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ELLIPTIC FOURTH-ORDER OPERATORS WITH WENTZELL

BOUNDARY CONDITIONS ON LIPSCHITZ DOMAINS

DAVID PLOSS

Abstract. For bounded domains Ω with Lipschitz boundary Γ, we investigate
boundary value problems for elliptic operators with variable coefficients of
fourth order subject to Wentzell (or dynamic) boundary conditions. Using
form methods, we begin by showing general results for an even wider class of
operators of type

A =

(

B∗B 0
−NbB γ

)

,

where B is associated to a quadratic form b and Nb an abstractly defined co-
normal Neumann trace. Even in this general setting, we prove generation of
an analytic semigroup on the product space H := L2(Ω)×L2(Γ). Using recent

results concerning weak co-normal traces, we apply our abstract theory to the
elliptic fourth-order case and are able to fully characterize the domain in terms
of Sobolev regularity for operators in divergence form B = − divQ∇ with
Q ∈ C1,1(Ω,Rd×d) , also obtaining Hölder-regularity of solutions. Finally, we
also discuss asymptotic behavior and (eventual) positivity.

1. Introduction

Wentzell, or dynamic boundary conditions, appear in a multitude of physical
applications and pose a mathematically challenging problem. Given a bounded
domain Ω with boundary Γ, they model the interchange of free energy of a physical
system between Ω and Γ. The main issue with modeling this interchange is that
the energy flux is represented by an integral over the domain, which cannot “see”
the boundary as it is a set of Lebesgue measure zero. This is usually resolved by
considering functions in a product space, e.g., H := L2(Ω) × L2(Γ), and a related
operator A for which the action in the interior of the domain and on the boundary
is decoupled (cf. [AE96, AMPR03, Eng03]). The connection between interior and
boundary is then encoded by a coupling condition in the definition of the domain
of A.

A detailed discussion of a physical interpretation of these boundary conditions in
comparison to classical ones can be found in [Gol06] for the two most famous PDE,
the heat and the wave equation. Other instances where these boundary conditions
occur are the Stefan problem with surface tension (see [EPS03, Section 1]), and cli-
mate models including coupling between the deep ocean and the surface (see [DT08,
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Section 2]) where they incorporate the external energy transported into the ocean
by the sun. Furthermore, they are used in the Cahn–Hilliard equation describing
spinodal decomposition of binary polymer mixtures (see [RZ03, Section 1]) in or-
der to model effects close to the boundary, e.g., that one of the agents is more
attracted to the boundary than the other, which might lead to further separation
effects. Contrary to the first examples whose leading part is given by (variations
of) the Laplacian, the Cahn–Hilliard equation is based on the Bi-Laplacian, an
operator of order 4 which fits into the setting of the present work.

We are going to consider a general class of operators. As prototype and main
application, we study the following system of fourth order:

∂tu+B(αB)u = 0 in (0,∞)× Ω, (1.1)

trB(αB)u − β∂Qν (αB)u − βδ tr(αB)u − γ tr u = 0 on (0,∞)× Γ, (1.2)

∂Qν u+ δ tr u = 0 on (0,∞)× Γ, (1.3)

u|t=0 = u0 in Ω. (1.4)

Here B is given by B = − divQ∇, where Q ∈ C1,1(Ω,Rd×d) is uniformly positive
definite and Ω is a Lipschitz domain. Let ∂Qν denote its corresponding co-normal
derivative given by 〈ν,Q∇u〉 (cf. (3.2) below), and assume α, β, γ, δ to be bounded,
real-valued functions. The precise smoothness assumption of the coefficients will
be specified later on (cf. Hypotheses 2.9 and 3.1). In (1.1)–(1.4), it is implicitly
assumed that the initial value u0 is sufficiently smooth to have a trace on the
boundary and that this trace is used as an initial condition for u on the boundary.

Note that, as Equation (1.1) is of fourth order with respect to x ∈ Ω, we have
to impose two boundary conditions. Here, we have chosen the Robin boundary
condition (1.3) in addition to the Wentzell boundary condition (1.2).

The main mathematical challenge in tackling Wentzell boundary conditions lies
in the fact that the elliptic operator that governs the equation in the interior itself
appears in the boundary condition, and the standard condition B(αB)u ∈ L2(Ω) is
not sufficient to guarantee existence of the trace. In order to decouple this system
and circumvent this issue, we rewrite the Wentzell boundary condition (1.2) as a
dynamic boundary condition using B(αB)u = −∂tu from (1.1). Then we rename
u to u1 and replace the time derivative ∂tu1 in the boundary condition by the time
derivative ∂tu2 of an independent function u2 that lives on the boundary. Even
though u2 is formally independent of u1, we think of u2 as the trace of u1; this
condition will be incorporated into the domain of our operator D(A), later. We
thus obtain the following decoupled version of (1.1)–(1.4):

∂tu1 +B(αB)u1 = 0 in (0,∞)× Ω, (1.5)

∂tu2 + β∂Qν (αB)u1 + βδ tr(αB)u1 + γu2 = 0 on (0,∞)× Γ, (1.6)

∂Qν u1 + δu2 = 0 on (0,∞)× Γ, (1.7)

u1|t=0 = u1,0 in Ω, (1.8)

u2|t=0 = u2,0 on Γ. (1.9)

Note that, as u2 is independent of u1, we have to impose an additional initial
condition for u2. If, however, the initial value u0 in (1.4) is smooth enough, we
can put u1,0 = u0 and u2,0 = u0|Γ. However, this coupling condition for the initial
value is not mandatory. The Hilbert space theory established below will allow
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to prescribe non-continuous initial data, even the extreme case of u1,0 = 0 and
u2,0 ∈ L2(Γ) arbitrary is allowed. This is especially useful to model situations where
in the beginning the entire energy only lives on the boundary and slowly dissipates
into the interior of the domain over time. Rewritten as a Cauchy problem, for
u = (u1, u2) ∈ H we obtain

∂tu +Au = 0 for u(t, ·) in H, (1.10)

u|t=0 = u0 for u0 ∈ H, (1.11)

where A is given by (
B(αB) 0

β(∂Qν (αB) + δ tr(αB)) γ

)
(1.12)

on a suitable domain D(A) that incorporates (1.7) and the coupling condition
u2 = tr u1. In order to construct a solution for (1.5)–(1.9), the main idea is to
obtain an analytic semigroup (generated by −A), whose smoothing effects will
allow us to recover the original system with Wentzell boundary conditions. Using
this decoupling idea and form methods to tackle Wentzell boundary conditions, has
proven to be a suitable approach for the second-order case, e.g., the Laplace oper-
ator subject to Wentzell boundary conditions. A series of papers starting in 2003
has shown generation results concerning an analytic semigroup for the decoupled
system on L2(Ω) × L2(Γ), using the classical Beurling–Deny criteria [AMPR03].
These results were then extended to the Lp-scale, and later also to general second-
order elliptic operators on Lipschitz domains, where also Hölder continuity of the
solution was deduced, see [Nit11] and [War13]. Under additional smoothness as-
sumptions also spaces of continuous functions were considered in [AMPR03]; see
also [EF05] and [BE19] where generation of an analytic semigroup was shown in an
abstract perturbation framework. For higher order elliptic operators the extension
procedure to the Lp-scale does not work, because the Beurling–Deny criteria are in
general not fulfilled (see also Proposition 4.14). Less results are available and they
typically rely on being in a smooth setting. For fourth-order equations with suffi-
ciently smooth coefficients in C4-domains, it was shown in [FGGR08, Theorem 2.1]
that the related operator in the product space is essentially self-adjoint. For the
Cahn–Hilliard equation, classical well-posedness was shown in [RZ03, Theorem 5.1]
in the L2-setting, and in [PRZ06, Theorem 2.1] in the Lp-setting. Again the domain
and the coefficients were assumed to be (sufficiently) smooth, and the methods do
not carry over to Lipschitz domains.

In [DKP21], the Lipschitz-case was solved for the Bi-Laplacian using weak Green’s
formulae and the theory of quasi-boundary triples [BHdS20, Chapter 8]. In the
present paper, however, we choose a more abstract approach which deals with a
larger class of systems and does not depend on the theory of boundary triples.
It contains the results of [DKP21] as a special case, also giving a simpler proof
employing recent developments on co-normal derivatives in Lipschitz domains for
operators with variable coefficients [BGM22].

To that end, in Section 2.1, we begin by addressing very general forms b whose
associated operators will take the role of B in (1.12). To proceed, we start by
considering the Neumann case δ = 0 and define an abstract Neumann trace Nb that
fits into the form approach and is connected to Green’s second formula. Afterwards,
in Section 2.2, we investigate the quadratic form a on the product space H =
L2(Ω)×L2(Γ) to which the operator A is associated. Based on the analysis of that
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form, we can show that the operator A is self-adjoint and −A is the generator
of a strongly continuous and analytic semigroup (T(t))t≥0 (Theorem 2.12). This
will also show that the operator A indeed governs a generalized version of (1.5)–
(1.9) with δ = 0, given by (2.4)–(2.8). We will explain that we can also obtain
a solution of the Wentzell system in the original formulation generalizing (1.1)–
(1.3) with initial condition (1.4). If u2,0 is not the trace of u1,0, there are some
subtleties concerning the initial values, see Remark 2.14. In Section 3, we return to
the main application where B is a second-order elliptic operator in divergence form,
identifying the associated operator B and its minimal and maximal realization, as
well as the normal trace Nb (Section 3.2). In Section 3.3, we finally collect our
results for the fourth-order system, which culminate in Corollary 3.20 where we
precisely identify the operator A and its domain in terms of Sobolev regularity.
After extending our results to the Robin case δ > 0, we obtain that the operator
A indeed governs the system precisely as formulated in (1.5)–(1.9).

In Section 4, we briefly discuss higher regularity for smoother domains and co-
efficients (Section 4.1) before undertaking further investigations of the operator A
in the original setting. One of the main results of this section is Theorem 4.7,
which states that for every element (u1, u2) of D(A∞) the function u1 is Hölder
continuous and u2 is the trace of u1. As the semigroup T is analytic, it follows that
for positive time the solution of (1.5)–(1.9) is Hölder continuous and satisfies the
Wentzell boundary condition in a pointwise sense. Moreover, this result implies reg-
ularity of the eigenfunctions of the operator A and is used later on. In Section 4.3,
we show that the operator A has compact resolvent and thus a decomposition into
a basis consisting of eigenfunctions of A. This allows us to describe the semigroup
in terms of the eigenfunctions and to characterize the asymptotic behavior of the
semigroup. In particular, we study its positivity properties: It turns out that the
generated semigroup is neither positive nor L∞-contractive (Proposition 4.14) as
the operator does not satisfy the Beurling–Deny criteria. However, as shown for the
for the semigroup generated by the Bi-Laplacian in [DKP21], in the case γ = δ = 0
our semigroup is again eventually positive in the sense of [DGK16a] and [DG18]
(Theorem 4.17). We close the article by showing that the same abstract approach
can be used to obtain abstract results for higher-order operators, e.g., (−∆)4k.

2. The abstract setting

Aim of this section is to establish a solution theory for Wentzell boundary condi-
tions for higher-order operators which can be represented by nested forms, i.e. two
quadratic forms where the operator associated to the first one is used to construct
the second. We fix the following setting:

Let Ω ⊂ Rd be a domain with Lipschitz boundary Γ. We denote the inner
products in L2(Ω) and L2(Γ) by

〈f, g〉Ω :=

∫

Ω

fg dx and 〈f, g〉Γ :=

∫

Γ

fg dS,

respectively, and write ‖ · ‖Ω and ‖ · ‖Γ for the induced norms. We denote the
standard Sobolev spaces by Hs(Ω) for s ≥ 0. By slight abuse of notation, we will
also write

〈∇u,∇v〉Ω :=

∫

Ω

d∑

j=1

∂ju∂jv dx
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whenever u, v ∈ H1(Ω). For fractional orders we may either use complex interpola-
tion, or, equivalently, restriction. For negative orders we employ duality. Addition-
ally for an elliptic operator of second-orderB, we introduce the spaceHs

B(Ω) for the
space of functions u ∈ Hs(Ω) such that Bu belongs to L2(Ω) (cf. Definition 3.12).
We endow Hs

B(Ω) with the canonical norm

‖u‖2Hs
B(Ω) := ‖u‖2Hs(Ω) + ‖Bu‖2Ω (u ∈ Hs

B(Ω)).

The Dirichlet-trace on C∞(Ω), defined by u 7→ u|Γ, and its extension to any Sobolev

space Hs(Ω) for s > 1
2 is denoted by tr.

Taking a brief look back to the Bi-Laplacian case (cf. [DKP21]), where the form
a(u, v) = 〈∆Nu,∆Nv〉 is considered on the domain

{u = (u1, u2) ∈ H | u1 ∈ D(∆N ), u2 = tru1},
we recall that its associated operator is given by

A =

(
∆2 0

−∂ν∆ 0

)
.

In order to tackle the general system, in the form a, we are going to replace the
Neumann Laplacian ∆N by a more general operator BN . To that end, we introduce
a second form that somehow operates on a “lower level”. More precisely, ∆N is
naturally associated to the form b(u, v) = 〈∇u,∇v〉Ω on L2(Ω) with form domain
D(b) = H1(Ω), so we may generalize this form. In order to distinguish between a

and b terminologically, we will call a the primary form and b the subsidiary form.
At first, we will establish our theory for quite general subsidiary quadratic forms

b whose associated operators are not necessarily differential operators in divergence
form or even of second order.

2.1. Abstract realizations of the lower-order operator. Recall, that if a form
b : D(b) × D(b) → C (D(b) ⊂ H) is densely-defined, semi-bounded by λ ∈ R,
closed, and continuous in the sense of [Ouh05, Chapter 1], its associated operator
A satisfies that λ − A generates an analytic contraction semigroup on H. We call
such forms generating. Note that, in this terminology, b is semi-bounded by λ if
the shifted form bλ(u, v) = b(u, v) + λ 〈u, v〉H is accretive. Furthermore, A will be
self-adjoint if a is also symmetric.

Definition 2.1. Consider the Hilbert space H = L2(Ω). We call a form b :
D(b)×D(b) → C admissible, if it is a generating, symmetric form on H such that
for some ρ ∈ (0, 1)

C∞
c (Ω) ⊆ (D(b), ‖ · ‖b) ⊆ H

1
2+ρ(Ω) (2.1)

holds, where the latter embedding is continuous and dense.

Remark 2.2. The continuous embedding into the space H1/2+ρ(Ω) is assumed to
ensure existence of the Dirichlet trace. The space H1/2+ρ(Ω) can be replaced by
any space on which the Dirichlet trace exists and is bounded, and its range embeds

densely into L2(Γ), as for example H
1/2
∆ or some variant of it, if such an embedding

of the form domain is known. However, in this abstract setting, we want to avoid
spaces depending on specific operators.

