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Abstract—In this paper, we show how Federated Learning
(FL) can be applied to vehicular use-cases in which we seek
to classify obstacles, irregularities and pavement types on roads.
Our proposed framework utilizes FL and TabNet, a state-of-
the-art neural network for tabular data. We are the first to
demonstrate how TabNet can be integrated with FL. Moreover,
we achieve a maximum test accuracy of 93.6%. Finally, we reason
why FL is a suitable concept for this data set.

Index Terms—Federated Learning, Feature Extraction, Tab-
Net, Time Series Classification

I. INTRODUCTION

Federated Learning (FL) is a collaborative machine learning
concept which advocates local computing and model transmis-
sion. Instead of sending raw data to central (or partially cen-
tral) servers for computing, FL ensures that data are kept on the
edge nodes and can reduce overhead communication. Google
developed FL as a countermeasure to regulators’ incentives to
increase protection of consumer data [1]. Since then, research
has mainly focused on the theoretical foundations of the
concept, its optimization algorithms, and comparing it to
conventional machine learning on standard data sets.

FL as a technique is starting to gain traction in various
industries e.g. healthcare [2], [3], internet-of-things (IoT) [4]–
[7], and lately Intelligent Connected Vehicles (ICVs) [8],
[9], see Figure 1 for conventional vehicular FL scheme. FL
for ICVs has seen great improvement in its system design
where researchers propose peer-to-peer networks [10], vehicle-
to-everything communication [11], and network optimization
with asynchronous update schemes [12]. Research has also
identified FL as a suitable concept for vehicular networks and
fleet management [9], [13]. Despite the extensive work being
conducted in FL research, it lacks real-world implementations.
Applied FL is a step in the direction of protecting end-
user data. By collaboratively training a shared model, many
cooperating ICVs can encounter more events than a single
vehicle, and potentially train a superior model.

Research that seeks to apply FL to vehicles generally
centers around image data. A vehicle produces a plethora of
data, much of which can be seen as time series data e.g.
acceleration, velocity, engine temperature. This data can be

Fig. 1. A FL vehicular scheme: (1) Server sends out initial model, (2)
vehicles train model on local data, (3) send back model updates, and (4)
server aggregates model updates. This concludes a FL round.

used to improve consumer comfort, and to increase safety by
applying accurate fault diagnosis and predictive maintenance.
In IoT, we see that research is heavily invested in time series
analysis, where FL is now beginning to be integrated [7], [14].
Applying feature extraction on time series data has proven
to be advantageous for time series classification, resulting in
work with tabular data [15], see Figure 2 for example.

Fig. 2. Example list of features in tabular form [16]

In search for suitable algorithms for tabular data, we find
that Google’s recent TabNet algorithm [17] can be superior
to other state-of-the-art methods e.g. Random Forests and
XGBoost (which already have FL implementations). [17] show
that TabNet outperforms the other algorithms in regression and
classification tasks. However, TabNet is yet to be combined
with FL, and we demonstrate how this can be done. In our
work, we therefore construct a framework, in which both
TabNet and FL can be used together. We apply a feature978-1-6654-6437-6/22/$31.00 ©2022 IEEE
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extraction pre-processing step on time series to work with
tabular data. We limit our work to TabNet and FL, and
compare it with other studies. Our direct contributions to
research are: (1) Integrating TabNet with FL, (2) showing that
TabNet and FL can achieve similar performance to state-of-
the-art methods, and (3) a conceptual framework combining
FL and TabNet that can be used for tabular data and converted
time series to tabular data.

II. DATA

The data we use, have been collected by [18]. By installing
a smartphone inside the vehicle cabin, as in Figure 3, they
registered the trilateral acceleration for further analysis of
the asphalt/road conditions. The trilateral accelerations are
given by an accelerometer, integrated in the smartphone, which
continuously collects time series data. The sampling rate that
they use is 100Hz.

Fig. 3. Example of car phone holder used to collect data and directions
considered by the accelerometer sensor [18]

In their paper, they divide and specify three distinct classifi-
cation tasks for which they allocate independent labelled data
sets, which we also consider for our work.

TABLE I
CLASS DISTRIBUTION OF TIME SERIES FOR THE THREE DATA SETS

Data set Class Series Length Examples Distribution
Min Max Mean

Regularity Regular 66 2371 238 762 50.73%
Deteriorated 190 4201 534 740 49.27%

Pavement Flexible 66 2371 246 816 38.65%
Type Cobblestone 284 1543 518 527 24.97%

Dirt Road 274 1045 484 768 36.38%
Obstacles Speed Bump 178 730 330 212 27.14%

Vertical Patch 114 279 191 222 28.43%
Raised Markers 111 462 256 187 23.94%
Raised Crosswalk 258 736 457 160 20.49%

The first data set is the Asphalt Regularity data set. It
considers two classes: (1) Regular pavement where driver
comfort is high and (2) deteriorated where they observe
irregularities and roughness in the road. Second, the Pavement
Type data set. [18] identifies three pavement type classes:
(1) Flexible pavement, (2) cobblestones, and (3) dirt roads.
Flexible pavements are defined as a mixture of asphalt and

bituminous material. The final data set, Asphalt Obstacles,
includes common obstacles on roads with specific charac-
teristics, see Figure 4. In their study, they identify a great
variability for examples of the same class (width, height, size,
and material).

