
Quantum Circuit Learning on NISQ Hardware
Niclas Schillo and Andreas Sturm

Fraunhofer IAO, Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO, Nobelstraße 12, 70569 Stuttgart, Germany

Current quantum computers are small
and error-prone systems for which the
term noisy intermediate-scale quantum
(NISQ) has become established. Since
large scale, fault-tolerant quantum com-
puters are not expected to be available
in the near future, the task of finding
NISQ suitable algorithms has received a
lot of attention in recent years. The
most prominent candidates in this context
are variational quantum algorithms. Due
to their hybrid quantum-classical architec-
ture they require fewer qubits and quan-
tum gates so that they can cope with the
limitations of NISQ computers. An im-
portant class of variational quantum al-
gorithms is the quantum circuit learning
(QCL) framework. Consisting of a data
encoding and a trainable, parametrized
layer, these schemes implement a quan-
tum model function that can be fitted
to the problem at hand. For instance,
in combination with the parameter shift
rule to compute derivatives, they can be
used to solve differential equations. QCL
and related algorithms have been widely
studied in the literature. However, nu-
merical experiments are usually limited to
simulators and results from real quantum
computers are scarce. In this paper we
close this gap by executing QCL circuits
on a superconducting IBM quantum pro-
cessor in conjunction with an analysis of
the hardware errors. We show that exem-
plary QCL circuits with up to three qubits
are executable on the IBM quantum com-
puter. For this purpose, multiple func-
tions are learned and an exemplary dif-
ferential equation is solved on the quan-
tum computer. Moreover, we present how
the QCL framework can be used to learn
Niclas Schillo: niclas.schillo@iao.fraunhofer.de
Andreas Sturm: andreas.sturm@iao.fraunhofer.de

different quantum model functions in par-
allel, which can be applied to solve cou-
pled differential equations in an efficient
way.

1 Introduction
The current noisy intermediate scale quantum
(NISQ) [1] era is characterized by quantum com-
puters that are error-prone and limited in size.
Since it is not expected that this era will be over-
come in near future, quantum algorithms that
can cope with the shortcomings of NISQ com-
puters are of central interest. Starting with the
variational quantum eigensolver (VQE) [2] varia-
tional quantum algorithms [3] have emerged as
the most popular field of NISQ friendly algo-
rithms. Promising applications include, among
others, the finding of ground states with VQE,
the solution of combinatorial optimization prob-
lems with the quantum approximate optimization
algorithm (QAOA) [4] and machine learning tasks
like image recognition [5, 6].
In this work, we consider variational quantum al-
gorithms based on the quantum circuit learning
(QCL) framework [7]. Quantum circuit learning
is a loosely defined term that is used differently
in the literature. In our consideration, QCL cir-
cuits are multi-qubit circuits that have one data
encoding layer at the beginning where a variable
is encoded into the quantum state using quan-
tum feature map encoding [8]. This is followed
by a variational layer consisting of parameterized
quantum gates. Finally, an expectation value is
measured. In this way, we obtain a parametrized
function of the encoded variable. The types of
functions that can be achieved with this method
depend on the data encoding layer and the num-
ber of qubits.
One application of these circuits is to learn one
dimensional functions by training the parameters
with a classical optimizer. Building upon this
idea, it is possible to use QCL in combination

1

ar
X

iv
:2

40
5.

02
06

9v
1

 [
qu

an
t-

ph
]

 3
 M

ay
 2

02
4

mailto:niclas.schillo@iao.fraunhofer.de
mailto:andreas.sturm@iao.fraunhofer.de

with the parameter shift rule to solve differen-
tial equations. The parameter shift rule is an
approach to obtain gradients of a parameterized
quantum circuit [7, 9].
The previously described circuits have already
been extensively studied in the literature and
their effectiveness has been demonstrated by clas-
sical simulations [7, 10]. Using these circuits to
solve differential equations has also been analysed
and classically simulated [11–14].
In this work, we build on these results and fo-
cus on the executability of QCL circuits on cur-
rent quantum computers and investigate the re-
sulting hardware errors. It is shown that differ-
ent functions can be learned at a good quality
with a three qubit QCL circuit on an supercon-
ducting IBM quantum computer with under one
hundred optimization steps. However, if we in-
crease the number of qubits the hardware errors
increase significantly and an execution becomes
infeasible. In addition, we successfully solve a
differential equation with QCL circuits and the
parameter shift rule on the IBM quantum com-
puter. We observe that, due to the parameter
shift rule, the errors are significantly higher than
when learning functions directly. Furthermore,
we present methods to use the multi-qubit char-
acter of the QCL circuit to efficiently learn mul-
tiple functions simultaneously or to solve coupled
differential equations.
This work is organized as follows: Section 2 gives
a brief introduction to the QCL circuits used in
this work. Following this, Section 3 delves deeper
into the method of function learning with QCL.
We introduce numerical experiments and results
from a statevector simulation. Subsequently, in
Section 4, we execute the same experiments on
the IBM quantum computer. In Section 5, the
occurring hardware errors are analysed in detail.
In addition, Section 6 examines whether it is pos-
sible to learn several functions with a single QCL
circuit by measuring multiple qubits. It is also
discussed if this can lead to an advantage in the
optimization process. Finally, the possibility of
solving differential equations in combination with
the parameter shift rule is explored. In order to
investigate how NISQ-friendly it is to solve differ-
ential equations with QCL circuits, the parame-
ter shift rule is tested on the IBM quantum com-
puter in Section 7.1. Following this, in Section
7.2, a simple differential equation is solved on the

quantum computer. Lastly, a coupled differential
equation is solved with a single QCL circuit on a
simulator in Section 7.3.