Next, we introduce two operators, connected to the subsidiary form b. We think
of them as realizations of a certain “general” operator B subject to Neumann or
Dirichlet boundary conditions. While this is indeed true in the setting of elliptic
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differential operators on domains (cf. Bmax in Definition 3.12), we point out that
in the abstract setting considered here, it is unclear which manner to define such
an operator would be the most sensible. Therefore, in this section the operator B∗

0

will be used as a suitable substitute for the formally undefined operator B, which
only appears terminologically in the following definition.

Definition 2.3. Let b : D(b)×D(b) → L2(Ω) be an admissible form.

(i) Denote by λb the maximal semi-bound λ ∈ R such that Re b(u, u) ≥ λ‖u‖2Ω,
i.e. we have ‖u‖2

b
= Re b(u, u) + (1− λb)‖u‖2Ω for u ∈ D(b).

(ii) The operator BN associated to b on L2(Ω) is called the Neumann realization
of B.

(iii) The Dirichlet realization of B is the associated operator to bD, the restric-
tion of b to {u ∈ D(b) | tr u = 0}.

Proposition 2.4. If b is an admissible form, then bD is generating and symmetric,
so BD is well defined and self-adjoint. Furthermore, we have

D(BN ) ∩D(BD) = {u ∈ D(BN ) | tr u = 0} = D(BN ) ∩H1/2+ρ
0 (Ω) (2.2)

and

BNu = BDu for u ∈ D(BD) ∩D(BN ).

Proof. The restricted form bD is clearly symmetric, and densely defined as the
test functions still lie in D(bD). By definition, we have ‖ · ‖b = ‖ · ‖bD on
D(bD), from which continuity and semi-boundedness follow. In order to show
that (D(bD), ‖.‖bD) is complete as well, take a Cauchy-sequence un with respect
to ‖ · ‖bD = ‖ · ‖b. As b is a closed form, un converges to some u ∈ D(b), and by
continuous embedding also in H1/2+ρ(Ω). By continuity of the Dirichlet trace, the
traces converge as well, whence tr u = 0 and u ∈ D(bD) as desired. Hence it is also
generating.

We verify the second part in (2.2) first: In Lipschitz domains we have the iden-
tity {u ∈ Hs(Ω) | tr u = 0} = Hs

0 (Ω) for all s ∈ (1/2, 3/2) (cf. [BGM22, Equa-

tion (3.7)]). So we directly obtain D(BN ) ∩H1/2+ρ
0 (Ω) = {u ∈ D(BN ) | tr u = 0}

due to D(BN ) ⊂ D(b) ⊂ H1/2+ρ(Ω).
For the remaining identity assume u ∈ D(BN ) with tru = 0. Hence there is

an fN ∈ L2(Ω) such that, for all v ∈ D(b), 〈fN , v〉Ω = b(u, v) holds. But now
u ∈ D(bD) and in particular for all v ∈ D(bD) ⊂ D(b), we have

〈fN , v〉Ω = b(u, v) = bD(u, v),

which shows u ∈ D(BD) and BDu = fN = BNu. The converse is trivial. �

Remark 2.5.

(i) Note that bD itself is not admissible, asD(bD) cannot be embedded continu-
ously into H1/2+ρ(Ω) due to the continuity of the trace, which is the reason
why pure Dirichlet-Wentzell boundary conditions (without Neumann term)
can not be handled via this method.

(ii) In the following, we are going to assume that D(BD) ∩ D(BN ) is dense
in L2(Ω), which is useful to define realizations of B that are in a sense
minimal (or maximal) and still densely defined. We will see below, in
Proposition 2.11, that this is a very natural assumption for considering the
primary form a, as it will ensure that it will be densely defined as well. The
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simplest way to ensure this density will be to demand that D(BD)∩D(BN )
contains the test functions. However, this excludes the case of operators
of the form − divQ∇ for Q only in L∞(Ω,Rd×d). As we assume more
regularity on Q in this article, anyway, this will be no restriction for us,
though.

Next, we introduce two notions of generalized weak Neumann traces, the first of
which is connected to a generalization of Green’s first formula, while the second is
closer related to the abstract notion of the associated operator and Green’s second
formula.

Definition 2.6. Assume that D(BD) ∩ D(BN ) is dense in L2(Ω). Define B0 =
BN |D(BD)∩D(BN ). Let N

b : D(Nb) ⊆ L2(Ω) → L2(Γ) be the linear operator defined

by

D(Nb) :={u ∈ D(b) ∩D(B∗
0) |

∃g ∈ L2(Γ)∀v ∈ D(b) : 〈B∗
0u, v〉Ω − b(u, v) = 〈g, tr v〉Γ}

and Nbu := g. Let furthermore N b : D(N ) ⊆ L2(Ω) → L2(Γ) be the linear
operator defined by

D(N b) :={u ∈ D(B∗
0 ) |

∃g ∈ L2(Γ)∀v ∈ D(BN ) : 〈B∗
0u, v〉Ω − 〈u,BNv〉Ω = 〈g, tr v〉Γ}

and N bu := g.

We want to point out a subtlety concerning the signs: In comparison to the
usual weak Neumann trace (cf. (3.2) below) Nb and N b generalize −∂ν , as B∗

0 is
a generalized version of −∆.

We begin with a very simple observation that will prove to be quite useful to
show equality of different traces.

Lemma 2.7. Consider two linear operators S1 : D(S1) ⊆ V → W , S2 : D(S2) ⊆
V →W on a vector spaces V,W . If S1 ⊆ S2, S1 is surjective, and ker(S2) ⊆ D(S1),
then S1 = S2.

Proof. Let u ∈ D(S2). As S1 is surjective there is is some v ∈ D(S1) with S2v =
S1v = S2u. So u− v ∈ ker(S2) ⊆ D(S1) whence also u = v + (u − v) ∈ D(S1) and
S2u = S1u. This shows S2 ⊆ S1 and thus equality. �

We come to our first main result, which shows that the traces Nb and Nb are
well defined.

Theorem 2.8. In the setting of Definition 2.6 we have the following.

(i) B0 is a densely defined, symmetric, and closed operator. Therefore, B∗
0 and

B∗∗
0 are well defined and we have B0 ⊆ B∗

0 as well as B∗∗
0 = B0.

(ii) tr(D(BN )) is dense in L2(Γ).
(iii) Nb and N b are well defined, linear operators. We have N b|D(b)∩D(N b) =

Nb and kerNb = kerN b = D(BN ), which also shows that Nb and N b

are densely defined.
(iv) If Nb is surjective, we have Nb = N b.
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Proof.

(i) The density follows by assumption, the closedness follows as both BD and BN

are closed by default (as b and bD are generating) and coincide on the intersection.
Furthermore, as a restriction of a self-adjoint operator, B0 has to be symmetric.
(ii) Let f ∈ L2(Γ) and ε > 0. As Hρ(Γ) is dense in L2(Γ), we find a function

uΓ ∈ Hρ(Γ) with ‖uΓ − f‖2Γ ≤ ε. Because tr : H1/2+ρ(Ω) → Hρ(Γ) is bounded
(denote its operator norm byM) and surjective (cf. [GM08, Equation 2.7]), we find
a function uΩ ∈ H1/2+ρ(Ω) with tr uΩ = uΓ. As b is admissible, the domain of the
subsidiary form D(b) is densely and continuously embedded in H1/2+ρ(Ω). Hence,
there is a function ûΩ ∈ D(b) satisfying

‖ûΩ − uΩ‖2H1/2+ρ(Ω) ≤M−2ε.

As for any generating form it is known that the domain of the associated operator
is a form core (cf. [Ouh05, Lemma 1.25]), one may further approximate and even
find a function ūΩ ∈ D(BN ) such that

‖ūΩ − ûΩ‖2H1/2+ρ(Ω) ≤ C‖ūΩ − ûΩ‖2b ≤M−2ε.

Altogether, we have

‖ tr ūΩ − f‖2Γ ≤ 2‖ truΩ − f‖2Γ + 2‖ truΩ − tr ūΩ‖2Γ
≤ 2ε+ 2M2‖ūΩ − ûΩ + ûΩ − uΩ‖2H1/2+ρ(Ω) ≤ 10ε

as desired.
(iii)The linearity of the operators is obvious. Concerning the well-definedness,

assume there were two elements g1, g2 ∈ L2(Γ) satisfying the defining conditions,
respectively. Then we have 〈g1, tr v〉Γ = 〈g2, tr v〉Γ in particular for all v ∈ D(BN ),
and hence 〈g1 − g2, tr v〉Γ = 0. But as tr(D(BN )) is dense in L2(Γ) due to (ii), this

implies g1 = g2. For u ∈ D(b), v ∈ D(BN ) we have b(u, v) = b(v, u) = 〈BNv, u〉Ω =

〈u,BNv〉Ω . This shows Nb ⊆ N b.

Concerning the restriction, we assume u ∈ D(N b) ∩ D(b). Then, as before,
there is a g ∈ L2(Γ) such that, for all v ∈ D(BN ) ⊆ D(b), 〈B∗

0u, v〉Ω−〈u,BNv〉Ω =
〈g, tr v〉Γ holds. As u ∈ D(b) and v ∈ D(BN ), this implies the L2(Γ)-function g
also satisfies

〈B∗
0u, v〉Ω − b(u, v) = 〈g, tr v〉Γ (2.3)

for all v ∈ D(BN ). However, D(BN ) is a form core for b, so for any v ∈ D(b)
there is a sequence (vn)n ∈ D(BN ) with vn → v with respect to ‖ · ‖b and due to
the admissibility of b also in H1/2+ρ(Ω), whence the trace converges as well. Using
this approximation, Formula (2.3) can be extended to all v ∈ D(b), which indeed
proves N b|D(b)∩D(N b) = Nb.

Next we show Nb (and thus N b) is densely defined. As B0 ⊆ BN and BN is
self-adjoint, we have BN = B∗

N ⊆ B∗
0 which exists due to (i). Hence for u ∈ D(BN )

(which is a dense subset of L2(Ω)) we have 〈B∗
0u, v〉Ω − b(u, v) = 〈B∗

0u, v〉Ω −
〈u,BNv〉Ω = 〈BNu, v〉Ω − 〈u,BNv〉Ω = 0 for all v ∈ D(BN ). So Nbu = 0 for any

u ∈ D(BN ). Furthermore, if u ∈ D(N b) and N
bu = 0, then for all v ∈ D(BN )

we have 〈B∗
0u, v〉Ω − 〈u,BNv〉Ω = 0. This, however, is the definition of u ∈ D(B∗

N )
and and shows B∗

Nu = B∗
0u. As BN is self-adjoint, this means u ∈ D(BN ). Hence

D(BN ) ⊆ kerNb ⊆ kerN b ⊆ D(BN ), which shows equality, and in particular that
both operators are densely defined.
(iv)This is an immediate consequence of (iii) and Lemma 2.7. �



ELLIPTIC 4TH-ORDER OPERATORS WITH WENTZELL BOUNDARY CONDITIONS 9

2.2. The system on the product space. Next we introduce a primary form,
which will be connected to the generalized system of (1.5)–(1.9), i.e

∂tu1 +B∗
0(αBN )u1 = 0 in (0,∞)× Ω, (2.4)

∂tu2 − βN
b(αBN )u1 + γu2 = 0 on (0,∞)× Γ, (2.5)

N
bu1 = 0 on (0,∞)× Γ, (2.6)

u1|t=0 = u1,0 in Ω, (2.7)

u2|t=0 = u2,0 on Γ. (2.8)

Throughout, we assume the following.

Hypothesis 2.9. Let Ω ⊆ Rd be a bounded domain with Lipschitz boundary Γ.
Consider α ∈ L∞(Ω,R) and β, γ, δ ∈ L∞(Γ,R) such that there exists a constant
η > 0 with α ≥ η almost everywhere on Ω and β ≥ η almost everywhere on Γ.
Furthermore, let δ ≥ 0.

Definition 2.10. Assume Hypothesis 2.9 and recall Definition 2.3.

(i) Let H := L2(Ω, λd)×L2(Γ, β−1dS) be the Hilbert space, where λd denotes
the d-dimensional Lebesgue measure and dS the surface measure on Γ,
endowed with the canonical inner product

〈u, v〉H = 〈u1, v1〉Ω + 〈u2, v2〉Γ,β , (2.9)

where u = (u1, u2), v = (v1, v2) ∈ H and

〈u2, v2〉Γ,β =
〈
β−1u2, v2

〉
Γ
=

∫

Γ

β−1(x)u2(x) · v2(x)dS.

(ii) Let D(BD)∩D(BN ) be dense in L2(Ω). Then, we define the primary form
a : D(a)×D(a) → C as

a(u, v) := 〈αBNu1, BNv1〉Ω + 〈γu2, v2〉Γ,β
for all u, v ∈ D(a) where

D(a) := {u = (u1, u2) ∈ H | u1 ∈ D(BN ), u2 = tr u1}.

Proposition 2.11. In the situation of Definition 2.10 (ii), the primary form a is
densely defined.

Proof. We may assume without loss of generality that β = 1, otherwise switch
to an equivalent norm. Next we exploit the density of D(BN ) ∩D(BD) in L2(Ω).

As
(
D(BN ) ∩ D(BD)

)
× {0} ⊆ D(a), we have L2(Ω) × {0} ⊆ D(a). In order to

show {0} × L2(Γ) ⊆ D(a), we use Theorem 2.8 (ii) which yields that trD(BN ) is
dense in L2(Ω). Hence, given a function f ∈ L2(Γ) and some number ε > 0, there
is an element ū1 of D(BN ) such that ‖ tr ū1 − f‖2Γ < ε. Finally, we pick a function
w ∈ D(BN )∩D(BD) such that ‖ū1 −w‖2Ω ≤ ε and put u = (ū1 −w, tr(ū1 −w)) =
(ū1 − w, tr ū1). Then, by construction, we have

‖u − (0, f)‖2H = ‖ū1 − w‖2Ω + ‖ tr ū1 − f‖2Γ ≤ 2ε.

As f was arbitrary, {0} × L2(Γ) ⊆ D(a). Since D(a) is a vector space, we may

combine our two results and obtain D(a) = H. �
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Theorem 2.12. Assume we are in the situation in Definition 2.10 – including the
density from part (ii). Then for B0, BN , Nb, and N b defined as in Definition 2.6,
we have the following:

(i) a is a generating, symmetric form. Hence the operator A associated to a

on H is self-adjoint and −A generates an analytic semigroup T on H.
(ii) A is given by

A =

(
B∗

0(αBN ) 0
−βN b(αBN ) γ

)

on

D(A) = {u ∈ H | u1 ∈ D(BN ), αBNu1 ∈ D(N b), u2 = tr u1}.
(iii) In particular, for u0 = (u1,0, u2,0) ∈ H the Cauchy problem (2.4)–(2.8)

possesses a unique solution, which is given by u(t) = T(t)(u1,0, u2,0) for
t > 0. If Nb is additionally surjective, we may replace N b by Nb in (ii)
and (2.4)–(2.8).

Proof.

