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Fragile topology, akin to twisted bilayer graphene and the exotic phases therein, is a notable 

topological class with intriguing properties. However, due to its unique nature and the lack 

of bulk-edge correspondence, the experimental signature of fragile topology has been under 

debated since its birth. Here, we demonstrate experimentally that fragile topological phases 

with filling anomaly can be probed via screw dislocations, despite that they do not support 

gapless edge states. Using a designer hexagonal phononic crystal with a fragile topological 

band gap, we find that 1D gapless bound modes can emerge at a screw dislocation due to the 

bulk fragile topology. We then establish a connection between our system and the twisted 

boundary condition via the gauge invariance principle and illustrate that such an emergent 
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phenomenon is an intrinsic property of fragile topological phases with filling anomaly. We 

observe experimentally the 1D topological bound states using the pump-probe measurements 

of their dispersion and wavefunctions, which unveils a novel bulk-defect correspondence of 

fragile topology and a powerful tool for probing fragile topological phases and materials. 

Introduction. –  In the past years, fragile topology [1-41] and its important role in the properties of 

twisted bilayer graphene [3, 23-27, 36], non-Abelian topology [28-34], flat bands [35-37] and 

related emergent phases have attracted much attention, and led to discoveries that connect band 

topology with correlated electron states [38-42] such as superconductivity [40-42]. Interestingly, 

the band topology can impose constraints on the superconducting order parameters as revealed by 

recent studies [40-42]. Fragile topological phases are characterized by nontrivial signatures in 

either the Wilson loops [5, 6, 13, 14] or the band representations [2, 5, 14, 16, 43, 44] but can be 

connected with some obstructed atomic insulator phases---insulators with the charge centers away 

from atomic centers---via adding some trivial bands [2]. It has been shown that fragile topological 

insulators do not support robust edge states, imposing challenges on their experimental signatures. 

Later, it was proposed that local gauge flux insertion [7] or twisted boundary conditions [45-50] 

can be used to probe the fragile topology. However, both the local gauge flux insertion and twisted 

boundary conditions are very challenging in genuine condensed matter experiments. Up till now, 

experimental signatures of fragile topology have not yet been observed in solid-state systems. 

Here, we propose that screw dislocations can serve as an efficient probe of fragile topology. 

Since screw dislocations commonly exist in solid-state materials, it opens a new pathway toward 

the experimental identification of fragile topological phases. By using the arguments based on the 

dimensional reduction, we demonstrate that screw dislocations can be regarded as sources of local 

gauge flux [48, 49] and thus lead to the emergence of 1D gapless modes bound to the dislocations 

due to the intrinsic properties of the fragile topology. Equivalently, such an effect can also be 

connected to the twisted boundary condition via the gauge invariance principle. Therefore, the 

emergence of the 1D gapless bound states at a screw dislocation can be identified as a signature 

bulk-defect correspondence of fragile topological phases. We also remark that due to the rapid 

development of the field, the concept of fragile topology has been extended to more general cases, 

including the Euler insulators [29, 32-34, 51-53]. The investigation here is still constrained to the 
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original fragile topological phases with nontrivial filling anomaly which is a major class of fragile 

topological phases that are of interest in many studies [1-27]. Our study reveals that for such fragile 

topological phases with filling anomaly, screw dislocations can serve as a powerful experimental 

tool for the probe of fragile topology. 

Fragile topological phononic crystals. – We consider a fragile topological phase based on a bilayer 

construction. The system is illustrated in Fig. 1(a) in the tight-binding picture where two layers of 

honeycomb lattice (the nearest neighbor hopping is 𝑡!) are coupled in a spiral way. We consider 

the situation with identical onsite energy at all sublattice sites. Therefore, the system is gapless 

without the interlayer couplings [Fig. 1(b)]. The spiral interlayer couplings 𝑡" open a band gap 

with nontrivial fragile topology [Fig. 1(c)], which can be revealed either by the nontrivial Wilson 

loop or the band representation analysis [Symmetry eigenvalues at the high symmetry points are 

given in both Figs. 1(b) and 1(c); see more details in Supplemental Materials]. 