2 Quantum Circuit Learning
The general structure of QCL circuits is shown in
Figure 1.

|0⟩

Data Encoding
Layer
U(x)

Variational
Layer
V (θ)

Expectation
Value

tr
(
β(x, θ)A

)
|0⟩
|0⟩
|0⟩
...

|0⟩

α(x) β(x, θ)

Figure 1: Structure of QCL circuits starting with the
data encoding layer U(x) followed by the parameterized
variational layer V (θ) and the calculation of the expec-
tation value of an observable A.

In the data encoding layer U(x), the variable
x is encoded into the quantum state with quan-
tum feature map encoding. After the data encod-
ing layer follows the variational layer V (θ), which
consists of parameterized quantum gates with the
parameters θ = (θ0, θ1, ...)⊤. In the end, an ex-
pectation value of an observable A is calculated.
The data encoding layer in this work consists of

U(x) =
N⊗

n=1
RY (φ(x)) , (1)

where N is the number of qubits and φ(x) is an
inner function.
For example, a data encoding layer with φ(x) = x
results in the density matrix

α(x) = 1
2N

N⊗
n=1

(I + sin(x)X + cos(x)Z) . (2)

By multiplying out and using addition theo-
rems we can see that the expression contains
trigonometric functions of the form sin(nx) and
cos(nx) with n = 1, 2, ..., N . In this case, the
expectation value without the variational layer,
⟨A⟩α (x) = tr

(
α(x)A

)
, has the form

⟨A⟩α (x) = c0 +
N∑

n=1

(
cn sin(nx) + cn+N cos(nx)

)
,

(3)

2

where cn are scalar coefficients that depend on
the observable A. To change the coefficients
ci, the variational layer is introduced. The
new coefficients, which we again denote with
ci, now depend on the variational parameters θ
which allows us to control their value. Hence,
the expectation value after the variational layer,
⟨A⟩β (x, θ) = tr

(
β(x, θ)A

)
, has the form

⟨A⟩β (x, θ) =c0(θ) +
N∑

n=1

(
cn(θ) sin(nx)

+ cn+N (θ) cos(nx)
)

.

(4)

One application of QCL is to learn arbitrary func-
tions f(x). Here, the parameters are chosen such
that the expectation value ⟨A⟩β matches the func-
tion f(x). For this purpose, a cost function on
several training points xi is minimized with a
classical optimizer. The formulation of the cost
function and the exact structure of the circuits is
explained in Section 3.
In [7] a different data encoding layer

U(x) =
N⊗

n=1
RY (arcsin(x)) (5)

was introduced. This data encoding scheme re-
sults in the density matrix

α(x) = 1
2N

N⊗
n=1

(
I + xX +

√
1 − x2Z

)
(6)

and gives a set of polynomial terms up to the
order of xN with additional

√
1 − x2-terms.

3 QCL on a Simulator

In this section, we present the learning of differ-
ent example functions with the help of a classical
simulator. First, the cost function

L(θ) =
∑

i

|f(xi) − fQC(xi, θ)|2 (7)

is defined, where the quantum model function
fQC(x, θ) = tr

(
β(x, θ)Z0

)
is the Z expectation

value of the first qubit,
∑

i sums over a num-
ber of training points xi at which the cost func-
tion is evaluated and f(x) is some function which

is to be learned. The cost function is classi-
cally minimized using the gradient-based sequen-
tial least squares programming (SLSQP) algo-
rithm [15]. The starting parameters for the clas-
sical optimizer are chosen randomly. In the fol-
lowing example, a simple three qubit circuit with
RY (arcsin(x)) data encoding is used (see Figure
2).

3×

|0⟩ RY (arcsin(x)) RX(θ0) RY (θ1) RZ(θ2)
⟨Z⟩

|0⟩ RY (arcsin(x)) RX(θ3) RY (θ4) RZ(θ5)

|0⟩ RY (arcsin(x)) RX(θ6) RY (θ7) RZ(θ8)

Figure 2: Three qubit QCL circuit with RY (arcsin(x))
data encoding followed by a variational block consisting
of three CNOT gates to achieve circular entanglement
and θ-parameterized x-, y- and z-rotations. The varia-
tional block is repeated three times. The Z expectation
value of the first qubit is measured.

Since only the first qubit is measured in this ex-
ample, it is necessary to use entanglement gates.
They ensure that higher-order functions can be
obtained by measuring the first qubit [7]. CNOT
gates are chosen here, because they are part of
the physical gate set of the IBM quantum com-
puter, where this algorithm will be tested on in
Section 4. The CNOT gates are applied in a lin-
ear chain with an additional gate between the first
and the last qubit which is called circular entan-
glement. In general, a variety of different entan-
glement methods are possible. For example, the
time evolution of an Ising Hamiltonian can be
used to create a highly entangled state [7]. How-
ever, this work does not focus on the analysis of
different entanglement methods.
The entanglement gates are followed by a
θ-parameterized x-, y- and z-rotation with
θi ∈ [0, 2π) on each qubit, which is sufficient to
achieve any unitary single-qubit operation apart
from a global phase [16]. The specific choice
of the rotational gates allows several possibilities
with the same generality. For example, it is also
possible to use an x-, z- and additional x-rotation
[7]. However, the arrangement described above
has produced the best results.
The entangling gates and the θ-parameterized
gates are repeated multiple times up to a cer-
tain depth D. The same parameters θ are used
in every block. Therefore, the number of param-

3

eters stays the same for different depths and de-
pends only on the qubit number. A greater depth
results in a higher expressibility [17]. In the ex-
ample in Figure 2, a depth of D = 3 is selected
as this depth has proven to be suitable for repre-
senting complicated functions without creating a
circuit that is too deep.