(i) We begin by showing that a is a generating, symmetric form. As b is admissi-
ble, we have D(b) ⊆ H1/2+ρ(Ω), hence also D(BN ) ⊆ H1/2+ρ(Ω) and the condition
tru1 = u2 makes sense. The density of D(a) has been shown in Proposition 2.11.
Because of γ ∈ L∞(Γ) the form is semi-bounded due to

a(u,u) =
〈√
αBNu1,

√
αBNu1

〉
Ω
+ 〈γu2, u2〉Γ,β ≥ −‖γ‖∞‖u‖2H.

The symmetry is trivial as α, β, γ are real-valued. Next we consider the induced
norm ‖u‖2a = a(u,u) + (1 + ‖γ‖∞)‖u‖2H. With respect to this norm the form is
continuous as

|a(u, v)| ≤ ‖
√
αBNu1‖Ω‖

√
αBNv1‖Ω + ‖γ‖∞‖u2‖Γ,β‖v2‖Γ,β ≤ 2‖u‖a‖v‖a.

Note that by definition we have ‖√αBNu1‖2 ≤ ‖u‖2
a
, as well as ‖γ‖∞‖u2‖2Γ,β ≤

‖u‖2
a
. Finally, we show the closedness of the form. Let (un)n ⊆ D(a) be a ‖ · ‖a-

Cauchy sequence, where un = (un1 , u
n
2 ). We have to prove that this sequence

converges with respect to ‖ · ‖a. Let us first note that because α is bounded from
below by η > 0, for a certain constant C, we have

‖u1‖2B ≤ 1

η
‖
√
αBNu1‖2Ω + ‖u1‖2Ω ≤ C‖u‖2a

whenever u = (u1, u2) ∈ D(a). It follows that (un1 )n is a Cauchy sequence with
respect to ‖ · ‖B. As BN is closed, we find some u ∈ D(BN ) such that un1 → u in
L2(Ω) and BNu

n
1 → BNu in L2(Ω). Next observe that for u ∈ D(BN ) ⊆ D(b), by

definition of the associated operator and Young’s inequality, we have

‖u‖2H1/2+ρ(Ω) ≤ C‖u‖2
b
= C(b(u, u) + (1− λb)‖u‖2Ω) = C((1 − λb)‖u‖2Ω + 〈BNu, u〉Ω)

≤ C̃(‖BNu‖2Ω + ‖u‖2Ω) = C̃‖u‖2B
for some constant C̃ ≥ 1. Combining this with the above, we observe that un1 is

also convergent in H1/2+ρ(Ω) whence, by the continuity of the trace, un2 = tr un1 →
tru in L2(Γ). Setting u = (u, tru), we see that u ∈ D(a) and un → u with respect
to ‖·‖a. This proves closedness of the form. Hence a is a generating, symmetric form
with a corresponding associated self-adjoint operator A such that −A generates
an analytic semigroup on H.
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(ii) At first we define

C =

(
B∗

0(αBN ) 0
−βN b(αBN ) γ

)

on
D(C) = {u ∈ H | u1 ∈ D(BN ), αBNu1 ∈ D(N b), u2 = tr u1}.

We want to show C = A. We begin by showing C ⊆ A. So let u ∈ D(C) ⊆ D(a),
i.e. u1 ∈ D(BN ), αBNu1 ∈ D(N b) and tr u1 = u2. Then we have for all v ∈ D(a)

a(u, v) = 〈αBNu1, BNv1〉Ω + 〈γu2, v2〉Γ,β
= 〈B∗

0(αBNu1), v1〉Ω −
〈
N

b(αBNu1), tr v1
〉
Γ
+ 〈γu2, v2〉Γ,β

= 〈B∗
0(αBNu1), v1〉Ω +

〈
−βN

b(αBNu1) + γu2, v2
〉
Γ,β

= 〈Cu, v〉H .
For the reverse direction let u ∈ D(A) and Au = f. Then u ∈ D(a) and for any
v ∈ D(a) we have a(u, v) = 〈f, v〉H. In particular, for all v ∈ D(B0)×{0} (and thus
for all v1 ∈ D(B0)) we have

〈f1, v1〉Ω = 〈f, v〉H = a(u, v) = 〈αBNu1, BNv1〉 = 〈αBNu1, B0v1〉Ω .
This shows that αBNu1 is in D(B∗

0 ) and f1 = B∗
0(αBNu1) by definition of the

adjoint. So for all v1 ∈ D(BN ) we have

〈f2, tr v1〉Γ,β = a(u, v) − 〈f1, v1〉Ω
= 〈αBNu1, BNv1〉Ω − 〈B∗

0 (αBNu1), v1〉Ω + 〈γu2, tr v1〉Γ,β
or 〈

β−1(f2 − γu2), tr v1
〉
Γ
= 〈αBNu1, BNv1〉Ω − 〈B∗

0(αBNu1), v1〉Ω
for all v1 ∈ D(BN ), which shows αBNu1 ∈ D(N b) (and u ∈ D(C )) as well as

−N
b(αBNu1) = β−1(f2 − γu2)

or, equivalently, f2 = −βN b(αBNu1) + γu2, which shows Cu = f = Au.
(iii)This follows from (i) and (ii) by standard semigroup theory. For the last part

we use Theorem 2.8 (iv) �

Remark 2.13. Theorem 2.12 (iii) states that the semigroup T governs the sys-
tem (2.4)–(2.8). We observe that u1 also solves the corresponding non-decoupled
problem with Wentzell boundary conditions

∂tu+B∗
0(αBN )u = 0 in (0,∞)× Ω, (2.10)

trB∗
0(αBN )u+ βN

b(αBN )u− γ tru = 0 on (0,∞)× Γ, (2.11)

N
bu = 0 on (0,∞)× Γ, (2.12)

u|t=0 = u0 in Ω. (2.13)

As the semigroup is analytic, the solution is C∞ in time so that (u(t))t>0 =
(T(t)(u1,0, u2,0))t>0 satisfies Equations (2.4) and (2.5) in a classical (in time) sense.
Concerning the initial system (2.10)–(2.13), we immediately see that u = u1 solves
Equation (2.10), (2.12) and (2.13).

The question remains in which way the Wentzell boundary condition (2.11) is
satisfied. But as u ∈ C((0,∞), D(A)2) due to the analyticity of the semigroup,
naturally for all t > 0 the functions u(t, ·) are in D(A2) and thus we have

trB∗
0 (αBN )u = tr(Au)1 = (Au)2 = −βN

b(αBN )u + γ tr u,

which shows (2.11). In fact, the analyticity even yields u(t, ·) ∈ D(A∞) for t > 0.
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Remark 2.14. We point out that the system (2.10)–(2.13) has to be interpreted in
such a way that u0 is sufficiently smooth to have a trace, say u0 ∈ H1/2+ρ(Ω); in
this setting, the solutions of (2.10)–(2.13) are in a one-to-one correspondence with
the solutions of (2.4)–(2.8) with u1,0 = u0|Ω and u2,0 = u0|Γ. In our semigroup
approach, however, u2,0 can be chosen independently of u1,0 and, by the above,
all of these solutions are (distinct!) solutions of (2.10)–(2.13). In a way, choosing
u2,0 different from tru1,0 corresponds precisely to having some free energy on the
boundary, which was a main motivation to consider Wentzell boundary conditions
in the first place.

3. Application to strongly elliptic operators in divergence form

In this section, we will specify the operator B to be a strongly elliptic second-
order operator in divergence form and return to the investigation of the system
(1.1)–(1.4). We consider δ = 0 at first and deal with the Robin case at the end of
Section 3.3. We begin by settling the precise regularity assumptions on the matrix
Q and recalling some facts concerning different realizations of co-normal traces.

3.1. Co-normal traces.

Hypothesis 3.1. Assume Q ∈ C1,1(Ω,Rd×d) to be symmetric and uniformly pos-

itive definite, which means there is some open superset Ω̃ ⊆ Rd containing Ω such

that Q ∈ C1,1(Ω̃,Rd×d) is symmetric and satisfies for some κQ > 0

〈Q(x)ξ, ξ〉
Cd ≥ κQ|ξ|2 (x ∈ Ω̃, ξ ∈ C

d). (3.1)

Remark 3.2. The regularity Q ∈ C1,1(Ω̄,Rd×d) is not necessary for all the subse-
quent steps, part of the theory can be done using only W 1,∞-regularity. However
C1,1 is the regularity from [BGM22, Chapter 11], and thus used when we estab-
lish higher regularity and a precise identification of the occurring traces and the
domain of our operator. For a finer distinction in regularity, we refer to [Plo24,
Hypothesis 2.5 and Section 3.1].

Definition 3.3. Let Ω ⊆ Rd be a Lipschitz domain with outward normal ν. We
consider the following notions of strong traces:

(i) For a real-valued matrix Q ∈ W 1,∞(Ω̄),Rd×d, we denote the co-normal

Neumann trace of a function u ∈ C∞(Ω) by τQNu := ν · trQ∇u, where we
read the operator tr component-wise.

(ii) For any function δ ∈ L∞(Ω), we will call τQδ = τQN + δ tr the (co-normal)
Robin trace.

It is known, that the Dirichlet trace extends by continuity to a bounded linear
surjective operator

tr : Hs(Ω) → Hs−1/2(Γ) for all s ∈
(
1

2
,
3

2

)

(cf. [GM08, Equation (2.7)]). In fact, this operator is even a retraction, i.e. there
exists a continuous right-inverse. Even for smooth domains, however, the continuity
of tr : Hs(Ω) → Hs−1/2(Γ) does not hold for the endpoint case s = 1

2 , see [LM72,

Theorem 1.9.5]. However, one can include the cases s = 1
2 and s = 3

2 by replacing
Hs(Ω) by Hs

∆(Ω). In particular, it was shown in [GM08, Lemma 2.3] that the

smooth trace extends to a retraction tr : H
3/2
∆ (Ω) → H1(Γ).
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Next we consider the weak definition of the (co-normal) Neumann trace.

D(∂Qν ) :=
{
u ∈ H1

divQ∇(Ω) | there exists a g ∈ L2(Γ) such that (3.2)

〈divQ∇u, v〉Ω + 〈Q∇u,∇v〉Ω = 〈g, tr v〉Γ for all v ∈ H1(Ω)
}
,

where we set ∂Qν u = g. Naturally, one wants to know whether ∂Qν coincides with

an extension of τQN . For Q = id one has ∂ν = τN : H
3/2
∆ (Ω) → L2(Γ), see [GM08,

Lemma 2.4]. For Q 6= id the properties of such a possible extension were much less
clear for some time. In the recent preprint [BGM22], those issues were resolved.
We recall their central result for our case ([BGM22, Corollary 11.28]) adapted to
the notation we are going to use.

Lemma 3.4. Let Ω ⊆ Rd be a Lipschitz domain. Let B be a formal second-order
differential operator acting on elements in L2(Ω) in a distributional sense via

Bu =

d∑

i,j=1

∂iqij(x)∂ju,

where the matrix Q = (qij) is given as in Hypothesis 3.1. Let B denote its L2(Ω)-
realization (cf. Definition 3.12). Then, the co-normal Neumann trace defined by
u 7→ ν · tr(Q∇u) for smooth functions extends uniquely to

γsQ : Hs
B(Ω) → Hs−3/2(Γ) (3.3)

for all s ∈ [ 12 ,
3
2 ], forming a compatible family in s. Furthermore, for all s ∈ [ 12 ,

3
2 ],

we have the following:

(i) The generalized Neumann traces in (3.3) are surjective. In fact, there are
bounded linear operators

Υs
Q : Hs−3/2(Γ) → Hs

B(Ω), (3.4)

which are also compatible with each other for different s, and right inverses
to the Neumann trace, meaning for all ψ ∈ Hs−3/2(Γ) we have γsQ(Υ

s
Qψ) =

ψ.
(ii) For any f ∈ Hs

B(Ω) and h ∈ H2−s
B (Ω) the following Green’s formula holds:

〈
trh, γsQf

〉
H3/2−s(Γ)×(H3/2−s(Γ))′

−
〈
γsQh, tr f

〉
Hs−1/2(Γ)×(H1/2−s(Γ))′

= 〈h,Bf〉Ω − 〈Bh, f〉Ω .

(iii) ker(γsQ) ⊆ H3/2(Ω), ker(tr) ⊆ H3/2(Ω), and for any u ∈ H
1/2
B (Ω) with

either γsQu = 0 or tr u = 0, there is some C > 0 such that

‖u‖2H3/2(Ω) ≤ C‖u‖2Ω + ‖Bu‖2Ω.

Proof. This is [BGM22, Corollary 11.25 and 11.28]. �

We are going to verify the compatibility to the weak formulation ∂Qν in Theo-
rem 3.14, later.
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3.2. On the second-order operator. With the trace results from the last section,
we are going to be able to identify the operator A for the case B = − divQ∇, and
to fully describe its domain in precise terms of Sobolev regularity. The underlying
subsidiary form is given as follows.

Definition 3.5. Assume Hypothesis 3.1. Set D(b) := H1(Ω), and let b : D(b) ×
D(b) → C be given by

b(u, v) = 〈Q∇u,∇v〉Ω (3.5)

for u, v ∈ D(b). Also, set bD(u, v) := b(u, v) for u, v ∈ D(bD) = H1
0 (Ω).

Lemma 3.6. The subsidiary form b defined as above is admissible in the sense of
Definition 2.1. Furthermore, we have C∞

c (Ω) ⊆ D(BN ) ∩ D(BD). Hence, we are
in the situation of Definition 2.6 and Theorem 2.8.

Proof. We choose ρ = 1/2 in Equation (2.1) and have C∞
c (Ω) ⊆ D(b) = H1(Ω),

whence the form b is also densely defined. It is accretive, as Q is uniformly positive
definite. As Q is also bounded, we have

‖u‖2H1 ≤ b(u, u) + ‖u‖2Ω ≤ C‖u‖H1 .

So b is closed and continuous, and therefore b is generating. It is symmetric,
as Q is symmetric and real-valued. Hence the Neumann realization BN , as the
associated operator to b, and the Dirichlet realization, as the associated operator
to bD = b|H1

0 (Ω), are well defined and we have D(BN )∩H1
0 (Ω) = D(BD) ∩D(BN )

(cf. Proposition 2.4). As C∞
c (Ω) ⊆ H1

0 (Ω) we only need to show that C∞
c (Ω) ⊆

D(BN ). So let ϕ ∈ C∞
c (Ω), which implies thatQ∇ϕ ∈ (H1(Ω)d) as C1,1(Ω,Rd×d) ⊂

W 1,∞(Ω,Rd×d). Now, we may use the following version of Green’s formula taken
from [BGM22, Corollary 4.5], which holds for their case of ε = 1/2, as ∆ maps
from H1(Ω) to H−1(Ω). For all v ∈ D(b) = H1(Ω) we have that

〈Q∇ϕ,∇v〉Ω + 〈divQ∇ϕ, v〉Ω = 〈ν · trQ∇ϕ, tr v〉Γ = 0

as ∇ϕ = 0 close to the boundary, which shows

b(ϕ, v) = 〈− divQ∇ϕ, v〉Ω
for all v ∈ D(b) and thus ϕ ∈ D(BN ) and BNϕ = − divQ∇ϕ. �

So we may define B0, B
∗
0 , N

b, and N b as stated in Theorem 2.8. Furthermore,
the next Lemma shows that we are in the situation where Nb = N b holds.

