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Obstacle Avoidance of Autonomous Vehicles: An
LPVMPC with Scheduling Trust Region*
Maryam Nezami1, Dimitrios S. Karachalios1, Georg Schildbach1 and Hossam S. Abbas1

Abstract—Reference tracking and obstacle avoidance rank
among the foremost challenging aspects of autonomous driving.
This paper proposes control designs for solving reference tracking
problems in autonomous driving tasks while considering static
obstacles. We suggest a model predictive control (MPC) strategy
that evades the computational burden of nonlinear nonconvex
optimization methods after embedding the nonlinear model
equivalently to a linear parameter-varying (LPV) formulation
using the so-called scheduling parameter. This allows optimal
and fast solutions of the underlying convex optimization scheme
as a quadratic program (QP) at the expense of losing some
performance due to the uncertainty of the future scheduling
trajectory over the MPC horizon. Also, to ensure that the
modeling error due to the application of the scheduling parameter
predictions does not become significant, we propose the concept
of “scheduling trust region” by enforcing further soft constraints
on the states and inputs. A consequence of using the new
constraints in the MPC is that we construct a region in which the
scheduling parameter updates in two consecutive time instants
are trusted for computing the system matrices, and therefore,
the feasibility of the MPC optimization problem is retained. We
test the method in different scenarios and compare the results to
standard LPVMPC as well as nonlinear MPC (NMPC) schemes.

Index Terms—Autonomous Vehicles, Obstacle Avoidance, Con-
trol and Optimization

I. INTRODUCTION

Breakthroughs in technologies such as sensor technology
and improvements in computing power have led to significant
advancements in autonomous driving over the last decades.
Model predictive control (MPC) is a control algorithm gaining
popularity across various applications, including autonomous
driving. A significant advantage of MPC lies in its direct
enforcement of system and input constraints within the control
algorithm. Consequently, MPC can generate optimal inputs
that satisfy these constraints, making it suitable for safety-
critical systems like vehicles.

Nonlinear MPC (NMPC) is a commonly used MPC method
that utilizes a nonlinear description of the system dynamics as
the model of the system in the controller. NMPC can make
realistic estimations about the system’s behavior by using a
nonlinear model and/or nonlinear constraints. However, the
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accurate performance of NMPC comes with the cost of solving
a nonlinear optimization problem online.

Linear Parameter Varying (LPV) modeling is a method
for representing nonlinear systems in a linear time-varying
setting. It can be seen as a continuous smooth switching
of adaptive linear models over nonlinear manifolds. In LPV
models, the system matrices are functions of a vector called
the scheduling parameter. The scheduling parameter itself is
a function of states and inputs. The widespread application
of MPC in different technologies has brought more attention
to the employment of LPV models in MPC. An LPVMPC
is a linear embedding of an NMPC algorithm that uses the
structure of the problem and solves only a QP, similar to
solving an optimization problem for an LTI system. However,
one advantageous key difference between the LPV and LTI
models is that in the LPV, the system matrices can be updated
adaptively; thus, the LPV model better imitates the nonlinear
system’s behavior.

In order to build the future scheduling parameter vectors and
system matrices when using an LPV model inside MPC, we
require the future values of the states and inputs. However,
since the future values of the states and inputs are decision
variables of the optimization problem, they are not available.
Therefore, we need to make predictions about the future
scheduling parameter vectors. One common approach is to
use the values of the scheduling parameter from the MPC
solution at the previous time instant and use it in the current
step. This approach has shown promising results under the
condition that the scheduling parameter prediction error is not
significant. However, in applications like obstacle avoidance
while following a reference trajectory, the assumption of
small scheduling parameter prediction error is not a valid
assumption anymore because, in this kind of application, the
system states and/or inputs have to change suddenly in order
to keep the system safe. This issue can make the scheduling
parameter prediction error relatively big and, therefore, reduce
the applicability of LPVMPC. This is one of the problems that
we tackle in this paper.

Related works: There is a large number of papers on the
application of MPC in autonomous driving, e.g., [1]–[4], from
longitudinal control for controlling the speed of the vehicle
to lateral control for lane change and obstacle avoidance
maneuvers. Also, with the recent rapid advancements in ar-
tificial intelligence-based control methods, there is growing
attention to safe control architectures, which can provide
safety guarantees for AI-based control methods. Because of
the aforementioned advances of MPC, MPC is one of the
common methods used in these safe control architectures to
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provide safety guarantees. e.g., [5]–[9].
Using NMPC for problems like reference tracking or ob-

stacle avoidance in autonomous driving is very common.
In [10], a practical NMPC framework for (real-time) obstacle
avoidance with constant longitudinal speed is introduced. The
suggested method assumes that a planner generates a new path
when an obstacle is detected. Then, the NMPC follows the new
reference to avoid the obstacle. However, by using this method,
there is no guarantee that the vehicle will not hit the obstacle
because the precise following of the new reference trajectory
is not assured. In [11], a real-time trajectory planner based
on NMPC is proposed. To ensure the NMPC is numerically
solvable in real-time, an approach for solving the optimization
problem by using a genetic algorithm is suggested. In [12],
a nonlinear tube-based MPC for path planning and control
is presented. In this approach, an extended kinematic vehicle
model performs as the nonlinear vehicle model in the MPC.
However, computing the tubes for the nonlinear model due
to computational burden can be challenging. In [13], an
NMPC for autonomous driving is introduced, which takes
care of driving on curvy roads, driving comfort, and pollutant
emissions. It is shown that the NMPC is real-time applicable.
However, for more complex driving scenarios, e.g., obstacle
avoidance, more complex models that consider the tire slip
angle should also be taken into account, which can increase
the computation time significantly.