We now learn the functions f1(x) = x3,
f2(x) = x3 − x2 + 1 and f3(x) = sin(2x) with the
QCL circuit in Figure 2 on a statevector simulator
without shot noise. The cost function is evaluated
on 20 equidistant training points and is classically
minimized using SLSQP. The SLSQP algorithm
is executed with the default settings of the SciPy
minimizer [18]. The final learned functions are
plotted in Figure 3 (a)-(c) (green lines). The ini-
tial function resulting from the randomly selected
start parameters at the beginning is also shown
(black dashed lines in Figure 3 (a)-(c)). The qual-
itative behavior of the functions can be learned.
However, the final result shows strong deviations
which become clear in the error diagrams (green
lines in Figure 3 (d)-(f)), where the absolute val-
ues of the respective errors |f(x) − fQC(x)| are
plotted on a fine grid. The values of the cost
function versus the number of cost function eval-
uations (green lines in Figure 3 (g)-(i)) shows that
the optimization stagnates after just a few hun-
dred cost function evaluations.
To increase the accuracy of the function learn-
ing, a post-processing parameter [7] called θpost
is multiplied by the value of the quantum model
function fQC(x, θ) and is also optimized with the
classical optimizer. We call the modified quan-
tum model function

fpost
QC (x, θ) = fQC(x, θ) · θpost (8)

and define the cost function

L(θ) =
∑

i

|f(xi) − fpost
QC (xi, θ)|2 . (9)

The same example functions are now learned
again with the post-processing parameter θpost
(red lines in Figure 3 (a)-(c)). The ability to
learn functions is considerably improved by the
additional post-processing parameter which can
be clearly observed in the error diagrams (red
lines in Figure 3 (d)-(f)). The values of the cost
function are notably reduced even when compar-
ing the same number of cost function evaluations
(red lines in Figure 3 (g)-(i)). As an additional

degree of freedom, the post-processing parame-
ter significantly increases the expressibility and
leads to faster and more accurate learning [17].
The inclusion of this parameter also extends the
value range to fpost

QC (x, θ) ∈ R for θpost ∈ R and
the quantum model functions are no longer lim-
ited by the value range of the Z expectation value
fQC(x) ∈ [−1, 1].

4 QCL on IBM Quantum Computer

In the literature, QCL has been executed entirely
on a simulator or only the circuit with the fi-
nal optimized parameters has been tested on a
quantum computer [10]. In this work, the full
algorithm is executed on a quantum computer.
This means that also every circuit evaluation dur-
ing the optimization process is performed on the
quantum computer. The QCL circuits that have
been simulated in Section 3 are now executed
on the 27-qubit IBM Quantum System One in
Ehningen (ibmq_ehningen). A recent study on
this system can be found in [19]. All experiments
on ibmq_ehningen in this paper were performed
with Twirled Readout Error eXtinction (TREX)
[20]. Apart from this, no error mitigation tech-
niques were applied.
Due to the harware noise and particularly the
shot noise, a gradient-based optimization is not
possible. Hence, the previously used optimizer
SLSQP is no longer used. Instead, the Con-
strained Optimization BY Linear Approximation
(COBYLA) [21] proves to be suitable.
The same functions that have already been
learned in Figure 3 on a simulator are now learned
on ibmq_ehningen. The cost function is evalu-
ated on 10 equidistant training points with 2000
shots for every circuit and is classically minimized
using COBYLA (red markers in Figure 5 (a)-
(c)). Additionally, the initial function resulting
from the randomly selected start parameters at
the beginning and θpost = 1 is plotted (black
dashed lines in Figure 5 (a)-(c)). The functions
can be learned with good accuracy on the quan-
tum computer which becomes clear in the error
diagrams (Figure 5 (d)-(f)), where the absolute
values of the respective errors |f(x)−fQC(x)| are
plotted. It can be observed that the two poly-
nomials (f1(x) = x3, f2(x) = x3 − x2 + 1) can be
learned with higher accuracy than the trigono-
metric function (f3(x) = sin(2x)). This can be

4

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f
(p

os
t)

Q
C

(x
)

Final Function without θpost
Final Function with θpost
Initial Function
Training Points

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f
(p

os
t)

Q
C

(x
)

Final Function without θpost
Final Function with θpost
Initial Function
Training Points

(b)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f
(p

os
t)

Q
C

(x
)

Final Function without θpost
Final Function with θpost
Initial Function
Training Points

(c)

−1 −0.5 0 0.5 1

0

0.1

0.2

x

Er
ro

r

Error without θpost
Error with θpost

(d)

−1 −0.5 0 0.5 1

0

0.1

0.2

x

Er
ro

r

Error without θpost
Error with θpost

(e)

−1 −0.5 0 0.5 1

0

0.1

0.2

x

Er
ro

r

Error without θpost
Error with θpost

(f)

0 200 400 600 800

10−4

10−2

100

102

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

Cost without θpost
Cost with θpost

(g)

0 200 400 600 800

10−4

10−2

100

102

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

Cost without θpost
Cost with θpost

(h)

0 200 400 600 800

10−4

10−2

100

102

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

Cost without θpost
Cost with θpost

(i)

Figure 3: Three learned functions using QCL circuits on a statevector simulator with (red lines) and without (green
lines) a post-processing parameter θpost, RY (arcsin(x)) data encoding, a qubit number of N = 3 and a depth of
D = 3. The learned functions are f1(x) = x3 (a), f2(x) = x3 − x2 + 1 (b) and f3(x) = sin(2x) (c). The cost
function is evaluated on 20 equidistant training points and is classically minimized using SLSQP. The initial function
(dashed black line) shows fQC(x) with the randomly chosen starting parameters before the optimization process
and θpost = 1. Additionally, in (d)-(f) the absolute values of the respective errors |f(x) − fQC(x)| are shown on a
fine grid. In (g)-(i) the respective values of the cost function versus the number of cost function evaluations in the
optimization process are plotted.

5

explained by the fact that the selected data en-
coding layer generates polynomial-like functions
(see Equation (4)) which are more suited to learn
polynomial functions.
The values of the cost function versus the num-
ber of cost function evaluations (Figure 5 (g)-(i))
shows that the cost function is evaluated less than
one hundred times during the optimization pro-
cess. These results show that the QCL algorithm
can already be executed on today’s quantum com-
puters and demonstrate the high relevance for the
NISQ era.