The fragile topological band gap does not support robust gapless edge states. Instead, the edge 

states are often gapped as illustrated in Fig. 1(d). To yield truly topological responses, one needs 

to introduce a local gauge flux. We shall show here that such a local gauge flux can be introduced 

by the following procedures [48, 49]: First, we stack the 2D bilayer system periodically in the z 

direction to yield a 3D lattice system with vanishing coupling between the periodically repeated 

2D bilayers. We then introduce a screw dislocation in the systems which breaks all the 2D lattice 

translation symmetry but keeps the periodic translation symmetry along the z direction. The 

introduction of a screw dislocation also provides a mechanism to connect all the previously 

separated 2D bilayers together. Finally, by performing the Fourier transformation in the z direction 

and regarding the system with a given 𝑘# as an effective 2D system, the effective 2D system carries 

a local artificial gauge flux 𝜙 = 𝑘%⃗ ∙ 𝐵%⃗ $ = 𝑘#𝐻 at the screw dislocation where 𝐵%⃗ $ = (0,0, 𝐻) is the 

Burgers vector of the screw dislocation and 𝐻 is the lattice constant along the z direction [Fig. 1(e), 

see more details in Supplemental Materials]. With such a local artificial gauge flux, the fragile 

topology gives rise to the gapless bound states at the screw dislocation that traverse the entire 

topological band gap [Fig. 1(f)] according to the theories in Refs. [7, 45]. 
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FIG. 1. (a) Illustration of the spirally coupled bilayer honeycomb lattice in the tight-binding representation. 

The black lines denote the nearest-neighbor hoppings 𝑡!, while the red lines denote the spiral interlayer 

hoppings 𝑡". The lattice constant 𝑎 is set to unity throughout this study in tight-binding calculations. (b) 

Band structure of two decoupled honeycomb lattices with 𝑡! = 1. (c) Band structure of the spirally coupled 

bilayer honeycomb lattice with 𝑡! = 1 and 𝑡" = 1/3, which exhibits a fragile topological band gap. The 

symmetry representations of Bloch eigenstates at high-symmetry points Γ, 𝐾 , and 𝑀  are labeled. The 

notation of symmetry representations can be referred to the character tables in Table. 1. (d) Band structure 

versus 𝑘# of a ribbon supercell with open boundary condition in the y direction, which exhibits the gapped 

edge states that are the hallmark feature of the fragile topological band gap. (e) Schematic illustration of a 

screw dislocation that brings in a local gauge flux 𝜙 = 𝑘,⃗ ⋅ 𝐵,⃗ $ with 𝐵,⃗ $ denoting the Burger’s vector. Here 

each plane represents a bilayer. (f) Gapless spectral flows versus 𝑘% induced by the screw dislocation. (g) 

Acoustic analog of the fragile band gap. The inset shows the acoustic unit cell, where the purple cylindrical 

cavities with a diameter of 𝑑 and a height of ℎ! play the role of atomic sites. The intra- and inter-layer 

hoppings are regulated by the diameters 𝑑! and  𝑑" of the blue and red tubes, respectively. Other parameters 

are 𝑎 = 52𝑚𝑚, 𝑑 = 20𝑚𝑚, ℎ! = 17𝑚𝑚, 𝑑! = 8𝑚𝑚, 𝑑" = 5𝑚𝑚, and ℎ" = 50𝑚𝑚. (h) Gapless Wilson 

loop for the valence bands in (c). Inset illustrates the Wilson loop approach. 

 

To observe the bulk-defect correspondence for fragile topology, we design a bilayer phononic 

crystal according to the tight-binding model in Fig. 1(a) to realize the fragile topological phase. In 

air-borne phononic crystals, each lattice site can be emulated by a cylindrical acoustic cavity, as 

shown in the inset of Fig. 1(g). These cylindrical acoustic cavities have the same geometry. The 

hoppings between the lattice sites can be realized by tubes connecting these acoustic cavities. The 



5 
 

radii of these tubes control the intralayer and interlayer couplings. By choosing proper geometry 

parameters (see the caption of Fig. 1), we achieve the phononic band structure shown in Fig. 1(g). 

We consider the four lowest phononic bands, which are divided into the valence and conduction 

bands by a phononic band gap. 

Theoretical analysis of the fragile topology. – The phononic band gap has fragile topology which 

can be revealed in a number of ways. First, we calculate the Wilson loop for the two valence bands. 

We find that the Wilson loop is gapless, which resembles the Wilson loop of quantum spin Hall 

insulators. However, the system has neither spin-orbit coupling (SOC) nor Kramers degeneracy 

(as it is a bosonic system). Therefore, it cannot be a 2D topological insulator, but instead a fragile 

topological insulator protected by the 𝜋-rotation around the z axis and the time-reversal symmetry 

(𝐶"𝑇) [1, 54]. Tight-binding calculation shows that the system supports gapped edge states and in-

gap corner states. In the acoustic realization, due to the chiral symmetry breaking, the corner states 

disappear. These features confirm the nature of fragile topology [4, 6, 7, 12, 17]. 

