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Abstract—Federated Learning (FL) has gained considerable
traction, yet, for tabular data, FL has received less attention. Most
FL research has focused on Neural Networks while Tree-Based
Models (TBMs) such as XGBoost have historically performed
better on tabular data. It has been shown that subsampling of
training data when building trees can improve performance but
it is an open problem whether such subsampling can improve
performance in FL. In this paper, we evaluate a histogram-
based federated XGBoost that uses Minimal Variance Sampling
(MVS). We demonstrate the underlying algorithm and show
that our model using MVS can improve performance in terms
of accuracy and regression error in a federated setting. In
our evaluation, our model using MVS performs better than
uniform (random) sampling and no sampling at all. It achieves
both outstanding local and global performance on a new set of
federated tabular datasets. Federated XGBoost using MVS also
outperforms centralized XGBoost in half of the studied cases.

Index Terms—Federated Learning, XGBoost, Tabular Data,
Minimal Variance Sampling

I. INTRODUCTION

Federated Learning (FL) [1] has gained traction, mainly due
to enhanced privacy and ability to exploit distributed datasets.
Generally, FL offers low communication cost , privacy aware,
Machine Learning (ML) functions and research suggest that
its performance can be similar to that of centralized ML [2].

FL was initially designed to fit parametric models, models
characterized by a simplified input-output function of a know
form e.g. (Deep) Neural Networks (DNNs). DNNs show great
promise but struggle with tabular data, a common data type
[3]. Researchers have designed parametric models for tabular
data [4], suitable for FL [5], yet they do not provide state-
of-the-art performance [6]. Non-parametric models have per-
formed well on tabular data. They do not make strong assump-
tions about the form of the input-output function and can learn
the form in training. Tree-Based Models (TBMs) e.g. Random
Forests and boosted trees [7] have shown great performance on
tabular data. However, federated implementation is non-trivial
and researchers have only recently designed federated TBMs.
Extreme Gradient Boosting (XGBoost) [8] can be considered
a suitable model for such data, often outperforming related
models [3], yet few XGBoosts for FL are available.

Fig. 1. Tabular data, each row is a unique observation and the columns
indicate features. Values can be numerical and categorical.

Recent work has shown that subsampling for TBMs can
improve performance in a centralized ML [9]. Subsampling
is the process of taking a fraction of data to train on. It can
help select useful data. We refer to subsampling as sampling.
Sampling has received little attention in FL and initial works
do not show increase in performance, compared to centralized
learning [10]. In FL, each client gets a subset of the whole
dataset for training, and with additional sampling we further
reduce the local datasets with different techniques.

To such end, we propose histogram-based Federated Learn-
ing with XGBoost using sampling of training data when build-
ing the trees. We evaluate our model using uniform sampling
and Minimal Variance Sampling (MVS) [9], as MVS shows
performance improvements in centralized settings. We do not
only study the global performance but also local performance
on given client test sets. We also present a set of federated
tabular datasets that reflect the natural properties of data in
FL. We focus on developing models for horizontal FL and
from our extensive evaluation, our main contributions are:

• Federated XGBoost using MVS improves performance in
terms of accuracy and regression error when compared
with federated XGBoost using no- or uniform sampling.

• Federated XGBoost using MVS performs similarly as
centralized, and even outperforms it in half of the cases.

• FedTab - A selected set of federated tabular datasets that
can serve future benchmark studies.

The paper is structured as related work, method and results
before a discussion and conclusion.
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II. RELATED WORK

Tabular data are observations that are represented by rows
and columns, see Figure 1. FL was initially designed for
parametric models yet research suggests that TBMs perform
better on tabular data [6]. Researchers have started to develop
federated TBMs and few provide sophisticated open-source
packages: FATE [11], Flower [12] and NVFlare [13].

In their paper, [14] present a non-parametric federated
representation of a random forest. Building their federated
forest requires clients to train partial tree models based on
a subsets of features and data, and aggregation of these on
server side. Other researchers have thereafter implemented
their versions of federated random forests, focusing on various
aspects such as decentralization [15] and blockchain-based
[16] forests. Yet, the performance of a federated random forest
is similar or slightly lower than for centralized learning. In cen-
tralized learning, there is reason to believe that the strongest
model is still XGBoost [6]. In a federated setting, [17] found
that one of the stronger performing models are federated
Gradient Boosted Decision Trees (GBDTs). Much research
has thereafter focused on developing federated GBDTs.