Compared to NMPC, there are fewer papers on the applica-
tion of LPVMPC for autonomous driving. In [14], it is shown
that an LPV model for the steering dynamics of an autonomous
vehicle could be identified from measured data. The paper also
shows that the derived LPV model can deliver an efficient
model of the dynamics even under extensive noise compared
to the black-box identification of input-output models. In [15],
a control approach for autonomous racing by using LPV to
model the dynamics of a vehicle and then using the LPV
model in an LPVMPC framework for racing is suggested.
In [16], a cascade control method using an LPVMPC and
an LPVLQR for autonomous driving is proposed. In [17],
an LPV embedding of an NMPC for racing is introduced.
Also, in this paper, the presence of obstacles in the race track
is incorporated into the LPVMPC. In [18], an LPV model
by taking the vehicle speed as the scheduling parameter and
then, a robust path-tracking controller based on MPC and
H∞ is presented. In [19], a control architecture consisting
of two subsequent controllers is proposed. At first, an MPC
controls the longitudinal dynamics of a vehicle by providing
values for the acceleration of the vehicle. Then, a robust
LPVMPC controls the lateral dynamics of the vehicle to follow
a reference trajectory. In this architecture, the longitudinal
speed of the vehicle serves as the scheduling parameter in
the lateral LPVMPC.

Contributions: This paper presents a novel method for
bounding the scheduling parameter prediction error in
LPVMPC. In this approach, the concept of scheduling trust
region is proposed which enhances the feasibility of the
LPVMPC by keeping the change of scheduling parameter
vectors in consecutive steps smooth. The scheduling trust
region is constructed online in the LPVMPC optimization

problem using additional soft constraints on states and inputs
of the system. Enforcing the scheduling trust region constraints
in LPVMPC increases the LPVMPC range of applicability.
The paper also compares the standard LPVMPC to LPVMPC
with scheduling trust region and shows how the addition
of the trust region constraint improves the feasibility of the
optimization problem. Next, the LPVMPC with scheduling
trust region and NMPC are evaluated against each other in
terms of performance and computation time in several safe
obstacle avoidance scenarios. The results are validated by
using a high-fidelity vehicle model to represent the vehicle
in the simulations.

Contents: Section II presents some preliminary information
about LPV modeling and its application in MPC. Then,
in Section III, the concept of scheduling trust region for
bounding the scheduling parameter prediction error is pro-
posed. Next, in Section IV, at first, the nonlinear vehicle
model, then the equivalent LPV model to the nonlinear vehicle
model, is presented. Next, in Section V, the suggested NMPC
followed by the method for generating the reference trajectory
are introduced. In Section VI, a method for linearizing the
obstacle avoidance and road boundary constraints, as well as
the novel LPVMPC setup, are presented. In the end, Sec-
tion VII illustrates and compares the result of the application
of the suggested LPVMPC to standard LPVMPC and NMPC
designs.

Notations and definitions: The notation Q ≻ 0 represents
the positive definiteness of a matrix Q. The weighted norm
∥x∥Q is defined as ∥x∥2Q = x⊤Qx. The function diag(x)
constructs a diagonal matrix from a vector x. A halfspace
is defined as {x ∈ Rn|a⊤x ≤ b}. The set of positive integers,
including zero, is denoted by Z+ ∪ {0}. The symbol In
denotes an n by n identity matrix where all elements on the
diagonal are ones. The symbol ⊗ represents the Kronecker

product. The symbol
N∏
i=1

Ai indicates product operation, i.e.,

N∏
i=1

Ai = ANAN−1 . . . A1.

II. PRELIMINARIES

Consider the following representation of the LPV discrete-
time system

zk+1 = A(pk)zk+B(pk)uk, z0 = z̄0, ∀k∈Z+∪{0}, (1)

where zk ∈ Rn, uk ∈ Rm and pk ∈ Rnp , are the state vectors,
the input vectors and the scheduling parameter vector of the
system, respectively. The scheduling parameter vector can be
a function of inputs and states, i.e., pk = g(zk, uk). Here,
z̄0 ∈ Rn represents the initial condition of the system. The
system (1) is subject to state and input constraints as follows

zk ∈ Z = {zk ∈ Rn|Gzzk ≤ hz},
uk ∈ U = {uk ∈ Rm|Guuk ≤ hu},

(2)

where Z is the state constraint and U is the input constraint.
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The LPV model (1) can be used in an MPC as follows

min
Uk,Zk

∥zN |k∥2P +

N−1∑
i=0

(
∥zi|k∥2Q + ∥ui|k∥2R

)
(3a)

s.t. zi+1|k=A(pi|k)zi|k+B(pi|k)ui|k, (3b)
z0|k = z̄0, (3c)
zi+1|k ∈ Z, (3d)
ui|k ∈ U , ∀i = 0, 1, . . . , N − 1, (3e)

where the tuning matrices are Q ⪰ 0 ∈ Rn×n, R ≻ 0 ∈
Rm×m and P ⪰ 0 ∈ Rn×n. The horizon of MPC is denoted
by N . The optimal sequence of inputs and states over the
MPC horizon are U∗