Lemma 3.7. The operator Nb is surjective.

Proof. The surjectivity of Nb is a special case of [Nit11, Lemma 3.8]. There it is
shown that for any g ∈ L2(Γ) there is a u ∈ H1(Ω) and a λ ∈ R such that for
all v ∈ C1(Ω) we have b(u, v) + 〈λu, v〉Ω = 〈g, tr v〉Γ. Approximation in H1(Ω)
yields this result for all v ∈ H1(Ω). Hence u ∈ D(B∗

0 ) as for v ∈ D(B0) we have
−〈λu, v〉Ω = b(u, v) = 〈u,BNv〉Ω = 〈u,B0v〉Ω and B∗

0u = −λu, so u ∈ D(Nb) and
−Nbu = g. �

Next we show that the operator B∗
0 is in some sense the maximal L2-realization

of − divQ∇, and −Nb coincides with the usual co-normal derivative ∂ν , which
extends ν · trQ∇. So we begin by verifying that both operators act as desired on
smooth functions.
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Proposition 3.8. If ϕ ∈ C∞(Ω), we have B∗
0ϕ = − divQ∇ϕ and Nbϕ = −ν ·

trQ∇ϕ.
Proof. For any function ϕ ∈ C∞(Ω), so as seen above Q∇ϕ is an element of
(H1(Ω))d. So again by [BGM22, Corollary 4.5], for all v ∈ H1(Ω), we have

〈Q∇ϕ,∇v〉Ω + 〈divQ∇ϕ, v〉Ω = 〈ν · trQ∇ϕ, tr v〉Γ .
This means, for all functions v ∈ D(B0) ⊆ D(BN ), that

〈− divQϕ, v〉Ω = 〈Q∇ϕ,∇v〉Ω = b(ϕ, v) = 〈ϕ,B0v〉Ω ,
which shows ϕ ∈ D(B∗

0 ) and B∗
0ϕ = − divQ∇ϕ. Furthermore, we even have ϕ ∈

D(Nb) and Nbϕ = −ν · trQ∇ϕ. �

We point out that divQ∇ does not map test functions onto test functions. Hence,
there is no distributional realization of that operator and the largest space we can
work on is H−2(Ω), the dual of H2

0 (Ω), whence we use the L
2(Ω)-realization of that

version. To that end, we establish an elliptic regularity result on Rdm on the level
of test functions.

Lemma 3.9. Let Q satisfy Hypothesis 3.1. Then there is a symmetric, uniformly

positive definite extension Q̂ ∈ BUC1(Rd,Rd×d) of Q. Furthermore, for all s ∈
[0, 2], there is a λ0 > 1 such that for any λ ≥ λ0 there exists Cλ > 0 for which

‖ϕ‖Hs(Rd) ≤ Cλ‖(λ− div Q̂∇)ϕ‖Hs−2(Rd)

holds for all ϕ ∈ C∞
c (Ω).

Proof. We first construct the extension. As Q is uniformly positive definite in some

open superset Ω̃ which contains Ω, there is a C∞-domain Ω′ with Ω ⊆ Ω′ ⊆ Ω̃,
which can be constructed by approximation with mollified functions in the supre-
mum norm. As Ω′ is smooth with smooth boundary Γ′, there is a small tubular
neighborhood

Γ′
ε = {x ∈ R

d | dist(x,Γ′) < ε}
of Γ′, which can be parameterized by the normal vector, i.e. there is a smooth
bijective map

γ : (−ε, ε)× Γ′ → Γ′
ε; (h, x

′) 7→ γ(h, x′) := x′ + h · ∂ν(x′).
Choosing ε > 0 small enough, it is possible to guarantee Γ′

ε ∈ Ω̃ \ Ω, so Q is
defined on Ω′ ∪ Γ′

ε. For the extension, let ψ ∈ C∞(R, [0, 1]) be a strictly decreasing
function satisfying ψ = 1 on (−∞, −ε

2 ) and ψ = 0 on ( ε2 ,∞). Then, we obtain

ϕ ∈ C∞(Rd) by setting ϕ = 1 on Ω′ \Γ′
ε, ϕ = 0 on R

d \ (Γ′
ε ∪Ω′), and ϕ(x) := ψ(h)

for x = γ(h, x′) ∈ Γ′
ε. Hence, we can define Q̂(x) = (1 − ϕ(x))Q(x∗) + ϕ(x)Q(x)

for an arbitrary but fixed x∗ ∈ Ω, and the new matrix Q̂ ∈ BUC1(Rd,Rd×d) still
satisfies (3.1) as the set of uniform positive definite matrices is convex.

For the ellipticity estimate, we use parabolic theory from [DPRS23]. The con-

structed extension Q̂ satisfies their assumption (S2) (its entries are BUC1(Rd)-
functions which are constant for large |x|), and a simple calculation shows that
due to the uniform positive definiteness, the resulting operator λ − divQ∇ is also
parameter-elliptic. Hence the assumptions of [DPRS23, Lemma 3.14] are satisfied
for σ = 0 and r = ⌈|s − 1|⌉ = 1 and, we obtain the estimate in the λ-dependent
spaces by [DPRS23, Lemma 3.14]. As the constant is allowed to depend on λ, this
finishes the proof as we switch to λ-independent spaces. �
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Remark 3.10. A thorough comparison of regularities will show that a strict ap-
plication of [DPRS23, Lemma 3.14] would need qij ∈ BUC2(Ω). However, as our
operator is in divergence form, the coefficients do not need to be multipliers in
Hs−2(Rd) but only in Hs−1(Rd), whence one can deduce that BUC1(Ω) is actually
sufficient as |s− 1| ≤ 1 in our case. For details (cf. [Plo24, Section 7.2.1]).

Now we can show that the minimal realization of − div∇Q is well defined and
its domain is given by H2

0 (Ω).

Proposition 3.11. Let Bmin, the minimal realization of − divQ∇, be the closure
of

BN |C∞

c (Ω) = B0|C∞

c (Ω) = (− div∇Q)|C∞

c (Ω).

Then the following holds.

(i) Bmin is well defined.
(ii) On the space C∞

c (Ω) the graph norm ‖u‖Ω + ‖B∗
0u‖Ω is equivalent to the

full H2(Ω)-norm, whence D(Bmin) = H2
0 (Ω).

(iii) We have (− divQ∇)|H2
0 (Ω) = Bmin = B0|H2

0 (Ω).

Proof.

(i) The operators BN |C∞

c (Ω) and B0|C∞

c (Ω) are closable due to the self-adjointness

of BN . Thus Bmin is well defined.
(ii) Let ϕ ∈ C∞

c (Ω) be an arbitrary test function. Then B∗
0ϕ = − divQ∇ϕ by

Proposition 3.8 and thus ‖ϕ‖2Ω + ‖B∗
0ϕ‖2Ω ≤ ‖ϕ‖H2(Ω). For the reverse inequality

we use the matrix Q̂ from Lemma 3.9. To that end, we extend ϕ by zero to the
whole space and write e0ϕ for this extension. Choose any fixed λ > λ0 where λ0 is

taken from Lemma 3.9. Then we have (λ− div Q̂∇)e0ϕ = −e0(divQ∇ϕ) + e0(λϕ),
as supp(divQ∇ϕ) ⊆ suppϕ ⊆ Ω. Now Lemma 3.9 with s = 2 yields there is some
Cλ > 0 such that

‖ϕ‖H2(Ω) = ‖e0ϕ‖H2(Rd) ≤ Cλ

(
‖e0(divQ∇ϕ)‖Rd + λ‖e0ϕ‖Rd

)

≤ λCλ(‖B∗
0ϕ‖Ω + ‖ϕ‖Ω),

with Cλ independent of the choice of ϕ. Thus we have

H2
0 (Ω) = C∞

c (Ω)
‖·‖H2(Ω) = C∞

c (Ω)
‖·‖D(B∗

0 )
= D(Bmin).

(iii)As Bmin is closed, the first equality follows straight-forward. Now let u ∈
H2

0 (Ω) = D(Bmin) ⊆ D(bD). Then there is a sequence of test functions such that
ϕn → u with respect to the H2(Ω)-norm. For ϕn we have for all v ∈ H1(Ω)

〈Q∇ϕn,∇v〉Ω = 〈− divQ∇ϕn, v〉Ω .
Due to H2-convergence this also holds for u, and divQ∇ϕn converges to divQ∇u ∈
L2(Ω). So by definition u ∈ D(BN ) ∩ D(BD) = D(B0) and B0u = BNu =
− divQ∇u = Bminu, which shows Bmin ⊂ B0. �

Now we use duality to define Bmax. Recall that for a function u ∈ L2(Ω), the
induced regular distribution [u] acts on a function ϕ via [u](ϕ) = 〈u, ϕ〉Ω.

Definition 3.12. Let B : L2(Ω) → (H2
0 (Ω))

′ be defined by

Bu(ϕ) := 〈u,− divQ∇ϕ〉
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for all ϕ ∈ H2
0 (Ω), and define Bmax as its L2(Ω)-realization, i.e. we let

D(Bmax) := {u ∈ L2(Ω) | Bu ∈ (L2(Ω))′},
and identify Bmaxu with g ∈ L2(Ω), where g is the unique element for which
(Bu)(ϕ) = [g](ϕ) holds.

It can also be verified that this definition is compatible with the representa-
tions Bu = −∑i,j ∂iqij∂ju = − divQ∇u, where each derivative is considered as

weak derivative, and the multiplication with the coefficients in H−1(Ω) (cf. [Plo24,
Lemma 3.17]). Now we can characterize Bmax by duality as follows:

Proposition 3.13. We have Bmax = (B0|H2
0 (Ω))

∗ = B∗
min, as well as B

∗
max = Bmin.

In particular, this shows that Bmax is closed.

Proof. Let u ∈ D(Bmax). This, equivalently, means u ∈ L2(Ω) and there is an
f ∈ L2(Ω) such that 〈f, ϕ〉Ω = Bu(ϕ) = 〈u,− divQ∇ϕ〉Ω = 〈u,B0ϕ〉Ω for all
ϕ ∈ H2

0 (Ω). By definition this means u ∈ D((B0|H2
0 (Ω))

∗) and f = (B0|H2
0 (Ω))

∗u.

The second assertion follows directly as Bmin is closed and the restriction of the
self-adjoint operator BN , and therefore symmetric. �

In a final step we remove the restriction to H2
0 by showing that the smooth

functions are actually a core of Bmax.
To that end, we restate the definition of the spaces Hs

B(Ω) from (cf. Section 3.1)
in a more precise manner by setting Hs

B(Ω) := {u ∈ Hs(Ω) | Bu ∈ L2(Ω)} for
s ≥ 0 equipped with the norm ‖u‖Hs(Ω) + ‖Bmaxu‖Ω, and in particular we have

D(Bmax) = H0
B(Ω). We will also write ‖ · ‖B instead of ‖ · ‖D(Bmax) or ‖ · ‖H0

B(Ω). It

might be more accurate to call those spaces Hs
Bmax

(Ω), but we refrain from doing
so for sake of readability, also emphasizing the fact that Bmax actually takes the
role of the abstract operator B that remained undefined in Section 2.

Furthermore, we even may explicitly characterize D(Nb) and Nb as we are in
the setting of [BGM22, Chapter 11.4], whence we have Lemma 3.4 at our disposal
and existence, continuity, and surjectivity of γsQ : Hs

B(Ω) → Hs−3/2(Γ) is assured

for all s ∈ [ 12 ,
3
2 ]. All those Neumann traces are continuous extensions of ν · trQ∇

on C∞(Ω) to Hs
B(Ω) by the density which we also ascertain below.

Theorem 3.14.

(i) For all s ≥ 0, the space C∞(Ω) is dense in Hs
B(Ω).

(ii) We have B0 = Bmin (i.e. D(B0) = H2
0 (Ω) and C

∞
c (Ω) is a core of B0) and

B∗
0 = Bmax.

(iii) We have Nb = −∂Qν = −γ3/2Q , so in particular D(Nb) = D(∂Qν ) = H
3/2
B (Ω).

(iv) D(BD) ⊆ H
3/2
B (Ω), D(BN ) ⊆ H

3/2
B (Ω).

Proof.

(i) In the case s ≥ 2 the space Hs
B(Ω) coincides with H

s(Ω). The cases s ∈ [0, 2)
will follow by adapting the proof of [BGM22, Lemma 2.13], where this density was

shown for B = ∆. Consider Ḣs(Ω) := {u ∈ Hs(Rd) | suppu ∈ Ω} (cf. [BGM22,
Section 2.3]) and the map

ι : Hs
B(Ω) → Hs(Ω)× L2(Ω), u 7→ ι(u) = (u,Bmaxu),

which is an isometric isomorphism from Hs
B(Ω) to the closed subspace ι(Hs

B(Ω))
as Bmax is a closed operator. Let Λ be any functional in (Hs

B(Ω))
′, then Λ ◦ ι−1 is
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a linear, bounded functional on ι(Hs
B(Ω)), which can be extended to a functional

Λ̂ ∈ (Hs(Ω)×L2(Ω))′ = Ḣ−s(Ω)×L2(Ω) using Hahn-Banach’s theorem. Hence, by

[BGM22, p.27-29], there are representatives h1 ∈ Ḣ−s(Ω), h2 ∈ L2(Ω) such that,
given any u ∈ Hs

B(Ω), for any F ∈ Hs(Rd), G ∈ L2(Rd) satisfying F |Ω = u and
G|Ω = Bmaxu we have

Λ(u) = 〈h1, F 〉H−s(Rd)×Hs(Rd) +
〈
e0h2, G

〉
Rd .

Note that for s = 0, we may replace Ḣ0(Ω) with the zero extension of L2(Ω)-
functions and the dual pairing with the standard inner product on L2(Ω). In
particular, if we take u = ϕ|Ω, for any ϕ ∈ C∞

c (Rd), we obtain

Λ(ϕ|Ω) = 〈h1, ϕ〉H−s(Rd)×Hs(Rd) +
〈
e0h2,− div Q̂∇ϕ

〉
Rd

due to (− div Q̂∇ϕ)|Ω = (− divQ∇ϕ)|Ω = B∗
0ϕ|Ω = Bmaxϕ|Ω by Proposition 3.8,

where Q̂ once more denotes the extended matrix from Lemma 3.9.
In order to show the desired density, we assume that for any ϕ ∈ C∞(Ω) we had

Λ(ϕ) = 0, and deduce that this implies Λ = 0. By definition, however, Λ(ϕ) = 0
means that we have

〈h1, ϕ〉H−s(Rd)×Hs(Rd) =
〈
e0h2, div Q̂∇ϕ

〉
Rd

= (div Q̂∇e0h2)(ϕ)

for all ϕ ∈ C∞
c (Rd) and by density for all ϕ ∈ H2(Rd). At first we consider

− div Q̂∇e0h2 = (− div ◦mQ̂ ◦∇)(e0h2) as an element of H−2(Rd) consisting of the

separate mappings ∇ : L2(Rd) → (H−1(Rd))d, mQ̂ : (H−1(Rd))d → (H−1(Rd))d,

and div : (H−1(Rd))d → H−2(Rd) where mQ̂ denotes the multiplication with Q̂ in

H−1(Rd). With the usual identification of dual spaces, we obtain
〈
div Q̂∇e0h2, ϕ

〉
H−2(Rd)×H2(Rd)

= (div Q̂∇e0h2)(ϕ) = 〈h1, ϕ〉H−s(Rd)×Hs(Rd) .