The fragile band topology can be revealed more directly via the band representations based on 

the theory of topological quantum chemistry (TQC) [2, 5, 14, 16, 43, 44]. The fundamental 

building blocks in the TQC are the so-called elementary band representations (EBRs). Each EBR 

corresponds to an atomic limit originating from minimal symmetric Wannier orbitals localized at 

certain maximal Wyckoff positions, i.e., the high-symmetry points in the unit cell. Remarkably, 

these atomic limits induce distinct symmetry representations of Bloch eigenstates at the high-

symmetry points in the momentum space, indicating a strong connection between the real- and 

momentum-space descriptions. Most importantly, the attempt to characterize the topological bands 

in terms of EBRs leads to the classification of trivial atomic insulators, obstructed atomic insulators, 

stable band topology, and fragile band topology [1, 2]. Trivial and obstructed atomic insulators 

can always be expressed by the summation of a number of EBRs. In contrast, fragile and stable 

topological phases cannot be expressed by the summation of a number of EBRs. Fragile topology 

is often diagnosed by the subtraction of some EBRs from a number of other EBRs, beside the 

gapless Wilson loop. 

The bilayer lattice has the 𝑃% wallpaper symmetry, admitting three types of maximal Wyckoff 

positions [55], as labeled by 1𝑎, 2𝑏, and 3𝑐 in the left-top panel in Table. 1. The site-symmetry 

groups at 1𝑎, 2𝑏, and 3𝑐 are isomorphic to the rotation symmetries 𝐶%, 𝐶&, and 𝐶", respectively. 
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The corresponding character tables are depicted in Tables. 1(I-III) [55]. The Wannier orbitals 

localized at Wyckoff positions are subject to the symmetric representations of the corresponding 

site-symmetry groups, leading to a total of eight EBRs, as summarized in the first two rows in 

Table. 1(IV). These eight EBRs give rise to distinct symmetry representations #' in momentum 

space, where # denotes the high-symmetry points Γ, 𝐾, and 𝑀, whose symmetry groups are also 

isomorphic to the rotation symmetries 𝐶%, 𝐶&, and 𝐶", respectively. The subscript 𝑛 represents the 

index of symmetry representations, corresponding to the first column in each character table. 

Based on the symmetry properties of the bands in Fig. 1(b), we find that the band representation 

of the bilayer honeycomb lattice with vanishing interlayer hoppings is denoted by 2(𝐴)"( ↑ 𝐺, as 

highlighted by the black outline in Table. 1(IV). Once the spiral interlayer hoppings are introduced, 

a band gap emerges [see Fig. (1c)], leading to the split band representations. Specifically, based 

on the momentum-space symmetry representations labeled in Fig. 1(c), the split band 

representations cannot be expressed by the summation of certain EBRs, but have only the 

correspondence to the combination of both the summation and subtraction, i.e., 

(𝐴)!) ↑ 𝐺⨁( 𝐸" 𝐸"	
"

	
! )!) ↑ 𝐺⨁(𝐴)&+ ↑ 𝐺 ⊖ ( 𝐸 𝐸	"	

! )"( ↑ 𝐺                            (1) 

and 

(𝐵)!) ↑ 𝐺⨁( 𝐸! 𝐸!	
"

	
! )!) ↑ 𝐺⨁(𝐵)&+ ↑ 𝐺 ⊖ ( 𝐸 𝐸	"	

! )"( ↑ 𝐺                            (2) 

for the conduction and valence bands, respectively. The inevitable subtraction in band 

representations explicitly indicates the fragile band topology. 