Fig. 4. Photos that illustrate the four class labels of the Asphalt-Obstacles
data set [18]

III. METHOD

Initially we manually extract features from all time series
using the work from [16]. Thereafter, the high level architec-
ture of our processing scheme can be described shortly as:

1) Distribute copies of initial server model to clients
(nodes).

2) Train local model on local training set.
3) Add new instances to local training set from local pool

of instances to reflect real-world.
4) Validate local model on local validation set.
5) Transmit model updates to server.
6) Server aggregates model updates and evaluates on test

set.
On the server-side, we therefore keep one test set which is
used to evaluate the aggregated server model after each com-
munication round, where a communication round is illustrated
in Figure 1. On each client, we keep three local data sets:

1) (Local) Training set, grows in size over elapsed pro-
cessing time. The reason why it grows is because a
real-world operating vehicle would experience more
situations as it goes.

2) (Local) Pool set from which we draw random samples
from and add to local training set, if pool instances still
exist for respective client.

3) Validation set, for tuning hyperparameters in TabNet.
We randomly select a small arbitrary number of instances
and add to add them to the local training set. We continue
this process until there are no more instances in the local



pool set. The FL environment is constructed using Flower
[19]. It is an end-to-end FL framework, designed to enable
a seamless transition from experimental research to real edge
devices. We set up the FL environment on one machine using
Flower’s built-in Virtual Client Engine (VCE) that enables the
virtualization of Flower Clients to maximise utilization of the
available hardware. Moreover, we choose to use FedAvg [1]
as FL optimization algorithm.

A. TabNet

TabNet is based on the idea of representing a deep neural
network as decision trees (DTs). DTs (and other similar
algorithms e.g. XGBoost [20] and Random Forests) are known
to perform well on tabular data. It uses tabular input as
data for classification- or self-supervised tasks and applies
sparse features selection which can enable interpretability
and better learning [21]. The use of sparse feature selection
includes processing a subset of features in step-wise order, and
later aggregating information from subset feature processing.
The selected features are linearly transformed and together
with additional bias they form TabNet’s decision boundaries.
TabNet is trained using gradient decent-based optimization and
it incorporates an encoder-decoder architecture [17].

IV. EVALUATION AND RESULTS

For our evaluation, we use an Alienware, Ubuntu 21.04,
16core CPU, Intel Core i7-10870H processor at 2.20GHz
clock speed, and a 16GB NVIDIA GeForce RTX 3080 GPU.

When configuring TabNet’s hyperparameters, we follow the
guidelines in their article [17]. Nevertheless, we recognize that
they work with larger data sets than ours. Therefore, our base
settings differ from what they advocate, mainly in terms of
width of decision prediction layer and attentive embedding.
We use a value of five for both of these values, while [17]
recommend a value between 8-64. Our choice of lower values
than recommended is motivated by initial attempts to tune
TabNet’s hyperparameters. For our data sets, it seems that a
slight increase in the width of decision prediction layer and
attentive embedding leads to overfitting the model. Everything
else we leave as default setting, presented in their ablation
study. We choose to evaluate the federated set-up using 2-3
clients. When adding more than three clients to the FL set-up,
our machine sometimes runs out of GPU memory.

Section IV is divided into three parts, one for each data
set. For each data set, we present test accuracy and test cross-
entropy loss over 100 communication rounds. The accuracy
and loss is computed on the server-side after one communi-
cation round and aggregation of model updates. Furthermore,
we also include confusion matrices for the data sets with more
than two classes. In a two-client set-up, we wait for each client
to send its updates to the server. Using three clients, we sample
two out of three to send their updates. Lastly, we split each
data set into four subsets:

1) (Training set) 10% of total data, equally distributed
to clients. Each client’s training set increase with 10
instances per communication round.

2) (Pool set) 60% of total data, equally distributed to
clients. Each client’s pool set decreases with 10 instances
per communication round.

3) (Validation set) 10% of total data, equally distributed to
clients.

4) (Test data set) 20% of total data, kept on the server for
evaluation.