k = {u∗0|k, u∗1|k, . . . , u∗N−1|k} and Z∗
k =

{z∗1|k, z∗2|k, . . . , z∗N |k}, respectively.
Analogous to the sequential approach of solving the opti-

mization problem of an MPC for an LTI system, the above
optimization problem can be rewritten as a quadratic program

min
Uk

1

2
U⊤
k H̄(Pk)Uk + F̄ (Pk)

⊤Uk (4a)

s.t. ḠuUk ≤ h̄u, (4b)
ḠzΓ(Pk)Uk ≤ h̄z − ḠzΦ(Pk)z̄0, (4c)

where

Uk =


u0|k
u1|k

...
uN−1|k

 , Pk =


p0|k
p1|k

...
pN−1|k

 .
Also, Ḡu = IN ⊗ Gu, h̄u = IN ⊗ hu, Ḡz = IN ⊗ Gz and
h̄z = IN ⊗ hz , where Gu, hu, Gz and hz are from Eq. (2).
The estimations about the system behavior are made through
the equation

Zk = Φ(Pk)z̄0 + Γ(Pk)Uk,

where, Zk, Φ(Pk) and Γ(Pk) are presented below

Zk=


z1|k
z2|k

...
zN |k

 ,Φ(Pk)=


A(p0|k)

A(p1|k)A(p0|k)
...

N−1∏
i=0

A(pi|k)

 , (5)

Γ(Pk)=


B(p0|k) 0 . . . 0

A(p1|k)B(p0|k) B(p1|k) . . . 0
...

...
. . .

...
N−1∏
i=1

A(pi|k)B(p0|k)
N−1∏
i=2

A(pi|k)B(p1|k) . . . B(pN−1|k)

.
(6)

Then, the state constraint (3d), turns into the constraint (4c).
Also, the matrices in the cost function (4a) are

H̄(Pk) = 2(R̂+ Γ(Pk)
⊤Q̂Γ(Pk)),

F̄ (Pk) = 2Γ(Pk)
⊤Q̂Φ(Pk)z̄0,

where, Q̂ = IN ⊗ Q and R̂ = IN ⊗ R, with Q and R being
from the cost of the original optimization problem (3).

III. SCHEDULING TRUST REGION

As can be seen in Eqs. (5) and (6), the MPC formulation (4)
depends on the values of the future scheduling parameter pi|k.
However, the exact value of pi|k is not always available. One
practical approach, e.g., used in [19], [20], to handle this issue
is to use the value of the scheduling parameter from the MPC
solution at the previous time instant, as follows

p̂i|k = p∗i+1|k−1, (7)

where p̂i|k is the predicted scheduling parameter for step i
at time k and p∗i+1|k−1 is the value of scheduling parameter
at step i + 1 which was calculated at time k − 1. Despite
its imperfection, this method has proved to be effective in
applications where the states and inputs change relatively
smoothly, e.g., [16], [21]. However, assuming a constant
scheduling parameter across consecutive times becomes an
invalid assumption when the system states and inputs have
significant changes in consecutive steps, making a challenge
in the applicability of LPVMPC. This problem, however, has
not received enough attention in the literature. In this section,
we propose a practical solution to deal with this challenge.

Motivated by the problem mentioned above, we propose
further constraints on the states and inputs as follows:

−(ezmax + ϵzi|k) ≤ (zi|k − ẑi|k) ≤ (ezmax + ϵzi|k),

−(eumax + ϵui|k) ≤ (ui|k − ûi|k) ≤ (eumax + ϵui|k),
(8)

zi|k and ui|k are the estimated states and inputs at step i, time
k, while, ẑi|k and ûi|k are predicted states and inputs that were
calculated at step i+ 1, time k − 1 as follows

ẑi|k = z∗i+1|k−1, ûi|k = u∗i+1|k−1.

Also, ezmax and eumax represent the bounds for the error be-
tween predicted and estimated states and inputs, i.e., ẑi|k, ûi|k
and zi|k, ui|k, respectively. Furthermore, ϵzi|k and ϵui|k are slack
variables. Due to the introduction of the slack variables, the
constraint (8) can be seen as a soft constraint. Also, based on
the states and inputs that the scheduling parameter depends
on, we can only bound those states and inputs instead of all
of the states and inputs.

The enforcement of Eq. (8) in the LPVMPC requires
the optimization problem to find the estimated inputs and
states, i.e., zi|k, ui|k, in a way that they remain close to the
predicted values from the previous time instant, i.e., ẑi|k, ûi|k.
Additionally, slack variables are used to allow the deviation of
zi|k, ui|k from ẑi|k, ûi|k as long as the optimization problem
remains feasible. Therefore, we propose the following concept.

Definition 3.1 (Scheduling trust region): The region built
by enforcing the constraints in (8) in LPVMPC is called
the scheduling trust region, i.e., when those constraints are
satisfied, then p̂i|k = p∗i+1|k−1 can be trusted to compute the
system matrices at step i, time k, as A(p̂i|k) and B(p̂i|k). This
constraint prevents the infeasibility of the LPVMPC, which
can happen due to the modeling error that comes from poor
scheduling parameter predictions.