The fragile band topology can be diagnosed by the presence of gapless spectral flows induced 

by the 𝐶%-symmetric screw dislocation, which, essentially, is determined by the nonzero real-space 

topological invariants (RSTIs).  According to Ref. [45], the so-called RSTIs for a 𝐶%-symmetric 

finite lattice with its center being at the Wyckoff position 1𝑎 is defined by 

𝛿! = −𝑚(𝐴) + 𝑚( 𝐸" 𝐸"	
"

	
! ) 

𝛿" = −𝑚(𝐴) + 𝑚( 𝐸! 𝐸!	
"

	
! ) 

𝛿& = −𝑚(𝐴) + 𝑚(𝐵),                                                        (3) 
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where 𝑚  denotes the multiplicity of the symmetry representations. The RSTIs capture the 

difference among the number of bulk states with distinct symmetry representations in a finite 𝐶%-

symmetric system. Following Ref. [45], the RSTIs can be deduced more directly from the 

symmetry representations in momentum space, 

𝛿! =
1
2𝑚

(𝛤") + 𝑚(𝛤&𝛤,) + 𝑚(𝛤-𝛤%) + 𝑚(K"K&) − 𝑚(𝑀!) −
1
2𝑚(𝑀") 

𝛿" = 𝑚(𝛤") + 2𝑚(𝛤&𝛤,) + 𝑚(𝛤-𝛤%) + 𝑚(𝐾"𝐾&) − 𝑚(𝑀!) − 𝑚(𝑀") 

𝛿& =
&
"
𝑚(𝛤") + 2𝑚(𝛤&𝛤,) + 𝑚(𝛤-𝛤%) − 𝑚(𝑀!) −

!
"
𝑚(𝑀").                       (4) 

Based on the symmetry representations labeled in Fig. 1(c), we obtain the RSTIs as 𝛿! = 0 and 

𝛿" = 𝛿& = −1. The nonzero RSTIs indicate the presence of three additional states (modulo six) 

with symmetry representations 𝐴 and 𝐸" 𝐸"	
"

	
!   for the conduction bands (𝐵 and 𝐸! 𝐸!	

"
	
!  for the 

valence bands) as the fundamental feature of filling anomaly. By varying the dislocation-induced 

artificial gauge flux from 0 to 2𝜋, these additional states with different 𝐶% eigenvalues transform 

cyclically among one another ( 𝐸" → 𝐴 → 𝐸"	
"

	
! → 𝐸!	

! → 𝐵 → 𝐸!	
" → 𝐸"	

! ) and traverse the full 

band gap to recover the gauge-invariant band structure, manifesting the gapless spectral flows as 

the signature of fragile topology (see Supplementary Materials for details).  

 

TABLE. 1. Top-left panel: Illustration of the maximal Wyckoff positions 1𝑎 , 2𝑏 , and 3𝑐  for the 𝑃& 

wallpaper group. (I)-(III) Character tables of the rotation symmetries 𝐶", 𝐶', and 𝐶&. The first and second 

columns represent the notations of symmetry representations in momentum and real space, respectively. 𝜖 
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(𝜎) denotes 2𝜋/3 (2𝜋/6). (IV) The elementary band representations for the 𝑃& wallpaper group in the 

presence of TRS and in the absence of spin degree of freedom. The first two rows denote the Wannier 

orbitals with specific symmetry representations localized at certain Wyckoff positions. The other three rows 

give the corresponding symmetry representations at high-symmetry points Γ, 𝐾, and 𝑀 in momentum space. 

The outlined rectangle highlights the band representation of the honeycomb lattice. 

 

FIG. 2. (a) Photograph of the three-dimensional acoustic crystal sample with a step screw dislocation, which 

exhibits a height difference of 𝐻/6 between adjacent sectors.	𝐻 = 54𝑚𝑚 denotes the lattice constant along 

the z direction. (b) Tight-binding representation of the acoustic crystal in (a) after Fourier transformation 

along the z direction. The red arrows represent the complex-valued hoppings. Gauge flux insertion at the 

central plaquette (orange) is indicated. (c) The acoustic pressure field profile of a representative edge state 

is marked by a pentacle in (d). The inset shows the zoomed-in field pattern. (d) The projected band structure 

calculated from a ribbon-like supercell with the open (periodic) boundary condition in the x (y) direction, 

which displays the gapped edge states. (e) The location of the loudspeaker for detecting the localized 

dislocation states, as well as the dispersion. The orange zone denotes the plane where the microphone 

detects the dislocation states presented in (f). Representative localized dislocation states from both 

simulation and experiments, showing a good agreement with each other. The radii of red spheres are 

proportional to the amplitudes of experimentally detected pressure fields. The corresponding Bloch 
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momenta 𝑘% and frequencies are labeled below each figure. (g) and (h) Experimentally measured spectral 

flows when the loudspeaker is placed at the center of the top and bottom layers, respectively. 

 

Experiments. – We fabricate the phononic crystal with a screw dislocation using 3D printing 

technology based on photosensitive resins. A photo of the fabricated sample is shown in Fig. 2(a). 

