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Coding for Synthesis Defects
Ziyang Lu, Han Mao Kiah, Yiwei Zhang, Robert N. Grass, and Eitan Yaakobi

Abstract—Motivated by DNA based data storage system, we
investigate the errors that occur when synthesizing DNA strands
in parallel, where each strand is appended one nucleotide at a
time by the machine according to a template supersequence. If
there is a cycle such that the machine fails, then the strands
meant to be appended at this cycle will not be appended, and we

refer to this as a synthesis defect. In this paper, we present two
families of codes correcting synthesis defects, which are t-known-
synthesis-defect correcting codes and t-synthesis-defect correcting
codes. For the first one, it is assumed that the defective cycles are
known, and each of the codeword is a quaternary sequence. We
provide constructions for this family of codes for t = 1, 2, with
redundancy log 4 and log n+18 log 3, respectively. For the second
one, the codeword is a set of M ordered sequences, and we give
constructions for t = 1, 2 to show a strategy for constructing
this family of codes. Finally, we derive a lower bound on the
redundancy for single-known-synthesis-defect correcting codes,
which assures that our construction is almost optimal.

I. INTRODUCTION

Storing digital information on synthetic DNA strands has

attracted significant interest due to its potential for information

storage, particularly its durability and high storage density

(see [1], [2] and references therein). The storage process

involves converting binary digital information into quaternary

strings (nucleotide bases) and writing these onto DNA strands

using a synthesis machine.

While numerous experiments demonstrated the feasibility of

DNA storage (see Table 1.1 in [2] for a recent survey), prac-

tical implementation for large-scale data remains challenging

primarily due to its high cost. Specifically, DNA synthesis

stands out as the most costly component in the storage model

(see [3] for a discussion on synthesis procedures). Therefore,

understanding the synthesis process is essential to enhance

efficiency and reduce costs.

To minimize errors during the synthesis process, DNA

strands typically contain no more than 250 nucleotides. Con-

sequently, the user split the encoded quaternary strings into

multiple short sequences for synthesis, storing them in an

unordered manner. Synthesis of these multiple strands is typi-

cally array-based or performed in parallel (see for example, [3,

Fig. 6]).
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In this process, the synthesis machine scans a fixed tem-

plate DNA sequence and appends one nucleotide at a time

according to this template supersequence. Each synthesis cycle

involves appending a nucleotide to a subset of DNA strands

requiring that specific nucleotide. Therefore, all synthesized

DNA strands must be subsequences of the fixed template

supersequence. The length of the fixed supersequence dictates

the number of cycles needed for strand generation, thereby

influencing the total synthesis time. Minimizing the total

synthesis time is essential for reducing the overall cost of

DNA synthesis, as each cycle requires reagents and chemicals

[4]. This results in an interesting constrained coding problem

that was initiated by Lenz et al. [5] and subsequently studied

in [6]–[10].

In this paper, we introduce a new error model that arises

during this synthesis process [11].

Specifically, if the synthesis machine fails to append a

nucleotide at a certain cycle, then we refer to this error event

as a synthesis defect (see Definition 1 for a formal definition).

While synthesis defects share certain similarities to deletions,

our primary contribution in this study is to demonstrate that

by leveraging certain side information, we can dramatically

reduce the redundancy of the coding scheme. Our results are

distinguished between two scenarios: one where the defective

cycles are known, and another where the defective cycles are

unknown. In the first case, we construct codes that correct

one and two synthesis defects using log 4 and logn + O(1)
redundant bits, respectively, where n denotes the codeword

length. In contrast, if we employ a single and a two-deletion-

correcting code, we require at least logn and 2 logn redundant

bits, respectively. Also, in this case where the defects are

known and t = 1, we provide a matching lower bound for the

redundancy. For the second case, where the defective cycles

are not known, we consider the task of synthesizing M length-

n words. Here, we construct codes that correct one and two

synthesis defects using roughly λ1(logn)
2 +M log logn and

λ2(log n)
2 + 2M logn redundant bits, respectively, for some

constants λ1 and λ2.

II. PROBLEM FORMULATION

Throughout this paper, we use Σ = {1, 2, 3, 4} to denote

DNA alphabet of size four and consider the shifted modulo

operator so that (a mod 4) always belongs to Σ. For an integer

T , we use [T ] to denote the set {1, 2, . . . , T }. For a length-

n sequence x, its ith symbol is denoted as xi, and we use

x1x2 . . . xn or (x1, x2, . . . , xn) to represent it. Denote xI =
xi1xi2 . . . xik as a subsequence of x indexed by I , where I =
{i1, i2, . . . , ik} ⊆ [n] is a set of indices of size k.

Consider synthesizing a quaternary sequence x =
x1x2 . . . xn ∈ Σn. In this paper, we consider the template
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sequence 12341234 · · · and appends one nucleotide according

to this sequence in each cycle. Thus, in almost all cases, more

than n synthesis cycles are required as we need to wait for the

synthesis machine to append the corresponding nucleotide.

Now, to determine the number of cycles, we perform the fol-

lowing computation. First, we define the difference sequence

of x to be Diff(x) = (x1, x2−x1 mod 4, . . . , xn−xn−1 mod
4). Note that the map Diff : Σn → Σn is a one-to-one mapping

and hence it is invertible.

Next, we use cycle(x) ∈ [4n]n to denote the synthesis cycle

sequence of x. Here, for 1 ≤ i ≤ n, the ith symbol of x will be

synthesized in the cycle given by cycle(x)i =
∑i

j=1 Diff(x)j .

For example, if x = 1241321, then Diff(x) = 1121233 and

cycle(x) = (1, 2, 4, 5, 7, 10, 13). Observe that the elements of

cycle(x) are necessarily monotonically increasing. Hence, by

a slight abuse of notation, we treat cycle(x) both as a set and

as a sequence. Specifically, sometimes, we write ∆∩cycle(x)
to mean ∆ ∩ {cycle(x)i}

n
i=1.

Finally, for a subset of synthesis cycles ∆ ⊆ [4n], we let

I(x,∆) = {i ∈ [n] : cycle(x)i ∈ ∆} represent the indices

of x whose synthesis cycles belong to ∆. Then, we define

SynDef∆(x) , x[n]\I(x,∆) to be the sequence obtained by

deleting the symbols whose synthesis cycles belong to ∆.

Let us continue our example with x = 1241321. When ∆ =
{12, 13}, then I(x,∆) = {7} and SynDef∆(x) = 124132.

A. Problem Formulation

In this paper, we consider the scenario where a set of DNA

strands is synthesized in parallel. Similar to before, in every

cycle, the machine appends the corresponding nucleotide to the

strands that need it. However, if the machine does not append

a nucleotide at cycle i, then we say that a synthesis defect

occurs at cycle i. Formally, we have the following definition.

Definition 1. Suppose that C = (c1, c2, . . . , cM ) ∈ (Σn)M .

For ∆ ⊆ [4n], we say that C suffers from synthesis

defects at the cycles in ∆ if for i ∈ [M ], the sym-

bols of ci synthesized at cycles ∆ are deleted and re-

sults in SynDef∆(ci). Therefore, we define SynDef∆(C) ,

(SynDef∆(c1), . . . , SynDef∆(cM )).

For simplicity, we assume the strands are ordered and so,

the identities of the strands are known to both the sender and

receiver. In practice, this means that the strands are assigned

unique indices and we assume that the indices are received

error-free.

Example 1. Let M = 3 and n = 5. Consider the set of strands

C = (c1, c2, c3), where

c1 = 31411 ( cycle(c1) = (3, 5, 8, 9, 13) ),

c2 = 12213 ( cycle(c2) = (1, 2, 6, 9, 11) ),

c3 = 14131 ( cycle(c3) = (1, 4, 5, 7, 9) ) .

When ∆ = {1}, we have that

SynDef∆(C) = (31411, 2213, 4131) .

On the other hand, when ∆ = {10} or ∆ = {12}, we have

SynDef∆(C) = (31411, 12213, 14131) .

Observe that when synthesis defects occur in a set of strands,

not all strands are erroneous. However, those strands with sym-

bols synthesized during corresponding cycles will be deleted

at those cycles. Furthermore, as illustrated in this example, it

is possible that SynDef∆(C) = C and this poses an interesting

coding challenge. �

Our goal in this paper is to study codes correcting synthesis

defects. We distinguish between two cases: one where we

know the defective cycles; another where the locations of

defects are unknown.

Case I. In the first case, even if we know the set of defective

cycles, that is ∆, it is possible that we cannot infer the

erroneous positions from SynDef∆(C).
Let us explain using the following example.

Example 2. Let M = 3 and n = 5. Consider the set of strands

C = (12341, 12134, 21231).

When ∆ = {5}, we have that

SynDef{5}(C) = (1234, 1234, 2231).

Now we want to recover C from SynDef{5}(C) knowing that

∆ = {5}. For the strand 2231, we insert a 1 at the fifth cycle,

and we get 21231. This turns out to be the only option. But for

the strand 1234, there are four possible positions to insert 1
at the fifth cycle, which result in 11234, 12134, 12314, 12341.

Therefore we cannot uniquely recover C even if we know the

locations of the defects. Furthermore, the erroneous positions

corresponding to 1234 are 2, 3, 4, and 5. Hence, coding for

erasures is insufficient. �

The above example gives rise to the following problem:

how to recover C with the knowledge of locations of defects?