Since the constraint (8) is a soft constraint, we do not require
the exact values of ezmax and eumax . In case the bound is
too tight, the LPVMPC can use the slack variable to avoid
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infeasibility. One way to get a reasonable guess for ezmax and
eumax , is to run the nonlinear and LPV models and compare the
LPV model’s estimations to the actual nonlinear system. Also,
we might have a guess for the values of ezmax and eumax based
on experience or prior knowledge about the rate of change of
the scheduling parameter. Or, by tuning, we can try to find
the values that lead to the best performance for the system.
It is also important to note that if the scheduling trust region
constraints in (8) are only defined by the slack variables ϵzi|k
and ϵui|k, then those constraints might attempt to keep the error
(zi|k − ẑi|k) and (ui|k − ûi|k) close to zero. This, in turn, can
result in a significant loss of performance.

IV. MODELING

In this paper, a dynamic bicycle model with linear tire forces
represents the vehicle model that will be used in the NMPC.

A. Nonlinear Vehicle Model

Based on [22, p. 27], the continuous differential equations
describing the motion at time t ≥ 0 of a vehicle are presented
as follows

Ẋ(t) = υ(t) cosψ(t)− ν(t) sinψ(t), (9a)

Ẏ (t) = υ(t) sinψ(t) + ν(t) cosψ(t), (9b)
υ̇(t) = ω(t)ν(t) + a(t), (9c)

ν̇(t) = −ω(t)υ(t) + 2

m
(Fyf(t) cos δ(t) + Fyr(t)), (9d)

ψ̇(t) = ω(t), (9e)

ω̇(t) =
2

Iz
(lfFyf(t)− lrFyr(t)), (9f)

where X , Y , υ, ν, ψ and ω denote the global X axis coordinate
of the center of gravity (GoG), the global Y axis coordinate
of the CoG, the longitudinal speed in body frame, the lateral
speed in body frame, the vehicle yaw angle and the yaw
angle rate, respectively. See Fig. 1 for illustration. The control
inputs of the system are the longitudinal acceleration a and the
steering angle δ. The vehicle moment of inertia and mass are
denoted by Iz and m, respectively. The lateral forces acting on
the front and rear tires are denoted as Fyf and Fyr, respectively,
and calculated linearly as Fyf = Cαfαf , Fyr = Cαrαr. The
parameters Cαf and Cαr represent the cornering stiffness of the
front and rear tires, respectively. The slip angle of the front tire
is αf and is calculated as αf = δ−(ν+lfω)/υ. The rear tire slip
angle is αr and is calculated as αr = (lrω − ν)/υ. Moreover,
the parameters used in this paper are given in Table I.

To utilize the model in Eq. (9) in an MPC framework, it is
necessary to discretize it. One of the commonly used methods
for obtaining the corresponding discrete-time system is the
forward Euler method, as follows

ż(tk) ≈
z(tk + ts)− z(tk)

ts
, tk = tsk, k = 0, 1, . . . .

In this way, the vehicle dynamics in Eq. (9) can be written as

zk+1 = zk + tsf(zk, uk), (10)

where zk =
[
Xk Yk υk νk ψk ωk

]⊤
, uk =[

δk ak
]⊤

with the sampling time, i.e., ts, given in Table I.

Fig. 1: Vehicle dynamics representation [23]

TABLE I: Vehicle parameters [23]
Symbol Variables Unit
X Global X-axis coordinates of the vehicle’s CoG m
Y Global Y-axis coordinates of the vehicle’s CoG m
υ Longitudinal velocity of the vehicle m/s
ν Lateral velocity of the vehicle m/s
ψ Yaw angle of the vehicle rad
ω Yaw rate of the vehicle rad/s
δ Steering angle of the front tire rad
a Longitudinal acceleration of the vehicle m/s2

αf Front tire slip angle rad
αr Rear tire slip angle rad

Symbol Parameter Value/Unit
Cαf Cornering stiffness front tire 156 kN/rad
Cαr Cornering stiffness rear tire 193 kN/rad
lf Distance CoG to front axle 1.04 m
lr Distance CoG to rear axle 1.4 m
Iz Vehicle yaw inertia 2937 kgm2

m Vehicle mass 1919 kg
ts sampling time 0.05 s

The function, f(zk, uk) = ż(zk, uk) is computed based on the
differential equations in (9).

B. LPV Model

By introducing the scheduling parameters υ(t), ν(t), δ(t),
and ψ(t), the scheduling parameter vector is defined as p(t) =[
υ(t) ν(t) δ(t) ψ(t)

]⊤
. The continuous-time nonlinear

dynamics in Eq. (9) can be written equivalently in the LPV
representation as{

ż(t) = Ac(p(t))z(t) +Bc(p(t))u(t),

p(t) = (υ(t), ν(t), δ(t), ψ(t)), t ≥ 0,
(11)

where the subscript “c” indicates the continuous in-time op-
erator. The state vector z(t) of dimension 6 can be defined
as z(t) :=

[
X(t) Y (t) υ(t) ν(t) ψ(t) ω(t)

]⊤
with

initial conditions z̄0 and the continuous-time system matrices
Ac ∈ R6×6, Bc ∈ R6×2 as

Ac(p(t)) :=


0 0 cos(ψ(t)) − sin(ψ(t)) 0 0
0 0 sin(ψ(t)) + cos(ψ(t)) 0 0
0 0 0 0 0 ν(t)
0 0 0 a44(t) 0 a46(t)
0 0 0 0 0 1
0 0 0 a64(t) 0 a66(t)

 ,

βf :=
2Caf

m
, βr :=

2Car

m
, γf :=

2ℓfCaf

Iz
, γr :=

2ℓrCar

Iz
,
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a44(t) := −βf cos(δ(t))
1

υ(t)
− βr

1

υ(t)
,

a46(t) := −υ(t)− βf cos(δ(t))
1

υ(t)
ℓf + βr

1

υ(t)
ℓr,

a64(t) :=
1

υ(t)
(γr − γf ), a66(t) := −

1

υ(t)
(γf ℓf + γrℓr),

and

Bc(p(t)) :=

[
0 0 0 βf cos(δ(t)) 0 γf
0 0 1 0 0 0

]⊤

.

