)
for some 0 ≤ l < p. But then y ∈ U ∩ σl(U), implying that l = 0 and y = x. In conclusion,
U ∩ [x] = {x}, so x ∈ P0(σ). �

We will apply this lemma in the special case of directed graphs. We refer the reader to
[BCW17, Section 2] for more background and proofs regarding the groupoid model for Cuntz–
Krieger algebras of directed graphs, but note that in order to be consistent with the next section
we follow the “Australian convention” that swaps the roles of sources and ranges.

Let E = (E0, E1, r, s) denote a countable directed graph, i.e., E0 is a countable set of vertices,
E1 is a countable set of edges and s, r : E1 → E0 denote respectively the source and range maps.
Define

Esing := {v ∈ E0 : |r−1(v)| ∈ {0,∞}}.

A finite path e1 · · · en of length n ≥ 1 is a concatenation of edges with s(ei) = r(ei+1) for all
i < n, and an infinite path e1e2 · · · is an infinite concatenation of edges with s(ei) = r(ei+1)
for all i. We view the vertices of E as paths of length 0. We denote the set of finite paths
by E∗ and the set of infinite paths by E∞, and we extend the range map to both sets by letting
r(e1e2 · · · ) := r(e1) for paths of length ≥ 1 and r(v) := v for v ∈ E0 ⊂ E∗. We also extend the
source map s to E∗ by s(e1 · · · en) := s(en) for n ≥ 1 and s(v) := v for v ∈ E0 ⊂ E∗.

Consider the set

∂E := E∞ ∪ {α ∈ E∗ : s(α) ∈ Esing}

of so-called boundary paths. For α ∈ E∗, we denote by Z(α) the sets of paths in ∂E of the
form αx, with x = ∅ or x ∈ ∂E satisfying r(x) = s(α). The set ∂E is a second countable
Hausdorff locally compact space with a basis of topology given by the sets

Z(α) \
⋃

e∈F

Z(αe),

where F ⊂ E1 is a finite (possibly empty) subset of edges in r−1(s(α)). Each of the open
sets Z(α) is compact in this topology.
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The shift map σE : ∂E\Esing → ∂E is defined on paths of length ≥ 2 by σE(e1e2 · · · ) := e2 · · · ,
and on paths of length 1 by σE(e) := s(e). It is a local homeomorphism, and we denote the
corresponding Deaconu–Renault groupoid by GE . The C∗-algebra C∗(GE) is the Cuntz–Krieger
algebra C∗(E) of E.

Define a preorder on E0 by declaring that v ≤ w iff there exists α ∈ E∗ with s(α) = v and
r(α) = w. We then get an equivalence relation on E0 by declaring that v ∼ w iff v ≤ w and
w ≤ v. An equivalence class in E0 is called a component.

Definition 4.3. A primitive loop in E is a finite component L ⊂ E0 such that every vertex
v ∈ L is the range of exactly one edge originating in L, that is,

|{e ∈ E1 : r(e) = v and s(e) ∈ L}| = 1.

Denote by L(E) the set of primitive loops in E.

In other words, the vertices of a simple cycle e1 · · · ep in E (that is, r(e1) = s(ep) and r(ei) 6=
r(ej) for i 6= j) form a primitive loop if and only if the only paths of positive length from r(e1)
to itself are the powers of e1 · · · ep.

The role of primitive loops is explained by the following lemma.

Lemma 4.4. An infinite path x = x1x2 · · · ∈ ∂E such that σp
E(x) = x for some p ≥ 1 has the

property that x is isolated in [x] if and only if the vertices r(x1), . . . , r(xp) form a primitive loop.

Proof. If r(x1), . . . , r(xp) form a primitive loop, then it is straightforward to check that Z(r(x))∩
[x] = {x}. Conversely, assume σp

E(x) = x for some p ≥ 1 and x is isolated in [x]. We may
assume that p = p(x). Consider α := x1x2 · · · xp, then x = α∞. Choose k ≥ 1 big enough that

Z(αk) ∩ [x] = {x}. Assume L := {r(x1), . . . , r(xp)} is not a primitive loop. Then, for some
i, j ∈ {1, . . . , p}, there exists a path e1 · · · en ∈ E∗ with r(e1) = r(xi), s(en) = r(xj) and e1 6= xi.