To make the fabrication easier, we adopt a design of step screw dislocation where the screw is 

divided into six steps. Each step takes an elevation of H/6 along the z direction. Thus, the system 

has six connected sectors, and the connections between adjacent sectors are tilted. The step screw 

dislocation induces exactly the same local artificial gauge flux as in a continuous screw dislocation 

[48, 49]. In fact, from the tight-binding picture and the dimensional reduction, these two screw 

dislocations can be connected by a gauge transformation [see the effective tight-binding models 

after dimensional reduction in Fig. 2(b) and see more in Supplemental Materials]. We remark that 

the gauge phases in the effective tight-binding models after dimensional reduction emerge due to 

the spiral geometry around the dislocation core (a key feature of the screw dislocation): At a given 

𝑘#  any translation along the z direction will pick up a phase according to the Bloch theorem. 

Therefore, in the step screw dislocation hoppings across different sectors pick up a phase 𝑘#𝐻/6 

along the red arrows in Fig. 2(b). Similarly, in the continuous screw dislocation, nearly all 

hoppings pick up some phases, according to the Bloch theorem. Nevertheless, in both cases, only 

the central plaquette has a nonvanishing artificial gauge flux of  𝜙 = 𝑘#𝐻. This local artificial 

gauge flux is the key origin of the bulk-defect correspondence discovered here. Therefore, we 

expect the same bulk-defect response of the fragile topology emerging as well in the phononic 

crystal with the step screw dislocation, which is confirmed in both tight-binding calculations and 

acoustic simulations [see Supplemental Materials].  

Before looking at the bulk-defect response, we first check the conventional bulk-edge response 

in the fragile topological phononic crystal. We calculate the phononic spectrum for a ribbon-like 

supercell, which is finite in the x direction but periodic in the y direction [Fig. 2(c)]. We find that 

the system indeed has gapped edge states [Fig. 2(d)] despite the fact that the Wilson loop of the 

valence bands is gapless, which is a smoking-gun signature of the fragile topology. 
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The signature of the bulk-defect correspondence of fragile topology here is the emergence of 

the 1D gapless bound states at the screw dislocation. In the experiments, we verify the existence 

of such states via two different probes. First, we measure the wave function of these topological 

bound states. By placing an acoustic source at one end of the screw dislocation and setting the 

excitation frequency nearly in the middle of the acoustic band gap, we can probe the acoustic wave 

pattern of the topological bound states. As the acoustic source excites such topological bound states, 

they propagate from one end of the screw dislocation to the other end. Using a tiny microphone, 

we can detect the acoustic wave pattern of these topological bound states at an intersection plane 

(the detection plane), as illustrated in Fig. 2(e) [see more details in Supplemental Materials]. By 

measuring the acoustic wave patterns at different detection planes (in fact, we detect the acoustic 

pressure field across the entire phononic crystal), we obtain the 3D wavefunction of the topological 

bound states for various excitation frequencies. We further perform a Fourier transformation along 

the z direction to extract the wavefunction of the topological bound states in the 2D detection plane 

with varying wavevector 𝑘# and frequency. Several such wavefunctions are presented in Figs. 2(f-

h). It is seen that the wavefunctions are indeed localized at the screw dislocation and agree 

excellently with the simulated wavefunctions at the same wavevector 𝑘# and frequency that are 

obtained by solving the acoustic eigenstates via finite-element methods. 

The above measurements also give the dispersion of the 1D topological bound states at the 

screw dislocation. As shown in Figs. 2(i-j), the measured dispersion of the 1D topological bound 

states agrees well with the simulated dispersions. In these measurements, we adopted two pump-

probe configurations. In the measurements for Fig. 2(i), the acoustic source is placed at one end of 

the screw dislocation, as shown in Fig. 2(e), while in the measurements for Fig. 2(j), the acoustic 

source is placed at the other end of the screw dislocation. The former (latter) configuration excites 

acoustic waves with positive (negative) group velocity along the z direction. These data agree with 

the simulated eigenstate spectrum, which clearly shows that the 1D topological bound states are 

gapless and traverse the entire phononic band gap. 