The discretization with the Euler method and the sampling
time ts results in the discrete-time LPV representation of
Eq. (11) as{

zk+1 = A(pk)zk +B(pk)uk,

pk = (υk, νk, δk, ψk), k ∈ Z+ ∪ {0}
(12)

where A(pk) = I6 + tsAc(pk), B(pk) = tsBc(pk) are the
discrete-time LPV system matrices.

V. OBSTACLE AVOIDANCE WITH NMPC

This section focuses on introducing an NMPC framework
for obstacle avoidance while following a reference trajectory
with respect to vehicle constraints and road boundaries. In this
reference tracking problem, whenever a new obstacle appears
on the road, it is the controller’s responsibility to determine the
most appropriate time and maneuver to overtake the obstacle
and then return the vehicle to the reference.

We also assume that the other traffic participants are el-
lipses. This is a common assumption, as the surrounding
obstacles are usually other vehicles, and the area occupied by
vehicles can be presented with an ellipse conveniently [24].

The constrained nonlinear optimal control problem for
obstacle avoidance while following a reference trajectory is
formulated as follows

min
U
∥zN |k−zref

N |k∥2P +

N−1∑
i=0

(
∥zi|k − zref

i|k∥2Q + ∥ui|k∥2R
)
(13a)

s.t. zi+1|k=zi|k+tsf(zi|k, ui|k),∀i=0, . . . , N−1, (13b)
z0|k = zk, (13c)
ui|k ∈ U , ∀i = 0, 1, . . . , N − 1, (13d)
zi|k ∈ Z, ∀i = 0, 1, . . . , N, (13e)
(Xobs −Xi|k)

2

r2x
+

(Yobs − Yi|k)2
r2y

≥ 1, (13f)[
a1,i|k b1,i|k
−a2,i|k −b2,i|k

] [
Xi|k
Yi|k

]
≤
[
c1,i|k
−c2,i|k

]
, (13g)

where, the tuning matrices are Q ⪰ 0 ∈ R6×6, R ≻ 0 ∈ R2×2

and P ⪰ 0 ∈ R6×6. The input constraint U in (13d) and
the state constraint Z in (13e) are defined in Eq. (2), where
Gu =

[
I2 −I2

]⊤
, hu =

[
δmax alonmax δmax alonmax

]⊤
,

Gz =
[
I6 −I6

]⊤
and hz =

[
hzmax hzmax

]⊤
, with

hzmax =
[
Xmax Ymax υmax νmax ψmax ωmax

]⊤
.

In (13f), (Xobs, Yobs) represent the center of an ellipsoidal
obstacle with axes rx, ry . The enforcement of constraint (13f)
in the NMPC guarantees the vehicle stays outside of the region

occupied by the obstacle. The constraint (13g) is the road
boundary constraint, which the value of a1,i|k, b1,i|k, a2,i|k,
b2,i|k, c1,i|k and c2,i|k are computed based on the tangent line
to the road boundary at each side of the road at time step i+k.

The vector zref
i|k =

[
Xref

i|k Y ref
i|k υrefi|k νrefi|k ψref

i|k ωref
i|k

]⊤
is the reference value for the states at time step i+ k, which
is computed as explained below.

We assume that only the (Xref
k , Y ref

k ) values of the reference
trajectory are available, where Xref

k is the global X axis coor-
dinate and Y ref

k is the global Y axis coordinate of a reference
point. Then, we compute the corresponding reference values
for the remaining four states, υrefk , νrefk , ψref

k and ωref
k , to

track the reference trajectory effectively. For the computation
of ψref

k , the global (Xref
k , Y ref

k ) can be directly used as follows

ψref
k = arctan

(
Y ref
k−1 − Y ref

k

Xref
k−1 −Xref

k

)
. (14)

Next, ωref
k can be calculated as ωref

k = (ψref
k − ψref

k−1)/ts,
where ψref

k and ψref
k−1 are the reference yaw angles which are

computed in the previous step by using Eq. (14). To calculate
υrefk and νrefk , which represent the longitudinal and lateral
speeds in the body frame, the reference points in the body
frame are determined as follows[

xrefk

yrefk

]
=

[
cos (ψref

k ) sin (ψref
k )

− sin (ψref
k ) cos (ψref

k )

] [
Xref

k −Xref
k−1

Y ref
k − Y ref

k−1

]
. (15)

Then, the reference speeds can be readily computed as υrefk =
(xrefk −xrefk−1)/ts and νrefk = (yrefk − yrefk−1)/ts, where xrefi and
yrefi , for i = k, k − 1, are computed in Eq. (15).