Then the path y := αkx1 · · · xi−1e1 · · · enxjxj+1xj+2 · · · satisfies y ∈ Z(αk) ∩ [x] and y 6= x,
which is a contradiction. This proves that L is a primitive loop. �

For every L ∈ L(E), fix an infinite path xL = x1x2 · · · such that r(xi) ∈ L for all i. Then

σ
|L|
E (xL) = xL and any other choice of such a path has the form σk

E(xL) for some 0 ≤ k < |L|.

We are now ready to give a preliminary description of PrimC∗(GE) using Theorem 3.11 and
results from [CN23].

Proposition 4.5. For every countable directed graph E, the map
(
A(σE) ⊔

⊔

L∈L(E)

[xL]
)
× T → PrimC∗(GE), (x, z) 7→ ker π(x,z),

is onto, and kerπ(x,z) = ker π(y,w) if and only if either x, y ∈ A(σE) and [x] = [y], or x, y ∈ [xL]

for some L ∈ L(E) and z|L| = w|L|. The topology on PrimC∗(GE) is described as follows.

Consider a sequence ((xn, zn))n and an element (x, z) in
(
A(σE)⊔

⊔
L∈L(E)[xL]

)
×T. Then we

have:

(i) if x ∈ A(σE), then ker π(xn,zn) → kerπ(x,z) if and only if there exist yn ∈ [xn] with
yn → x;

(ii) if x ∈ [xL] for some L ∈ L(E) and xn /∈ [xL] for all n, then kerπ(xn,zn) → kerπ(x,z) if
and only if there exist yn ∈ [xn] with yn → x;

(iii) if x ∈ [xL] for some L ∈ L(E) and xn ∈ [xL] for all n, then kerπ(xn,zn) → kerπ(x,z) if

and only if z
|L|
n → z|L|.

Note that, given L, for any sequence ((xn, zn))n, we can discard finitely many elements and
divide the rest into two subsequences such that one satisfies xn /∈ [xL] for all n, while the
other satisfies xn ∈ [xL] for all n. Hence Proposition 4.5 completely describes the topology on
PrimC∗(GE).
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Proof. Let us write G for GE and σ for σE . That the map in the formulation is surjective follows
from combining [CN23, Theorem 6.1, Lemmas 5.2 and 6.2] with the description of the points x
such that Iso(G[x])

◦
x = Gx

x provided by Lemmas 4.2 and 4.4. The identification of different ideals

follows again from [CN23, Theorem 6.1], when one observes that if [xL] = [x] for some x, then

x ∈ [xL], since xL is isolated in [xL].
Since Gx

x = {x} for x ∈ A(σ), part (i) follows immediately from Theorem 3.11. From the
same theorem we also get (iii), since every x ∈ [xL] is isolated in [xL].

To prove (ii), assume that x ∈ [xL]. Then Φ(Gx
x) = |L|Z. Assume m ≥ 1 and l ≥ 0 are such

that σm|L|+l(x) = σl(x). If x = e1e2 · · · , let U := Z(e1 · · · em|L|+l). Then σm|L|+l(y) 6= σl(y) for
all y ∈ U \ {x}. By applying Theorem 3.11 we get (ii). �

It remains to describe the closures [x] for x ∈ A(σE) in graph-theoretic terms.

Definition 4.6 ([HS04]). A nonempty subset M ⊂ E0 is called a maximal tail if the following
three conditions are satisfied:

(i) if v ∈ E0, w ∈ M and v ≥ w, then v ∈ M ;
(ii) if v ∈ M and 0 < |{e ∈ E1 : r(e) = v}| < ∞, then there is e ∈ E1 such that r(e) = v

and s(e) ∈ M ;
(iii) for every v,w ∈ M , there exists u ∈ M such that v ≥ u and w ≥ u.

Denote by M(E) the set of maximal tails. Denote by Mγ(E) ⊂ M(E) the subset of all maximal
tails M such that for each simple cycle e1 · · · ep in E with vertices in M there is an edge e ∈ E1

such that e 6= ei for all i, r(e) = r(ej) for some j and s(e) ∈ M . A bit informally we formulate
this by saying that every simple cycle in M has an entrance in M .