A. Federated Gradient Boosted Decision Trees

Researchers started to investigate federated GBDTs in 2019.
[18] and [19] proposed federated GBDTs, mainly for classifi-
cation tasks. They explore features such as secure aggregation
and discuss model efficiency. A similar study was made by
[20] in which they argue that a secure federated LightGBM
can be used for tabular data. FederBoost [21] and Secure-
Boost [22] extended their work by introducing more complete
federated XGBoost frameworks. The authors of SecureBoost
also demonstrate that their model can be as accurate as non-
federated TBMs. [23] created FedTree, an open-source frame-
work for federated forests and GBDTs that can be used for
horizontal- and vertical FL. [24] created a federated XGBoost
that could adapt to local data. Party Adaptive XGBoost (PAX)
includes a quantile sketch approximation hyperparameter ϵ
which is roughly the inverse of bin size of histogram. Given a
global ϵ(A), they define clients’ approximation hyperparameter
as

ϵi = ϵ(A)

(
|di|∑
d∈D |d|

)
(1)

for which |di| is the size of the client dataset i, a subset of
total dataset D. The inverse 1/ϵi gives the bin size for each
client. Their PAX model has thereafter been used in other stud-
ies [25] in which it has been applied to non-independent and
identically (non-IID) distributions. [10] extended SecureBoost
to include Gradient One-Side Sampling (GOSS), a sampling
technique for selecting training data [26]. Sampling training
data can improve performance in centralized learning [27] yet
it is an open problem whether the effect is similar for FL. Their
model SecureBoost+ reduced tree building time and provided
similar performance to that of XGBoost. [28] presented im-
portance sampling for FL. Their algorithm ISFedAvg not only

samples specific data instances from mini-batches but also
incorporates a dynamic client selection. [29] extended their
work to address non-IID data. Their ISFL framework improves
the original FedAvg algorithm but still does not outperform
centralized learning.

In a centralized setting, [9] proposed Minimal Variance
Sampling (MVS), a sampling technique that they argue outper-
forms GOSS, similarly concluded by [30]. MVS uses the regu-
larized gradients ĝi =

√
g2i + λh2

i for which gi and hi are the
gradients and hessian, to calculate the probability of selecting
a specific data point. It outperforms other methods e.g. GOSS
on small and large datasets, can improve computation time,
and generalize better than other methods. Summarized, MVS
bases its sample selection criteria on low variance output from
previous predictions and selects a predefined proportion of
samples to help grow the tree. This approach is similar to [31],
with less computation as we do not include any corrective fine-
tuning. To such end, we evaluate whether federated XGBoost
using MVS can improve performance in terms of accuracy
(and other related scores) in a federated setting.

III. METHOD

This section includes basics of XGBoost, our federated
implementation, and a set of compiled datasets. The datasets
are carefully selected to fit our comparisons and a federated
setting.

A. XGBoost Model

The model architecture we opt to use in this study is
XGBoost and we hereafter present some preliminaries to the
model. Given a dataset D ∈ {xi, yi}Ni=1 where x ∈ Rd

with d features, y ∈ R, and an arbitrary task, predictions are
calculated for K trees and η learning rate as:

ŷi =

K∑
k=1

ηfk(xi) (2)

where fk(xi) is the prediction made by the k−th tree.
XGBoost’s objective is minimizing sum the total loss for all
samples and regularization parameter. L(ϕ) is training loss and
Ω is regularization term.

L(ϕ) =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (3)

The Taylor expansion of the objective function is:

L(t) ≃
n∑

i=1

[
l
(
yi, ŷ

(t−1)
i

)
+ gift +

1

2
hif

2
t

]
+Ω(ft) (4)

for which gradient gi and hessian hi are calculated as:

gi = ∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ), hi = ∂2

ŷ
(t−1)
i )

l(yi, ŷ
(t−1)
i ) (5)

for which ŷ
(t−1)
i is previous prediction made by tree and

l(yi, ŷ
(t−1)
i ) is loss function.