So h1 = div Q̂∇e0h2 ∈ H−2(Rd), or for some large λ ≥ λ0 also −h1 + λe0h2 =

(λ− div Q̂∇)e0h2. Now by Lemma 3.9 applied with 2− s ∈ (0, 2], we have

‖e0h2‖H2−s(Rd) ≤ Cλ‖λe0h2 − h1‖H−s(Rd),

which shows that e0h2 ∈ H2−s(Rd) and as supp e0h2 ∈ Ω, also e0h2 ∈ Ḣ2−s(Ω).

However the space of zero extensions of C∞
c (Ω) lies dense in Ḣ2−s(Ω) (cf.

[BGM22, (2.82)]), and there is a sequence of functions (ψn)n ⊆ C∞
c (Ω) such that

e0ψn converges to e0h2 in H2−s(Rd), which shows that div Q̂∇e0ψn converges to

div Q̂∇e0h2 = h1 in H−s(Rd). But then, for any u ∈ Hs
B(Ω) and F ∈ Hs(Rd) such

that F |Ω = u, we obtain

Λ(u) = 〈h1, F 〉H−s(Rd)×Hs(Rd) +
〈
e0h2, e

0Bmaxu
〉
Rd

= lim
n→∞

〈
divQ∇e0ψn, F

〉
H−s(Rd)×Hs(Rd)

+ 〈ψn, Bmaxu〉Ω
= lim

n→∞
−〈Bminψn, u〉Ω + 〈ψn, B

∗
minu〉Ω = 0.

Hence, Λ already vanishes on Hs
B(Ω); and we have shown that Λ|C∞(Ω) = 0 implies

Λ = 0, which yields the desired density by a standard corollary to Hahn–Banach.
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(ii) Let v ∈ D(B0) and u ∈ D(Bmax) be arbitrary. Because of (i) there is a
sequence of functions ϕn in C∞(Ω) such that B∗

0ϕn → Bmaxu and ϕn → u in
L2(Ω). Hence for all v ∈ D(B0) we have

0 =
〈
−Nbϕn, tr v

〉
Γ

=
〈
−N

bϕn, tr v
〉
Γ
= 〈v,B∗

0ϕn〉Ω − 〈B0v, ϕn〉Ω → 〈v,Bmaxu〉Ω − 〈B0v, u〉Ω ,
so

〈v,Bmaxu〉Ω − 〈B0v, u〉Ω = 0

for all u ∈ D(Bmax). This shows v ∈ D(B∗
max) and B0v = B∗

maxv = Bminv, which
together with Propositions 3.11 (iii) and 3.13 shows that B0 = Bmin and B∗

0 = Bmax

as claimed.
(iii)Nb = −∂Qν follows from B∗

0 = Bmax and the definition of the weak co-

normal (3.2). We show γ
3/2
Q ⊆ −Nb ⊆ γ1Q first. So let u ∈ H

3/2
B (Ω). By (i)

there is a sequence (ϕn)n ⊆ C∞(Ω) that converges to u in H
3/2
B (Ω). As in the

proof of Proposition 3.8 we have 〈Bmaxϕn, v〉Ω−b(ϕn, v) = 〈−ν · trQ∇ϕn, tr v〉Γ =

〈−γ3/2Q ϕn, tr v〉Γ for all v ∈ H1(Ω). Hence, as the sequence (ϕn)n in particular

converges in H1
B(Ω), we may take the limit and obtain for all v ∈ H1(Ω)

〈Bmaxu, v〉Ω − b(u, v) = lim
n→∞

〈Bmaxϕn, v〉Ω − b(ϕn, v)

= lim
n→∞

〈
−γ3/2Q ϕn, tr v

〉
Γ
=
〈
−γ3/2Q u, tr v

〉
Γ
.

As γ
3/2
Q u ∈ L2(Γ), by definition we have u ∈ D(Nb) and Nbu = −γ3/2Q u. For the

second inclusion let u ∈ D(Nb), then for all v ∈ H1(Ω) we have

〈Bmaxu, v〉Ω − b(u, v) =
〈
Nbu, tr v

〉
Γ
=
〈
Nbu, tr v

〉
H−1/2(Γ)×H1/2(Γ)

as v ∈ H1(Ω) and the Dirichlet trace maps continuously from H1(Ω) to H1/2(Γ)
(see Definition 3.3).

Next, recall that D(Nb) ⊆ H1
B(Ω) by definition. Using the density of C∞(Ω) in

H1
B(Ω), we find a sequence (ϕn)n ⊆ C∞(Ω) that converges in H1

B(Ω) towards u.

So continuity of γ1Q from H1(Ω) to H−1/2(Γ) yields

〈Bmaxu, v〉Ω − b(u, v) = lim
n→∞

〈Bmaxϕn, v〉Ω − b(ϕn, v) = lim
n→∞

〈
−γ1Qϕn, tr v

〉
Γ

= lim
n→∞

〈
−γ1Qϕn, tr v

〉
H−1/2(Γ)×H1/2(Γ)

=
〈
−γ1Qu, tr v

〉
H−1/2(Γ)×H1/2(Γ)

.

Hence we have
〈
Nbu, tr v

〉
H−1/2(Γ)×H1/2(Γ)

=
〈
−γ1Qu, tr v

〉
H−1/2(Γ)×H1/2(Γ)

for all v ∈ H1(Ω). As the Dirichlet trace is surjective onto H1/2(Γ), we obtain
〈
Nbu, ψ

〉
H−1/2(Γ)×H1/2(Γ)

=
〈
−γ1Qu, ψ

〉
H−1/2(Γ)×H1/2(Γ)

for all ψ ∈ H1/2(Γ) by taking any solution of tr v = ψ. Thus −γ1Qu = Nbu on

H−1/2(Γ), which in particular yields ker γ
3/2
Q ⊆ kerNb ⊆ ker γ1Q. By Lemma 3.4

we have ker γsQ ⊆ H
3/2
B = D(γ

3/2
Q ) for all s ∈ [ 12 ,

3
2 ]. As γ

3/2
Q is also surjective onto

L2(Γ), we have Nb = γ
3/2
Q by Proposition 2.7.
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(iv)This follows from Lemma 3.4, once more. We have that u ∈ H1
B(Ω) and either

tru = 0 or γsQu = 0 for any s ∈ [ 12 ,
3
2 ] implies u ∈ H

3/2
B (Ω). �

3.3. On the fourth-order system. Applying the above results to the primary
form a and its associated operator we obtain the following solution theorems for
fourth-order system with Wentzell boundary conditions. We are able to solve the
following system, as Nb is surjective by Lemma 3.7.

Theorem 3.15. Assume Hypotheses 2.9 and 3.1. Let B = − div∇Q. Then for
u0 = (u1,0, u2,0) ∈ H the Cauchy problem

∂tu1 +B(αB)u1 = 0 in (0,∞)× Ω, (3.6)

∂tu2 + β∂Qν (αB)u1 + γu2 = 0 on (0,∞)× Γ, (3.7)

∂Qν u1 = 0 on (0,∞)× Γ, (3.8)

u1|t=0 = u1,0 in Ω, (3.9)

u2|t=0 = u2,0 on Γ (3.10)

possesses a unique solution, which is given by u(t) = T(t)(u1,0, u2,0) for t > 0 where
T(t) is the analytic semigroup generated by −A. Furthermore we have

D(A) = {u ∈ H | u1 ∈ H
3/2
B (Ω), α divQ∇u1 ∈ H

3/2
B (Ω), tr u1 = u2, γ

3/2
Q u1 = 0}.

Proof. This is a direct consequence of Theorems 2.8 and 2.12, whose assumptions
are validated by Lemmata 3.6 and 3.7. The identification of the operators and
characterization of the domain follow from Theorem 3.14. �

Remark 3.16. As in Remark 2.13, we observe that u1 also solves the corresponding
non-decoupled problem with Wentzell boundary conditions

∂tu+B(αB)u = 0 in (0,∞)× Ω, (3.11)

trB(αB∇)u − β∂Qν (αB)u − γ tr u = 0 on (0,∞)× Γ, (3.12)

∂Qν u = 0 on (0,∞)× Γ, (3.13)

u|t=0 = u0 in Ω. (3.14)

Finally, we also want to add the case δ > 0. The main idea is to compare the
machinery of the form b with that of bδ defined by

bδ(u, v) = 〈Q∇u,∇v〉Ω + 〈δu, v〉Γ
for 0 ≤ δ ∈ L∞(Ω) on D(bδ) = H1(Ω).

Proposition 3.17. Under Hypotheses 2.9 and 3.1, the subsidiary form bδ is ad-
missible. We denote its associated operator by BN,δ.

Proof. As 0 ≤ δ ∈ L∞(Γ), the calculations are similar to the proof of Lemma 3.6.
Note that the norm ‖ · ‖bδ

is also equivalent to the full H1(Ω)-norm as the trace is
continuous from H1(Ω) to L2(Γ). �

Under the given smoothness conditions we have C∞
c (Ω) ⊆ D(BN,δ) similar as

in Lemma 3.6 due to the fact that b = bδ for test functions. Naturally, one can
consider the restriction of the form to H1

0 (Ω) once more, but there the form also
coincides with the previous form bD, so the Dirichlet realization is independent of
δ. This also shows that also D(BN,δ)∩D(BD,δ) is dense in L

2(Ω) and Theorem 2.8
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is applicable to bδ, as well. The versions of all appearing operators Nb,N b, B0,
etc., associated to bδ will be denoted by Nbδ ,N bδ , B0,δ, etc.

Theorem 3.18. In the above setting we have the following results.

(i) Nbδ is surjective.
(ii) B0,δ = B0, and (B0,δ)

∗ = Bmax,δ = Bmax = B∗
0 = − divQ∇ considered as

L2-realization of a map from L2(Ω) to H−2(Ω).

(iii) Nbδ = −γ3/2Q − δ · tr, and the operator associated to aδ on H is given by

Aδ =

(
divQ∇(α divQ∇) 0

−β(γ3/2Q + δ tr)(α divQ∇) γ

)
(3.15)

on

D(Aδ) = {u ∈ H | u1 ∈ H
3/2
B (Ω),α divQ∇u1 ∈ H

3/2
B (Ω),

tru1 = u2, γ
3/2
Q u1 + δ tr u1 = 0}.

Proof.

(i) The surjectivity of Nbδ follows from [Nit11, Lemma 3.7/3.8], just as in the
Neumann case, because the theory there also contains the Robin case (cf. [Nit11,
Equation (2.3)]). So Nbδ = N

bδ .
(ii) For u ∈ H1

0 and f ∈ L2(Γ) we have 〈f, v〉Γ = 〈Q∇u,∇v〉Ω for all v ∈ H1(Ω)
if and only if we have 〈f, v〉Γ = 〈Q∇u,∇v〉Ω + 〈δ tr u, tr v〉Γ for all v ∈ H1(Ω) due
to tr u = 0. Thus D(BN ) ∩ H1

0 = D(BN,δ) ∩ H1
0 and the operators BN and BN,δ

coincide there, which shows B0 = B0,δ. Taking adjoints, this carries over to B∗
0 . As

B0,δ = B0 = (− divQ∇)|H2
0
we also have Bu = Bδu, so also their L2-realizations

Bmax and Bmax,δ must coincide.
(iii)Due to the surjectivity shown in (i) we have N

bδ = Nbδ by Theorem 2.8 (iv).
Next we show Nbδ = Nb − δ tr u. Assume u ∈ D(Nb). Hence u ∈ H1(Ω) and
for all v ∈ H1(Ω) we have

〈
Nbu, tr v

〉
Γ

= 〈B∗
0u, v〉Ω − b(u, v). So, equivalently,〈

Nb − δ tru, tr v
〉
Γ
= 〈(B0,δ)

∗u, v〉Ω − bδ(u, v), which shows D(Nb) = D(Nbδ ) and

Nbδ = Nb − δ tr = −γ3/2Q − δ tr by Theorem 3.14 (iii). Furthermore, by Theo-
rem 2.12, the associated operator Aδ is given by

Aδ =

(
(B0,δ)

∗(αBN,δ) 0
−βN bδ (αBN,δ) γ

)

on
D(Aδ) = {u ∈ H | u1 ∈ D(BN,δ), αBN,δu1 ∈ D(N bδ ), u2 = tr u1}.

Using (i), (ii) and Theorem 3.14 (iii) and (iv) yields the result. Note that kerNbδ =
D(BN,δ) because of Theorem 2.8 (iii) applied to bδ. �

Remark 3.19. After having verified H
3/2
B (Ω)-regularity for the trace Nb, it can be

deduced that (L2(Ω), tr, Nbδ) actually is a quasi-boundary triple for the operator
Bmax|D(Nb) in the sense of [BM14], which generalizes the results from their Section

4.2 to Lipschitz domains. A detailed proof can be found in [Plo24, Section 3.4].

We may finally collect the main result for our original system (1.5)–(1.9). The

notations Nb and γ
3/2
Q were useful in context with the general theory. In the

following, however, we will write ∂Qν , again, which is closer to classical notation.

Note that due to our results we have ∂Qν = γ
3/2
Q = −Nb = −N b, anyway.
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Theorem 3.20. Assume Hypotheses 2.9 and 3.1. Write B = − divQ∇ and ∂Qν as
the unique extension of ν · trQ∇ to H3/2(Ω). Then for u0 = (u1,0, u2,0) ∈ H the
Cauchy problem

∂tu1 +B(αB)u1 = 0 in (0,∞)× Ω, (3.16)

∂tu2 + β∂Qν (αB)u1 + βδ tr(αB)u1 + γu2 = 0 on (0,∞)× Γ, (3.17)

∂Qν u1 + δu2 = 0 on (0,∞)× Γ, (3.18)

u1|t=0 = u1,0 in Ω, (3.19)

u2|t=0 = u2,0 on Γ (3.20)

possesses a unique solution, which is given by u(t) = T(t)(u1,0, u2,0) where T(t)
is the analytic semigroup generated by −Aδ given as in (3.15). For t > 0, we
have u(t) ∈ D(A∞

δ ), whence u1 solves the original system with Wentzell boundary
conditions given by

∂tu+B(αB)u = 0 in (0,∞)× Ω, (3.21)

trB(αB)u − β∂Qν (αB)u − βδ tr(αB)u − γ tr u = 0 on (0,∞)× Γ, (3.22)

∂Qν u+ δ tr u = 0 on (0,∞)× Γ, (3.23)

u|t=0 = u0 in Ω. (3.24)

4. Further properties of the solution in the fourth-order case

In this section, we present results concerning regularity and long-time behavior
of our solution. We begin with a regularity result in a smoother situation. Then
we return to our situation with Lipschitz domains and rougher coefficients.