Lemma 4.7. We have a well-defined map M: A(σE) → M(E) that associates to x ∈ A(σE) the
set M(x) := {r(y) : y ∈ [x]}. Then

M(A(σE) ∩ E∞) ⊂ Mγ(E) ⊂ M(A(σE)).

If [x] = [y], then M(x) = M(y), and the converse is true if both paths x and y are infinite.

Proof. Given x ∈ A(σE), it is easy to see that properties (i) and (iii) in Definition 4.6 are satisfied
for M(x). Property (ii) is also satisfied, because if 0 < |{e ∈ E1| : r(e) = v}| < ∞ for some v,
then v /∈ ∂E.

Next, we need to show that if x is infinite, then M(x) ∈ Mγ(E). Assume this is not the
case, so there is a simple cycle α = α1 · · ·αp ∈ E∗ with vertices in M(x) that does not have an
entrance in M(x). This implies that if y ∈ [x] and r(y) = r(α1), then y = α∞, contradicting the
assumption that x is aperiodic.

The claim that M(x) = M(y) when [x] = [y] is obvious from the fact that the map r : ∂E → E0

is continuous if E0 is considered as a discrete space. Conversely, assume that M(x) = M(y). If
both x and y are infinite and x = αx′ for some α ∈ E∗ and x′ ∈ E∞, then r(x′) = r(y′) for

some y′ ∈ [y], hence αy′ ∈ [y]. This implies that x ∈ [y]. For the same reason y ∈ [x].
It remains to show that if M ∈ Mγ(E), then there is x ∈ A(σE) with M(x) = M . Consider

three cases.
Assume first that M contains a unique least element v, that is v ≤ w for all w ∈ M . If

v ∈ Esing, we simply take x = v. If v /∈ Esing, then by minimality of v and property (ii) of
maximal tails there is a self-loop at v, that is, an edge from v to v. As M ∈ Mγ(E), there in
fact must be at least two such self-loops e1, e2. Then for x we take any aperiodic infinite path
obtained by concatenating e1 and e2.

Next, assume that M has two or more least elements, say, v and u. Then there is a simple
cycle α ∈ E∗ passing through u and starting and ending at v. As M ∈ Mγ(E), we can then find
another (not necessarily simple) cycle β such that r(β) = s(β) = v and β is not a power of α.
Then for x we take any aperiodic infinite path obtained by concatenating the cycles α and β.

Finally, assume that M does not have a least element. Using property (iii) of maximal tails
we can find vertices vn ∈ M (n ≥ 1) such that vn ≥ vn+1 for all n and for every v ∈ M we
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have v ≥ vn for n large enough. Then as x we take any infinite path obtained by concatenating
paths from vn+1 to vn for all n. Such a path is aperiodic, since it passes through infinitely many
different vertices. �

In order to fully describe the orbit closures of vertices in Esing we will need the following
notion.

Definition 4.8 ([BHRS02]). A vertex v ∈ Esing is called a breaking vertex if

0 < |{e ∈ E1 : r(e) = v, s(e) ≥ v}| < ∞.

Denote by BV (E) the set of breaking vertices.

Lemma 4.9. For every vertex v ∈ Esing we have one of the following possibilities.

(1) The set {e ∈ E1 : r(e) = v, s(e) ≥ v} is empty. Then M(v) ∈ Mγ(E), and if M(v) =
M(x) for some x ∈ Esing ∪ E∞, then x = v.

(2) The set {e ∈ E1 : r(e) = v, s(e) ≥ v} is infinite. Then M(v) ∈ Mγ(E) and [v] = [x] for
some x ∈ E∞ ∩A(σE).

(3) The vertex v is a breaking vertex and M(v) /∈ Mγ(E). Then M(v) 6= M(x) for all

x ∈ E∞ ∩A(σE), and if [v] = [u] for some u ∈ Esing ∪ E∞, then u = v.
(4) The vertex v is a breaking vertex and M(v) ∈ Mγ(E). Then M(v) = M(x) for some

x ∈ E∞∩A(σE). For every such x we have [v] 6= [x], and if [v] = [u] for some u ∈ Esing,
then u = v.