TABLE I
OVERVIEW OF INCLUDED DATASETS. ID COLUMN INCLUDES NUMBER UNIQUE IDS THAT CAN BE USED IN FL. INSURANCE DATASET HAS NO CLASS

SINCE IT IS A REGRESSION DATASET. THE LOWER 3 DATASETS ARE USED IN OTHER RELATED WORK, THUS WE INCLUDE AND EVALUATE OUR MODEL ON
THEM.

Dataset Size # Features # Class # IDs Split Feature License Reference
FEMNIST 382.705 784 10 3.382 user id BSD-2-Clause [32]
Synthetic 151.152 30 30 1.000 User ID BSD-2-Clause [32]
Machine Failure 10.000 6 2 3 Type CC0 [33]
Lumpy Skin 5.039 18 2 22 country CC BY 4.0 [34]
Heart Disease 740 11 2 4 source CC BY 4.0 [35]
Insurance 1.338 6 - 4 region CC0 [36]
Airline Delay 4.000 25 2 - - CC0 [37]
Credit Card 284.807 29 2 - - DbCL v1.0 [38]
Firewall 65.532 10 4 - - CC BY 4.0 [35]

Fig. 2. General architecture of XGBoost. XGBoost combines predictions of
several individual models, called ”weak learners”, into final prediction.

In summary, XGBoost works by combining the predictions
of several individual models, called ”weak learners”, into
a final prediction. Each weak learner is typically a simple
decision tree. XGBoost trains weak learners iteratively and
adjusts their predictions based on how well they perform on
the data. In each iteration, the algorithm adds a new weak
learner to the ensemble and adjusts the weights of the previous
learners to account for any mistakes they made, see Figure 2
for reference. Using MVS, the training samples with a higher
gradient and hessian are more likely to be selected for training.

B. Federated XGBoost using Sampling

Instead of looking at framework e.g. PAX [24], we propose
federated XGBoost using MVS. The core part of MVS is
calculating the regularized gradients ĝi =

√
g2i + λh2

i for
which gi and hi are the gradient and hessian. MVS bases
its selection criteria on low variance output from previous
predictions and selects a proportion of samples to grow the
tree. Selecting instances with low variance can provide more
stable and informative training examples. Moreover, we opt to
use histogram-based XGBoost framework as it can improve ef-
ficiency and robustness to outliers [8] even though there might
be a loss of information due to approximation. Histograms are
constructed based on distribution of feature values.

The process of building a federated XGBoost for horizontal
is explained in Algorithm 1 and we show our contribution
to the algorithm. The data are split and distributed to clients

Algorithm 1 Federated XGBoost with Sampling
Input: D, Data; A, Aggregator; C, Number of Clients;
Parameter: S, Sampling Fraction; N , Number of Training
Rounds; K, Early Stopping Rounds, η, Learning Rate; λ, L2
Regularization; B, Max. number of Bins; T , Tree Depth
Output: Federated XGBoost Model

1: f
(A)
∅ = initialize model(η, λ,B, T )

2:
3: for c← 1 to C do
4: D̃ci

X ← construct histogram(Dci
X , B)

5: ci transmits D̃ci
X to A

6: end for
7: D̃

(A)
X ← merge histogram({D(1)

X , ..., D
(C)
X })

8:
9: repeat

10: (G(A), H(A)) ← (∅, ∅)
11: for c← 1 to C do
12: A transmits f

(A)
n to Client: f (ci)

n ← f
(A)
n

13: X̃(ci) ← sampling technique( λ, S)
14: ci Generate Predictions: ŷ(ci)n = f

(ci)
n (Dci

X̃(ci)
)

15: ci Computes g(ci) and h(ci), transmit to A
16: G(A) ← G(A) ∪ g(ci)

17: H(A) ← H(A) ∪ h(ci)

18: end for
19: G

(A)
m , H

(A)
m ← merge hist(G(A), H(A))

20: f
(A)
n ← grow tree(D̃(A)