A. Asphalt Regularity

The first data set is a balanced data set with two classes (see
Table I). The server sends out an initial models to each client.
The clients sample random instances from their respective pool
set and adds them to the training set for the next local training
round. Eventually the clients run out of samples from the pool
set but the training continues. This is also true for the other
two data sets.

We illustrate the test accuracy results and cross entropy loss
in Figure 5. The maximum test accuracy reached is 93.6%
and we achieve this with two clients. Adding an additional
client reduces maximum test accuracy slightly to 91.2%. The
test accuracy is greatly varying until approximately commu-
nication round 30. Thereafter, it seems to increase linearly
until communication round 70-80 and later converges towards
maximum test accuracy.

B. Pavement Type

The second data set is less balanced than the first one.
There number of time series stemming from cobblestones are
significantly less than the other two classes: (1) flexible and
(2) dirt road. For this data set, we also include a confusion
matrix to better illustrate correct and incorrect predictions. The
confusion matrix shows the predictions the server in a two-
client set-up since we achieve maximum test accuracy with
two clients. Maximum test accuracy of 86.7% is achieved,
again with two clients. For three clients, maximum test accu-
racy is 83.6%, and this is shown in Figure 6.

The confusion matrix in Figure 8 shows that data repre-
senting travel over cobblestones are hardest for TabNet to
predict, incorrectly classifying 20.42% of all examples. This
can be compared to 15.64% for dirt roads and 6.08% for
flexible roads. Lastly, TabNet finds distinguishing cobblestone
from flexible pavement, and vice versa, the easiest. It only
missclassifies these examples as the counterpart in 1.05% and
1.69% of the time.

C. Asphalt Obstacles

The asphalt obstacles and final data set includes four classes.
It is less balanced than the asphalt regularity data set but
more balanced than the pavement type data set (see Table
I). Again, we plot a confusion matrix, using the predictions
from one client in a two-client set-up. We also illustrate the
test accuracy and cross-entropy loss of the given number
of clients in Figure 7. Maximum test accuracy of 68.0% is
reached with two clients. For three clients, maximum test
accuracy is 64.5%. The confusion matrix (Figure 9) shows that
TabNet finds raised markers hardest to predict, followed by



(a) Test accuracy for asphalt regularity data set. (b) Test loss for asphalt regularity data set.

Fig. 5. Performance of asphalt regularity data set.

(a) Test accuracy for pavement type data set. (b) Test loss for pavement type data set.

Fig. 6. Performance of pavement type data set.

(a) Test accuracy for asphalt obstacles data set. (b) Test loss for asphalt obstacles data set.

Fig. 7. Performance of asphalt obstacles data set.



Fig. 8. Confusion matrix for pavement type data set.

raised crosswalk. Moreover, TabNet mistakes raised markers
for vertical patches in almost a third of the examples, raised
crosswalks for speed bumps in a fourth of the examples, and
speed bumps for raised crosswalks in a fifth of the examples.
At the same time, TabNet is 85.19% accurate when predicting
vertical patches, only mistaking them for raised crosswalks and
speed bumps in 3.70% of the time, and for raised markers in
7.41% of the time.

Fig. 9. Confusion matrix for asphalt obstacles data set.

V. DISCUSSION

The first observation we make is that TabNet performs
well together with FL for all data sets. We clearly identify
a convergence of performance as the local training sets grow,
and as we communicate back and forth between the server
and clients. Furthermore, we present a method using feature
extraction and another, combining it with FL and TabNet. The
importance of features could also serve as an interesting study.
The feature extraction step in our framework is suitable for
time series data that shall be converted to tabular data. This
step can be skipped if the original data set consists of tabular
data.

For pavement type and asphalt regularity data sets, we find
that the results are positively surprising. We argue that the
large variation for test accuracy in asphalt regularity data set
stems from that the training sets are relatively small in the
beginning. After approximately 40 rounds, when the pool set
is almost empty, it starts to straighten out. In the pavement type
data set, we see that TabNet combined with FL finds it most
difficult to predict cobblestones and dirt roads. Intuitively, this
is reasonable as both roads can be seen as quite ”shaky”. This
is also in line with the results from [18].

We find that the maximum test accuracy for the asphalt
obstacles data set is significantly lower than the results pre-
sented in [18]. This could be due to sub-optimal choice of
TabNet hyperparameters. The ablation study conducted by [17]
specifies values for hyperparameters for larger data sets >
10k instances. Our choices could therefore be sub-optimal
and can be studied further. Moreover, the data set is quite
small (only 781 time series). FL generally requires quite
large data sets, and we see that for the first two larger data
sets we perform relatively similar to other studies [18], [22].
Additionally, the two classes that were hardest to predict
(raised markers and raised crosswalk) were the classes with the
least instances in the data set. In this case, there can be a need
to handcraft a few distinct features that can support TabNet
in its classification and/or conduct a feature analysis study.
Between raised markers and vertical patches there seems to
be some strong correlation between feature significance. They
are both each other’s class which is misclassified the most. In
more than 30% of the cases, TabNet mistakes raised markers
for vertical patches. Studying Figure 4, one could argue that
raised markers might share most characteristics with vertical
patches e.g. height. Nevertheless, we acknowledge that TabNet
can predict vertical patches well (85.19%).