5 Analysis of Hardware Errors

In Section 4, we showed that the QCL algorithm
is able to learn various functions on a quantum
computer. In this section, the effect of the phys-
ical hardware errors is examined in more detail.
To this end, we want to investigate the errors in
the execution of QCL circuits for different num-
bers of qubits. To adequately compare circuits of
different sizes, all parameters θi are set to π

2 , as
shown in Figure 4 for a qubit number of N = 3
and a depth of D = 3.

3×

|0⟩ RY (arcsin(x)) RX(π
2) RY (π

2) RZ(π
2)

⟨Z⟩

|0⟩ RY (arcsin(x)) RX(π
2) RY (π

2) RZ(π
2)

|0⟩ RY (arcsin(x)) RX(π
2) RY (π

2) RZ(π
2)

Figure 4: Three qubit QCL circuit with RY (arcsin(x))
data encoding. The Z expectation value of the first
qubit is measured.

This circuit gives expectation values of the
form

fQC(x) = (−1)N · x , (10)

where N is the number of qubits. This means
that, except for the sign, the expectation values
are the same for all numbers of qubits. The cir-
cuit is executed on the IBM quantum computer
for different numbers of qubits.
Figure 6 (a) shows the measured expectation val-
ues for different circuit sizes. Due to the increas-
ing number of CNOT gates, the circuit depth also
increases significantly with the number of qubits.
We observe that the increasing depth and there-
fore increasing hardware errors lead to the mea-

sured expectation values approaching

fQC(x) ≡ 0 . (11)

Figure 6 (b) shows the corresponding mean abso-
lute error

MAE = 1
T

T∑
i=1

|f(xi) − fQC(xi, θ)|, (12)

where T is the number of training points. The
mean absolute error increases quickly and satu-
rates early on. This is expected because fQC(x)
approaches zero early on as the qubit number
increases. The theoretical error for the case in
Equation (11) is also shown as a black line in the
Figure 6 (b).
In summary, QCL circuits on current quantum

computers are only suitable for low numbers of
qubits. For higher qubit numbers the hardware
error causes the expectation values to approach
zero.

6 Multi-Qubit Measurements
So far, we have only measured a single qubit in
all our QCL circuits. More specifically, we have
used the Z expectation value of the first qubit
to learn different functions. However, we found
that it is possible to use the expectation values of
different qubits to learn different functions simul-
taneously with the same circuit. In this section,
this idea will be investigated in more detail. For
this purpose, simulations are carried out where
the expectation value of the first qubit and the
expectation value of the second qubit are used
to learn two different functions simultaneously.
The quantum model function of the first qubit is
fpost

QC (x, θ), as before. The quantum model func-
tion of the second qubit is

gpost
QC (x, θ) = ⟨Z1⟩ (x, θ) · θ̃post , (13)

where ⟨Z1⟩ (x, θ) is the Z expectation value of
the second qubit and θ̃post is a separate post-
processing parameter. We define the cost func-
tion

L(θ) =
∑

i

(
|f(xi) − fpost

QC (xi, θ)|2

+ |g(xi) − gpost
QC (xi, θ)|2

)
,

(14)

where f(x) and g(x) can be two different func-
tions.

6

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f
po

st
Q

C
(x

)
Initial Function
f1(x)
Final Function

(a)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f
po

st
Q

C
(x

)

Initial Function
f2(x)
Final Function

(b)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f
po

st
Q

C
(x

)

Initial Function
f3(x)
Final Function

(c)

−1 −0.5 0 0.5 1

0

0.1

0.2

x

Er
ro

r

(d)

−1 −0.5 0 0.5 1

0

0.1

0.2

x

Er
ro

r

(e)

−1 −0.5 0 0.5 1

0

0.1

0.2

x

Er
ro

r

(f)

0 20 40 60

10−2

10−1

100

101

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

(g)

0 20 40 60

10−2

10−1

100

101

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

(h)

0 20 40 60

10−2

10−1

100

101

Cost Function Evaluations
C

os
t

Fu
nc

tio
n

Va
lu

e

(i)

Figure 5: Three learned functions using QCL circuits on the imbq_ehningen with a post-processing parameter
θpost, RY (arcsin(x)) data encoding and a qubit number of N = 3. The learned functions are f1(x) = x3 (a),
f2(x) = x3 − x2 + 1 (b) and f3(x) = sin(2x) (c). The depth is D = 2 for f1(x) and D = 3 for f2(x) and f3(x).
The cost function is evaluated on 10 equidistant training points with 2000 shots for every circuit and is classically
minimized using COBYLA. The initial function (dashed black line) shows fpost

QC (x) with the randomly chosen starting
parameters before the optimization process and θpost = 1. Additionally, in (d)-(f) the absolute values of the respective
errors |f(x) − fpost

QC (x)| are shown. In (g)-(i) the respective values of the cost function versus the number of cost
function evaluations during the optimization process are plotted.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

(−
1)

N
·f

Q
C

(x
)

f(x) = x

f(x) = 0
N = 2
N = 3
N = 4
N = 6
N = 27

(a)

2 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of Qubits N

M
A

E

MAE for fQC(x) ≡ 0
MAE on ibmq_ehningen

(b)

Figure 6: (a) fQC(x) of QCL circuits with θi = π
2 for different numbers of qubits evaluated on 5 equidistant training

points on the imbq_ehningen. For the function for N = 3 and N = 27 the sign is reversed so that it has the same
sign as the other examples. (b) Mean average error for 5 training points using QCL on the imbq_ehningen (red line).
The black line indicates the error that would occur if the Z expectation value would be 0 for all training points.