Conclusion and outlook. – In this work, we devised a phononic system to uncover an intriguing 

property of fragile topology: the emergence of 1D gapless topological bound modes at a screw 

dislocation. With consistent theory, simulations, and experiments, we unveil a novel topological 

bulk-defect correspondence for fragile topological phases that can be used in the experimental 
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identification of fragile topological materials. As this bulk-defect correspondence is an intrinsic 

property of fragile topological phases and robust against disorder (when the symmetry underlying 

the fragile topology is preserved, see Supplemental Material), it provides a powerful experimental 

tool for the characterization of fragile topological phases and materials. In particular, as they are 

ubiquitous in many solid-state materials, screw dislocations can be exploited for the experimental 

study of fragile topological materials (e.g., via scanning tunneling microscope measurements), 

which are by far still missing and demanded for the test of recent theoretical predictions [38-42, 

45]. 

 

References 

[1] H. C. Po, H. Watanabe, and A. Vishwanath, Fragile Topology and Wannier Obstructions, Phys. Rev. 
Lett. 121, 126402 (2018) 
[2] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergoiory, Z. Wang, C. Felser, M. L. Aroyo, and B. A. Bernevig, 
Topological quantum chemistry, Nature 547, 298-305 (2017). 
[3] L. Zou, H. C. Po, A. Vishwanath, and T. Senthil, Band structure of twisted bilayer graphene: Emergent 
symmetries, commensurate approximants, and Wannier obstructions, Phys. Rev. B 98, 085435 (2018).  
[4] B. J. Wieder, and B. A. Bernevig, The axion insulator as a pump of fragile topology, arXiv:1810.02373 
(2018). 
[5] A. Bouhon, A. M. Black-Schaffer, and R.-J. Slager, Wilson loop approach to fragile topology of split 
elementary band representations and topological crystalline insulators with time-reversal symmetry, Phys. 
Rev. B 100, 195135 (2019). 
[6] Y. Hwang, J. Ahn, and B.-J. Yang, Fragile topology protected by inversion symmetry: Diagnosis, bulk-
boundary correspondence, and Wilson loop, Phys. Rev. B 100, 205126 (2019). 
[7] S. Liu, A. Vishwanath, and E. Khalaf, Shift Insulators: Rotation-Protected Two-Dimensional 
Topological Crystalline Insulators, Phys. Rev. X 9, 031003 (2019). 
[8] M. B. de Paz, M. G. Vergniory, D. Bercioux, A. García-Etxarri, and B. Bradlyn, Engineering fragile 
topology in photonic crystals: Topological quantum chemistry of light, Phys. Rev. Res. 1, 032005(R) (2019). 
[9] S. H. Kooi, G. van Miert, and C. Ortix, Classification of crystalline insulators without symmetry 
indicators: Atomic and fragile topological phases in twofold rotation symmetric systems, Phys. Rev. B 100, 
115160 (2019). 
[10] Z. Wang, B. J. Wieder, J. Li, B. Yan, and B. A. Bernevig, Higher-Order Topology, Monopole Nodal 
Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2 (X =Mo,W), Phys. 
Rev. Lett 123, 186401 (2019). 
[11] J. Ahn, and B.-J. Yang, Symmetry representation approach to topological invariants in 𝐶"%𝑇 -
symmetric systems, Phys. Rev. B 99, 235125 (2019).  