The data sets are interesting to us, as we reason that ICVs
should make optimal decisions about what road to take for
an arbitrary trip that can maximize user comfort. Many co-
operating ICVs can quickly learn characteristics of roads and
additional anomalies (obstacles). This information is arguably
useful for ICVs as they can choose to avoid uncomfortable
roads, and potentially reduce trip duration. Additionally, by
applying FL, we can reduce overhead communication and
increase privacy by not transmitting trip data that can be used
to derive the location of an operating vehicle.



VI. RELATED WORK

In the original study, [18] propose a combination of distance
measures between time series to help classify them using a
one-nearest-neighbor classifier. They successfully apply it in a
one-vehicle setting but do not consider that vehicle can operate
together as many ICVs. Further studies have come to show
improved performance on the same data sets, with tweaked or
novel algorithms, but similarly neglect the integration of FL
[22], [23].

In [24], they emphasize the importance of principal compo-
nent analysis (PCA) and feature extraction from time series.
Nevertheless, they engineer the features themselves which is
a time-consuming task. Our framework proposes extracting a
large set of statistical features using the package presented in
[16]. [15] showed how the work from [16] can be included
in time series classification for predictive maintenance in
IoT. They also included an active learning sampling strategy
which increased the convergence speed. However, they did
only consider centralized machine learning applications and
not FL. In another work, related to vehicle operations, [25]
showed how a two-scale regression model could be integrated
with FL to predict energy demand for an arbitrary route of a
vehicle. They even demonstrated how personalization added
to the model by clustering groups of drivers. Nevertheless,
they do handcraft the features, that the algorithm requires,
themselves and their data set is quite small.

There is much research on how to integrate deep neural
networks into DTs. Neural DTs [26], [27] use differentiable
decision functions, instead of non-differentiable axis-aligned
splits. Neural DTs do however not include automatic feature
selection which can lead to worse performance. In their study,
[28] demonstrated how Neural DTs can be combined with
FL for the MNIST data set. In collaboration with Volvo, [12]
extended the work on FL using Neural DTs and showed how
it can be applied in a vehicular setting for BDD100k data set.
Interestingly, their algorithm outperforms centralized learning.
The data are nevertheless images and videos and therefore they
disregard time series data.

Similarly to deep neural DTs, researchers have also devel-
oped federated algorithms of random forests [29], conventional
DTs [30], SVM [31], and XGBoost [32]. The non-federated
implementations for these algorithms have nevertheless been
shown to perform worse than TabNet [17] on large data sets,
which is why we seek to develop our own implementation
of federated TabNet. To our understanding, there is no work
comparing these FL algorithms on standardized data sets,
which therefore would be an appropriate study in the future.
[33] presents existing work on FL and mentions tree structure
implementations for FL. Nevertheless, no superior algorithm
is concluded, they only mention the work of [34].

VII. CONCLUSION

TabNet has shown superior performance compared to estab-
lished models, but combination with FL has not been consid-
ered. To our understanding, we are the first to analyze TabNet
with FL for tabular data. Moreover, we demonstrate how FL

can be applied to the data sets from [18]. Our framework, using
the combination of TabNet and FL, is successfully applied to
the data sets and shows promising results. We include a feature
extraction step in our framework to convert the time series data
to tabular data. Furthermore, we acknowledge a slight decrease
in test accuracy compared to other relevant studies [18], [22].
Our test accuracies vary between 68.0− 93.6% and the most
difficult data set is the asphalt obstacles data set. Nevertheless,
in the asphalt obstacles data set, we observe that for vertical
patches, TabNet classifies the instances 85.19% correctly. FL
does not rely on raw data transmission and supports the
increasing demand for privacy preserving operations for edge
devices. We also argue for why FL applied to the used data
sets is important for ICVs.

In the future, we shall tune the hyperparameters for the
smaller data sets at hand and evaluate different FL optimiza-
tion algorithms performance on similar data sets. Furthermore,
we shall investigate the combination of TabNet and FL on
other benchmark data sets and extend our work to include
regression tasks and not only use it for classification. In such
a work, we aim to compare federated TabNet with current
state-of-the-art federated algorithms that can be utilized for
tabular data. Lastly, we shall compare TabNet and FL with
a centralized approach and study the difference in terms of
overall performance and communication efforts.
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