In our study of this problem, it is enough to investigate the

case where M = 1. In other words, we design codes for a

single-strand. This is because in solving the single-strand case,

we obtain sufficient information, including the approximate

deleted locations and the values of the deleted symbols, and

other strands in the set cannot provide more information about

the errors.

Hence, a t-known-synthesis-defect correcting code allows

one to uniquely recover a synthesized word, in the presence

of t synthesis defects when the locations of defects are known.

Definition 2. We say a code C ⊆ Σn is a t-known-synthesis-

defect correcting code (t-KDCC) if for every pair of distinct

codewords, c1, c2 ∈ C, and for any ∆ ⊆ [4n] with |∆| = t,
we have that

SynDef∆(c1) 6= SynDef∆(c2).

Case II. On the other hand, when we do not know the locations

of the defects, coding for a single strand is almost equivalent

to coding for deletions. Hence, we consider M > 1. When

the locations of the defects are unknown, we can simply

employ a deletion-correcting code for each strand. However,

this incurs a high redundancy and hence, our goal is to reduce

this redundancy.
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Consider Example 1 and the case where ∆ = {1}. Suppose

c2 = 12213 is obtained from a single-deletion-correcting

code. Then when we receive 2213, we are able to recover

c2 and also determine ∆ = {1}. Then we are able to use this

information on ∆ to correct the other strings. Therefore, when

the location of defects are unknown, our strategy is to divide

the M > 1 strands into two parts and employ two different

coding schemes. The first coding scheme not only allows us

to correct the defects, but also provide approximate locations

of the defects. This then allows us to employ a second coding

scheme that incurs less redundancy and we describe this in

detail in Section IV. Here, we formally define a t-synthesis-

defect correcting code.

Definition 3. For a set of sequences C = (c1, c2, . . . , cM ) ∈
(Σn)M , and d ∈ [n], we define the synthesis defect ball of

radius d of C to be the set

Ball
SynDef
d (C) = {SynDef∆(C) : ∆ ⊆ [4n], |∆| ≤ d}.

Definition 4. A code C ⊆ (Σn)M is a t-synthesis-defect cor-

recting code (t-SDCC) if for every pair of distinct C1,C2 ∈ C,

we have

Ball
SynDef
t (C1) ∩ Ball

SynDef
t (C2) = ∅.

In this paper, we provide designs for these two classes of

codes. We use redundancy to evaluate a code. Specifically, we

define the redundancy of a code C ⊆ (Σn)M to be 2Mn −
log |C|.

B. Organization

In Section III, we construct t-KDCCs for t = 1, 2 with

redundancy log 4 and log n + 18 log 3 respectively. Specifi-

cally, we achieve this by constructing binary code capable of

correcting t deletions where each deletion is within a small

window. When the window is large, this will be an important

material for constructing SDCC. In Section IV, we first show

that using O(log n) strands is enough to cover all the 4n
cycles. Then, by giving single-SDCC and 2-SDCC we show

our idea for constructing t-SDCCs. In Section V, we provide

the lower bounds for redundancy on 1-KDCCs, which is at

least log 4 − o(1) bits of redundancy. Last, we conclude and

present some future work in Section VI.

III. CONSTRUCTIONS OF KNOWN-SYNTHESIS-DEFECT

CORRECTING CODES

In this section, we provide constructions of t-KDCCs for

t = 1, 2. We show that knowing the locations of the defects

helps us narrow each of the location of deletion into a

small interval of constant length. Then, we can correct these

deletions by using binary bounded-deletion-correcting codes

[12].

Definition 5. For P = (P1, P2, . . . , Pt) ∈ Z
t we call a

code P -bounded t-deletion correcting code if it can correct t
deletions where the t deletions are located at t given intervals

of length P1, P2, . . . , Pt, respectively. Furthermore, we let

P , max{P1, . . . , Pt} denote the maximum Pi for 1 ≤ i ≤ t.

Our main contribution in this section is to construct P -

bounded t-deletion correcting codes with different ranges of

P for t = 1, 2. Before that, let us introduce a serial of

useful lemmas to show that the knowledge of defective cycles

narrows down the locations of resulting deletions.

Definition 6. For ∆ ⊆ [4n] we define

B∆(x) = {y ∈ Σn : SynDef∆(x) = SynDef∆(y)}

as all the length-n words that will result in the same word after

deleting the symbols located at these cycles in ∆. Besides, if

|∆| = 1 and has only one element δ ∈ [4n], we also use the

notation Bδ(x) to represent the confusable ball of x in case

of the defect of cycle δ.

For radius-1 confusable ball of x, we have the following

lemmas.

Lemma 1. For x ∈ Σn, and δ ∈ cycle(x), we have

|Bδ(x)| =

|{δ − 4, δ − 3, δ − 2, δ − 1} ∩ (cycle(SynDef{δ}(x)) ∪ {0})|.

Proof: For every y ∈ Bδ(x), it has SynDef{δ}(y) =

SynDef{δ}(x) by the definition of Bδ(x). Thus, we can gener-

ate Bδ(x) by inserting the symbol (δ mod 4) in SynDef{δ}(x)
and make sure it is at the δ cycle.

Due to the property of the cycle sequence, any two con-

secutive elements in a cycle sequence have difference at most

4. Consequently, if we want to insert a symbol making sure

it is at the δ cycle, then it must be inserted after the symbol

synthesized at cycle δ − 4 or δ − 3 or δ − 2 or δ − 1. So,

the size of Bδ(x) depends on {δ − 4, δ − 3, δ − 2, δ − 1}
and SynDef{δ}(x). Specially, if we insert (δ mod 4) at the

beginning of SynDef{δ}(x), then we actually insert it after

the cycle 0. Hence, we conclude that |Bδ(x)| = |{δ − 4, δ −
3, δ − 2, δ − 1} ∩ (cycle(SynDef{δ}(x)) ∪ {0})|.

This leads to the following lemma, demonstrating the rela-

tionship between the indices of deletions in x and those in its

confusable sequence.

Lemma 2. If x ∈ Σn suffers from t synthesis defects at cycles

in ∆ = {δ1, . . . , δt} ⊆ cycle(x) resulting in SynDef∆(x),
then for any y ∈ B∆(x) with cycle(x){i1,i2,...,it} =
cycle(y){j1,j2,...,jt} = ∆, we have |ik − jk| ≤ 4k − 1 for

1 ≤ k ≤ t.

Proof: For any y ∈ B∆(x), y can be obtained by

inserting t symbols successively into SynDef∆(x) in the order

xi1 , xi2 , . . . , xit and at positions j1, j2, . . . , jt. By Lemma 1,

there are at most 4 positions to insert xi1 such that it is inserted

at the cycle of cycle(x)i1 , where the index is in the range

[i1 − 3, i1 + 3], so |i1 − j1| ≤ 3. After inserting xi1 into

SynDef∆(x), each cycle of SynDef∆(x)i will increase by 4
or keep unchanged for i > i1. Again there are at most 4
positions to insert xi2 at the cycle of cycle(x)i2 . Since the

cycles may have increased by 4, xi2 is possible to be inserted

near the symbol synthesized at cycle(x)i2−4, so |i2−j2| ≤ 7.

Repeating this process, we conclude that |ik − jk| ≤ 4k − 1
for 1 ≤ k ≤ t.



4

Example 3. Let x and cycle(x) be the following, and let

∆ = {5, 17}.

cycle(x) = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
x = 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

Then, we have SynDef∆(x) , x′ as follows:

cycle(x′) = 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 18
x
′ = 1 2 3 4 2 3 4 1 2 3 4 1 2 3 4 2

Now we want to insert two 1s into SynDef∆(x) such that

these two 1s are at 5th and 17th cycles. We first insert a 1 at the

second position of SynDef∆(x), then we get x′′ as follows:

cycle(x′′) = 1 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 22
x
′′ = 1 1 2 3 4 2 3 4 1 2 3 4 1 2 3 4 2

Next, to get a sequence in B∆(x) we need to insert a 1 into

x′′ such it is at 17th cycle. We insert it at the 10th position

of x′′, and we get y ∈ B∆(x):

cycle(y) = 1 5 6 7 8 10 11 12 13 17 18 19 20 21 22 23 24 26
y = 1 1 2 3 4 2 3 4 1 1 2 3 4 1 2 3 4 2

Compare y with x, and we have cycle(x){5,17} =
cycle(y){2,10} = {5, 17} = ∆, which satisfies the conclusion

of Lemma 2 that |ik − jk| ≤ 4k − 1 for k = 1, 2. �

A. Reduction to binary codes

In this subsection, we show that the constructions of t-
KDCCs can be reduced to constructions of binary codes.

Definition 7 ( [13]). Let x ∈ Σn be a quaternary word of

length n. Define the signature of x to be the binary sequence

x̃ of length n− 1 such that

x̃i =

{
1 if xi+1 ≥ xi,

0 if xi+1 < xi,

for all 1 ≤ i ≤ n− 1.

Lemma 3. If x ∈ Σn suffers from t synthesis defects at

cycle ∆ = {δ1, . . . , δt} ⊆ cycle(x) resulting in SynDef∆(x),
then with the knowledge of ∆ and x̃, we can recover x from

SynDef∆(x).