Proof. (1) Assume the set {e ∈ E1 : r(e) = v, s(e) ≥ v} is empty. Since v is a least element
in M(v), the only possibility for a simple cycle in M(v) not to have an entrance in M(v) is to
pass through v. But there is no such cycle by our assumption, so M(v) ∈ Mγ(E). Since v is the
only finite path in M(v) with range v, if M(v) = M(x) for some x ∈ Esing ∪ E∞, we must have
x = v.

(2) Assume the set {e ∈ E1 : r(e) = v, s(e) ≥ v} is infinite. Let (en)n be a sequence of
different elements in this set. We can then find cycles of the form αn = enα

′
n. Consider the

infinite aperiodic path x := α1α2 · · · . As αn → v in ∂E, we see that v ∈ [x]. As α1 · · ·αn → x,

we also have x ∈ [v], so [v] = [x]. Since x is aperiodic, we then have M(v) = M(x) ∈ Mγ(E) by
Lemma 4.7.

(3) Assume that v is a breaking vertex and M(v) /∈ Mγ(E). For every x ∈ E∞ ∩ A(σE), we
have M(x) ∈ Mγ(E) by Lemma 4.7, hence M(x) 6= M(v). Since v is a breaking vertex, there is

no sequence of paths of length ≥ 1 in M(v) converging to v. It follows that if v ∈ [u] for some
u ∈ Esing with M(u) = M(v), then we must have v ∈ [u] and hence u = v.

(4) Finally, assume that v is a breaking vertex and M(v) ∈ Mγ(E). Since v is a breaking
vertex, there is a simple cycle α starting and ending at v. As M(v) ∈ Mγ(E), there must exist
another (possibly nonsimple) cycle β starting and ending at v that is not a power of α. By
concatenating these two cycles we can construct an infinite aperiodic path x with M(x) = M(v).

The same argument as in (3) shows that if v ∈ [y] for some y ∈ Esing ∪ E∞ with M(y) = M(v),
then y = v, completing the proof of the lemma. �

We are now ready to describe the quasi-orbits of aperiodic paths.

Proposition 4.10. For a countable directed graph E, consider the quasi-orbit space (GE\A(σE))
∼,

that is, two points x, y ∈ A(σE) define the same point of this space if and only if [x] = [y]. Then
there is a unique bijection

Mγ(E) ⊔BV (E) → (GE\A(σE))
∼

satisfying the following properties:

(i) if M ∈ Mγ(E) has a unique least element v and this vertex does not have self-loops,
then the corresponding quasi-orbit is represented by xM := v;
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(ii) if M ∈ Mγ(E) does not have a unique least element without self-loops, then the corre-
sponding quasi-orbit is represented by any path xM ∈ E∞∩A(σE) such that M(xM ) = M
(and such a path indeed exists);

(iii) the quasi-orbit corresponding to v ∈ BV (E) is represented by v.

Proof. Denote by Esing
0 (resp., Esing

∞ ) the set of vertices v ∈ Esing such that the set {e ∈ E1 :
r(e) = v, s(e) ≥ v} is empty (resp., infinite). Therefore Esing is the disjoint union of the sets

Esing
0 , Esing

∞ and BV (E).
Observe that if v ∈ E0 is a least element of a maximal tail M ∈ M(E), then the condition

{e ∈ E1 : r(e) = v, s(e) ≥ v} = ∅ means exactly that v is a unique least element of M and v
does not have self-loops. If it is satisfied, then v ∈ Esing by property (ii) of maximal tails. Denote
by M0(E) the set of maximal tails M such that there is a unique least element v ∈ M and v

does not have self-loops. The observation implies that the map Esing
0 → M0(E), v 7→ M(v), is

a bijection. Note also that, by Lemma 4.9(1), the sets M0(E) and M(A(σE)∩E∞) are disjoint
and M0(E) ⊂ Mγ(E).

Let p : A(σE) → (GE\A(σE))
∼ be the quotient map. Lemma 4.9 implies that the map p is

injective on Esing
0 and BV (E), and the space (GE\A(σE))

∼ decomposes into the disjoint union

of the sets p(Esing
0 ), p(BV (E)) and p(A(σE) ∩ E∞). Therefore to finish the proof it suffices

to show that the map p(x) 7→ M(x) is a well-defined bijection between p(A(σE) ∩ E∞) and
Mγ(E) \M0(E).