7

Three pairs of exemplary functions (f1(x) = x
and g1(x) = x2; f2(x) = x2 and g2(x) = x3;
f3(x) = x3 − x2 + 1 and g3(x) = x3) are now
learned with a three qubit QCL circuit with a
depth of D = 3 and RY (arcsin(x)) data encoding
(see Figure 7) on a statevector simulator.

3×

|0⟩ RY (arcsin(x)) RX(θ0) RY (θ1) RZ(θ2)
⟨Z⟩

|0⟩ RY (arcsin(x)) RX(θ3) RY (θ4) RZ(θ5)
⟨Z⟩

|0⟩ RY (arcsin(x)) RX(θ6) RY (θ7) RZ(θ8)

Figure 7: Three qubit QCL circuit with RY (arcsin(x))
data encoding. The Z expectation values of the first
and second qubit are measured.

The cost function is evaluated on 20 equidis-
tant training points and is classically minimized
using SLSQP (see Figure 8 (a)-(c)). In Figure 8
(d)-(f), the absolute values of the respective er-
rors |fi(x)−fpost

QC,i(x, θ)| are plotted. These errors
are higher than in the previous example in Fig-
ure 3, in which only one function was learned.
However, it is still so small that shot noise would
have a much greater effect when executed on a
real quantum computer.
To investigate whether it can be advantageous to
use multiple qubits for different functions, a six
qubit QCL circuit with a depth of D = 4 is used
to learn polynomials of the form

f(x) =
6∑

i=0
cix

i (15)

where the coefficients ci are randomly chosen with

6∑
i=0

c2
i ≤ 1 . (16)

These polynomials are first learned individually
by measuring only the first qubit. This is done
for 100 random polynomials and the average of
the resulting convergence curves of the cost func-
tion is shown in Figure 9 (red line). In addition,
four different random polynomials are simultane-
ously learned by measuring four different qubits.
This is also repeated 100 times with four differ-
ent polynomials (400 polynomials in total) and
the average of the resulting convergence curves is
plotted. In order to adequately compare the con-
vergence curves for the two cases, the cost func-

tion values and the number of function evalua-
tions are divided by four for the multi-function
case (blue line in Figure 9). In order to have the
necessary parameters to learn multiple functions,
unlike in the rest of the paper, no parameters are
repeated here with increasing depth, but new pa-
rameters are introduced.
In the beginning of the optimization the func-
tions can be learned faster if multiple qubits of
the same circuit are used. However, the max-
imum accuracy that can be achieved with just
one function is higher. Therefore, the approach
presented here could be valuable when aiming to
quickly learn the qualitative behavior of several
functions. We only considered one example and
there could be further advantages when approxi-
mating a higher number of functions.

7 Differential Equations

This section investigates the possibility of solving
differential equations with QCL circuits in com-
bination with the parameter shift rule (PSR).

7.1 Parameter Shift Rule

The PSR is a method to determine the exact
derivative of a parameterized quantum circuit
[7, 9]. To obtain the first derivative w.r.t. x of our
QCL circuits, the PSR boils down to evaluating
2N expectation values. As the name suggests, in
each of these expectation values the variable x in
one of the data encoding gates is shifted by ±π

2 .
Also note that, due to the chain rule, the deriva-
tive of the inner function φ′(x) also enters in the
calculation. Higher derivatives are obtained simi-
larly but require additional evaluations of the ex-
pectation value. For example, we need to execute
4N2 −2N QCL circuits for the second derivative.
To investigate the applicability of the PSR for
QCL circuits on current quantum hardware, it
is tested on imbq_ehningen. For this purpose,
the circuit and the optimized parameters from
the learning of f(x) = x3 in Figure 3 (a) are
used and the derivatives w.r.t x are calculated
with the PSR. Since the derivative of the inner
function φ(x) = arcsin(x) is required, which di-
verges for x = −1 and x = 1, a value range of
x ∈ [−0.9, 0.9] is selected in this example. The
results can be seen in Figure 10. The qualita-
tive behavior of the derivatives can be determined

8

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x

Training Points f1(x)
Training Points g1(x)
Final Function gpost

QC (x)
Final Function fpost

QC (x)

(a)

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x

Training Points f2(x)
Training Points g2(x)
Final Function gpost

QC (x)
Final Function fpost

QC (x)

(b)

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x

Training Points f3(x)
Training Points g3(x)
Final Function gpost

QC (x)
Final Function fpost

QC (x)

(c)

−1 −0.5 0 0.5 1

0

0.02

0.04

0.06

x

Er
ro

r

Error Function Qubit 0
Error Function Qubit 1

(d)

−1 −0.5 0 0.5 1

0

0.02

0.04

0.06

x

Er
ro

r

Error Function Qubit 0
Error Function Qubit 1

(e)

−1 −0.5 0 0.5 1

0

0.02

0.04

0.06

x

Er
ro

r

Error Function Qubit 0
Error Function Qubit 1

(f)

0 500 1,000 1,500
10−5

10−3

10−1

101

103

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

(g)

0 500 1,000 1,500
10−5

10−3

10−1

101

103

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

(h)

0 500 1,000 1,500
10−5

10−3

10−1

101

103

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

(i)

Figure 8: Learning two different functions per QCL circuit on a statevector simulator with a post-processing parameter
θpost,i, RY (arcsin(x)) data encoding, a qubit number of N = 3 and a depth of D = 3. The learned functions are
f1(x) = x and g1(x) = x2 (a), f2(x) = x2 and g2(x) = x3 (b) and f3(x) = x3 − x2 + 1 and g3(x) = x3 (c). The
cost function is evaluated on 30 equidistant training points and is classically minimized using SLSQP. Additionally,
in (d)-(f) the absolute values of the respective errors are shown. In (g)-(i) the respective values of the cost function
versus the number of cost function evaluations are plotted.