Proof: We prove this by giving an algorithm, where the

inputs are SynDef∆(x),∆ = {δ1, . . . , δt} and x̃, and output

is x. First we recover the symbol synthesized at δ1 cycle. By

Lemma 1 and 2, there are at most 4 positions to insert the

symbol (δ1 mod 4). Specifically, it can only be inserted after

symbols synthesized at cycles in {δ1−4, δ1−3, δ1−2, δ1−1}.
Let I = {i+ 1 : cycle(x)i ∈ {δ1 − 4, δ1 − 3, δ1 − 2, δ1− 1}},
then I is the set of indices suitable to insert (δ1 mod 4).
Furthermore, |I| ≤ 4 and the elements in I are consecu-

tive. Since we can know the monotonicity of xI from x̃,

there is only one choice in I to insert (δ1 mod 4) keeping

the monotonicity. Denote the sequence obtained by inserting

(δ1 mod 4) into SynDef∆(x) as x′, and renew the inputs as

x′,∆ = {δ2, . . . , δt} and x̃. After t rounds of algorithm, we

can get the correct sequence x.

The following is an algorithm we mentioned above to

recover x with the knowledge of the defective cycles and the

signature.

Algorithm 1: Recover x with the knowledge of de-

fective cycles and its signature

Input: SynDef∆(x), ∆ = {δ1, . . . , δt} and x̃

Output: x

Set j = 1, x′ = SynDef∆(x);
while ∆ 6= ∅ do

I ← {i+ 1 : cycle(x)i ∈
{δj − 4, δj − 3, δj − 2, δj − 1}};

foreach i ∈ I do

xi ← insert (δj mod 4) at position i in x′;

if ∃ i, such that x̃i
I = x̃I then

x′ ← xi;

Remove δj from ∆;

j = j + 1;

end

end

end

x← x′;

return x;

With Lemma 3 and the above algorithm, the problem of

correcting t synthesis defects with the knowledge of defective

cycles reduces to recovering the signature with the information

of defective cycles.

By the definition of signature, we have the following

observation.

Observation 1 ([13]). For x ∈ Σn, if a deletion occurs at xi,

then x̃i or x̃i−1 will be deleted. Conversely, if the index of

deletion in x̃ is i, then the index of deletion in x is i or i+1.

Specifically, if xi−1 ≤ xi ≤ xi+1 or xi−1 > xi > xi+1,

then the deletion of xi will cause a deletion of x̃i. If xi−1 ≤
xi > xi+1 and xi−1 > xi+1, then the deletion of xi will cause

a deletion of x̃i−1. If xi−1 ≤ xi > xi+1 and xi−1 ≤ xi+1,

then the deletion of xi will cause a deletion of x̃i. The case

of xi−1 > xi ≤ xi+1 is similar. So we have the following

corollary of Lemma 2.

Corollary 1. Let x ∈ Σn, and ∆ ⊆ cycle(x) is of size t.
For any y ∈ B∆(x) with x̃n\{i1,i2,...,it} = ỹn\{j1,j2,...,jt},

we have |ik − jk| ≤ 4k for 1 ≤ k ≤ t.

With this corollary, if we want to construct a t-KDCC, it

suffices to construct a binary P -bounded t-deletion correcting

code for P = (5, 9, . . . , 4t+ 1).

B. Constructions for t = 1

We first construct a single-KDCC by using binary P -

bounded 1-deletion correcting code with redundancy log 12.

Then, we show that this can be improved by giving another

construction with redundancy log 4.

Definition 8. For x ∈ Z
n, the VT-syndrome of x is defined

as VT(x) ,
∑n

i=1 ixi. Define Sum(x) ,
∑n

i=1 xi.
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Construction 1 ([12, Construction 1]). For a ∈ ZP , b ∈ Z2,

let the shifted Varshamov-Tenengolts code be:

SVTa,b(n, P ) =
{
x ∈ Σn :VT(x) = a mod P,

Sum(x) = b mod 2
}

Lemma 4 ( [12, Lemma 4, 5]). For a ∈ ZP , b ∈ Z2,

the shifted VT code SVTa,b(n, P ) is a P -bounded single-

deletion correcting code, and there exist a and b such that the

redundancy is at most logP + 1.

Construction 2. For a ∈ Z5, b ∈ Z2 define the code

CKDCC
1 (n; a, b) =

{
x ∈ Σn : x̃ ∈ SVTa,b(n, 5)

}
.

Theorem 1. For a ∈ Z5, b ∈ Z2 the code CKDCC
1 (n; a, b) is

a 1-KDCC, and there exist a and b such that the redundancy

is at most log 10.

Proof: Suppose CKDCC
1 (n; a, b) is not a 1-KDCC, then

there exists a y ∈ CKDCC
1 (n; a, b), such that y ∈ Bδ(x)

for some δ ∈ cycle(x). Let i and j be the indices such that

x[n]\{i} = y[n]\{j}, then we have i′ ∈ {i−1, i}, j′ ∈ {j−1, j}
where x̃[n]\{i′} = ỹ[n]\{j′}. By Lemma 2 and Corollary 1, it

has to be |i − j| ≤ 3 and |i′ − j′| ≤ 4 which contradict that

x̃, ỹ ∈ SVTa,b(n, 5).
Set P = 5, we get that there exist a and b such that the

redundancy of CKDCC
1 (n; a, b) is at most log 5 + 1 = log 10

by Lemma 4.

The above shows an example of constructing 1-KDCC

from binary P -bounded single-deletion correcting code In the

remaining of this subsection, we construct 1-KDCC without

using the signature.

Construction 3. For a ∈ Z4, define the code

CKDCC
1 (n; a) =

{
x ∈ Σn :

⌊n
2
⌋∑

i=1

x2i = a mod 4
}
.

Theorem 2. For a ∈ Z4 the code CKDCC
1 (n; a) is a 1-KDCC

and there exists an a such that the redundancy is at most log 4
for some a ∈ Z4.

Proof: Suppose CKDCC
1 (n; a) is not a 1-KDCC, then

there exists a y ∈ CKDCC
1 (n; a), such that y ∈ Bδ(x) for

some δ ∈ cycle(x). Again we let i < j be the indices such

that x[n]\{i} = y[n]\{j}. By the proof of Lemma 1, if we

concentrate on the different parts of x and y which are x[i,j]

and y[i,j], then xi = yj and xk = yk−1 for i + 1 ≤ k ≤ j.

Besides, xi, . . . , xj are all different since they are synthesized

within 4 cycles. Now we discuss in three cases, j−i = 3, 2, 1.

• If j − i = 1, then we have
∣∣∣∣∣∣

⌊n
2
⌋∑

i=1

x2i −

⌊n
2
⌋∑

i=1

y2i

∣∣∣∣∣∣
= |xi − xj | ∈ {1, 2, 3},

a contradiction.

• If j − i = 2, then we have
∣∣∣∣∣∣

⌊n
2
⌋∑

i=1

x2i −

⌊n
2
⌋∑

i=1

y2i

∣∣∣∣∣∣
=

{
|xi + xj − xi+1 − xi|, if i is even,

|xi+1 − xj |, if i is odd.

Either i is even or odd, we can get∣∣∣
∑⌊n

2
⌋

i=1 x2i −
∑⌊n

2
⌋

i=1 y2i

∣∣∣ = |xi+1 − xj | ∈ {1, 2, 3},

a contradiction.

• If j − i = 3, then
∣∣∣∣∣∣

⌊n
2
⌋∑

i=1

x2i −

⌊n
2
⌋∑

i=1

y2i

∣∣∣∣∣∣
= |xi + xi+2 − xi+1 − xj |.

In this case, x[i:j] = xixi+1xi+2xi+3 ∈
{1234, 2341, 3412, 4123}, so |xi+xi+2−xi+1−xj | = 2,

again a contradiction.

In all cases, 1 ≤
∣∣∣
∑⌊n

2
⌋

i=1 x2i −
∑⌊n

2
⌋

i=1 y2i

∣∣∣ ≤ 3, which contra-

dicts
∑⌊n

2
⌋

i=1 x2i =
∑⌊n

2
⌋

i=1 y2i mod 4.

By the pigeonhole principle, there exists a ∈ Z4, such the

code CKDCC
1 (n; a) has size at least 4n

4 . So the redundancy is

at most log 4.

C. Construction of t = 2

In this subsection, we provide a 2-KDCC by constructing

a binary P -bounded 2-deletion correcting code for P =
(P1, P2).

For x ∈ {0, 1}n, we use A(x) to represent the P × n
P array

form of x. That is,

A(x) =




x1 xP+1 · · · xn−P+1

x2 xP+2 · · · xn−P+2

...
...

. . .
...

xP x2P · · · xn


 .

Let A(x)i be the ith row of A(x), where 1 ≤ i ≤ P .

Construction 4. For a ∈ Z
P
3 and b ∈ Z3Pn, we denote

CP
2 (n;a, b) =

{
x ∈ {0, 1}n :

P∑

i=1

3i−1VT(A(x)i) = b mod 3Pn,

Sum(A(x)i) = ai mod 3, for 1 ≤ i ≤ P
}
.

Lemma 5. For a ∈ Z
P
3 and b ∈ Z3Pn, the code CP

2 (n;a, b)
can correct two bursts of erasures of length at most P .

