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1 Summary

Multiplexed imaging data are revolutionizing our understanding of the composi-
tion and organization of tissues and tumors [1]. A critical aspect of such “tissue
profiling” is quantifying the spatial relationships among cells at different scales
from the interaction of neighboring cells to recurrent communities of cells of
multiple types. This often involves statistical analysis of 107 or more cells in
which up to 100 biomolecules (commonly proteins) have been measured. While
software tools currently cater to the analysis of spatial transcriptomics data
[2], there remains a need for toolkits explicitly tailored to the complexities of
multiplexed imaging data including the need to seamlessly integrate image visu-
alization with data analysis and exploration. We introduce SCIMAP, a Python
package specifically crafted to address these challenges. With SCIMAP, users
can efficiently preprocess, analyze, and visualize large datasets, facilitating the
exploration of spatial relationships and their statistical significance. SCIMAP’s
modular design enables the integration of new algorithms, enhancing its capa-
bilities for spatial analysis.

2 Statement of Need

A variety of methods have been introduced for high multiplexed imaging of tis-
sues, including MxIF, CyCIF, CODEX, 4i, mIHC, MIBI, IBEX, and IMC [3–9];
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although these methods differ in their implementations, all enable the collec-
tion of single-cell data on 20-100 proteins within preserved 2D and 3D tissue
microenvironments. Analysis of high-plex images typically involves joining adja-
cent image tiles together and aligning channels across imaging cycles (stitching
and registration) to generate a composite high-plex image and then identifying
the positions and boundaries of individual cells via segmentation. The intensities
of individual protein antigens, stains, and other detectable molecules are then
quantified on a per-cell basis. This generates a “spatial feature table” (anal-
ogous to a count table in sequencing) that can be used to identify individual
cell types and states; tools from spatial statistics are then used to identify how
these cells are patterned in space from scales ranging from a few cell diameters
( 10 µm) to several millimeters.

Spatial feature tables provide the quantitative data for analysis of high-plex
data but human inspection of the original image data remains essential. At
the current state of the art, many of the critical morphological details in high-
resolution images cannot be fully and accurately quantified. Segmentation is
also subject to errors identifiable by humans, but not fully resolvable computa-
tionally [10]. As a consequence, computation of spatial features and relation-
ships must be performed in combination with visualization of the underlying
image data. Humans excel at identifying tissue features that correspond to
classical histo-morphologies; they are also effective at discriminating foreground
signals from variable background [11] using a process of “visual gating” (percep-
tion of high and low-intensity levels while visualizing an image). More generally,
effective integration of visualization and computation enables nuanced interpre-
tation of cellular organization in relation to established tissue architectures.
SCIMAP uses the Python-based Napari [12] image viewer to leverage these ca-
pabilities by providing a seamless interface to inspect and annotate high-plex
imaging data alongside computational analysis. For example, we have imple-
mented an image-based gating approach that allows users to visually determine
the threshold that discriminates background from a true signal at both a whole-
specimen and single-cell level. Users can also select specific regions of interest
(ROIs) for selective or deeper analysis. This involves drawing ROIs over images
(freehand or geometric) and then selecting the underlying single data for further
analysis. This capability is essential for incorporating histopathological infor-
mation on common tissue structures (e.g., epidermis, dermis, follicles), immune
structures (e.g., secondary and tertiary lymphoid structures), tumor domains
(e.g., tumor center, boundary, tumor buds), and tumor grade or stage (e.g.,
early lesions, invasive regions, established nodules). It also allows for excluding
regions affected by significant tissue loss, folding, or artifactual staining [10].
SCIMAP then performs statistical and spatial analyses on individual ROIs or
sets of ROIs. Spatial analysis, including the measurement of distances between
cells, analysis of interaction patterns, categorization into neighborhoods, and
scoring of these patterns, is crucial for elucidating the cellular communications
that underpin the functional aspects of the biology being studied. SCIMAP
offers various functions to facilitate these analyses.

Lastly, a single high-plex whole slide image can exceed 100GB per image
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and 106 cells, necessitating optimized functions for handling large matrices and
images. SCIMAP employs the well-established AnnData object structure, com-
plemented by Dask and Zarr for efficient image loading in Napari. This approach
facilitates seamless viewing of images with overlaid data layers, thus enabling
effective analysis of large datasets. To date, SCIMAP has been used in the
analysis of over 5 datasets from 8 tissue and cancer types [13–16].

3 Availability and Features

SCIMAP is available as a standalone Python package for interactive use, in
Jupyter Notebook for example, or can be accessed via a command-line inter-
face (CLI; only a subset of functions that do not require visualization) for
cloud-based processing. The package can be accessed at GitHub (https://
github.com/labsyspharm/scimap) and installed locally through pip. Instal-
lation, usage instructions, general documentation, and tutorials, are available
at https://scimap.xyz/. See Figure 1 for a schematic of the workflow and
system components.

Figure 1: SCIMAP Workflow Overview. The schematic highlights data im-
port, cell classification, spatial analysis, and visualization techniques within the
SCIMAP tool box.

SCIMAP comprises of four main modules: preprocessing, analysis tools, vi-
sualization, and external methods. The preprocessing tools include functions
for normalization, batch correction, and streamlined import from cloud pro-
cessing pipelines such as MCMICRO [17]. The analysis tools offer standard
single-cell analysis techniques such as dimensionality reduction, clustering, prior
knowledge-based cell phenotyping (a method through which cells are classified
into specific cell types based on patterns of marker expression defined by the
user), and various spatial analysis tools for measuring cellular distances, identi-
fying regions of specific cell type aggregation, and assessing statistical differences
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in proximity scores or interaction frequencies. SCIMAP also includes neighbor-
hood detection algorithms that utilize spatial-LDA [18] for categorical data (cell
types or clusters) and spatial lag for continuous data (marker expression val-
ues). Most analysis tools come with corresponding visualization functions to
plot the results effectively. Additionally, the external methods module facili-
tates the integration of new tools developed by the community into SCIMAP,
further extending its utility and applicability to both 2D and 3D data.
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