4.1. Higher regularity for smoother cases. Even with smooth coefficients and
boundary, we cannot expect that for u ∈ D(A) the first component u1 belongs
to H4(Ω). However, using the theory of [DPRS23], we can deduce u1 ∈ H7/2(Ω).
Recall that any solution of the system (1.5)–(1.9) satisfies u ∈ D(A), which shows
B(αB)u1 ∈ L2(Ω), β∂Qν (αB)u1 ∈ L2, and ∂Qν u1 + δ tr u1 = 0. Thus the first
component of any solution of (1.5)–(1.9) in particular satisfies

λu1 +B(αB)u1 = f := λu1 +B(αB)u1 in (0,∞)× Ω, (4.1)

−β∂Qν (αB)u1 = g := −β∂Qν (αB)u1 on (0,∞)× Γ, (4.2)

∂Qν u1 + δ tru1 = 0 on (0,∞)× Γ (4.3)

with (f, g) ∈ H = L2(Ω) × L2(Γ). We prove that the assumptions of [DPRS23,
Corollary 4.10] are satisfied for this system, where τ = mj + 1/p and thus ⌈|r′|⌉ =
⌊|k′1|⌋ + 1 = 1, ⌊|k′2|⌋ + 1 = 3. To that end, we assume Q ∈ BUC4(Ω,Rd×d), α ∈
BUC3(Ω), β ∈ BUC1(Γ), and δ ∈ BUC3(Γ) to ensure aα ∈ BUC1(Ω), b1β ∈
BUC1(Γ), and b2β ∈ BUC3(Γ), as needed. Furthermore, we assume Ω to have C6-
boundary. The last assumption to check is that the system is parameter-elliptic,
for which we briefly recall the definition. Therein, we use the standard form

(
λ+A
B

)

for parameter-elliptic boundary value problems for a moment, which is not to be
confused with our operators A and B.
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Definition 4.1. Let Λ ⊆ C be a closed sector in the complex plane with vertex at
the origin. Using the standard convention D := −i∇ for parabolic boundary value
problems, let A and B = (B1, ..., Bm) be formally given by

A(x,D) :=
∑

|α|≤2m

aα(x)D
α and Bj(x,D) :=

∑

|β|≤mj

bβ(x) trD
β (j = 1, . . . ,m),

where mj < 2m

(i) We define the principal symbols of A and Bj as

a0(x, ξ) :=
∑

|α|=2m

aα(x)ξ
α and b0,j(x, ξ) :=

∑

|β|=mj

bjβ(x)ξ
β (j = 1, . . . ,m),

respectively.
(ii) We call the family λ−A(x,D) parameter-elliptic in Λ if the principal symbol

a0(x, ξ) satisfies

|λ− a0(x, ξ)| ≥ C
(
|λ|+ |ξ|2m

)
(x ∈ Ω, λ ∈ Λ, ξ ∈ R

d, (ξ, λ) 6= 0) (4.4)

for some constant C > 0.
(iii)The boundary value problem

(
λ+A
B

)
is called parameter-elliptic in Λ if λ −

A(x,D) is parameter-elliptic in Λ, and the following Shapiro–Lopatinskii condition
holds:

Let x0 ∈ ∂Ω be an arbitrary point of the boundary; rewrite the boundary value
problem (λ−a0(x0, D), b0,1(x0, D), . . . , b0,m(x0, D)) in the coordinate system asso-
ciated with x0 obtained from the original one by a rotation after which the positive
xd-axis has the direction of the interior normal to ∂Ω at x0. Then, for all ξ

′ ∈ Rd−1

and λ ∈ Λ with (ξ′, λ) 6= 0, the trivial solution w = 0 is the only stable solution of
the ordinary differential equation on the half-line

(λ− a0(x0, ξ
′, Dd))w(xd) = 0 (xd ∈ (0,∞)),

b0,j(x0, ξ
′, Dd)w(0) = 0 (j = 1, . . . ,m).

Lemma 4.2. The system



λ+BαB
−β∂Qν (αB)
∂Qν + δ tr


 is parameter-elliptic in Σθ for θ ∈ (0, π).

Proof. The parameter-ellipticity for the family λ+BαB is simple as we have

a0(x, ξ) := symb0[BαB](x, ξ) =
∑

j,k

(ξjqjk(x)ξk)α(x)
∑

j′ ,k′

(ξj′qj′k′ (x)ξk′ ) > 0

for all |ξ| 6= 0 as the matrix Q = (qjk)jk is symmetric and uniformly positive
definite. Note for the first line that all the terms where the derivative hits the
coefficient are of lower order. Hence, we can exploit homogeneity and boundedness
of the domain, which shows parameter-ellipticity in any closed sector that does not
contain the negative real line.

A similar calculation shows

a′(x, ξ) := symb0[B](x, ξ) =
∑

j′,k′

ξj′qj′k′(x)ξk′ ,

b0,1(x, ξ) := symb0[−β∂Qν (αB)](x, ξ) = iβ(x)
∑

k

qdkξkα(x)a
′(x, ξ),
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b0,2(x, ξ) := symb0[∂
Q
ν ](x, ξ) = −i

∑

k

qdk(x)ξk.

In order to verify the Shapiro–Lopatinskii condition, we need to show that the ODE
below only has the trivial solution. For this, the operators are locally transformed
into the half-space at every fixed point x0 ∈ Γ. It is a known fact that this coordi-
nate transformation leaves the coefficients of the main symbol invariant (cf. [Wlo87,
Satz 10.3]). Furthermore, we would like to note that, as we only consider a fixed
x0, the coefficients commute with all derivatives and we can simply pass from di-
vergence to non-divergence form, which shows we may investigate the system (4.5)

below. We write Ξ =
(

ξ′

−i∂d

)
, where ξ = (ξ′, ξd) ∈ Rd as usual, and interpret the

first components as multiplication, so Ξw = (ξ1w, . . . , ξd−1w,−i∂dw). Then, for
xd ∈ (0,∞), and λ ∈ Σθ, ξ

′ ∈ Rd−1 satisfying (λ, ξ′) 6= 0, we assume

(λ+ a0(x0,Ξ))w(xd) = 0,

b0,1(x0,Ξ)w(0) = 0,

b0,2(x0,Ξ)w(0) = 0.

(4.5)

Note that integration by parts yields
〈
∑

j

Ξju, v

〉

L2(0,∞)

=

〈
u,
∑

j

Ξjv

〉

L2(0,∞)

− iud(0) · vd(0).

Multiplying the first line with w in L2((0,∞)) and using integration by parts and
(4.5), we obtain

0 = |λ|‖w‖2L2(0,∞) +
∑

j,k

〈Ξjqjk(x0)Ξkα(x0)a
′(x0,Ξ)w,w〉L2(0,∞)

= |λ|‖w‖2L2(0,∞) +
∑

j.k

〈qjk(x0)Ξkα(x0)a
′(x0,Ξ)w,Ξjw〉L2(0,∞)

− β−1(x0)b0,1(x0,Ξ)w(0) · w(0)
= |λ|‖w‖2L2(0,∞) +

∑

j,k

〈Ξkα(x0)a
′(x0,Ξ)w, qjk(x0)Ξjw〉L2(0,∞)

= |λ|‖w‖2L2(0,∞) +

〈
α(x0)a

′(x0,Ξ)w,
∑

k,j

Ξjqkj(x0)Ξkw

〉

L2(0,∞)

− α(x0)a
′(x0,Ξ)w(0) · b0,2(x0,Ξ)w(0)

= |λ|‖w‖2L2(0,∞) + ‖
√
α(x0)a

′(x0,Ξ)w‖2L2(0,∞).

Note that we used that the matrix Q = (qjk) is symmetric and real-valued and that

α > 0, β > 0. If λ 6= 0, this implies that w = 0 as desired, since Σθ ⊆ C \ (−∞, 0).
If λ = 0, and thus by assumption ξ′ 6= 0, we have a′(x0,Ξ)w = 0.
Multiplying with w in L2(0,∞) once more, we obtain

0 =
∑

j′,k′

〈Ξj′qj′k′(x0)Ξk′w,w〉L2(0,∞)

=
∑

j′,k′

〈qj′k′(x0)Ξk′w,Ξj′w〉L2(0,∞) + b0,2(x0,Ξ)w(0) · w(0)
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=
∑

j′,k′

〈qj′k′(x0)Ξk′w,Ξj′w〉L2(0,∞)

=

∫ ∞

0

〈Q(Ξw)(xd), (Ξw)(xd)〉Cd dxd ≥ κQ

∫ ∞

0

|(Ξw)(xd)|2dxd

= κQ(|ξ′|2‖w‖2L2(0,∞) + ‖∂dw‖2L2(0,∞)).

In the last step we used that Q is uniformly positive definite (cf. (3.1)). As ξ′ 6= 0,
we also have w = 0 in this case. Hence altogether the system is parameter-elliptic
in every sector smaller than π. �

This shows H7/2-regularity of any solution:

Corollary 4.3. Let Ω be a bounded domain with C6-boundary.
Let Q ∈ BUC4(Ω,Rd×d), α ∈ BUC3(Ω), β ∈ BUC1(Ω), δ ∈ BUC3(Ω). Then,

we have

D(A) = {u ∈ H |u1 ∈ H7/2(Ω), B(αB)u1 ∈ L2(Ω), ∂Qν + δ tr u1 = 0, u2 = tr u1}.

Proof. By the above all assumptions of [DPRS23, Corollary 4.10] are satisfied,
hence we obtain

‖u1‖H7/2
λ (Ω)

≤ ‖f‖L2(Ω) + ‖g‖B0
22,λ(Γ)

<∞

due to B0
22,λ(Γ) = L2

λ(Γ) = L2(Γ). �

4.2. Hölder regularity. We show next that on Lipschitz domains and with co-
efficients as in Hypotheses 2.9 and 3.1 the solution u(t, ·) = (u1(t, ·), u2(t, ·)) of
(1.1)–(1.4) satisfies that u1(t, ·) is Hölder continuous for every t > 0. This implies
that tr u1(t, ·) = u2(t, ·) also holds in a classical sense.

Recall that T(t) maps H into D(A∞
δ ) for any t > 0 as it is analytic. It is

not to be expected, however, that u(t, ·) ∈ D(A∞
δ ) implies u1(t, ·) ∈ H3/2+ε(Ω)

for any ε > 0, as such a gain in differentiability does not even necessarily hold
for the much simpler Neumann Laplacian due to possible non-convex corners (cf.
[Kon67]). So Hölder-continuity cannot be derived by Sobolev embedding directly
in high dimensions. However, we can use a bootstrapping idea on the integrability.

To that end we use the regular spaces Lp(Ω) and Lp(Γ) where the coefficient β
is not included, and write ‖ · ‖Ω,p and ‖ · ‖Γ,p for the occurring norms, respectively.
In the case p = 2, the index is dropped. Note that the Lp-spaces are nested as
our domain Ω is bounded. Furthermore, recall that C0,ϑ(Ω) refers to the space of
ϑ-Hölder continuous functions on Ω, and note that every function u ∈ C0,ϑ(Ω) can
be extended uniquely to a (Hölder) continuous function on Ω.

As a preparation, we establish some further results concerning weak solutions of
the inhomogeneous Neumann problem

(λ− divQ∇)u = f̃ in Ω,

∂Qν u = g̃ on Γ.
(4.6)

Proposition 4.4. Let f̃ ∈ L2(Ω), g̃ ∈ L2(Γ).

(i) For λ > 0, (4.6) has a unique weak solution, by which we mean a function
u ∈ H1(Ω) such that

b
λ(u, v) = 〈Q∇u,∇v〉Ω + 〈λu, v〉Γ = 〈f̃ , v〉Ω + 〈g̃, tr v〉Γ (4.7)
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for all v ∈ H1(Ω). Furthermore, u ∈ H
3/2
B (Ω), and we have the estimate

‖u‖2
H

3/2
B (Ω)

≤ C(‖f̃‖2Ω + ‖g̃‖2Ω).

(ii) Let f̃ ∈ Ld/2+ε(Ω), g̃ ∈ Ld−1+ε(Γ) for some ε > 0. Then, for any λ ∈ R,
any weak solution of (4.6) satisfies u ∈ C0,ϑ(Ω) for some ϑ ∈ (0, 1) and
the estimate

‖u‖C0,ϑ(Ω) ≤ C
(
‖u‖Ω + ‖f̃‖Ω, d2+ε + ‖g̃‖Γ,d−1+ε

)
. (4.8)

If λ > 0, we can drop the ‖u‖Ω-term on the right-hand side.

(iii) Let f̃ ∈ Lp(Ω), g̃ ∈ Lp(Γ) for some p > 2. Then, for λ > 0, the unique
solution u of (4.6) satisfies (u, tru) ∈ Lϕ(p)(Ω)× Lϕ(p)(Γ) and

‖u‖Ω,ϕ(p) + ‖ tru‖Γ,ϕ(p) ≤ C0

(
‖f̃‖Ω,p + ‖g̃‖Γ,p

)
(4.9)

where

ϕ(p) :=

{
d−2
d−p p if p ∈ (2, d),

∞ if p ∈ [d,∞).

Proof.

(i) We construct a solution candidate by collecting properties of a weak solution.
At first we observe that for any such weak solution u ∈ H1(Ω) we have, given any
v ∈ D(B0) ⊆ D(BN ),

〈u,B0v〉Ω = b(u, v) = b
λ(u, v)− λ 〈u, v〉Ω =

〈
f̃ − λu, v

〉
Ω
.

Hence u ∈ D(B∗
0) and f̃ = (λ + B∗

0)u. By Theorem 3.14 (ii), we also have (λ +

Bmax)u = (λ + B∗
0u) = f̃ by , so the first line of (4.6) holds in L2(Ω), where

− divQ∇ is seen as L2(Ω)-realization of an object in H−2(Ω). Furthermore, for all
v ∈ H1(Ω) we obtain

〈−B∗
0u, v〉Ω + b(u, v) =

〈
−f̃ , v

〉
Ω
+ b

λ(u, v) = 〈g̃, tr v〉Γ ,

which shows u ∈ D(Nb) and −Nbu = g̃. However, Theorem 3.14 (iii) yields

D(Nb) = H
3/2
B (Ω) and γ

3/2
Q u = ∂Qν u = −Nbu = g̃. So when we subtract v = Υ

3/2
N g̃

where Υ
3/2
N is the continuous right-inverse of γ

3/2
Q from Lemma 3.4 (i), the difference

u− v solves the Neumann problem

(λ− divQ∇)(u − v) = f̃ + divQ∇v − λv in Ω,

γ
3/2
Q (u − v) = 0 on Γ.