X , G(A), H(A))
21: until n = N or k = K

(Line 1). Gradient boosted decision trees then use quantile
based approximation to reduce the search space of finding
optimal splits, we use the work proposed in [30]. Each client
constructs local histogram D̃

(ci)
X using specified histogram bin

size B and local dataset D(ci)
X and sends them to the aggregator

where they are merged into a single histogram D̃
(A)
X (Line

3-7). Then, the iterative FL process starts. For each round,
we reset the aggregated parameters G(A), H(A) to 0. Then,
for all clients in parallel, the aggregator A transmits global
model f (A)

n to each client which is assigned to client ci’s local
model f (ci)

n (Line 12). We sample training data using either



Fig. 3. System overview of federated XGBoost using sampling.

MVS or uniform sampling (Line 13). The integration of the
sampling technique comes at a crucial point before deriving
the gradients and hessians. The locally sampled dataset is
derived from the S% sampled training data. Predictions ŷ

(ci)
n

(Line 14) are generated and we use them for computing the
local gradient g(ci) and hessian h(ci), before transmitting them
to the Aggregator (Line 15-17). After transmission, they form
aggregated gradients and hessians G(A), H(A) (Line 19). They
are used with the aggregated histogram representation D̃

(A)
X

to continue to grow the tree (Line 20). Figure 3 shows the
system overview of construction our federated XGBoost. For
clients, histograms are computed, samples are selected and
weak learners are created. For the server, gathered parameters
are merged and later evaluated as a model. Final model
is created when termination criteria are satisfied. Federated
XGBoost implementation can be made public upon accepted
publication.

IV. RESULTS

We call our model F-XGB and present its performance in
comparison with other federated XGBoost frameworks. We
include results using MVS- and uniform sampling on federated
tabular datasets. We define federated datasets as data with (1)
natural keyed generation process (keys refers to unique users),
and (2) distribution skew across users/devices [32]. We argue
that it is desirable to test federated models on such datasets
as it is a natural and realistic approach to evaluate FL due to
non-IID properties in distributed data. We also include 3 non-
federated datasets to compare our models to relevant work.
Thereafter, we present FedTab, a collection of federated tabular
datasets covering many different tasks, see Table I. To our
knowledge, no open set of federated tabular datasets have been
collected. We use 8GB NVIDIA GeForce RTX 3080 GPU for
experiments. See Table II for hyperparameter search space.

TABLE II
HYPERPARAMETER SPACE USED FOR F-XGB EXPERIMENTS.

Hyperparameter Search Space Values
learning Rate (η) {0.001, 0.01, 0.02, 0.05, 0.1}
lambda (λ) {0.001, 0.01, 0.02, 0.05, 0.1}
max depth {3, 4, 5, 6, 7, 8}
max bin 256
sampling fraction (%) {10, 20, 30, 40, 50}

TABLE III
MODEL ACCURACY AND AUC ON AIRLINE DELAY DATASET. F-XGB

USES MVS AND 50% SAMPLING FRACTION.

Airline (Random) Airline (Balanced)
Model Acc AUC Acc AUC
F-XGB 0.97 0.91 0.97 0.98

PAX 0.88 0.87 0.87 0.87

A. Related Model Comparison

First, we compare F-XGB to PAX [24] on the Airline Delay
dataset. [24] tested their model using mentioned dataset and
we follow the same pre-processing steps and use 3 clients
with 1000 training instances each, and 1000 for testing. We
compare F-XGB using MVS to PAX on this dataset as their
model is not open-source. Random and balanced setting refers
to the dataset sampling used, selecting samples based on
uniform distribution or balanced in which each client has the
same amount of labels for all classes. From Table III, we read
that F-XGB can nearly predict all samples correctly.

We thereafter compare F-XGB to the proposed federated
XGBoost by [25] (denoted FX) which is based upon the work
of [24]. Their study provides a federated XGBoost on Non-
IID data, a prominent challenge in FL, and we investigate
whether F-XGB can handle such data partitions. We compare
the models on 2 of the datasets included in their study: (1)
Credit Card and (2) Firewall datasets as they are used in many
other related studies, and use their hyperparameter setting. We
complete the same partitions to form non-IID datasets and



TABLE IV
F1 SCORES FOR SPECIFIED DATASETS. F-XGB RESULTS USING MVS AND

SAMPLING FRACTION s ∈ {10, 20, 30, 40, 50}%.