Proof: It is easy to see that a burst of erasures of length P
will cause an erasure in every row of A(x). If the coordinates

of the two bursts of erasures overlap, or in other words, the

error type is a burst of erasure of length at most 2P − 1, then

we can erase more bits such that the error is two bursts of

erasures of length P . Thus, every row of A(x) will has two

erasures.

Suppose the erroneous word is x′. We can get the two

missing bits in every row by calculating Sum(A(x)i) −
Sum(A(x′)i) for 1 ≤ i ≤ P . If the difference is 0, then

we know the two missing bits are both 0. If the difference is

2, then we know the two missing bits are both 1. In these two

cases, the row will be recovered correctly. If the difference is

1, then we know the two missing bits are 1 and 0, but we do

not know their order. In the following, we consider this case.

Let the indices of the two erasures in ith row are ki and

ℓi, where 1 ≤ ki < ℓi ≤
n
P for 1 ≤ i ≤ P . We have ki ∈

{k1, k1 − 1} and ℓi ∈ {ℓ1, ℓ1 − 1} for 2 ≤ i ≤ P . Suppose
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we have another codeword y ∈ CP
2 (n;a, b), which results in

the same word after erasing the same coordinates. Now we

consider the difference of the first constraint between x and

y. Denote their difference as

D ,

P∑

i=1

3i−1VT(A(x)i)−

P∑

i=1

3i−1VT(A(y)i).

Since x 6= y, there must exist some {i1, . . . , ip} ⊆
[P ], such that A(x)ij 6= A(y)ij . As Sum(A(x)ij ) =
Sum(A(y)ij ) mod 3, we have sij = A(x)ij ,kij

= 1 −

A(y)ij ,kij
= 1 −A(x)ij ,ℓij = A(y)ij ,ℓij , where sij ∈ {0, 1}

for 1 ≤ j ≤ p. Therefore,

D =

P∑

i=1

3i−1VT(A(x)i)−

P∑

i=1

3i−1VT(A(y)i)

=

p∑

j=1

3ij−1VT(A(x)ij )−

p∑

j=1

3ij−1VT(A(y)ij )

=

p∑

j=1

3ij−1(VT(A(x)ij )−VT(A(y)ij ))

=

p∑

j=1

3ij−1(1− 2sij )(ℓij − kij ).

Since 1 ≤ ℓij − kij ≤
n
P , we can bound the range of D:

|D| ≤

p∑

j=1

3ij−1 n

P
≤

3P − 1

2P
n,

which is less than 3Pn.

Now we show D cannot be 0. As ki ∈ {k1, k1−1} and ℓi ∈
{ℓ1, ℓ1−1} for 2 ≤ i ≤ P , we have ℓij−kij ∈ {d−1, d, d+1}

for 1 ≤ j ≤ p, where d , ℓi1 −ki1 . We claim that there exists

no 1 ≤ u < v ≤ p such that {ℓiu−kiu , ℓiv−kiv} = {d−1, d+
1}. If ℓiu − kiu = d − 1, this means ℓiu = ℓ1 − 1, kiu = k1.

Since u < v, by the array representation it has ℓiv ≤ ℓiu
and kiv ≤ kiu . The possibilities of (ℓiv , kiv ) are (ℓ1 − 1, k1)
and (ℓ1 − 1, k1 − 1). Therefore ℓiv − kiv ∈ {d − 1, d}. If

ℓiu−kiu = d+1, this means ℓiu = ℓ1, kiu = k1−1. Similarly

we can get ℓiv−kiv ∈ {d, d+1}. The above claim shows that if

there exist a least index 1 ≤ j ≤ p such that ℓij−kij = d′ 6= d,

then for all j < j′ ≤ p, ℓij′ − kij′ ∈ {d
′, d}. In other words,

ℓij − kij ∈ {d− 1, d} or ℓij − kij ∈ {d, d+1} for 1 ≤ j ≤ p.

• If sip = 0, then

D =

p∑

j=1

3ij−1(1− 2sij )(ℓij − kij )

≥ 3ip−1(ℓip − kip)−

p−1∑

j=1

3ij−1(ℓij − kij )

≥ 3ip−1(ℓip − kip)−

p−1∑

j=1

3ij−1(ℓip − kip + 1)

≥ 3ip−1(ℓip − kip)−
3ip−1 − 1

2
(ℓip − kip + 1)

=
3ip−1 + 1

2
(ℓip − kip)−

3ip−1 − 1

2

≥
3ip−1 + 1

2
−

3ip−1 − 1

2
= 1.

• If sip = 1, then

D =

p∑

j=1

3ij−1(1− 2sij )(ℓij − kij )

≤

p−1∑

j=1

3ij−1(ℓij − kij )− 3ip−1(ℓip − kip)

≤

p−1∑

j=1

3ij−1(ℓip − kip + 1)− 3ip−1(ℓip − kip)

≤
3ip−1 − 1

2
(ℓip − kip + 1)− 3ip−1(ℓip − kip)

= −
3ip−1 + 1

2
(ℓip − kip) +

3ip−1 − 1

2

≤ −
3ip−1 + 1

2
+

3ip−1 − 1

2
= −1.

In either case, D cannot be 0, which contradicts the fact that

x,y ∈ CP
2 (n;a, b).

Theorem 3. For P = (P1, P2), a ∈ Z
P
3 and b ∈ Z3Pn,

the code CP
2 (n;a, b) is a binary P -bounded two-deletion

correcting code, and there exist a and b such that it has

redundancy at most log n+ 2P log 3.

Proof: If we know the knowledge of the two intervals

containing deletions, then the bits outside these two intervals

are error-free and can be put in their correct positions. For

example, if x deletes two bits in two intervals [i, i+ P1 − 1]
and [j, j+P2−1] respectively, where 1 ≤ i ≤ j ≤ n−P +1.

Let x′ denote the erroneous word of x, then by setting

x′′ = x′
1, . . . , x

′
i−1, ?, . . . , ?︸ ︷︷ ︸

P1

, x′
i+P1−1, . . . ,

x′
j−2, ?, . . . , ?︸ ︷︷ ︸

P2

, x′
j+P2−2, . . . , x

′
n−2,

we get a word resulted from x by two bursts of erasures of

length P1, P2. By Lemma 5, we can recover x from x′′. So

the code CP
2 (n;a, b) can always correct two deletions if we

have the information of two intervals containing deletions.

By the pigeonhole principle, there exists a ∈ Z
P
3 , b ∈ Z3Pn,

such the code CP
2 (n;a, b) has size at least

2n

3Pn · 3P
.

So the redundancy is at most logn+ 2P log 3.

Now we are ready to give the construction of 2-KDCC. By

Corollary 1, we can set P = (5, 9), thus P = max{5, 9} = 9.

Construction 5. For a ∈ Z
9
3, b ∈ Z39n and P = 9, we denote

CKDCC
2 (n;a, b) =

{
x ∈ Σn : x̃ ∈ CP

2 (n;a, b)
}
.

Theorem 4. For a ∈ Z
9
3 and b ∈ Z39n, the code

CKDCC
2 (n;a, b) is a 2-KDCC, and there exists parameters

such that the redundancy is at most logn+ 18 log 3.
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Proof: By Lemma 3, CKDCC
2 (n;a, b) is a 2-KDCC, as

we can uniquely recovery each signature of the codeword

which is in a (5, 9)-bounded 2-deletion correcting code. Fur-

thermore, there exists choices of a ∈ Z
9
3 and b ∈ Z39n,

such that the redundancy of CKDCC
2 (n;a, b) is at most

2n− log 4n

318n = logn+ 18 log 3.

We have constructed a binary P -bounded 2-deletion cor-

recting code in this subsection. But if we let P = c logn for

some c > 1, then the redundancy of CP
2 (n;a, b) will be at

least (2 log 3 + 1) logn. To decrease the redundancy when P
is large, we further construct another binary P -bounded 2-

deletion correcting code with redundancy 2 logn + o(log n)
even when P = O(log n). Although we do not require P to

be large in this section, our P -bounded 2-deletion correcting

code for P = O(log n) will be useful in our construction of

2-SDCC.

The following lemma will lead to a P -bounded 2-deletion

correcting code, and the proof can be found in Appendix A.

Lemma 6. For any integers P1, P2 ≥ 2 and n ≥ 3, there exists

a function E : {0, 1}n → {0, 1}n+r(n,P1,P2), computable in

linear time, such that for any x ∈ {0, 1}n, if E(x) suffers two

deletions at two intervals of lengths P1, P2 resulting in E′(x),
then given the information of these two intervals and E′(x) we

can uniquely recover x, where i, j ∈ [n+r(n, P1, P2)] are the

indices of deletions, and r(n, P1, P2) = 2 logn+7 log logn+
14 log(P1 + P2) + logP +O(log log(P1 + P2)).

Let CP
2 = {x ∈ {0, 1}n : x = E(z)[k]01E(z)[k+1,n−2], z ∈

{0, 1}k}, where k + r(k, P1, P2) = n − 2. We have the

following theorem.

Theorem 5. CP
2 is a binary P -bounded two-deletion correct-

ing code of redundancy 2 logn + 7 log logn + 14 log(P1 +
P2) + logP +O(log log(P1 + P2)).

IV. CONSTRUCTIONS OF SYNTHESIS-DEFECT

CORRECTING CODES

In this section, we will provide t-SDCC for t = 1, 2. First

we show that we can localize each defect to a window of

length O(log n) by letting the signatures of O(log n) strands

belong to binary t-deletion correcting codes and with some

period constraints. Then, it suffices to employ another coding

scheme which incurs less redundancy so that we can correct

the remaining strands.