(4.10)

Thus u − v ∈ D(BN ), as well as (λ − divQ∇)(u − v) = (λ + BN )(u − v). In
conclusion, we have shown that any weak solution of (4.6) satisfies (λ + BN )(u −
v) = f̃ + divQ∇v − λv. Hence, a suitable solution candidate is given by ũ :=

(λ + BN )−1(f̃ + divQ∇Υ
3/2
N g̃ − λΥ

3/2
N g̃) + Υ

3/2
N g̃, which is well defined due to

(−∞, 0) ∈ ρ(BN ).
Finally, we verify ũ indeed is a solution and satisfies the regularity estimate. By

Lemma 3.4 (iii), we have

‖ũ− v‖2
H

3/2
B (Ω)

≤ C(‖ũ− v‖2Ω + ‖BN (ũ− v)‖Ω) = C‖ũ− v‖2BN

= C‖(λ+BN )−1(f̃ + divQ∇v − λv)‖2BN
≤ C

(
‖f̃‖2Ω + ‖v‖2

H
3/2
B (Ω)

)
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(where the constant C is generic) and thus by the above and the continuity of Υ
3/2
N

‖ũ‖2
H

3/2
B (Ω)

≤ C
(
‖f̃‖2Ω + ‖v‖2

H
3/2
B (Ω)

)
≤ C(‖f̃‖2Ω + ‖g̃‖2Γ).

Now, naturally, ũ solves (4.6) in a strong sense by construction. By definition of
−Nb = ∂Qν it also satisfies (4.7) and is in particular a weak solution with all the
desired properties.

The uniqueness is straightforward: If we had two weak solutions u,w ∈ H1(Ω)
satisfying (4.7) for all v ∈ H1(Ω), we would have b

λ(u − w, v) = 0 for all v ∈
H1(Ω). Now λ+BN is the associated operator to bλ, whence u−w in D(BN ) and
(λ+BN )(u− w) = 0. Again, by (−∞, 0) ⊆ ρ(BN ), we have u− w = 0.
(ii) This is [Nit10, Theorem 3.1.6] applied to A(x, u, p) = Q · p, a(x, u, p) = λu.
Note that their Assumption 2.9.1 is satisfied, and we are in the situation of [Nit10,
Remark 3.1.7]. If λ > 0, we can estimate

‖u‖Ω ≤ ‖u‖
H

3/2
B (Ω)

≤ C(‖f̃‖2Ω + ‖g̃‖2Ω) ≤ C(‖f̃‖2d
2+ε,Ω

+ ‖g̃‖2d−1+ε,Ω).

(iii)Let λ > 0. By (i) and (ii) the unique solution satisfies the two estimates

‖u‖Ω,2 + ‖ tru‖Γ,2 ≤ C‖u‖
H

3/2
B (Ω)

≤ C
(
‖f̃‖Ω,2 + ‖g̃‖Γ,2

)
, (4.11)

as well as

‖u‖Ω,∞ + ‖ tru‖Γ,∞ ≤ ‖u‖C0,ϑ(Ω) ≤ C
(
‖f̃‖Ω,d + ‖g̃‖Γ,d

)
. (4.12)

More precisely, the solution operator Rλ that maps (f̃ , g̃) to (u, tru) is well defined
and continuous from X0 := L2(Ω)× L2(Γ) to Y0 := L2(Ω)× L2(Ω) as well as from
X1 := Ld(Ω) × Ld(Γ) to Y1 := L∞(Ω) × L∞(Ω). By complex interpolation, we
obtain that Rλ is also continuous from [X0, X1]θ to [Y0, Y1]θ for all θ ∈ (0, 1). To
identify the interpolation spaces, recall from [Tri95, Theorem 1.18.1] that complex
interpolation of tuples of Lp-spaces yields the tuple of interpolated spaces in the
sense of

[Lp0(Ω)× Lq0(Γ), Lp1(Ω)× Lq1(Γ)]θ = [Lp0(Ω), Lp1(Ω)]θ × [Lq0(Γ)× Lq1(Γ)]θ

for all p0, p1, q0, q1 ∈ [1,∞]. Moreover, we have the equality [Lp0(Ω), Lp1(Ω)]θ =
Lp(Ω) (and a similar equality for Γ) for 1

p = 1−θ
p0

+ θ
p1

in the sense of equivalent

norms, see [Tri95, Theorem 1.18.6/2]. From this, we obtain for all θ ∈ (0, 1) the
continuity of Rλ : Xθ → Yθ where Xθ := Lp(Ω) × Lp(Γ) and Yθ := Lϕ(p)(Ω) ×
Lϕ(p)(Γ) with p and ϕ(p) being defined by 1

p = 1−θ
2 + θ

d and 1
ϕ(p) = 1−θ

2 . For

p ∈ (2, d), the first equation yields θ = d(p−2)
(d−2)p , and the second equation gives

ϕ(p) =
2

1− θ
=
d− 2

d− p
p.

This proves the assertion for p ∈ (2, d). For p ≥ d the statement follows directly
from (4.12). �

However, the estimate we actually would like to make use of would be of type
(4.9) for solutions of the inhomogeneous Robin problem with λ = 0, i.e.

− divQ∇u = f in Ω,

∂Qν u+ δ tr u = g on Γ,
(4.13)

because in order to obtain higher regularity for the Wentzell problem we decouple
it into two underlying Robin problems of precisely that form. Though Hölder
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continuity for the Robin case is also established in [Nit10, Example 4.2.7], this is
not helpful in our situation, since an explicit estimate of type (4.8) is not given there
due to the complexity of the bootstrapping argument, and we cannot deduce (4.9),
as before. To avoid this obstacle, we rewrite the Robin problem into a Neumann
problem, to which we apply Proposition 4.4. The price we pay is that the solution u
appears on the right-hand side and we have to assume a priori that its integrability
is as high as the data’s.

Lemma 4.5. Let d ≥ 2, p ∈ (2,∞). Then, there is a constant C0 > 0 such that

whenever u ∈ H
3/2
B (Ω) is a weak solution of (4.13) with f, u ∈ Lp(Ω), as well as

g, tru ∈ Lp(Γ), we have (u, tr u) ∈ Lϕ(p)(Ω)× Lϕ(p)(Γ) and

‖u‖Ω,ϕ(p) + ‖ tru‖Γ,ϕ(p) ≤ C0

(
‖u‖Ω,p + ‖f‖Ω,p + ‖g‖Γ,p + ‖ tru‖Γ,p

)

where

ϕ(p) :=

{
d−2
d−p p if p ∈ (2, d),

∞ if p ∈ [d,∞).
(4.14)

Proof. Let u ∈ H1(Ω) be a weak solution of (4.13). Then, given any v ∈ D(B0) ⊆
D(BN ),

〈u,B0v〉Ω = b(u, v) = bδ(u, v) = 〈f, v〉Γ .
Hence, u ∈ D(B∗

0 ), f = B∗
0u = (B0,δ)

∗u by Theorem 3.18 (ii). Once more, we have
Bmaxu = B∗

0u = f by Theorem 3.14 (ii), so the first line of (4.13) holds in L2(Ω),
where − divQ∇ is seen as L2(Ω)-realization of an object in H−2(Ω). Furthermore,
for all v ∈ H1(Ω) we obtain

〈−(B0,δ)
∗u, v〉Ω + bδ(u, v) = 〈g, tr v〉Γ

for all v ∈ H1(Ω), which shows u ∈ D(Nbδ) and (by Theorem 3.18) −Nbδu =

∂Qν u+ δ tr u = g. Therefore, u also solves (4.6) with λ = 1, f̃ = f + u ∈ L2(Ω), and
g̃ = g−δ tru ∈ L2(Γ), whence it must coincide with this problem’s unique solution.
Hence, Proposition 4.4 is applicable and as, due to the extra assumption, (u, tr u)

is also an element of Lp(Ω)×Lp(Γ), so is (f̃ , g̃). Then, by Proposition 4.4 we have

‖u‖Ω,ϕ(p) + ‖ tru‖Γ,ϕ(p) ≤ C
(
‖f̃‖Ω,p + ‖g̃‖Γ,p

)

≤ C0

(
‖u‖Ω,p + ‖f‖Ω,p + ‖g‖Γ,p + ‖ tru‖Γ,p

)

as desired. �

We obtain the following corollary about the integrability of elements of D(Aδ),
where ϕ(r) is defined as in (4.14).

Corollary 4.6. Let r > 2. If u ∈ D(Aδ) ∩ (Lr(Ω) × Lr(Γ)), Aδu ∈ Lr(Ω) ×
Lr(Γ) and (α divQ∇u1, trα divQ∇u1) ∈ Lr(Ω) × Lr(Γ), then u ∈ Lϕ(r)(Ω) ×
Lϕ(r)(Γ) and (α divQ∇u1, trα divQ∇u1) ∈ Lϕ(r)(Ω)× Lϕ(r)(Γ).

Proof. By Theorem 3.18, we have for u ∈ D(Aδ)

(Aδu)1 = divQ∇α(divQ∇u1),
(Aδu)2 = −β(∂Qν + δ tr)(α divQ∇u1) + γu2.
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Thus, if u satisfies the assumption of this corollary, then w = −αdivQ∇u1 solves
the inhomogeneous Robin problem

− divQ∇w = (Aδu)1 ∈ Lr(Ω)

(∂Qν + tr δ)w = β−1(Aδu)2 − β−1γu2 ∈ Lr(Γ).

As (α divQ∇u1, trα divQ∇u1) ∈ Lr(Ω) × Lr(Γ) by assumption, so is (w, trw).
Hence, by Lemma 4.5, (w, trw) ∈ Lϕ(r)(Ω)×Lϕ(r)(Γ), which also implies divQ∇u1 ∈
Lϕ(r)(Ω) as the functions α, α−1 are bounded. Naturally Lϕ(r)(Ω) ⊆ Lr(Ω). Since
u ∈ D(Aδ) ∩ (Lr(Ω)× Lr(Γ)), we also know that (∂Qν + δ tr)u1 = 0 and (u, tru) =
(u1, u2) ∈ Lr(Ω)× Lr(Γ), whence u1 solves the homogeneous Robin problem

− divQ∇u1 = − divQ∇u1 ∈ Lr(Ω),

(∂Qν + δ tr)u1 = 0 ∈ Lr(Γ).

Applying Lemma 4.5 once more yields u1 ∈ Lϕ(r)(Γ) and u2 = tr u1 ∈ Lϕ(r)(Γ), as
claimed. �

We can now prove the main result of this section.

Theorem 4.7. Let u ∈ D(A∞
δ ). Then u1 ∈ C0,ϑ(Ω) for some ϑ ∈ (0, 1). In

particular, this shows Hölder continuity of u1(t, ·) for t > 0 due to the analyticity
of the semigroup T.

Proof. Let u ∈ D(Aδ). Then u1, α divQ∇u1 ∈ H
3/2
∆ (Ω) ⊆ H1(Ω). Furthermore,

tru1, tr(α divQ∇u1) ∈ H1(Γ). By Sobolev embedding (see [AF03, Theorem 4.12]),

we obtain H1 ⊆ L
2d

d−2 . Hence, for d ≤ 4, we have H1 ⊆ Ld, which shows

D(Aδ) ⊆ {u ∈ Ld(Ω)× Ld(Γ) |
(
α divQ∇u1, tr(α divQ∇u1)

)
∈ Ld(Ω)× Ld(Γ)}.

If d ≥ 5, we have u1, α divQ∇u1 ∈ L
2d

d−2 (Ω) and tr u1, tr(α divQ∇u1) ∈ L
2d

d−2 (Γ).
This shows

D(Aδ) ⊆ {u ∈ Lr1(Ω)×Lr1(Γ) |
(
α divQ∇u1, tr(α divQ∇u1)

)
∈ Lr1(Ω)×Lr1(Γ)}

for r1 = 2d
d−2 . Inductively, we obtain

D(Ak
δ ) ⊆ {u ∈ Lrk(Ω)×Lrk(Γ) |

(
α divQ∇u1, tr(α divQ∇u1)

)
∈ Lrk(Ω)×Lrk(Γ)},

where rk = ϕ(rk−1) = ϕk−1( 2d
d−2 ). Indeed, assume this statement is true for some k

and consider u ∈ D(Ak+1
δ ). Then u ∈ D(Ak

δ ) ⊆ D(Aδ) and Aδu ∈ D(Ak
δ ). By in-

duction hypothesis, u,Aδu ∈ Lrk(Ω)×Lrk(Γ), and
(
α divQ∇u1, tr(α divQ∇u1)

)
∈

Lrk(Ω)×Lrk(Γ). Hence, Corollary 4.6 yields u ∈ Lϕ(rk)(Ω)×Lϕ(rk)(Γ) = Lrk+1(Ω)×
Lrk+1(Γ) as well as
(
α divQ∇u1, tr(α divQ∇u1)

)
∈ Lϕ(rk)(Ω)× Lϕ(rk)(Γ) = Lrk+1(Ω)× Lrk+1(Γ).

From the structure of the map ϕ it is clear that (rk)k∈N is an increasing sequence
that tends to ∞. Hence for all d ∈ N we have found a k0 ∈ N such that

D(Ak0

δ ) ⊆ {u ∈ Ld(Ω)× Ld(Γ) |
(
α divQ∇u1, tr(α divQ∇u1)

)
∈ Ld(Ω)× Ld(Γ)}.

For any such u ∈ D(Ak0

δ ), we have − divQ∇u1 = − divQ∇u1 =: f̃ ∈ Ld(Ω) as

well as ∂Qν u1 = −δ tr u1 =: g̃ ∈ Ld(Γ) due to α ∈ L∞(Ω), δ ∈ L∞(Γ). Thus u1 is a
weak solution of (4.6) for λ = 0, and Proposition 4.4 (ii) implies u1 ∈ C0,ϑ(Ω) as
claimed. �
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Remark 4.8. The proof of Theorem 4.7 actually yields a number k0 ∈ N, depending
only on the dimension d, such that u ∈ D(Ak0

δ ) implies u1 ∈ C0,ϑ(Ω). The number
k0 we calculated there is not sharp, but the embedding certainly does not hold for
dimensions that are too large.

For example, for the case of Neumann boundary conditions, i.e. δ = 0, we can

verify D(A) ⊆ C0,ϑ(Ω) for d ≤ 6, simply as α divQ∇u1 ∈ H3/2(Ω) ⊆ L
2d

d−3 (Ω) ⊆
Ld/2+ε(Ω) from which the assertions follows from Proposition 4.4 (ii) for λ = 0 (cf.
[AF03, Theorem 7.34]).

But, at least for constant Q and α it is quite simple to construct functions in
D(A) which are not Hölder continuous for d ≥ 8. As Sobolev embeddings are
sharp, we know that for d ≥ 8 the Sobolev space H4(Ω) is not contained in L∞(Ω).
Now, let Ω′ be a smooth domain contained in Ω. Let v be a function that lives in
H4(Ω′) but not in L∞(Ω′). As Ω′ is smooth there exists an extension of v (denoted
by v again) to H4(Rd), which still cannot be in L∞(Rd). Now let ϕ ∈ C∞

c (Ω) such
that ϕ = 1 on Ω′. Then the function u = ϕ · v ∈ H4(Ω) \ L∞(Ω). Moreover, it
satisfies the Neumann boundary condition ∂νu = 0 as it is compactly supported on
Ω. Hence (u, tru) ∈ D(A) (as all the other regularity conditions are implied by
H4-regularity because Q and α are constant). However, (u, tru) 6∈ L∞(Ω)×L∞(Γ),
so u cannot be Hölder continuous.