Credit Card Firewall
Partition F-XGB FX F-XGB FX

Even 0.82 0.80 0.85 0.77
A 0.82 0.78 0.85 0.77
B 0.83 0.79 0.85 0.77
C 0.83 0.83 0.84 0.77
D 0.84 0.84 — —

show it in Table IV. F-XGB outperforms FX on both datasets
in (almost) all partitions, except for one in which they perform
equally good. We show the best F-XGB results using MVS and
sampling fraction s ∈ {10, 20, 30, 40, 50}%.

As shown in [10], a GOSS sampling technique in a federated
setting does not improve performance in terms of accuracy. It
is important to highlight, as sampling in centralized learning
can improve performance. They evaluate their model in a
vertical FL setting which prevents a F-XGB comparison. To
our knowledge, there is no other paper that has investigated
either GOSS or MVS in federated XGBoost. Thus, we evaluate
F-XGB on federated tabular datasets in Subsection IV-B.

B. Federated Tabular Datasets

We study the performance of F-XGB on 1 regression-, 2
multiclass-, and 3 binary datasets and include results from
centralized XGBoost. Scores presented are mean scores over
5 runs. We initially split the dataset into 80% training data
and 20% validation data. We train our model for 200 rounds.

From Table V, we read that F-XGB using MVS outperforms
other variants of the model in almost all cases. On datasets
Lumpy Skin Disease and Insurance Premium Prediction, the
scores are the most similar. For lumpy skin classification, the
scores are almost perfect for a no sampling (NS) F-XGB,
thus sampling has a marginal effect. We notice that F-XGB
using MVS with 50% sampling fraction is the best performing
model on larger- and multiclass datasets. We do not see similar
behavior for uniform sampling. F-XGB using MVS and 10%
sampling fraction shows better performance on smaller and
binary classification datasets. For regression task, a sampling
fraction of 20% performs the best for F-XGB using MVS.

We include other metrics than accuracy and Root Mean
Squared Error (RMSE), namely F1, AUC and R2 scores to
mitigate the risk of only analyzing non-representative scores
for unbalanced datasets. As shown in Table V, F-XGB using
MVS achieves good F1 and AUC scores and for Insurance
Premium dataset it is almost able to explain 90% of the
variance in the target using the features (R2 score), similarly
for centralized XGBoost. As seen in Table I, datasets like
Heart Disease, Insurance Premium Prediction, and Machine
Failure include only 3-4 unique splits. Thus, we use 3-4 clients
where applicable. For the remaining datasets, we sample 22
clients each run due to computational limitations.

Interestingly, F-XGB using MVS outperforms F-XGB when
no sampling is applied. Uniform sampling can increase per-
formance but performs similarly to no-sampling in most cases.

We find that F-XGB using MVS outperforms centralized XG-
Boost. It does so in 3 cases and perform similarly to it in the
remaining cases. This is important, as the general consensus
is that FL can enhance privacy and reduce communication but
oftentimes comes with a loss in performance. We include the
results from centralized XGBoost in Table V, using the same
hyperparameters for both federated and centralized models.

The standard deviation for all sampling methods for In-
surance Premium Prediction regression task is also worth
highlighting. The average standard deviation is approx. 10% of
mean value, in comparison to second largest standard deviation
2.5% for FEMNIST. Moreover, we show in Figure 4 how F-
XGB using MVS and a sampling fraction of 50% achieves
better performance in terms of smaller standard deviation. The
figure clearly illustrates how variance in predictions is reduced
using F-XGB and MVS compared to uniform sampling. Uni-
form sampling can in certain cases perform similarly to MVS
but over several runs, the performance is significantly less. For
Lumpy Skin and Machine Failure dataset, the predictions over
several runs are fairly similar, resulting in very small standard
deviation. F-XGB using MVS does not show signs of varied
predictive performance over various tasks e.g. binary- and
multiclass classification, nor for small and large datasets e.g.
Heart Disease and FEMNIST. The average standard deviation
for MVS vs. uniform sampling on selected datasets in Figure
4 is 0.009 and 0.013 respectively.