A. Defect-Locating Strands

In this subsection, we code for a set of ordered sequences.

We show that using O(log n) strands is enough to cover all

the 4n cycles, so we do not need to let all M strands belong

to deletion-correcting code. By coding these O(log n) strands,

we can localize each defect to a window. With this, we are

prepared to provide the construction of t-SDCCs for t = 1, 2.

Definition 9. Define a shift operation on x ∈ Σn with

parameter 1 − cycle(x)1 ≤ a ≤ 4n − cycle(x)n as Sa(x) =
(Sa(x)1, . . . , Sa(x)n), where cycle(Sa(x)) = (cycle(x)1 +
a, . . . , cycle(x)n + a).

In other word, the shift operation on x increases each cycle

of x by a. Here, we suppose the sequence Sa(x) can be

synthesized from the cycle(x)1 + a cycle and each sequence

has a parameter a that will be known only by the synthesis

machine.

Example 4. Let x = (1, 3, 2, 1, 1, 4, 3, 2, 3, 4), then we

know that cycle(x) = (1, 3, 6, 9, 13, 16, 19, 22, 23, 24). Let

a = 1, then S1(x) = (2, 4, 3, 2, 2, 1, 4, 3, 4, 1), and

cycle(S1(x)) = (2, 4, 7, 10, 14, 17, 20, 23, 24, 25). Let a = 6,

then S1(x) = (3, 1, 4, 3, 3, 2, 1, 4, 1, 2), and cycle(S1(x)) =
(7, 9, 12, 15, 19, 22, 25, 28, 29, 30).

Lemma 7. For x ∈ Σn, we have cycle(St(x)) ∪
cycle(St+1(x)) ∪ cycle(St+2(x)) ∪ cycle(St+3(x)) =
{cycle(x)1 + t, . . . , cycle(x)n + t + 3}, for

1− cycle(x)1 ≤ t ≤ 4n− cycle(x)n − 3.

Proof: By the definition of shift, cycle(St(x)) =
(cycle(x)1 + t, . . . , cycle(x)n + t). Thus we have

∪t+3
a=tcycle(Sa(x))i = {cycle(x)i + t, . . . , cycle(x)i + t+ 3},

for i ∈ [n]. As the two elements in a cycle sequence have

distance at most 4, we have cycle(St+3(x))i = cycle(x)i +
t + 3 ≥ cycle(x)i+1 + t − 1 = cycle(St(x))i+1 − 1, which

means (∪t+3
a=tcycle(Sa(x))i)

⋃
(∪t+3

a=tcycle(Sa(x))i+1) =
{cycle(x)i + t, . . . , cycle(x)i+1 + t+ 3}. Therefore, we have

n⋃

i=1

∪t+3
a=tcycle(Sa(x))i = {cycle(x)1+t, . . . , cycle(x)n+t+3},

which complete the proof.

Lemma 8. For c1, . . . , cM1
∈ C and t ∈ [1, 3n + 1], there

always exist a1, . . . , aM1
, such that

[t, n+ t− 1] ⊆

M1⋃

i=1

cycle(Sai(ci)),

where M1 = 1
2−log 3 logn + 1, ai ∈ [−3, t + 2] ∩ [1 −

cycle(ci)1, 4n− cycle(ci)n], and 1 ≤ t ≤ 3n+ 1.

Proof: First of all, we choose a1 = t − cycle(c1)1,

so cycle(Sa1
(c1)) = {t, t + cycle(c1)2 − cycle(c1)1, . . . , t +

cycle(c1)n − cycle(c1)1}. Denote T1 = [t, n + t − 1] \
cycle(Sa1

(c1)). Since every two consecutive elements in

cycle(Sa1
(c1)) have difference at most 4, we have that

|T1| ≤ n−
1

4
n =

3

4
n.

Then, we choose a2. By Lemma 7, cycle(St−cycle(c2)1(c2))∪
cycle(St−cycle(c2)1+1(c2)) ∪ cycle(St−cycle(c2)1+2(c2)) ∪
cycle(St−cycle(c2)1+3(c2)) = {t, . . . , cycle(c2)n−cycle(c2)1+
t+3} ⊃ [t, n+t−1]. We claim that for a2 ∈ {t−cycle(c2)1, t−
cycle(c2)1 + 1, t− cycle(c2)1 + 2, t− cycle(c2)1 + 3}, there

always exists a choice, such that |T1∩cycle(Sa2
(c2))| ≥

1
4 |T1|.

Otherwise, |T1 ∩ cycle(Sa2
(c2))| < 1

4 |T1| for any

a2 ∈ {t − cycle(c2)1, t − cycle(c2)1 + 1, t − cycle(c2)1 +
2, t − cycle(c2)1 + 3}. Then, we have |T1| =
|T1∩[t, n+t−1]| = |T1∩

⋃3
i=0(cycle(St−cycle(c2)1+i(c2)))| =

|
⋃3

i=0(T1 ∩ cycle(St−cycle(c2)1+i(c2)))| ≤
∑3

i=0 |T1 ∩
cycle(St−cycle(c2)1+i(c2))| < |T1|, which is a contradiction.
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Let a2 be the one such that |T1 ∩ cycle(Sa2
(c2))| ≥

1
4 |T1|.

Denote T2 = [t, n+ t−1]\ (cycle(Sa1
(c1))∪cycle(Sa2

(c1))),
then we have

|T2| = |T1 \ (T1 ∩ cycle(Sa2
(c2)))| ≤

3

4
|T1| ≤

9

16
n.

Repeating this, we get |TM1−1| ≤ (34 )
M1−1n = 1.

Same as previous, we choose aM1
, such that |TM1−1 ∩

cycle(SaM1
(cM1

))| ≥ 1. So when we finish choosing

a1, . . . , aM1
, we can make sure [t, n + t − 1] is covered by

cycle(Sai(ci)) for i ∈ [M1].

Corollary 2. For c1, . . . , c4M1
∈ C, there always ex-

ist a1, . . . , a4M1
∈ [−3, 3n + 1], such that [1, 4n] ⊆⋃4M1

i=1 cycle(Sai(ci)), where M1 = 1
2−log 3 logn+ 1.

Lemma 8 and Corollary 2 show that we can use O(log n)
strands to cover all synthesis cycles. So, we can know the

approximate locations of all the defects if these O(log n)
strands are corrected. To correct the quaternary strands, our

solution in this paper it to correct their signatures first. Then,

the locations of deletions in signatures will provide us the

information of defects in quaternary strands.

Lemma 9. If x ∈ Σn suffers from a synthesis defect at cycle

δ1 ∈ [4n] and result in x′, then for any y ∈ Σn with y[n]\{j} =
x′ and ỹ = x̃, we have |δ2 − δ1| ≤ 4P + 4, where P is

the length of the longest run in x̃ and j ∈ [n] is the index

satisfying cycle(y)j = δ2.

Proof: Suppose the synthesis defect causes a deletion

at ith position of x, then by Observation 1 the location of

deletion in x̃ is i′ ∈ {i − 1, i}. Since y[n]\{j} = x[n]\{i}, y

can be obtained by inserting yj in x′. Besides, due to ỹ = x̃,

the insertion of yj must lead to an insertion at the same run

with x̃i′ . So, if the insertion of yj causes an insertion at j′th

position of x̃′, then we have |j′−i′| ≤ P−1. As j′ ∈ {j−1, j},
we have |j − i| ≤ P. Without loss of generality, we assume

j > i. Furthermore, cycle(x)i+1 ∈ [δ1+1, δ1+4], so we have

cycle(y)j−1 = cycle(x′)j−1 ≤ cycle(x)j ≤ δ1 + 4(j − i),
and thus cycle(y)j ≤ cycle(y)j−1 + 4 ≤ δ1 + 4(j − i) + 4 ≤
δ1 + 4P + 4. Therefore, we have |δ2 − δ1| ≤ 4P + 4.

Notice that, even if the signature of a strand is recovered

from t deletions, the locations of errors may not be determined

exactly. For example, if a strand x ∈ Σn suffers from t
deletions, which causes t consecutive deletions in x̃, where

x̃i = x̃i+t for 1 ≤ i ≤ n − t − 1, then we cannot know

the locations of deletions since deleting any t consecutive bits

from x̃ will result in the same one. Intuitively, if we want to

locate each of the location of error in a signature uniquely,

then we need to make sure x̃ cannot have period p for all

1 ≤ p ≤ t, which is a strict condition. In the following, we

use the regular sequence from [14, Definition 3] to handle the

cases of t = 1, 2.

Definition 10 ([14, Definition 3]). A sequence x ∈ {0, 1}n

is regular if each consecutive substring of x of length d logn
contains both 00 and 11.

Lemma 10 ([14, Lemma 11]). Denote R(n) the set of all

regular binary sequences of length n with d = 7, then

|R(n)| ≥ 2n−1.

B. 1-Synthesis-Defect Correcting Code

Next we are prepared to provide a construction of 1-SDCC,

which shows our general strategy to construct synthesis-defect

correcting code. Before that, let us introduce the well-known

Varshamov-Tenengolts (VT) codes.