VI. OBSTACLE AVOIDANCE WITH LPVMPC
This section aims to propose a novel LPVMPC to achieve

the same goal as the NMPC in the previous section. Prior
to introducing LPVMPC, we present the linearization of the
nonlinear constraints that will be utilized within the LPVMPC
framework.

A. Linearization of Obstacle Avoidance Constraint

To make sure the vehicle avoids the obstacle, the con-
straint (13f) should be satisfied. However, the constraint (13f)
is a nonlinear constraint that cannot be directly used in
the quadratic programming of an LPVMPC. To address this
problem, this paper proposes a method for linearizing this
constraint, as presented below.

Given that the reference trajectory is presented as a series
of points, whenever a reference point falls within the obstacle
for a step over the MPC horizon, we propose linearization of
the nonlinear constraint (13f) around that particular reference
point. Subsequently, the nonlinear constraint (13f) can be
replaced with only a halfspace constraint, i.e., the vehicle is
forced to stay within a halfspace that does not contain the
obstacle on that time step. The linear constraint has to change
adaptively when a new reference point is found inside the
obstacle.

Assumption 6.1: In this approach, it is important to em-
phasize that there is an assumption regarding having a pre-
determined decision of overtaking an obstacle from a specific
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side. This can be done by using any planners that are available
for obstacle avoidance, e.g., topology-based planners focus on
determining the side on which a robot should overtake an
obstacle [25].

By defining a3,k, b3,k and c3,k as the parameters of the
tangent half-space to the obstacle, the (Xk, Yk) coordinate of
the vehicle should then satisfy the following linear inequality

h1 : a3,kXk + b3,kYk ≥ c3,k. (16)

The above inequality is the obstacle avoidance constraint
which is enforced in the LPVMPC (19) as a state constraint.

Assume that a point on the reference trajectory, e.g.,
(Xref

q , Y ref
q ) falls inside the obstacle over the MPC horizon.

Find the point Q = (Xproj
q , Y proj

q ) as the projection of
(Xref

q , Y ref
q ) on the circumference of the obstacle with respect

to the curvature of the road, as depicted in Fig. 2. Define:
G(Xk, Yk) = r2y(Xk −Xobs)

2 + r2x(Yk − Yobs)
2 − r2xr2y . The

gradient is:

∇G(Xk, Yk) =
[
2r2y(Xk −Xobs) 2r2x(Yk − Yobs)

]
.
(17)

Thus, the tangent line at point Q = (Xproj
q , Y proj

q ) is

0 = G(Xproj
q , Y proj

q )︸ ︷︷ ︸
0

+∇G(Xproj
q , Y proj

q )

[
Xk −Xproj

q

Yk − Y proj
q

]
,

which is equivalent to the following equation

0 =2r2y(X
proj
q −Xobs)(Xk −Xproj

q )+

2r2x(Y
proj
q − Yobs)(Yk − Y proj

q ),

which leads to

r2y(X
proj
q −Xobs)︸ ︷︷ ︸

a3,k

Xk + r2x(Y
proj
q − Yobs)︸ ︷︷ ︸

b3,k

Yk =

= r2y(X
proj
q −Xobs)X

proj
q + r2x(Y

proj
q − Yobs)Y

proj
q︸ ︷︷ ︸

c3,k

,
(18)

where, a3,k, b3,k and c3,k are the parameters of the tangent
half space in Eq. (16). When there is no obstacle in the MPC
horizon, c3,k is equal to −∞. The algorithm for the suggested
method is presented in Algorithm 1.

Algorithm 1 Adaptive linear obstacle avoidance constraint

k = 0, 1, 2, · · · ;
Points (Xref

q , Y ref
q ) are inside the obstacle

if (Xref
q , Y ref

q ) appears in the MPC horizon then
Find the projection of the point (Xref

q , Y ref
q ) on the

radius of the obstacle, i.e., (Xproj
q , Y proj

q );

Find parameters of the tangent line as presented
in Eq. (18);

Enforce the constraint h1 : a3,kXk + b3,kYk ≥ c3,k;
end if

Fig. 2: Linear obstacle avoidance constraint

B. LPVMPC

The suggested LPVMPC is as follows

min
U,E
∥zN |k−zref

N |k∥2P +

N−1∑
i=0

(
∥zi|k−zref

i|k∥2Q+∥ui|k∥2R+∥ϵi|k∥2Ep

)
(19a)

s.t. zi+1|k=A(p̂i|k)zi|k+B(p̂i|k)ui|k, i=0,. . .,N−1, (19b)
z0|k = zk, (19c)
ui|k ∈ U , ∀i = 0, 1, . . . , N − 1, (19d)
zi|k ∈ Z, ∀i = 0, 1, . . . , N, (19e)
a3,i|kXi|k + b3,i|kYi|k ≥ c3,i|k, (19f)[
a1,i|k b1,i|k
−a2,i|k −b2,i|k

] [
Xi|k
Yi|k

]
≤
[
c1,i|k
−c2,i|k

]
, (19g)

− (ezmax+ϵzi|k)≤(zi|k−ẑi|k)≤(ezmax+ϵzi|k), (19h)

− (eumax+ϵui|k)≤(ui|k − ûi|k)≤(eumax+ϵui|k), (19i)

where the reference trajectory zref
i|k, the tuning matrices P ,

Q, R are as defined for the Problem (13).The decision
variables are U as for (13) and E =

[
ϵ0|k . . . ϵN−1|k

]
,

with ϵi|k =
[
ϵzi|k ϵui|k

]⊤
. Also, the tuning matrix Ep is

Ep ⪰ 0 ∈ R4×4. The LPV model in Eq. (19b) is defined
in Eq. (12). The constraints (19d) and (19e) are as defined
in (13d) and (13e), respectively. The constraint (19f) is the
linearized obstacle avoidance constraint, as explained in Sec-
tion VI-A, which is active only when the obstacle is in the
MPC horizon. The constraint (19g) is added to make sure the
vehicle moves between road boundaries, as in (13g). Finally,
the soft constraints (19h) and (19i) are the scheduling trust
region constraints due to the reasons explained in Section III.