That this map is a well-defined injection follows from Lemma 4.7. The same lemma implies

that every M ∈ Mγ(E)\M0(E) has the form M(x) for some x ∈ (A(σE)∩E
∞)∪Esing

∞ ∪BV (E).
But then by Lemma 4.9(2)-(4) we can always find x ∈ A(σE) ∩ E∞ with M = M(x). �

Using the elements xM (M ∈ Mγ(E)), v ∈ BV (E) and xL (L ∈ L(E)), we can now formulate
Proposition 4.5 as follows.

Theorem 4.11 (cf. [HS04, Theorem 3.4; Gab13, Theorem 1]). For every countable directed
graph E, we have a bijection

Mγ(E) ⊔BV (E) ⊔ (L(E) × T) → PrimC∗(GE)

such that Mγ(E) ∋ M 7→ kerπ(xM ,1), BV (E) ∋ v 7→ ker π(v,1), L(E)×T ∋ (L,w) 7→ ker π(xL,z),
where z ∈ T is any |L|-th root of w. The topology on PrimC∗(GE) is described as follows.
Consider a sequence of elements ((xn, zn))n and an element (x, z), each of the form (xM , 1),
(v, 1) or (xL, z

′). Then we have:

(i) if x = xM (M ∈ Mγ(E)) or x = v ∈ BV (E), then kerπ(xn,zn) → ker π(x,z) if and only
if there exist yn ∈ [xn] with yn → x;

(ii) if x = xL (L ∈ L(E)) and xn 6= xL for all n, then ker π(xn,zn) → kerπ(x,z) if and only if
there exist yn ∈ [xn] with yn → x;

(iii) if x = xL (L ∈ L(E)) and xn = xL for all n, then ker π(xn,zn) → kerπ(x,z) if and only if

z
|L|
n → z|L|.

The convergences yn → x in this theorem can be easily formulated in terms of the graph
using the definition of the topology on ∂E, but the whole list of rules is long and hardly more
illuminating than the above formulation, cf. [HS04,Gab13], so we omit it. For example, given
v ∈ BV (E) and a sequence (Ln)n in L(E), elements yn ∈ [xLn ] such that yn → v exist if and
only if for all n large enough we can find finite paths αn = enα

′
n, with en ∈ E1, such that

r(en) = v, s(αn) ∈ Ln and every edge appears in the sequence (en)n at most finitely many
times.

4.2. Higher rank graphs. We next turn to higher rank graphs. Proofs of the claims in the
following introductory discussion can be found in [KP00].

A countable higher rank graph is a pair (Λ, d), where Λ is a countable category, thought of
as a countable set of morphisms, and d : Λ 7→ Z

k
+ is a functor, called the degree map, such that
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whenever d(λ) = m + n for some morphism λ and m,n ∈ Z
k
+, there is a unique factorization

λ = µν such that d(µ) = m and d(ν) = n. The number k ∈ N is called the rank of (Λ, d), and
(Λ, d) is also called a k-graph. We will follow the standard notation for higher rank graphs and
set Λn := d−1(n) for n ∈ Z

k
+. The unique factorization property implies that Λ0 is exactly the

set of identity morphisms of objects in our category. Its elements are called vertices, and the
elements of Λn are called paths of degree n.

Denote by r, s : Λ → Λ0 the codomain and domain maps, respectively. For v ∈ Λ0, define
vΛn := {λ ∈ Λn : r(λ) = v}. We will assume throughout this section that our higher rank
graphs are row-finite and have no sources, which means that 0 < |vΛn| < ∞ for all v ∈ Λ0 and
n ∈ Z

k
+. The pair

Ωk := {(p, q) ∈ Z
k
+ × Z

k
+ : p ≤ q}, d : Ωk → Z

k
+, (p, q) 7→ q − p,

is a higher rank graph with composition (p, q)(q, t) := (p, t). The space of infinite paths in Λ is
defined by

Λ∞ := {x : Ωk → Λ | x is a k-graph morphism},

where by a morphism one means a functor respecting the degree maps. We define x(n) :=
x(n, n) ∈ Λ0 for n ∈ Z

k
+. For λ ∈ Λ and x ∈ Λ∞ with s(λ) = x(0), there is a natural way to

define a concatenation λx ∈ Λ∞. For each λ ∈ Λ, define

Z(λ) := {x ∈ Λ∞ : x(0, d(λ)) = λ} = {λx : x ∈ Λ∞, s(λ) = x(0)}.