Lemma 11 ([15]). The Varshamov-Tenengolts (VT) code

VT(n; a) = {x ∈ {0, 1}n : VT(x) = a mod (n + 1)} is

a single-deletion correcting code, and there exists a ∈ Zn+1

such that the redundancy of VT(n; a) is at most log(n+ 1).

Construction 6. For s ∈ Z
4M1

4 , b ∈ Z
4M1

n+1 , d ∈ Z
M−4M1

P+1

and e ∈ Z
M−4M1

2 , where P = 28 logn + 5 and M1 =
1

2−log 3 logn+ 1, we denote

CSD
1 =

{
C ∈ (Σn)M : ci = Sai(xi), Sum(xi) = si mod 4,

and x̃i ∈ VT(n; bi) ∩ R(n), for i ∈ [4M1],

c̃i ∈ SVTdi−4M1
,ei−4M1

(n, P + 1) for i ∈ [4M1 + 1,M ]
}
,

where ai is chosen based on Corollary 2 for 1 ≤ i ≤ 4M1.

Theorem 6. For s ∈ Z
4M1

4 , b ∈ Z
4M1

n+1 , d ∈ Z
M−4M1

P+1 and

e ∈ Z
M−4M1

2 , where P = 28 logn + 5, the code CSD
1 is a

1-SDCC, and there exist choices of parameters, such that the

redundancy of CSD
1 is at most 4

2−log 3 (logn)
2+M(log logn+

6)− Ω(logn log logn).

Proof: By Corollary 2, we have ∪4M1

i=1 cycle(ci) = [4n]. So

if there is a defective cycle, then there must be a ci suffering

from a deletion for i ∈ [4M1]. As x̃i belongs to a VT code,

we can recover x̃i from a deletion uniquely. Besides, we

know Sum(xi) mod 4 and Sum(x′
i) mod 4 for the erroneous

sequence x′, so we can calculate the value of deleted symbol.

With the symbol and the signature, we can recover x in the

same way as non-binary VT code [13].

Due to x̃i ∈ R(n), the length of a run in x̃i is at most

7 logn. By Lemma 9, we know the defective cycle is within

an interval of length P = 28 logn+ 5.

Now we show how to recover ci for i ∈ [4M1 + 1,M ]. In

the previous step, we have already located the defective cycle

at a length-P interval, so the deletions in the remaining c̃is

are within an interval of length at most P +1. Since c̃i is in a

shifted VT code SVTdi−4M1
,ei−4M1

(n, P +1), we can recover

it. As we have already known the value of defective cycle by

recovering ci for i ∈ [4M1], we can recover ci from c̃i for

i ∈ [4M1 + 1,M ].
Now we calculate the redundancy of CSD

1 . There are 4M1

regular sequences belonging to VT code, and the sum of

symbols in each sequence is equal to some value modular 4.

So there exists s ∈ Z
4M1

4 , b ∈ Z
4M1

n+1 , such the redundancy

for this part is at most 4M1 log(n + 1) + 12M1. For the

remaining sequences, the redundancy for their part is at most

(M − 4M1) log 2(P + 1). So the total redundancy is at most

4

2− log 3
(logn)2 +M(log logn+ 6)− Ω(logn log logn).

The above 1-SDCC CSD
1 shows a high-level idea to con-

struct t-SDCC: use O(log n) strands cover all cycles and let
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them belong to a t-deletion correcting code with some period

constraints, then let the remaining sequences belong to some

bounded deletion-correcting codes.

C. 2-Synthesis-Defect Correcting Code

In the case of t = 1, each strand either suffers from 1
deletion or keeps unchanged. However, if t ≥ 2, each strand

will suffer t′ deletions for t′ ∈ [0, t]. Even when we locate

these t deletions to t interval, we do not know each of the

remaining M − 4M1 strands suffers from which of these t
deletions. So we cannot locate the approximate locations of t′

deletions for the remaining M − 4M1 strands. Nevertheless,

we can solve the case for t = 2, which is more complicated

than the case t = 1.
We first present a quaternary two-deletion correcting code,

which is constructed by using the signature.

Lemma 12 ([14, Theorem 7 and 8]). There is a binary code

C2 ⊆ {0, 1}
n with each codeword is regular and capable of

correcting two deletions. The redundancy of C2 is at most

4 logn+ 10 log logn+O(1).

Definition 11. Define the run sequence of x ∈ {0, 1}n as

R(x), where R(x)1 = 1, and for 1 ≤ i ≤ n− 1,

R(x)i+1 =

{
R(x)i + 1, if xi+1 6= xi,

R(x)i, if xi+1 = xi.

Furthermore, let r(x) = R(x)n be the number of run in x.

For example, if x = 10010111, then R(x) = 12234555.

The following lemma comes from [16], but complements their

flaw.

Lemma 13 ( [16, Lemma III.1]). For any x ∈ Σn, given

the values
∑r(x̃)

i=1 xi · R(x̃)i(mod 4n) and x̃, if x suffers

from two deletions resulting in x′, and the corresponding

two deleted bits in x̃ are not consecutive and in a period-

2 alternate substring of length greater than 2, then we can

uniquely recovery x with the two values of deleted symbol.

With this lemma, it suffices to consider the case where two

deletions in x̃ are consecutive and in a period-2 alternate

substring. In this case, deleting any two consecutive bits in

a period-2 alternate substring will result in the same string, so

we cannot obtain the runs where the two deletions are deleted

from.

Lemma 14. For x ∈ Σn, if two deletions of x cause two

consecutive deletions in an alternate substring of x̃, then

the two deletions in x are consecutive or separated by one

position.

Proof: By Observation 1, a deletion indexed at i in x̃

implies the deletion in x is indexed at i or i+1. Suppose two

consecutive deletions in x̃ caused by the two deletions in x

have indices i and i + 1 for 1 ≤ i ≤ n − 1, then it follows

that the two deletions in x have indices i, i+ 1 or i, i+ 2 or

i+ 1, i+ 2, which completes the proof.

Definition 12. For x ∈ Σn and σ ∈ Σ, define Nσ(x) the

number of σ in x. Furthermore, let xσ ∈ [n]Nσ(x) denote the

sequence consists of the indices of σ.

For example, if x = 122124123, then N1(x) = 3, N2(x) =
4, N3(x) = 1, N4(x) = 1 and x1 = 147,x2 = 2358,x3 =
9,x4 = 6. Now we present a lemma which shows that the

quaternary sequence is unique if it consists of two symbols of

given numbers, and has an alternate signature.

Lemma 15. If x,y ∈ Σn satisfying that Nσ1
(x) = Nσ1

(y) >
0, Nσ2

(x) = Nσ2
(y) > 0, Nσ3

(x) = Nσ3
(y) = Nσ4

(x) =
Nσ4

(y) = 0 for Σ = {σ1, σ2, σ3, σ4}, and x̃ = ỹ = 0101 . . .
or 1010 . . ., then we have x = y.

Proof: Without loss of generality, we suppose σ1 < σ2.

We prove the case x̃ = ỹ = 0101 . . ., the other can be proved

similarly. For every x̃ix̃i+1 = 01, it must have xixi+1 = σ2σ1

due to x̃i = 0. Thus, if n is even, then we have x = y =
(σ2σ1)

n/2. If n is odd, we can determine all symbols except

the last one. As x̃n−1 = 1 and xn−1 = σ1, the last symbol

xn could be either σ1 or σ2. For the reason that Nσ1
(x) =

Nσ1
(y) and Nσ2

(x) = Nσ2
(y), we must have x = y, which

completes the proof.

Construction 7. For a ∈ Z
4
3, b ∈ Z

4
14 logn and c ∈ Znq ,

denote the code

CD
2 =

{
x ∈ Σn : x̃ ∈ C2,

r(x̃)∑

i=1

xi ·R(x̃)i = c mod 4n, and

Nσ(x) = aσ mod 3, Sum(xσ) = bσ mod 14 logn for σ ∈ Σ
}
.

Theorem 7. For a ∈ Z
4
3, b ∈ Z

4
14 logn and c ∈ Znq , the

code CD
2 is a quaternary two-deletion correcting code, and

there are parameters such the redundancy of CD
2 is at most

5 logn+ 14 log log n+O(1).

Proof: For x ∈ CD
2 , denote the erroneous sequence of x

as x′. Since the signature x̃ belongs to a binary two-deletion

correcting code C2, so we can recovery x̃ from x̃′. If the two

deletions in x̃ are not consecutive or are consecutive 00 or 11,

then by Lemma 13 we can recovery x uniquely.

On the other hand, if the two deletions in x̃ are consecutive

01 or 10 in an alternate substring of length greater than 2, then

we can make sure the locations of these two deletions are in

an interval of length 7 logn for the reason that x̃ is regular.

Therefore, the two deletions in x is within a window of length

at most 7 logn+ 1.

For σ ∈ Σ, by calculating Nσ(x) − Nσ(x
′) mod 3, the

values of two deleted symbols can be obtained. If there is a

σ ∈ Σ, such Nσ(x)−Nσ(x
′) mod 3 = t, then the number of

σ deleted from x is t. We consider the two cases whether the

two deleted symbols are the same.