VII. RESULTS

This section compares the application of the LPVMPC with
trust region to standard LPVMPC and NMPC. To provide a
fairly realistic representation of a vehicle, a nonlinear dual-
track vehicle body with 3 degrees of freedom from Vehicle
Dynamics Blockset in Matlab [26] is used to represent the ve-
hicle in simulations. The simulations are performed on a Dell
Latitude 5590 laptop with an Intel(R) Core(TM) i7-8650U
CPU and 16 GB of RAM. The simulations are conducted
in Simulink [27], where the MPCs are implemented using
YALMIP [28]. In the simulations, Ipopt serves as the nonlinear
solver [29], while the quadratic solver employed is the Matlab
solver, quadprog. Also, the optimality tolerance of Ipopt is
10−4 and for the quadprog is 10−6.
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Algorithm 2 The QP-based LPVMPC algorithm
Input: Initial conditions zk, and the road reference
(Xk, Yk), k ∈ Z+.
Output: The control input uk, k = 1, . . ., that drives the
nonlinear system to the reference while avoiding obstacles.

1: Initialize for k = 0 the scheduling parameter vector p̂i|0
as

p̂i|0 := (υ0, ν0, δ0, ψ0) , i = 0, . . . , N − 1

2: while k = 0, 1, . . . do
3: Update the state zref

i|k as explained in Section V.
4: Solve the QP in Problem 19[

zi+1|k, ui|k
]
← QP(p̂i|k, zk, z

ref
i|k), i = 0, . . . , N − 1

Update p̂i|k :=
(
υ̂i|k, ν̂i|k, ui|k, ψ̂i|k

)
, i = 0, . . . , N

5: Apply uk = u0|k to the system
6: Measure zk+1

7: Update p̂i|k+1 = p̂i+1|k, i = 0, . . . , N − 1
8: k ← k + 1
9: end while

The list of constraints used in the LPVMPC and the NMPC
are presented in Table II. Also, to keep the movement of the
vehicle smoother constrains the rate of change of δk and ak,
i.e., |δk − δk−1| ≤ 25π/180 rad, |ak − ak−1| ≤ 1.5 m/s2 are
enforced in the optimization problems as well.

TABLE II: MPC Parameters
Parameter Value Parameter Value
Lower bound on Xk -1 m Upper bound on Xk 1500 m
Lower bound on Yk -600 m Upper bound on Yk 800 m
Lower bound on υk 1 m

s
Upper bound on υk 100 m

s
Upper bound on |νk| 10 m

s
Upper bound on |ψk| π rad

Upper bound on |ωk| π
3ts

rad
s

Sampling time ts 0.05 s
Upper bound on |δk| 34π

180
rad Sampling frequency fs 20 Hz

Lower bound on ak −6 m
s2

Upper bound on ak 2 m
s2

A. Comparison of LPVMPC with trust region to standard
LPVMPC

In order to compare the performance of a standard LPVMPC
to the LPVMPC with trust region as proposed in (19), we set
10 driving scenarios. The driving scenarios involve driving the
vehicle on a circular road with an obstacle blocking part of
the road. In these scenarios, the obstacles are considered as
circles for simplicity. They are positioned along various parts
of the road and have radii ranging from 0.7 m to 1.4 m. The
horizon of the LPVMPCs has been set to either 8 or 15.

In these driving scenarios, it is observed that the standard
LPVMPC is feasible only in 2 out of 10 driving scenarios.
In the next step, we add the trust region constraint to the
LPVMPC and observe that the optimization problem becomes
feasible. This comparison is presented in Fig. 3. In Figs. 4
and 5, the open-loop trajectories of one standard LPVMPC
and the corresponding LPVMPC with trust region are pre-
sented. Fig. 4 presents the open-loop trajectories of a standard
LPVMPC, which shows a significant deviation in trajectories
in two steps. Since the scheduling parameter is a function of

0

2

4

6

8

10

Fig. 3: Comparison of the feasibility of the proposed LPVMPC
with the trusts region in this paper to a standard LPVMPC for
10 obstacle avoidance scenarios.

0 10 20 30 40

0

5

10

15

Fig. 4: Open-loop trajectories of Standard LPVMPC at con-
secutive simulation time steps

the states and inputs, this significant deviation leads to poor
estimations by the LPV model. On the other hand, Fig. 5 shows
that adding the trust region constraint to the LPVMPC can fix
this problem by keeping the open-loop trajectories closer to
each other and consequently keeping the scheduling parameter
prediction error smaller. However, the deviation of estimated
states and inputs from the predicted states and inputs depends
on the choice of ezmax and eumax in Eq. (19h) and Eq. (19i),
as well as, the tuning matrix Ep in the cost function (19a).
Therefore, the user can tune these parameters to get the desired
performance for the vehicle while avoiding the infeasibility
that comes from the scheduling parameter prediction error like
in standard LPVMPC.