4.3. Asymptotic behavior and eventual positivity. In this section, we derive
asymptotic properties of our solution. We are going to skip the proofs whenever
neither variable coefficients nor extra Robin-term are relevant and the ideas can
be carried over directly from [DKP21, Chapter 6], as is the case for the next two
results.

Lemma 4.9. The operator Aδ has compact resolvent.

Corollary 4.10. There exists an orthonormal basis (en)n of H consisting of eigen-
functions of Aδ, say Aδen = λnen, where the sequence λn is increasing to ∞,
allowing the representation

Aδf =

∞∑

k=1

λk 〈f, ek〉H ek

for all f ∈ D(Aδ). Moreover, as en ∈ D(A∞
δ ), it has a Hölder continuous

representative in the sense that there exists a function en ∈ C0,ϑ(Ω) such that
en = (en|Ω, en|Γ).

Finally, for all f ∈ H, the semigroup T can be represented as

u(t) = (u1(t), u2(t)) = T(t)f =

∞∑

k=1

e−λkt 〈f, ek〉H ek. (4.15)

Lemma 4.11.

(i) If γ = 0 almost everywhere, then we have ker(Aδ) ⊆ span(1Ω,1Γ) and∫
Γ δ| tru1|2dS = 0.

(ii) If γ = 0, δ = 0 almost everywhere, then λ1 = 0 and ker(A) = span(1Ω,1Γ).
(iii) If γ, δ ≥ 0 and either γ > 0 or δ > 0 on a set of positive surface measure,

then λ1 > 0 and we have ker(Aδ) = {0}.
(iv) If

∫
Γ γ dS < 0, then λ1 < 0.
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Proof. In cases (i)–(iii), we have γ, δ ≥ 0. Hence, aδ is accretive, so we have λ1 ≥ 0.
Thus, whether λ1 = 0 or λ1 > 0 depends only on ker(Aδ).

(i) Suppose γ = 0 almost everywhere, then u ∈ ker(Aδ) implies u1 ∈ ker(BN,δ).
More precisely, let u ∈ ker(Aδ) ⊆ D(Aδ) ⊆ D(aδ). Then

0 = 〈Aδu,u〉H = aδ(u,u) =

∫

Ω

α|BN,δu1|2dx.

It follows that α|BN,δu1|2 = 0 and hence, since α(x) ≥ η, u1 ∈ ker(BN,δ). This
means

0 = 〈Q∇u1,∇u1〉Ω + 〈δu1, u1〉Γ = ‖
√
Q∇u1‖2Ω + ‖

√
δ tr u1‖2

and shows ∇u1 = 0, whence u1 is constant (and, therefore, also u2 = tru1).
Moreover,

∫
Γ
δ| tru1|2dS = 0.

(ii) If δ = 0, naturally also the converse holds as BN1Ω = − divQ∇1Ω = 0
and the constant functions satisfy the Neumann boundary condition, which shows
λ1 = 0.

(iii) If γ = 0, δ > 0 on a set of positive surface measure Γ0, due to (i), u1 is
still constant. But now, we also find a set of positive measure Γε ⊆ Γ where δ > ε.
However, if we had u = c 6= 0 by (i), this would yield

0 =

∫

Γ

δ| tr u1|2dS ≥
∫

Γε

δ| tr u1|2dS ≥ εc2S(Γε) > 0.

Analogously, if γ > 0 on a set of positive measure and u ∈ ker(Aδ), we calculate

0 = 〈Aδu,u〉H = a(u,u) =

∫

Ω

α|∆u1|2dx+

∫

Γ

β−1γ|u2|2dS

≥
∫

Γε

β−1γc2 dS ≥ ‖β‖−1
∞ εc2S(Γε) > 0,

another contradiction.

(iv) Plugging (1Ω,1Γ) ∈ D(aδ) into the usual Rayleigh quotient, we obtain a
negative value as

∫
Γ β

−1γ dS < 0, and thus λ1 < 0. �

This yields the following asymptotic behavior of the semigroup T.

Theorem 4.12.

(i) If γ = 0, δ = 0 almost everywhere, then ‖T(t)f − f̄‖H ≤ e−λ2t‖f‖H for all
f ∈ H, where

f̄ :=
1

λd(Ω) +
∫
Γ β

−1dS

(∫

Ω

f1dx+

∫

Γ

β−1f2dS

)
(1Ω,1Γ),

and λ2 > 0 is the second eigenvalue of A.
(ii) If γ, δ ≥ 0 and γ > 0 or δ > 0 on a set of positive measure, then ‖T(t)f‖H ≤

e−λ1t‖f‖H holds for all f ∈ H. Thus, in this case, the semigroup T is
exponentially stable.

(iii) If
∫
Γ γ dS < 0, then ‖T(t)‖ = e−λ1t → ∞ as t→ ∞.

Proof. For (i) observe that in this case λ1 = 0 and f̄ = e−λ1t〈f, e1〉He1 in view of
Lemma 4.11. Thus (4.15) and Parseval’s identity yield

‖T(t)f − f̄‖2H =

∞∑

k=2

e−λkt|〈f, ek〉H|2 ≤
∞∑

k=2

e−λ2t|〈f, ek〉H|2 ≤ e−λ2t‖f‖2H.
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This proves (i). In case (ii), we have λ1 > 0 (see again Lemma 4.11), and (ii) follows
by a similar computation. (iii) follows by considering an eigenvalue corresponding
to the eigenvalue λ1. �

Remark 4.13. For our following positivity investigations, we consider the Hilbert
lattice H = L2(Ω ∪̇Γ, µ), where µ is given by µ(A) =

∫
A∩Ω

1 dλ +
∫
A∩Γ

β−1dS,
with positivity cone

H+ := {u ∈ H | u(x) ≥ 0 µ-a.e}. (4.16)

Once can easily show that H can be identified with our Hilbert space H = L2(Ω)×
L2(Γ, β−1dS) from Definition 2.10 (i), and u with u = (u1, u2).

Proposition 4.14. Let γ ≥ 0, then the semigroup T generated by −A is real, but
neither positive nor L∞-contractive.

Proof. The same arguments as in [DKP21, Lemma 3.5] work as Robin and Neumann
boundary conditions are equal for test functions. �

Again however, we may show that the semigroup T is eventually positive in the
sense of [DGK16a], [DGK16b] and [DG18], as the critical ingredient is the Hölder
continuity established in the previous section also for the variable coefficient case.
We recall a simplified version of the definition from [DG18, Section 1] and the used
criterion.

Definition 4.15. Let (Ω, µ) be a σ-finite measure space and T a real C0-semigroup
on the space H = L2(Ω, µ) with positivity cone H+ given in the sense of (4.16).
Then, T is called eventually positive if there is some time t0 > 0 such that for all
f ∈ H+ \ {0} and t ≥ t0 there is some ε > 0 for which T (t)f ≥ ε holds µ-almost
everywhere.

Theorem 4.16. Let (Ω, µ) be a σ-finite measure space and T a real C0-semigroup
generated by a self-adjoint operator A on H = L2(Ω, µ). If D(A∞) ⊆ L∞(Ω, µ),
then the following assertions are equivalent:

(i) T is eventually positive.
(ii) ker(s(A) − A) is one-dimensional and contains a vector v such that v ≥ ε

holds µ-almost everywhere for some ε > 0.

Theorem 4.17. Let γ = δ = 0. Then the semigroup T is eventually positive in
the sense of Definition 4.15.

Proof. We apply Theorem 4.16 for H defined as in Remark 4.13 and A = −A.
As β, β−1 are bounded, L∞(Ω ∪̇Γ, µ) can be identified with L∞(Ω)× L∞(Γ). T is
real as a consequence of Proposition 4.14, and the operator A is self-adjoint due
to the symmetry of the form (see Theorem 2.12). Finally, we have that D(A∞)
embeds into L∞(Ω)×L∞(Γ) by Theorem 4.7. Now, to deduce eventual positivity,
we only have to verify assertion (ii) of Theorem 4.16. But this a direct consequence
of Lemma 4.11 (ii) that yields s(−A) = λ1 = 0 as γ = 0, δ = 0, and (1Ω,1Γ) ∈
ker(A). �

For a counterexample for eventual positivity in the case γ > 0, δ = 0, Q = Id
we refer the reader to [DKP21, Section 7].
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5. Application to systems of higher order

In this short excursion, we point out that the abstract theory established in
Chapter 2 is not necessarily restricted to problems of order 4, though identification
of the abstract operators and regularity characterizations can be more difficult.

Proposition 5.1. Let Ω ⊂ Rd be a bounded Lipschitz domain, H = L2(Ω),
and let ∆N denote the Neumann Laplacian. For k ∈ N consider the form bk =〈
∆ku,∆kv

〉
Ω
on D(bk) = D(∆k

N ). Then bk is admissible and BN = ∆2k
N , whence

also C∞
c (Ω) ⊂ D(BN ) ∩ D(BD) is satisfied, and we are in the situation of Theo-

rem 2.12 and Remark 2.13.

Proof. The form bk is symmetric and accretive by default. We have ‖u‖2
bk

= ‖u‖2Ω+
‖∆ku‖2Ω. As ∆k

N is a closed operator. D(∆k
N ) is a Hilbert space with respect to

the graph norm and hence the form is closed. The continuity follows from Cauchy–
Schwarz’s inequality. Thus bk is generating and its associated operator BN is self-
adjoint. We have C∞

c (Ω) ⊆ D(∆k
N ) ⊆ D(∆N ) ⊆ H1(Ω) and may choose ρ = 1/2

in (2.1). For the last embedding we calculate ‖u‖2H1(Ω) = 〈∆u, u〉Ω ≤ C(‖u‖2Ω +

‖∆u‖2Ω). That D(∆k
N ) is continuously embedded in D(∆N ) follows by the closed

graph theorem applied to the identity id: D(∆N
k ) → D(∆N ). D(∆k

N ) is also dense
inH1(Ω) due to [Ouh05, Proof of Lemma 1.25] and the analyticity of the semigroup.
We begin by showing that BN coincides with ∆2k distributionally. Let u ∈ D(BN )
and v ∈ C∞

c (Ω) ⊂ D(∆2k
N ), then 〈f, ϕ〉 =

〈
∆k

Nu,∆
k
Nϕ
〉
=
〈
(∆k

N )∗u,∆k
Nϕ
〉
=〈

u,∆2kϕ
〉
as ∆kϕ ∈ D(∆k

N ). Hence f = ∆2ku as ∆N and thus ∆k
N is self-adjoint.

So D(BN ) ⊂ {u ∈ D(∆k
N ) | ∆2k

N u ∈ L2(Ω)}. On the other hand D(∆2k
N ) ⊂ D(BN )

as for the same reason for u ∈ D(∆2k
N ) the relation

〈
∆2k

N u, v
〉
=
〈
∆k

Nu,∆
k
Nv
〉
holds

for all v ∈ D(∆k
N ). So ∆2k

N ⊂ BN = B∗
N ⊂ (∆2k

N )∗ = ∆2k
N . �

Now we obtain D(B0) = D(BD)∩D(BN ) = D(BN )∩H1
0 (Ω) by Proposition 2.4.

Thus D(B0) = {u ∈ D(∆2k
N ) | tr u = 0}. Now for u ∈ D(B∗

0 ), there is a f ∈ L2(Ω)
such that for all v ∈ D(B0) we have 〈u,B0v〉 =

〈
u,∆2kv

〉
= 〈f, v〉Ω, so B∗

0 is a

restriction of the maximal L2-realization of the distribution ∆2k.
Hence (taking α = β = 1, γ = δ = 0 in Remark 2.13) we can find a solution of

the system

∂tu+∆4ku = 0 in (0,∞)× Ω, (5.1)

tr∆4ku+ N
b(∆2k)u = 0 on (0,∞)× Γ, (5.2)

N
bu = 0 on (0,∞)× Γ, (5.3)

u|t=0 = u0 in Ω, (5.4)

where Nb is given by the abstract definition

D(N b) :={u ∈ D(B∗
0 ) |

∃g ∈ L2(Γ)∀v ∈ D(∆2k
N ) :

〈
∆2ku, v

〉
Ω
−
〈
u,∆2kv

〉
Ω
= 〈g, tr v〉Γ}

and N b = g. The identification of N is more difficult here, but some progress
can be made using the theory of quasi-boundary triples (cf. [BM14], [BHdS20,
Chapter 8.6]).

For all u ∈ H0
∆(Ω) and v ∈ D(∆N ) we have

〈∆u, v〉Ω − 〈u,∆v〉Ω = 〈τ̃Nu, tr v〉G′

0×G0
, (5.5)
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where τ̃N is the extension of the Neumann trace from H0
∆(Ω) to the space G′

0

introduce there, which is the dual space of trD(∆N ) equipped with a Hilbert space
structure. For this version of Green’s formula also see [DKP21, Proposition 2.4].
This allows us to characterize N b at least on a subset of D(B∗

0). Let

V = {u ∈ L2(Ω) | ∆2ku,∆2k−1u ∈ L2(Ω),∆ju ∈ ker τ̃N , for j = 0, ..., 2k − 2}.

Lemma 5.2. Let u ∈ D(N b) ∩ V , then ∆ju ∈ H
3/2
∆ (Ω) for j = 0, ..., 2k − 1 and

N
bu = ∂ν∆

2k−1u.

Proof. As we have ∆ju ∈ L2(Ω) for j = 0, ..., 2k and D(B0) ⊂ D(BN ) = D(∆2k
N )

for u ∈ D(Nb) ∩ V and v ∈ D(∆2k
N ) we have

〈g, tr v〉 =
〈
∆2ku, v

〉
Ω
−
〈
u,∆2kv

〉
Ω
=

2k−1∑

j=0

〈
τ̃N∆ju, tr∆2k−1−jv

〉
G′

0×G0

=
〈
τ̃N∆2k−1u, tr v

〉
G′

0×G0
.

Now as D(∆2k
N ) is dense in H1(Ω), trD(∆2k

N ) is dense in L2(Γ). Thus we have
g = τ̃N∆2k−1u ∈ L2(Γ) and

〈
∆2ku, v

〉
Ω
−
〈
∆2k−1u,∆v

〉
Ω
=
〈
τ̃N∆2k−1u, tr v

〉
G′

0×G0
= 〈g, tr v〉Γ

for all v ∈ D(∆2k
N ), and by approximation also for all v ∈ D(∆N ) (as D(∆2k

N ) is

a core of ∆N ). Finally, we obtain ∆2k−1u ∈ H
3/2
∆ (Ω) and Nbu = ∂ν∆

2k−1u for

u ∈ D(Nb) ∩ V by [DKP21, Proposition 2.4 (ii)] and similarly ∆ju ∈ H
3/2
∆ (Ω) for

all j = 0, ..., 2k − 1. �
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