• The two deleted symbols are σ1 6= σ2:

We prove that inserting σ1 and σ2 into x′ can only get x

if we want to keep Sum(xσ) = bσ mod 14 logn for all

σ ∈ Σ. Otherwise, suppose there is another way to insert

σ1 and σ2 satisfying the constraints, and the resultant

sequence is denoted as y. Let i1 and i2 denote the indices

of the deleted σ1 and σ2 in x, and {j1, j2} denote the set

of indices of the inserted σ1 and σ2 in y. Without loss

of generality, we assume i1 ≤ j1, i1 < i2, and j1 < j2.

By Lemma 14, we have i2 = i1 + ǫ1 and j2 = j1 + ǫ2,
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where ǫ1, ǫ2 ∈ {1, 2}. We claim that j2 > i2. Otherwise

if j2 ≤ i2, then to make sure x 6= y we must have

ǫ1 = 2, and j2 = i2 = j1 +1 or j1 = i1 = j2 − 1. In the

case of j2 = i2 = j1 + 1, we have x[i1,i2] = σ1xi+1σ2,

and y[i1,i2] = xi+1σ1σ2 or xi+1σ2σ1. If xi+1 ≤ σ2, then

σ1 > xi+1 by the condition that x̃[i1,i2] is alternate. So

y[i1,i2] cannot be xi+1σ1σ2 or xi+1σ2σ1, where both are

contradictory to x̃[i1,i2] = ỹ[i1,i2]. If xi+1 > σ2, then

σ1 ≤ xi+1, and due to ỹi1 = x̃i1 = 1 the only possible

of y[i1,i2] will be xi+1σ1σ2, where xi+1 = σ1. This leads

to x = y, again a contradiction. The case j1 = i1 = j2−1
can be proved similarly, so we have j2 > i2. If x[i1,j2]

consists of σ1 and σ2 only, then to keep x̃[i1,j2−1] is an

alternate sequence it has to be x = y by Lemma 15.

Thus, there must exist a σ3 ∈ Σ \ {σ1, σ2} in x[i1,j2].

Due to x[i1,j2]\{i1,i2} = y[i1,j2]\{j1,j2} and i1 < i2 < j2,

we have

Nσ3
(x[i1,j2]) ≤ Sum(xσ3)−Sum(yσ3) ≤ 2Nσ3

(x[i1,j2]),

which is a contradiction to Sum(xσ3) − Sum(yσ3) =
0 mod 14 logn.

• The two deleted symbols are both equal to σ1:

Like the previous case, we prove that inserting these two

σ1 into x′ can only get x if we want to keep Sum(xσ) =
bσ mod 14 logn for all σ ∈ Σ. By Lemma 14, the two

σ1 inserted in x′ are consecutive or separated by one

position. Suppose there is another way to insert two σ1

into x′, and the resultant sequence is y ∈ CD
2 . We again

assume the indices of these two δ1 in x and y are i1 < i2
and j1 < j2, respectively. Without loss of generality, let

i1 < j1. Since x 6= y, there must be a σ2 ∈ Σ \ {δ1} in

x[i1,j2]. We can calculate that

Nσ2
(x[i1,j2]) ≤ Sum(xσ2)−Sum(yσ2) ≤ 2Nσ2

(x[i1,j2]),

which contradicts that Sum(xσ2) ≡ Sum(yσ2) mod
14 logn.

Now we have proved that we can uniquely recover x from

two deletions if the two deletions in x̃ are consecutive 01 or

10 in an alternate substring. Combining with Lemma 13, the

code CD
2 is indeed a quaternary two-deletion correcting code.

For the redundancy, there exist parameters, such that the

size of CD
2 is at least

4n

c · n4 · (log n)10 · 4n · 34 · (14 logn)4
,

where c is a constant and from C2. Therefore, the redundancy

is at most 5 logn+ 14 log logn+O(1).

Construction 8. For c ∈ Z
(M−4M1)×4
14 logn , P = (P1, P2), where

P1, P2 ≤ 28 logn+ 5, we denote

CSD
2 =

{
C ∈ (Σn)M : ci = Sai(xi) for i ∈ [4M1] where xi ∈ CD

2 ,

c̃i ∈ CP
2 , and Sum(cji ) = bi,j mod 14 logn

for i ∈ [4M1 + 1,M ], j ∈ Σ
}
,

where for 1 ≤ i ≤ 4M1, ai is chosen based on Corollary 2.

Lemma 16. CP
2 is not only a binary P -bounded two-deletion

correcting code, but also a single-deletion correcting code.

Proof: From the construction of CP
2 , every codeword

in CP
2 has the form (z, 0, 1,E1(z),E2(z), ξ(E1(z),E2(z))),

where z ∈ {0, 1}k and E1,E2, ξ are labeling function we will

describe in Appendix A. As we will show, ξ(z) allows us

recover z from two deletions from the erroneous sequence,

and E2 contains the value VT(z) mod k + 1.

When a deletion occurs in a sequence with the form

(z, 0, 1,E1(z),E2(z), ξ(E1(z),E2(z))) and result in x ∈
{0, 1}n−1, we first look at the k + 1 position of x. If

xk+1=0, then there is no error in z, so we can calcu-

late the values E1(x[k]),E2(x[k]), ξ(E1(x[k]),E2(x[k])), and

return (x[k], 0, 1,E1(x[k]),E2(x[k]), ξ(E1(x[k]),E2(x[k]))) as

the correct sequence. If xk+1 = 1, then the deletion occurs at

z. We use x[k−1] and the value VT(z) mod k+1 in E2(z) to

recover z, then we return (z,x[k,n]) as the correct sequence.

Theorem 8. CSD
2 is a 2-SDCC, and there exist parame-

ters such that the redundancy is at most 12
2−log 3 (logn)

2 +
M(2 logn+ 26 log logn+ o(log logn))− Ω(logn log logn).

Proof: The proof is similar to that of Theorem 6.

V. A LOWER BOUND ON THE REDUNDANCY OF

KNOWN-SYNTHESIS-DEFECT CORRECTING CODES

In this section, we give the lower bound for redundancy on

1-KDCC using some tools from graph theory. Specifically, we

use the same method as [17, Section IV] to derive the lower

bound for redundancy. First, let us introduce some definitions.

Definition 13. A collection Q of cliques is a clique cover of

a graph G if every vertex in G belongs to some clique in Q.

Lemma 17 ([18]). If Q is a clique cover of G, then the size

of any independent set of G is at most |Q|.

Let the vertices of G to be all quaternary sequences of length

n, and two vertices u,v are connected if there exists a set ∆ =
{δ}, such that SynDef∆(u) = SynDef∆(v), where δ ∈ [4n].
Obviously, an independent set of G is a 1-KDCC. By Lemma

17, the upper bound of the size of 1-KDCC is upper bounded

by the size of any one of clique cover of G. Now we give a

construction of a clique cover of G.

Lemma 18. There exists a clique cover Q for G and is of size

4n−1(1 + 3(4
5−16
45 )⌊

n
5
⌋).

Proof: Let

A = {11234, 12134, 12314, 12341}

B = {22341, 23241, 23421, 23412}

C = {33412, 34312, 34132, 34123}

D = {44123, 41423, 41243, 41234},

and E = Σ5 \ (A ∪B ∪C ∪D). Furthermore, define

Z =
{
(p, r, i) : p ∈ Ei, r ∈ Σn−5i−5, i ∈ {0, . . . , ⌊

n

5
⌋ − 1}

}
.
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For every z = (p, r, i) ∈ Z , we define

Q(A)
z = {pqr : q ∈ A},

Q(B)
z = {pqr : q ∈ B},

Q(C)
z = {pqr : q ∈ C},

Q(D)
z = {pqr : q ∈ D}

to be the cliques of size 4. For the remaining vertices, we

define

Sx = {x}, where x ∈ E⌊n
5
⌋ × Σn−5⌊n

5
⌋

to be the singletons.

Define

Q =
{
Q(A)

z , Q(B)
z , Q(C)

z , Q(D)
z , z ∈ Z

}
∪

{
Qx : x ∈ E⌊n

5
⌋ × Σn−5⌊n

5
⌋
}
.

To prove that Q is a clique cover, we need to show every set

in Q is a clique and all vertices in these sets cover the whole

space Σn.

First, for every x ∈ E⌊n
5
⌋ ×Σn−5⌊n

5
⌋, the set Qx has only

one element and thus is a clique.

Then, for z ∈ Z , the set Q
(A)
z has 4 elements, which

are p11234r,p12134r,p12314r,p12341r. Suppose

cycle(p11234r)|p|+2 = δ, then SynDef{δ}(p11234r) =
SynDef{δ}(p12134r) = SynDef{δ}(p12314r) =
SynDef{δ}(p12341r), so they are connected to each

other and thus Q
(A)
z is a clique. Similarly, Q

(B)
z ,Q

(C)
z ,Q

(D)
z

are all cliques.

For a vertex v ∈ Σn, if there exists a i ∈ {0, . . . , ⌊n5 ⌋− 1},

such that v[5i+1,5i+5] ∈ A ∪ B ∪ C ∪ D, then v ∈ Q
(A)
z or

Q
(B)
z or Q

(C)
z or Q

(D)
z for some z = (p, r, i). If no such i

exists, then v ∈ Sv. Therefore, we conclude that Q is a clique

cover.

For the size of Q, we calculate as follows. For every z ∈ Z ,

there are 4 cliques of Q
(A)
z , Q

(B)
z , Q

(C)
z and Q

(D)
z . The size

of Z is
⌊n

5
⌋−1∑

i=0

(45 − 16)i4n−5i−5.