The sets of the form Z(λ) constitute a basis of compact open sets for a second countable
Hausdorff locally compact topology on Λ∞.

For every x ∈ Λ∞ and n ∈ Z
k
+, there exists a unique path σn(x) ∈ Λ∞ such that

σn(x)(p, q) = x(n+ p, n+ q)

for all (p, q) ∈ Ωk. This way we get an action Z
k
+ y

σ Λ∞ by local homeomorphisms as in
Section 3.4. We can therefore consider the corresponding Deaconu–Renault groupoid GΛ := Gσ.
The groupoid C∗-algebra C∗(GΛ) is then the Cuntz–Krieger C∗-algebra C∗(Λ) of the higher rank
graph Λ.

We aim to describe the open subsets of PrimC∗(GΛ). Recall from Section 3.4 that they are
in a bijective correspondence with the GΛ-invariant open subsets of Stab(GΛ)̂ .

Let us first consider G
(0)
Λ = Λ∞. For this space the invariant open sets are known. In order

to formulate the result recall the following notions.

Definition 4.12 ([RSY03]). A subset H ⊂ Λ0 is called hereditary, if for every λ ∈ Λ with
r(λ) ∈ H we have s(λ) ∈ H. It is called saturated, if whenever s(vΛn) ⊂ H for some n ∈ Z

k
+

and v ∈ Λ0, we must have v ∈ H.

The following observation goes back to [RSY03, Theorem 5.2], although it is formulated
without using groupoids there, see also [BCS23, Lemmas 11.3, 11.5].

Lemma 4.13. There is a one-to-one correspondence between the GΛ-invariant open subsets
of Λ∞ and the hereditary and saturated subsets of Λ0. Namely, given a GΛ-invariant open subset
Ω ⊂ Λ∞, we define

HΩ := {v ∈ Λ0 : Z(v) ⊂ Ω},

and given a hereditary and saturated subset H of Λ0, we define

ΩH := {x ∈ Λ∞ : x(n) ∈ H for some n ∈ Z
k
+}.

Then the maps Ω 7→ HΩ and H 7→ ΩH are inverse to each other.

The main result of this section is inspired by [BCS23, Corollary 11.7] that gives a description
of ideals of C∗(Λ) for row-finite higher rank graphs without sources under the assumption of
existence of harmonious families of bisections (see Section 3.3).
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Proposition 4.14. Let Λ be a countable row-finite k-graph without sources. Then there is a
bijective correspondence between the GΛ-invariant open subsets of Stab(GΛ)̂ and the subsets
D ⊂ Λ0 × T

k satisfying the following conditions:

(i) for every z ∈ T
k, the set {v ∈ Λ0 : (v, z) ∈ D} is hereditary and saturated;

(ii) for every (v, z) ∈ D and every x ∈ Z(v), there exist ε > 0, n ∈ Z
k
+ and a finite nonempty

set {(m(i), n(i))}Ni=1 ⊂ Z
k
+×Z

k
+, with σm(i)(x) = σn(i)(x) for all i, such that the following

property holds: for each y ∈ Z(x(0, n)), there exists m ∈ Z
k
+ such that {y(m)}×Ty ⊂ D,

where

Ty := {w ∈ T
k : |zm(i)−n(i) − wm(i)−n(i)| < ε for all i with σm(i)(y) = σn(i)(y)}. (4.1)

Namely, the pre-image q−1(UD) ⊂ Λ∞ × T
k of the GΛ-invariant open subset UD ⊂ Stab(GΛ)̂

corresponding to D, where q : Λ∞ × T
k → Stab(GΛ)̂ is given by (3.2), is

q−1(UD) = {(x, z) ∈ Λ∞ × T
k : (x(n), z) ∈ D for some n ∈ Z

k
+}. (4.2)

Proof. Denote by VD the set on the right hand side of (4.2). By Lemma 4.13, the map D 7→ VD

establishes a bijective correspondence between the subsets D ⊂ Λ0 × T
k satisfying (i) and the

subsets V ⊂ Λ∞ × T
k such that V is GΛ-invariant and V ∩ (Λ∞ × {z}) is open in Λ∞ × {z} for

all z. Since the last condition is satisfied for the pre-image of every open subset of Stab(GΛ)̂ , in
order to prove the proposition we only need to show that given a set D ⊂ Λ0×T

k satisfying (i),
condition (ii) is satisfied if and only if q−1(q(VD)) = VD and the set q(VD) ⊂ Stab(GΛ)̂ is open.