12 
 

[12] W. A. Benalcazar, T. Li and T. L. Hughes, Quantization of fractional corner charge in 𝐶(-symmetric 
higher-order topological crystalline insulators, Phys. Rev. B 99, 245151 (2019). 
[13] H.-X. Wang, G.-Y. Guo, and J.-H. Jiang, Band topology in classical waves: Wilson-loop approach to 
topological numbers and fragile topology, New Journal of Physics, 21, 093029 (2019). 
[14] B. Bradlyn, Z. Wang, J. Cano and B. A. Bernevig, Disconnected elementary band representations, 
fragile topology, and Wilson loops as topological indices: An example on the triangular lattice, Phys. Rev. 
B 99, 045140 (2019). 
[15] Z.-D. Song, L. Elcoro, Y.-F. Xu, N. Regnault, and B. A. Bernevig, Fragile Phases as Affine Monoids: 
Classification and Material Examples, Phys. Rev. X 10, 031001 (2020). 
[16] A. Alexandradinata, J. Höller, C. Wang, H. Cheng, and L. Lu, Crystallographic splitting theorem for 
band representations and fragile topological photonic crystals, Phys. Rev. B 102, 115117 (2020). 
[17] C. Shang, X. Zang, W. Gao, U. Schwingenschlögl, and A. Manchon, Second-order topological 
insulator and fragile topology in topological circuitry simulation, arXiv:2009.09167 (2020). 
[18] J. L. Mañes, Fragile phonon topology on the honeycomb lattice with time-reversal symmetry, Phys. 
Rev. B 102, 024307 (2020). 
[19] S. Kobayashi, and A. Furusaki, Fragile topological insulators protected by rotation symmetry without 
spin-orbit coupling, Phys. Rev. B 104, 195114 (2021). 
[20] R.-X. Zhang, and Z.-C. Yang, Tunable fragile topology in Floquet systems, Phys. Rev. B 103, L121115 
(2021). 
[21] Y.-F. Chen, and D.-X. Yao, Fragile topological phase on the triangular kagome lattice and its bulk-
boundary correspondence, Phys. Rev. B 107, 155129 (2023). 
[22] G. F. Lange, A. Boulun, and R.-J. Slager, Spin texture as a bulk indicator of fragile topology, Phys. 
Rev. Res. 5, 033013 (2023). 
[23] H. C. Po, L. Zou, T. Senthil, and A. Vishwanath, Faithful tight-binding models and fragile topology 
of magic-angle bilayer graphene, Phys. Rev. B 99, 195455 (2019).  
[24] J. Ahn, S. Park, and B.-J. Yang, Failure of Nielsen-Ninomiya theorem and fragile topology in two 
dimensional systems with space-time inversion symmetry: Application to twisted bilayer graphene at magic 
angle, Phys. Rev. X 9, 021013 (2019). 
[25] Z.-D. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig, All magic angles in twisted bilayer 
graphene are topological, Phys. Rev. Lett. 123, 036401 (2019). 
[26] B. Lian, F. Xie, and B. A. Bernevig, Landau level of fragile topology, Phys. Rev. B 102, 041402(R) 
(2020). 
[27] Z.-D. Song, B. Lian, N. Regnault, and B. A. Bernevig, Twisted bilayer graphene. II. Stable symmetry 
anomaly, Phys. Rev. B 103, 205412 (2021). 
[28] J. Ahn, D. Kim, Y. Kim, and B.-J. Yang, Band Topology and Linking Structure of Nodal Line 
Semimetals with Z2 Monopole Charges, Phys. Rev. Lett. 121, 106403 (2018). 
[29] F. N. Ünal, A. Bouhon, and R. J. Slager, Topological Euler class as a dynamical observable in optical 
lattices, Phys. Rev. Lett. 125, 053601 (2020). 
[30] A. Tiwari, and T. Bzdušek, Non-Abelian topology of nodal-line rings in PT-symmetric systems, Phys. 
Rev. B 101, 195130 (2020). 