0 10 20 30 40

0

5

10

15

Fig. 5: Open-loop trajectories of LPVMPC with trust region
at consecutive simulation time steps
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Fig. 6: First reference tracking scenario
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Fig. 7: Second reference tracking scenario

B. Comparison of LPVMPC with trust region to NMPC

1) Reference Tracking: At first, the performance of the
NMPC and the LPVMPC are compared in two reference
tracking scenarios. The result of the first scenario is de-
picted in Fig. 6. In this scenario, the parameters Q and R
for the NMPC are Q = diag(

[
10 10 5 1 1 1

]
) and

R = diag(
[
0.1 0.1

]
), while that for the LPV are Q =

diag(
[
10 10 1 1 10 1

]
) and R = diag(

[
0.1 0.1

]
).

The horizon of both LPVMPC and NMPC is 8. The values of
R1 = −1 m and R2 = 4 m represent the width of the road
on each side of the vehicle.

In the second reference tracking scenario, the parameters
of NMPC are Q = diag(

[
10 10 1000 1 1 1

]
) and

R = diag(
[
0.001 0.001

]
). For the LPVMPC the param-

eters are Q = diag(
[
10 10 300 1 1 1

]
) and R =

diag(
[
0.001 0.001

]
). The horizon of both LPVMPC and

NMPC is 8. The value of road width in this scenario are
R1 = −1.5 m and R2 = 5 m. The result of this scenario
comparison is presented in Fig. 7.

TABLE III: Comparison of computation times between NMPC
and LPVMPC for the reference tracking scenario 1

RT w/o obstacle NMPC LPVMPC
Average time 0.3067 s 0.0145 s
Maximum time 1.2334 s 0.0225 s
Minimum time 0.0973 s 0.0121 s

The performance analysis depicted in Fig. 6 and Fig. 7
indicates that LPVMPC and NMPC have nearly identical

TABLE IV: Comparison of computation times between NMPC
and LPVMPC for the reference tracking scenario 2

RT w/o obstacle NMPC LPVMPC
Average time 0.1982 s 0.0155 s
Maximum time 0.3882 s 0.0335 s
Minimum time 0.1074 s 0.0132 s

performance regarding reference tracking error. However,
comparing the inputs shows that NMPC generates smoother
steering angles and accelerations. The computation times for
solving the NMPC and the LPVMPC are detailed in Table III
and Table IV. The numbers in these tables indicate that
the LPVMPC performs significantly faster than NMPC. This
result aligns with expectations since NMPC needs to solve a
nonlinear optimization problem, whereas LPVMPC is based
on a quadratic optimization problem.

2) Obstacle Avoidance: The second part tests the LPVMPC
and NMPC for reference tracking while overtaking an obsta-
cle. The values of the parameters used in the LPVMPC and the
NMPC in scenarios 1 and 2 are the same as the ones presented
in the reference tracking section.

The presented results in Fig. 8 and Fig. 9 align with the
results of the reference tracking section. Again, the results
show that the LPVMPC can also perform the safe obstacle
avoidance maneuver with more fluctuations in the generated
inputs. Also, looking at the computation times of the LPVMPC
and NMPC for obstacle avoidance scenarios, in Table V
and Table VI reveals that the LPVMPC is doing the task much
faster than the NMPC.
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Fig. 8: First obstacle avoidance scenario
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Fig. 9: Second obstacle avoidance scenario

TABLE V: Comparison of computation times between NMPC
and LPVMPC for the obstacle avoidance scenario 1

RT with obstacle NMPC LPVMPC
Average time 0.6044 s 0.0143 s
Maximum time 1.9183 s 0.0221 s
Minimum time 0.3157 s 0.0124 s

TABLE VI: Comparison of computation times between NMPC
and LPVMPC for the obstacle avoidance scenario 2

RT with obstacle NMPC LPVMPC
Average time 0.6538 s 0.0150 s
Maximum time 1.6906 s 0.0250 s
Minimum time 0.3422 s 0.0131 s

VIII. CONCLUSION

In this paper, an LPV model to represent a dynamic bicycle
model as well as an adaptive linear realization of the obstacle
avoidance constraint was suggested. Then, it was shown how
the proposed LPV model can be used in an MPC framework
to perform a reference tracking task while overtaking pos-
sible obstacles on the road. Additionally, the novel concept
of scheduling trust region for smooth change of scheduling
parameters in consecutive time instants in LPVMPC was
proposed.

Also, the performance of the LPVMPC with trust region was
compared to that of a standard LPVMPC. It was observed that
the addition of scheduling trust region constraints improved the
feasibility of the LPVMPC. Moreover, the proposed LPVMPC
in this paper was compared to an NMPC. It was observed that

the LPVMPC can perform the same task as the NMPC but with
some loss in performance. On the other hand, applying the
LPVMPC has the advantage that only a quadratic optimization
problem needs to be solved instead of a nonlinear optimization
problem, and therefore, it is a lot faster, permitting real-time
controller design for such tasks that fast dynamics are evolved.

However, this is just the beginning of looking into this
problem. For example, an interesting problem that could be
addressed in the future is the possibility of providing recursive
feasibility for the LPVMPC or generalizing the application of
the approach to avoiding dynamic obstacles, which are under
our investigation.
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