0 200 400 600 800 1,000
10−3

10−2

10−1

100

101

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

1 Polynomial
4 Polynomials

Figure 9: Average of the convergence curves of
the training of 100 QCL circuits with N = 6
qubits and a depth of D = 4: For the red
line 100 random polynomials are learned, i.e.
one polynomial per circuit. For the blue line
four polynomials are learned per circuit, which
sums up to 400 random polynomials learned.
We use 10 equidistant training points and the
classical optimizer COBYLA. For a fair com-
parison the value of the cost function and the
number of function evaluations is divided by
the number of polynomials learned in parallel.
The shaded areas indicate the respective stan-
dard deviations

9

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

f
po

st
Q

C
(x

)

f(x) = x3

Function

(a)

−1 −0.5 0 0.5 1

0

1

2

3

x

f
po

st
Q

C
(x

)

f ′(x) = 3x2

First Derivative with PSR

(b)

−1 −0.5 0 0.5 1

−5

0

5

x

f
po

st
Q

C
(x

)

f ′′(x) = 6x
Second Derivative with PSR

(c)

-1 -0.5 0 0.5 1
0

1

2

x

Er
ro

r

(d)

-1 -0.5 0 0.5 1
0

1

2

x

Er
ro

r

(e)

-1 -0.5 0 0.5 1
0

1

2

x

Er
ro

r

(f)

Figure 10: Resulting function values from executing the QCL circuit with trained/final parameters for f(x) = x3, see
Figure 3, on ibmq_ehningen with 10 equidistant training points (a). Values of the first (b) and second (c) derivative
obtained with the parameter shift rule applied to aforementioned circuit and executed on ibmq_ehningen. The shot
number is chosen as 1024 in all cases. In (d)-(f) we provide the absolute value of the errors between the QCL model
and the exact functions on the grid points.

well. However, there are large errors, especially
in the ranges near x = −1 and x = 1, which
go far beyond shot noise. The errors are mainly
hardware errors that accumulate due to the high
number of circuits that need to be evaluated.
In the next section, we focus on differential
equations where these derivatives become cru-
cial. Solving these differential equations on a real
quantum computer is therefore associated with
large errors.

7.2 Differential Equation on IBM Quantum
Computer

In this section, we aim to solve a differential equa-
tion with QCL circuits and the parameter shift
rule on ibmq_ehningen. For this purpose, a sim-
ple example of a differential equation is consid-
ered to limit the required quantum resources. We
focus on the differential equation

{
f ′(x) = 3x2 ,

f(0) = 0 .
(17)

The solution of this differential equation is

f(x) = x3 . (18)

To be able to solve it with QCL circuits, we define
the cost function

L(θ) =
∑

i

(∣∣∣f ′post
QC (xi, θ) − 3x2

i

∣∣∣2
+ µ

∣∣∣fpost
QC (0, θ) − 0

∣∣∣2),

(19)

where µ is a weight factor and the derivatives are
determined with the PSR.
The result for a circuit with N = 3, D = 3,
a weight factor µ = 10, 10 equidistant training
points and 2000 shots is shown in Figure 11. The
value range is chosen to be x ∈ [−0.9, 0.9] be-
cause the RY (arcsin(x))-encoding is used. It can
be observed that the differential equation can be
solved to a certain extent in the sense that the
qualitative behavior can be reproduced approx-
imately. The errors (see Figure 11 (d)-(f)) are
higher than in the case of learned functions on
imbq_ehningen (compare Figure 5 (d)-(f)). This
is because the derivatives are included in the cost
function which results in significantly more cir-
cuit evaluations and the errors accumulate.

7.3 Coupled Harmonic Oscillator
In this section, we want to solve a coupled dif-
ferential equation using a single QCL circuit in

10

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

f
po

st
Q

C
(x

)
Exact Solution
Final Function

(a)

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

x

Er
ro

r

(b)

0 20 40 60
100

101

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

(c)

Figure 11: (a) Solution using QCL circuits of the differential equation (17) on imbq_ehningen with µ = 10, N = 3,
D = 3, 10 equidistant training points and 2000 shots with RY (arcsin(x)) data encoding. The parameters are
classically optimized using COBYLA. (b) The absolute values of the respective errors |f(x) − fpost

QC (x)|. (c) Values
of the cost function versus the number of cost function evaluations during the optimization process.

combination with the parameter shift rule on a
simulator. Coupled differential equations were
solved with QCL circuits before, using a desig-
nated circuit for each equation [11]. We combine
this idea with the result from Section 6, where
we showed that multiple functions can be learned
with a single circuit.
For this purpose, a coupled harmonic oscillator
with two masses m, two springs of spring strength
k and one spring of spring strength s is consid-
ered. The arrangement can be seen in Figure 12.

k m ms k

Figure 12: Example of the coupled harmonic oscillator
with two identical masses m, two identical springs of
spring strength k and one spring of spring strength s.

This system is described by the coupled differ-
ential equation

f ′′(x) = Sf(x) , f ′(0) = f ′
0 , f(0) = f0 , (20)

where the variable x describes the time,
f(x) = (f0(x), f1(x)) collects the displacements of
the two masses, S is the stiffness matrix scaled by
1/m,

S = 1
m

(
−k − s s

s −k − s

)
, (21)

and f ′
0 and f0 are the initial velocity and ini-

tial displacement of the masses, respectively. For
this paper we choose the initial conditions as
f ′
0 = (0, 0) and f0 = (1, 0). Then, the solution to

(20) is given by

f(x) = 1
2

(
cos(ω0x) − cos(ω1x)
cos(ω0x) + cos(ω1x)

)
, (22)

with frequencies ω2
0 = k/m and

ω2
1 = k/m + 2s/m.

The differential equation is now solved with
the four qubit QCL circuit shown in Figure 13,
where the first and second qubit are measured.