13 
 

[31] A. Bouhon, Q. Wu, R.-J. Slager, H. Weng, O. V. Yazyev, and T. Bzdušek, Non-Abelian reciprocal 
braiding of Weyl points and its manifestation in ZrTe, Nature Physics 16, 1137–1143 (2020). 
[32] A. Bouhon, T. Bzdušek, and R.-J. Slager, Geometric approach to fragile topology beyond symmetry 
indicators, Phys. Rev. B 102, 115135 (2020).  
[33] Y. Guan, A. Bouhon, and O. V. Yazyev, Landau levels of the Euler class topology, Phys. Rev. Res. 4, 
023188 (2022). 
[34] B. Jiang, A. Bouhon, S.-Q. Wu, Z.-L. Kong, Z.-K. Lin, R.-J. Slager, and J.-H. Jiang, Experimental 
observation of meronic topological acoustic Euler insulators, arXiv:2205.03429v1 (2022).  
[35] C. S. Chiu, D.-S. Ma, Z.-D. Song, B. A. Bernevig, and A. A. Houck, Fragile topology in line-graph 
lattices with two, three, or four gapped flat bands, Phys. Rev. Res. 2, 043414 (2020). 
[36] A. Skurativska, S. S. Tsirkin, F. D. Natterer, T. Neupert, and M. H. Fischer, Flat bands with fragile 
topology through superlattice engineering on single-layer graphene, Phys. Rev. Res. 3, L032003 (2021). 
[37] D. Călugăru, A. Chew, L. Elcoro, Y. Xu, N. Regnault, Z.-D. Song, and B. A. Bernevig, General 
construction and topological classification of crystalline flat bands, Nature Physics 18, 185-189 (2022). 
[38] S. Peotta, and P. Törmä, Superfluidity in Topologically Nontrivial Flat Bands, Nat. Commun. 6, 8944 
(2015). 
[39] F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Topology-Bounded Superfluid Weight in Twisted Bilayer 
Graphene, Phys. Rev. Lett. 124, 167002 (2020). 
[40] X. Wang, and T. Zhou, Fragile topology in nodal-line semimetal superconductors, New Journal of 
Physics 24, 083013 (2022).  
[41] V. Peri, Z.-D. Song, B. A. Bernevig, and S. D. Huber, Fragile topology and flat-band superconductivity 
in the strong-coupling regime, Phys. Rev. Lett. 126, 027002 (2021). 
[42] P. Törmä, S. Peotta, and B. A. Bernevig, Superconductivity, superfluidity and quantum geometry in 
twisted multilayer systems, Nature Reviews Physics 4, 528-542 (2022). 
[43] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G. Vergniory, C. Felser, M. I. Aroyo and B. A. Bernevig, 
Building blocks of topological quantum chemistry: Elementary band representations, Phys. Rev. B 97, 
035139 (2018). 
[44] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G. Vergniory, C. Felser, M. I. Aroyo and B. A. Bernevig, 
Topology of Disconnected Elementary Band Representations, Phys. Rev. Lett. 120, 266401 (2018). 
[45] Z.-D. Song, L. Elcoro, and B. A. Bernevig, Twisted bulk-boundary correspondence of fragile topology, 
Science 367, 794-797 (2020). 
[46] V. Peri, Z. Song, M. Serra-Garcia, P. Engeler, R. Queiroz, X. Huang, W. Deng, Z. Liu, B. A. Bernevig, 
and S. D. Huber, Experimental characterization of fragile topology in an acoustic metamaterial, Science 
367, 797-800 (2020). 
[47] M. Miniaci, F. Allein, and R. K. Pal, Spectral flow of a localized mode in elastic media, 
arXiv:2111.09021v1 (2021). 
[48] Z.-K. Lin, Y. Wu, B. Jiang, Y. Liu, S.-Q. Wu, F. Li, and J.-H. Jiang, Topological Wannier cycles 
induced by sub-unit-cell artificial gauge flux in a sonic crystal, Nature Materials 21, 430-437 (2022). 
[49] Z.-L. Kong, Z.-K. Lin, and J.-H. Jiang, Topological Wannier Cycles for the Bulk and Edges, Chinese 
Physics Letters 39, 084301 (2022). 



14 
 

[50] B. Xie, W. Deng, J. Lu, H. Liu, P. Lai, H. Cheng, Z. Liu, and S. Chen, Correspondence between real-
space topology and spectral flows at disclinations, Phys. Rev. B 108, 134118 (2023). 
[51] G. Palumbo, Non-Abelian Tensor Berry Connections in Multiband Topological Systems, Phys. Rev. 
Lett. 126, 246801 (2021). 
[52] A. Bouhon and R.-J. Slager, Multi-gap topological conversion of Euler class via band-node braiding: 
minimal models, PT-linked nodal rings, and chiral heirs, arXiv:2203.16741 (2022). 
[53] R. Takahashi and T. Ozawa, Bulk-edge correspondence of Stiefel-Whitney and Euler insulators 
through the entanglement spectrum and cutting procedure, Phys. Rev. B 108, 075129 (2023). 
[54] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N. Marzari, Exponential localization of 
Wannier functions in insulators, Phys. Rev. Lett. 98, 046402 (2007). 
[55] L. Elcoro, B. Bradlyn, Z. Wang, M. G. Vergniory, J. Cano, C. Felser, B. A. Bernevig, D. Orobengoa, 
G. de la Flor, and M. I. Aroyo, Double crystallographic groups and their representations on the Bilbao 
Crystallographic Server, J. Appl. Cryst. 50, 1457–1477 (2017). 

 

 

 

Acknowledgements 

J.-H. J. thanks the supports from the National Key R&D Program of China (2022YFA1404400), 

the National Natural Science Foundation of China (Grant Nos. 12125504 and 12074281), the 

“Hundred Talents Program” of the Chinese Academy of Sciences, and the Priority Academic 

Program Development (PAPD) of Jiangsu Higher Education Institutions. Z.-D. S. was supported 

by the National Natural Science Foundation of China (General Program No. 12274005), National 

Key R&D Program of China (No. 2021YFA1401900). Y. W. was supported by the Fundamental 

Research Funds for the Central Universities (No. 30923010207) and the National Natural Science 

Foundation of China (Grant No. 12302112). 

 