Assume first that D ⊂ Λ0×T
k satisfies (i), q−1(q(VD)) = VD and the set q(VD) ⊂ Stab(GΛ)̂ is

open. Fix (v, z) ∈ D and x ∈ Z(v). By Theorem 3.12, there exist ε > 0, an open neighbourhood

U ⊂ Λ∞ of x and a finite set {(m(i), n(i))}Ni=1 ⊂ Z
k
+ × Z

k
+ with σm(i)(x) = σn(i)(x) for all i,

such that (y,w) ∈ VD for all y ∈ U and w ∈ Ty, where Ty is defined by (4.1). By replacing ε by
a smaller number we may assume that we actually have (y,w) ∈ VD for all y ∈ U and w ∈ T̄y.

Choose n ∈ Z
k
+ such that Z(x(0, n)) ⊂ U . We then claim that condition (ii) is satisfied

with this choice of ε, n and {(n(i),m(i))}Ni=1 . To prove this, take y ∈ Z(x(0, n)). Since VD =
q−1(q(VD)) is open in the product topology, for each w ∈ T̄y there is mw ∈ Z

k
+ and an open

neighbourhood Uw ⊂ T
k of w such that Z(y(0,mw)) × Uw ⊂ VD. Since T̄y is compact, there

is a finite set w1, . . . , wp ∈ T̄y such that T̄y is contained in Uw1 ∪ · · · ∪ Uwp . Take m ∈ Z
k
+

such that m ≥ mwj
for all j = 1, . . . , p. Then Z(y(0,m)) × Uwj

⊂ VD for all j, and hence
Z(y(0,m))×{w} ⊂ VD for all w ∈ Ty. By GΛ-invariance of VD this implies that Z(y(m))×{w} ⊂
VD, hence (y(m), w) ∈ D by Lemma 4.13. Therefore condition (ii) is satisfied.

Next, assume D ⊂ Λ0 × T
k satisfies conditions (i) and (ii). We want to apply Theorem 3.12

to conclude that q−1(q(VD)) = VD and the set q(VD) ⊂ Stab(GΛ)̂ is open. Since we already
know that the set VD is invariant, we only need to check condition (ii) in that theorem. For this,
take (x, z) ∈ VD and pick p ∈ Z

k
+ such that (x(p), z) ∈ D.

Apply condition (ii) on D to v = x(p) and σp(x) in place of x to get ε > 0, n ∈ Z
k
+ and

a finite set {(m(i), n(i))}Ni=1 ⊂ Z
k
+ × Z

k
+ with the properties as stated there. We claim that

condition (ii) in Theorem 3.12 is satisfied for our ε, U := Z(x(0, p + n)) and the finite set
{(p+m(i), p+ n(i))}Ni=1 ⊂ Z

k
+ ×Z

k
+. To see this, assume y ∈ Z(x(0, p+ n)) and w ∈ T

k satisfy

|zm(i)−n(i) − wm(i)−n(i)| < ε for all i with σp+m(i)(y) = σp+n(i)(y).

Since σp(y) ∈ Z(x(p, p+ n)), by condition (ii) on D there is m ∈ Z
k
+ (depending only on σp(y),

but this is not important for now) such that (σp(y)(m), w) ∈ D. As σp(y)(m) = y(p + m),
we conclude that (y,w) ∈ VD. This proves that condition (ii) in Theorem 3.12 is satisfied
for VD. �

By the last part of Theorem 3.12 we thus get a bijective correspondence between the ideals
of C∗(GΛ) ∼= C∗(Λ) and the subsets D ⊂ Λ0 × T

k satisfying conditions (i) and (ii) of the above
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proposition. Namely, the ideal corresponding to D is
⋂

(x,z)∈(Λ∞×Tk)\q−1(UD)

ker π(x,z).
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