4×

|0⟩ RY (x) RX(θ0) RY (θ1) RZ(θ2)
⟨Z⟩

|0⟩ RY (x) RX(θ3) RY (θ4) RZ(θ5)
⟨Z⟩

|0⟩ RY (x) RX(θ6) RY (θ7) RZ(θ8)

|0⟩ RY (x) RX(θ9) RY (θ10) RZ(θ11)

Figure 13: Four qubit QCL circuit with RY (x) data en-
coding. The first and the second qubit are measured.

We chose the RY (x) data encoding to obtain
trigonometric functions, which are the appropri-
ate choice to capture the periodic behavior one
expects from an undamped system of oscillators.
To solve the differential equation with the QCL
circuit in Figure 13, the cost function

L(θ) =
∑

i

(
∥f ′′

QC(xi, θ) − SfQC(xi, θ)∥2

+ µ∥f ′
QC(0, θ) − f ′

0∥2

+ µ∥fQC(0, θ) − f0∥2
) (23)

is defined, where µ is a problem specific weight
factor and

fQC(x, θ) =
(
fpost

QC,0(x, θ), fpost
QC,1(x, θ)

)
. (24)

The derivatives in the cost function are calcu-
lated with the PSR. The result of the simulation

11

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

x

f
po

st
Q

C
,i
(x

)

Final Function Qubit 0
Final Function Qubit 1

(a)

−1 −0.5 0 0.5 1
0

2

4

6

8
·10−3

x

Er
ro

r

Error Qubit 0
Error Qubit 1

(b)

0 2000 4000 6000

100

102

104

106

108

Cost Function Evaluations

C
os

t
Fu

nc
tio

n
Va

lu
e

(c)

Figure 14: (a) Solution of the differential equation (20) on a statevector simulator with f ′
0 = (0, 0), f0 = (1, 0),

ω2
0 = 1, ω2

1 = 16 and µ = 20. The result is obtained with the QCL circuit in Figure 13 with N = 4, D = 4 and
RY (x) data encoding in combination with the parameter shift rule. The parameters are classically optimized using
SLSQP. (b) The absolute values of the respective errors |fi(x)−fpost

QC,i(x)| are shown. (c) Values of the cost function
versus the number of cost function evaluations.

for ω2
0 = 1, ω2

1 = 16 and 30 equidistant train-
ing points is shown in Figure 14. It is possible to
solve a coupled differential equation with just one
circuit with low errors (see Figure 14 (b)). This
method could bring considerable advantages, in
particular for very complicated systems with even
more coupled equations, since only one circuit
with the corresponding parameters has to be opti-
mized, and not a set of parameters for each equa-
tion.

8 Conclusion

In this work, we have conducted a comprehensive
investigation of the QCL framework and its ex-
ecutability on NISQ devices. At the beginning,
multiple functions were successfully learned with
a simulator. Different cost functions were com-
pared and the importance of an additional post-
processing parameter was shown. The QCL cir-
cuits were tested on an IBM quantum computer
to investigate their NISQ-friendliness. Promising
results were achieved here. For a number of func-
tions, the qualitative behavior could be learned
with good accuracy and few cost function eval-
uations. In addition, the hardware errors were
examined in more detail. It was shown that QCL
only works for low qubit numbers on the IBM
quantum computer. Furthermore, it was shown
that multiple functions can be learned with a sin-
gle QCL circuit when multiple qubits are mea-
sured which results in a faster learning in the
early stages of the optimization process for some
examples.
Next, the ability to solve differential equations

with QCL circuits and the parameter shift rule
was investigated. First, the parameter shift rule
was tested on the IBM quantum computer to
investigate the NISQ applicability. It was pos-
sible to determine the derivative of functions.
However, the resulting errors were very high.
Nevertheless, a simple differential equation could
be subsequently solved to a certain extent on
ibmq_ehningen. With the knowledge about
multi-qubit measurements, the differential equa-
tion of a coupled harmonic oscillator was solved
with only a single circuit on a simulator.
Overall, however, it was found that QCL requires
many circuit evaluations, especially if derivatives
are determined with the parameter shift rule.
This makes the classical optimization computa-
tionally very intensive.
This problem applies not only to this algorithm
but to most variational quantum algorithms.
Therefore, a lot of research focuses on this prob-
lem, for example in the expansion and develop-
ment of more suitable classical optimizers [22, 23].
Such methods give hope for a reduction of com-
putation time and make the algorithm even more
relevant.
Additionally, in [24], a physics-informed quantum
algorithm was proposed, where quantum model
functions can be trained and its derivative can be
evaluated without independent sequential func-
tion evaluations on grid points. This approach
could significantly reduce the number of circuit
evaluations.

12

Acknowledgments

The authors would like to thank Vamshi Katukuri
for insightful discussions and carefully proofread-
ing this manuscript.
N. S. wants to thank Sungkun Hong for his advice
and dedicated supervision of his Master’s thesis
which built the starting point of this article.
The authors acknowledge funding from the Min-
istry of Economic Affairs, Labour and Tourism
Baden-Württemberg in the frame of the Com-
petence Center Quantum Computing Baden-
Württemberg (project SEQUOIA End-to-End)

References
[1] John Preskill. “Quantum computing in the

nisq era and beyond”. Quantum 2, 79 (2018).
[2] Alberto Peruzzo, Jarrod McClean, Peter

Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alán Aspuru-Guzik, and
Jeremy L. O’Brien. “A variational eigen-
value solver on a photonic quantum proces-
sor”. Nature communications 5, 4213 (2014).

[3] Marco Cerezo, Andrew Arrasmith, Ryan
Babbush, Simon C. Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R. McClean, Kosuke
Mitarai, Xiao Yuan, Lukasz Cincio, and
Patrick J. Coles. “Variational quantum al-
gorithms”. Nature Reviews PhysicsPages 1–
20 (2021).

[4] Edward Farhi, Jeffrey Goldstone, and Sam
Gutmann. “A quantum approximate opti-
mization algorithm” (2014).

[5] Maria Schuld, Ilya Sinayskiy, and Francesco
Petruccione. “An introduction to quantum
machine learning”. Contemporary Physics
56, 172–185 (2015).