Furthermore, we evaluate what the local vs. global perfor-
mance in for F-XGB. We use a train-validation-test split of 70-
20-10%, the same hyperparameter search space as described
in Table II, and compare the aggregated test scores for each
client in relation with global evaluation performance. In Figure
5, we demonstrate F-XGB’s performance using uniform sam-
pling and MVS. Figure 5 illustrates the change in accuracy
(or RSME) on local vs. global datasets used for prediction.
Importantly, as datasets Heart Disease, Machine Failure, and
Insurance Premium Prediction only include 4, 3, and 4 unique
splits based on their federated characteristics we only include
results from 3 and 4 clients. For the other datasets, we include
scores from 5 clients. We limit client selection to ≤ 5 for
illustrative purposes. 5 unique clients are randomly sampled
each round. Since insurance premium prediction is a regression
task, it is desirable that a local test score is lower than global
evaluation since we use RMSE as metric. F-XGB using MVS
outperforms uniform sampling in all classification tasks. In
almost all cases, it boosts performance compared to uniform
sampling for which performance mostly decreases or remains
unchanged. For Lumpy Skin dataset, both sampling techniques
demonstrate similar capabilities. This can be explained by that
both already perform very well, almost 100% global evaluation
accuracy (see Table V). Moreover, for Insurance Premium
Prediction dataset, we see that MVS can help decrease the
error while uniform sampling shows no clear signs of this
behavior. For FEMNIST, Synthetic, and Lumpy Skin datasets
which includes many unique users, the change in accuracy is
similar among clients since we sample new clients each run.



TABLE V
F-XGB PERFORMANCE ON SIX DATASETS. MEAN SCORES ACROSS 5 RUNS, EACH RUN WE EXTRACT TOP 1% EVALUATION SCORE. MVS50 STANDS FOR

F-XGB USING MVS AND A 50% SAMPLING FRACTION. NS AND U STANDS FOR NO SAMPLING AND UNIFORM, RESPECTIVELY. CENTRALIZED
XGBOOST USES THE SAME HYPERPARAMETER SPACE AS FOR FEDERATED CASE.

FEMNIST Synthetic Heart Machine Skin Insurance
Model Acc F1 Acc F1 Acc AUC Acc AUC Acc AUC RMSE R2
NS100 0.897 0.892 0.862 0.683 0.802 0.885 0.982 0.983 0.980 0.995 4496 0.829
MVS10 0.902 0.894 0.863 0.686 0.881 0.922 0.989 0.985 0.974 0.996 4788 0.847
MVS20 0.916 0.914 0.858 0.658 0.871 0.917 0.985 0.983 0.975 0.996 4082 0.889
MVS30 0.917 0.913 0.867 0.684 0.844 0.910 0.987 0.980 0.970 0.995 4480 0.858
MVS40 0.920 0.919 0.866 0.680 0.823 0.900 0.987 0.977 0.979 0.998 4896 0.831
MVS50 0.935 0.932 0.871 0.702 0.804 0.880 0.984 0.965 0.980 0.998 4429 0.861
U10 0.889 0.883 0.859 0.668 0.837 0.915 0.971 0.965 0.956 0.992 4705 0.851
U20 0.899 0.887 0.862 0.658 0.834 0.910 0.972 0.965 0.964 0.993 4310 0.882
U30 0.867 0.862 0.826 0.663 0.803 0.888 0.987 0.977 0.965 0.992 4451 0.869
U40 0.875 0.869 0.843 0.694 0.797 0.880 0.983 0.975 0.978 0.998 4122 0.856
U50 0.901 0.891 0.859 0.695 0.7824 0.852 0.982 0.972 0.978 0.998 4630 0.820

Central 0.930 0.926 0.880 0.721 0.851 0.880 0.990 0.986 0.976 0.979 4002 0.889

Fig. 4. Top 1% evaluation accuracy for different F-XGB sampling methods. 50% sampling fraction is used for F-XGB on all datasets and mean scores across
5 runs

V. DISCUSSION

We have presented results from our model F-XGB using
sampling techniques, and both global and local performance.