[6] Maxwell Henderson, Samriddhi Shakya,
Shashindra Pradhan, and Tristan Cook.
“Quanvolutional neural networks: powering
image recognition with quantum circuits”.
Quantum Machine Intelligence2 (2020).

[7] Kosuke Mitarai, Makoto Negoro, Masahiro
Kitagawa, and Keisuke Fujii. “Quantum cir-
cuit learning”. Physical Review A98 (2018).

[8] Maria Schuld and Nathan Killoran. “Quan-
tum machine learning in feature hilbert
spaces”. Physical Review Letters122 (2018).

[9] Maria Schuld, Ville Bergholm, Christian
Gogolin, Josh Izaac, and Nathan Killoran.

“Evaluating analytic gradients on quantum
hardware”. Physical Review A99 (2019).

[10] Kan Hatakeyama-Sato, Yasuhiko Igarashi,
Takahiro Kashikawa, Koichi Kimura, and
Kenichi Oyaizu. “Quantum circuit learning
as a potential algorithm to predict experi-
mental chemical properties”. Digital Discov-
ery 2, 165–176 (2023).

[11] Oleksandr Kyriienko, Annie E. Paine, and
Vincent E. Elfving. “Solving nonlinear dif-
ferential equations with differentiable quan-
tum circuits”. Physical Review A 103,
052416 (2021).

[12] Niklas Heim, Atiyo Ghosh, Oleksandr Kyri-
ienko, and Vincent E. Elfving. “Quantum
model-discovery” (2021).

[13] Martin Knudsen and Christian B.
Mendl. “Solving differential equations
via continuous-variable quantum comput-
ers” (2020).

[14] Annie E. Paine, Vincent E. Elfving, and
Oleksandr Kyriienko. “Quantum quan-
tile mechanics: solving stochastic dif-
ferential equations for generating time-
series”. Advanced Quantum Technologies 6,
2300065 (2023).

[15] Dieter Kraft. “A software package for se-
quential quadratic programming”. Deutsche
Forschungs- und Versuchsanstalt für Luft-
und Raumfahrt Köln: Forschungsbericht.
Wiss. Berichtswesen d. DFVLR. (1988).

[16] Michael A. Nielsen and Isaac L. Chuang.
“Quantum computation and quantum in-
formation”. Cambridge University Press.
(2010). 10th anniversary edition.

[17] Niclas Schillo. “Quantum algorithms and
quantum machine learning for differential
equations” (2023).

[18] Pauli Virtanen, Ralf Gommers, Travis E.
Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C. J.
Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro,

13

https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1038/ncomms5213
https://dx.doi.org/10.1038/s42254-021-00348-9
https://dx.doi.org/10.1038/s42254-021-00348-9
https://dx.doi.org/10.1080/00107514.2014.964942
https://dx.doi.org/10.1080/00107514.2014.964942
https://dx.doi.org/10.1007/s42484-020-00012-y
https://dx.doi.org/10.1103/PhysRevA.98.032309
https://dx.doi.org/10.1103/PhysRevLett.122.040504
https://dx.doi.org/10.1103/PhysRevA.99.032331
https://dx.doi.org/10.1039/D2DD00090C
https://dx.doi.org/10.1039/D2DD00090C
https://dx.doi.org/10.1103/PhysRevA.103.052416
https://dx.doi.org/10.1103/PhysRevA.103.052416
https://dx.doi.org/10.1002/qute.202300065
https://dx.doi.org/10.1002/qute.202300065

Fabian Pedregosa, and Paul van Mulbregt.
“Scipy 1.0: fundamental algorithms for sci-
entific computing in python”. Nature meth-
ods 17, 261–272 (2020).

[19] Andreas Sturm, Bharadwaj Mummaneni,
and Leon Rullkötter. “Unlocking quantum
optimization: a use case study on nisq sys-
tems” (2024).

[20] Ewout van den Berg, Zlatko K. Minev,
and Kristan Temme. “Model-free readout-
error mitigation for quantum expectation
values” (2020).

[21] Michael J. D. Powell. “A direct search opti-
mization method that models the objective
and constraint functions by linear interpo-
lation”. In Susana Gomez and Jean-Pierre
Hennart, editors, Advances in Optimization
and Numerical Analysis. Springer Nether-
lands, Dordrecht (1994).

[22] Shiro Tamiya and Hayata Yamasaki.
“Stochastic gradient line bayesian optimiza-
tion for efficient noise-robust optimization
of parameterized quantum circuits”. npj
Quantum Information8 (2022).

[23] Marco Wiedmann, Marc Hölle, Maniraman
Periyasamy, Nico Meyer, Christian Ufrecht,
Daniel D. Scherer, Axel Plinge, and Christo-
pher Mutschler. “An empirical comparison
of optimizers for quantum machine learning
with spsa-based gradients” (2023).

[24] Annie E. Paine, Vincent E. Elfving, and
Oleksandr Kyriienko. “Physics-informed
quantum machine learning: solving nonlin-
ear differential equations in latent spaces
without costly grid evaluations” (2023).

14

https://dx.doi.org/10.1038/s41592-019-0686-2
https://dx.doi.org/10.1038/s41592-019-0686-2
https://dx.doi.org/10.1007/978-94-015-8330-5_4
https://dx.doi.org/10.1007/978-94-015-8330-5_4
https://dx.doi.org/10.1038/s41534-022-00592-6
https://dx.doi.org/10.1038/s41534-022-00592-6

	Introduction
	Quantum Circuit Learning
	QCL on a Simulator
	QCL on IBM Quantum Computer
	Analysis of Hardware Errors
	Multi-Qubit Measurements
	Differential Equations
	Parameter Shift Rule
	Differential Equation on IBM Quantum Computer
	Coupled Harmonic Oscillator

	Conclusion
	Acknowledgments
	References