A. Global Performance

From the results, we read that F-XGB using MVS as a
sampling technique, can increase global performance in a
federated setting, which we argue is not the case for related
studies that include other sampling techniques [10]. The results
from F-XGB using MVS are compared with no sampling and
uniform sampling, see Table V. In most cases, a sampling
fraction of 50% is recommendable to use. Presented in Table
V, MVS50 (which is F-XGB using MVS and a sampling
fraction of 50%) outperforms other model configurations. This
seems reasonable as there might be a significant proportion of
data that are redundant and do not have much impact on model
training, thus MVS does not select them. Nevertheless, we are
surprised to see that a sampling fraction of 10 or 20% can be
a more suitable choice. This could be due to data quality or

many outliers in distributed datasets. Moreover, F-XGB using
MVS is compared with centralized XGBoost and outperforms
it in half of the studied cases. This is important as FL is often
seen to improve privacy yet lower accuracy. We also show that
F-XGB using MVS is able to outperform related and highly
sophisticated models e.g. PAX on various datasets. F-XGB
demonstrate signs of robustness on non-IID data (see Table
IV) which is a desirable trait in FL.

B. Local Performance

In Figure 5, we show that F-XGB using MVS can increase
performance locally when compared to global performance. In
other words, in the final round of training, we evaluate both
local and global model on either respective local test data
or global evaluation data. From the figure, we read that F-
XGB’s predictive performance on local datasets can be higher
than global performance, which we argue is a method of
locally optimizing for data. By finding the data instances that
minimize variance (i.e. MVS), F-XGB trains on the most



Fig. 5. Change in top 1% accuracy for local client test set vs. global evaluation set on different datasets. Scores are averaged over 5 runs.

informative instances, avoiding redundancy. This is also argued
by [9]. For the top 3 graphs in this Figure, we see that the
performance improvement is quite client specific while for the
remaining graphs, the effect is similar for each client because
we sample 5 clients out of a larger pool.

C. Sampling in Federated Learning

As presented in Section II, sampling has shown that per-
formance can increase in a centralized setting, and we have
now demonstrated that it can also apply to FL when using
federated XGBoost and MVS. Based on the presented results,
research should focus on studying sampling as a technique in
FL for tabular data. As an example, will a federated model that
can use an arbitrary sampling technique other than uniform
sampling, select the same data instances as in a centralized
setting. If so, then why? If not, what are the implications? To
illustrate what we refer to Figure 6. Our example includes a
centralized case in which 1 (-) sign is selected, 4 (+) signs
and 4 ( ̸=) signs. For the contrary federated case, and arbitrary
model samples 1

3 of the data from each ”classes”, thus not the
same samples for a training round. MVS seeks to minimize
variance, in our case on client side. Researchers may look to
explainable FL [39] to easier visualize and give intuition to
why a decentralized model in FL acts a certain way.

VI. CONCLUSION

FL as a technology is gaining traction yet FL for tabular
data has received less attention. XGBoost is a suitable model
for such data and in a centralized setting, its performance
can be improved by sampling training data when building
the trees. Such sampling in a federated setting has not been
concluded to improve scores e.g. accuracy, even though it

Fig. 6. Different samples may be selected for training in centralized vs.
federated learning.

is commonly used in a centralized setting. We propose a
federated XGBoost that can use MVS, on federated tabular
dataset that reflect the non-IID properties of natural federated
data. We study the behavior of our federated XGBoost using
varying dataset tasks and sampling fraction. Our integration of
Federated XGBoost with MVS significantly enhances accuracy
and reduces regression error in a federated setting compared
to traditional XGBoost approaches without sampling. Ad-
ditionally, our federated XGBoost using MVS has similar
performance to that of centralized models, outperforming
them in half of the cases. Lastly, we introduce ’FedTab,’ a
curated collection of federated tabular datasets designed for
future benchmarking studies, providing a standardized basis
for evaluating federated learning methods.
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