So there are total 4|Z| cliques of size 4. On the other side,

the size of singleton is

(45 − 16)⌊
n
5
⌋4n−5⌊n

5
⌋.

Therefore,

|Q| = 4

⌊n
5
⌋−1∑

i=0

(45 − 16)i4n−5i−5 + (45 − 16)⌊
n
5
⌋4n−5⌊n

5
⌋

= 4n−1(1 + 3(
45 − 16

45
)⌊

n
5
⌋).

Theorem 9. Let C ⊆ Σn be a 1-KDCC, then the redundancy

of C is at least log 4− o(1).

Proof: An independent set of G has the property that

for any u,v ∈ G, SynDef{δ}(u) ∩ SynDef{δ}(v) = ∅ for

δ ∈ [4n]. This means an independent set of G is a 1-KDCC.

By Lemma 17, the size of any independent set is upper

bounded by the size of a clique cover of G, and we can

construct a clique cover of size 4n−1(1 + 3(4
5−16
45 )⌊

n
5
⌋) by

Lemma 18. So the size of a 1-KDCC is upper bounded by

4n−1(1 + 3(4
5−16
45 )⌊

n
5
⌋), and the redundancy of it is at least

n− log(4n−1(1 + 3(4
5−16
45 )⌊

n
5
⌋)) = 1− o(1).

With this theorem, it follows that the 1-KDCC

CKDCC
1 (n; a) we construct is almost optimal.

VI. CONCLUSION AND FUTURE WORK

We investigate codes correcting synthesis defects and pro-

vide two type of codes to correct this error. In the first one, we

assume we have already known the information of defective

cycles. Although this seems to provide sufficient information

about the errors, it is not enough to recover the strand. We

construct t-KDCCs for t = 1, 2, and this shows the strategy to

construct t-KDCC for general t. Besides, we derive a bound

on the size of 1-KDCC, which shows our construction for

1-KDCC is almost optimal. In the second type of codes,

each codeword is a set of M sequence, and they share the

same synthesis defects. We utilize this feature, and provide t-
SDCCs for t = 1, 2, where each codeword is divided into

two parts with different coding schemes. The redundancy

of our t-SDCCs is roughly λ1(log n)
2 + M log logn and

λ2(log n)
2 + 2M logn for t = 1, 2, repectively, for some

constants λ1 and λ2. In contrast, if we employ the best existing

single deletions and two-deletion correcting codes for each

sequence, then the redundancy for 1 and 2-SDCC will be at

least M log n and 4M logn.

As explained in Section III-A, if we want to construct a

t-KDCC, then if suffices to construct a binary P -bounded t-
deletion correcting code. We only provide this code for t = 2
in this paper, and the cases for t > 2 are left to the future.

For the t-SDCC, we only provide the constructions for t ≤
2. The case t ≥ 3 is far more complicated. Even if we locate

each defect in a small interval, we cannot tell which cycles are

defective in a sequence. For example, three cycles δ1, δ2, δ3 are

defective, but if there is a sequence suffers from 2 deletions,

then we do not know these two deletions are caused by δ1, δ2
or δ2, δ3 or δ1, δ3. So, it is not enough to let it belongs to

only a (P1, P2, P3)-bounded 3-deletion correcting code. Even

if it also belongs to a (P1, P2)-bounded 2-deletion correcting

code, we cannot recover it because we do not know the two

interval. The problem of constructing t-SDCCs for t ≥ 3 is

left for future work.
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APPENDIX

To correct two deletions where each deletion is within an

interval of length Pi, we distinguish if the two intervals are

adjacent or not.

1) When the two intervals are adjacent or intersect

Denote ρ = P1 + P2 and

Ii =

{
[(i − 1)ρ+ 1, (i+ 1)ρ], for i ∈ {1, . . . , ⌈n/ρ⌉ − 2},

[(i − 1)ρ+ 1, n], for i = ⌈n/ρ⌉ − 1.

Lemma 19 ([19, Theorem 1]). For any integer n ≥ 3, there

exist a sketch function ξ : {0, 1}n → {0, 1}r0(n), computable

in linear time, such that for any x ∈ {0, 1}n, given ξ(x) and

x[n]\{i,j}, one can uniquely recover x, where i, j ∈ [n], where

r0(n) = 7 logn+O(log logn).

Construction 9. Define E1 : {0, 1}n → {0, 1}r1(P1,P2) as

follows:

for x ∈ {0, 1}n,

E1(x) =
( ⌈ ⌈n/ρ⌉−1

2
⌉∑

j=1

ξ(xI2j−1
) mod 27 log ρ+O(log log ρ),

⌊ ⌈n/ρ⌉−1

2
⌋∑

j=1

ξ(xI2j ) mod 27 log ρ+O(log log ρ)
)
,

where r1(P1, P2) = 14 log ρ+O(log log ρ)

Lemma 20. For any integers P1, P2 ≥ 2 and n ≥ 3, there

exists a sketch function E1 : {0, 1}n → {0, 1}r1(P1,P2),

computable in linear time, such that for any x ∈ {0, 1}n,

if x′ is obtained by deleting two bits at two adjacent or

overlapping intervals of lengths P1, P2, then given E1(x) and

x′ together with the locations of this two intervals, we can

uniquely recover x, where r1(P1, P2) = 14 log(P1 + P2) +
O(log log(P1 + P2))

Proof: As x′ is obtained by deleting two bits at two

adjacent or overlapping intervals of lengths P1, P2, the lo-

cations of two deletions are within an interval I of length

ρ = P1 + P2. Furthermore, there exists a j ∈ [⌈nρ ⌉ − 1], such

that I ⊆ Ij . Since Ij = [(j − 1)ρ + 1, (j + 1)ρ], we know

x′
[(j−1)ρ+1,(j+1)ρ−2] is a subsequence of x[(j−1)ρ+1,(j+1)ρ] ,

and x[n]\[(j−1)ρ+1,(j+1)ρ] = x′
[n−2]\[(j−1)ρ+1,(j+1)ρ−2]. So

we can get ξ(xIj ) mod 27 log ρ+O(log log ρ) from E1(x). By

Lemma 19, given ξ(xIj ), x′
[(j−1)ρ+1,(j+1)ρ−2] , we can

uniquely recover xIj , so x is recovered.

2) When the two intervals are separated by at least one symbol

We use the same analytical approach as in [14]. First, we

use f0(x) =
∑n

i=1 xi mod 3 to identify the following 3 cases:

i) the two deleted symbols are both 0;

ii) the two deleted symbols are both 1;

iii) the two deleted symbols are 1 and 0.

Besides, we need two more functions:

f1(x) =

n∑

i=1

ixi,

and

f2(x) =

n∑

i=1

(
i

2

)
xi.

Lemma 21 ([14, Lemma 5]). If we have deleted two 1’s or

two 0’s in forming the subsequence x′ from x, then f1(x)
and f2(x) together with x′ identify x uniquely.

Lemma 22 ([14, Observation 2]). If we have deleted a 0 and

a 1 from two nonadjacent intervals respectively in forming the

subsequence x′ from x, then f1(x) and f2(x) together with

x′ identify x uniquely.

Proof: As in [14], we insert a 0 and a 1 as far right as

possible in the two intervals of x′ to make the value of f1(x)
correct.

When we move the 0 left passing a 1, the value of f1(x)
increases 1, so we need to move the 1 in the other interval left

passing a 0 to keep the value of f1(x) constant. During this
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process, the order of the 0 and 1 will keep, since the moving

bits in the left interval will never move to the right interval.

So by Lemma 2 and Observation 2 of [14], there will never

happen an overtake event, so f2(x) will be monotonically

increasing or decreasing in the process.

Combining Lemma 21 and 22, we can prove that if we have

x′ together with f0(x), f1(x), f2(x), then x can be uniquely

recover knowing the two nonadjacent intervals of two deletions

located. Now we need to determine how many values do we

need for f1(x) and f2(x).
Since the two deleted bits can only move within their

intervals, the bits outside these two intervals will keep their

contributions to f1(x) and f2(x). So it suffices to consider

the bits in these two intervals.

First we consider f1(x). We analysize case by case:

i) the two deleted symbols are both 0: For the ith interval, its

contribution to f1(x) will increase at most Pi− 1 during

the process of 0 moving left. So f1(x) will increase at

most P1 + P2 − 2.

ii) the two deleted symbols are both 1: For the ith interval, its

contribution to f1(x) will increase at most Pi− 1 during

the process of 1 moving rihgt. So f1(x) will increase at

most P1 + P2 − 2.

iii) the two deleted symbols are 1 and 0: The value of f1(x)
is least when 1 is inserted in the front of the first interval

and 0 is inserted in the end of the second interval, and is

largest when 0 is inserted in the front of the first interval

and 1 is inserted in the end of the second interval. The

difference of them is j2 + P2 − 1 − j1 < n, where ji is

the first index of ith interval.

Therefore, it has at most n values for f1(x), so it suffices to

apply modular n.

Now we consider f2(x). Since we must keep f1(x) constant

when we insert the two bits in x′, we do not have to

consider all the possibilities of insertions. There are at most

min{P1, P2} possibilities of insertions to keep f1(x) constant.

By [14, Lemma 2], we can easily identify the extremal values

of f2(x).

i) the two deleted symbols are both 0: The value of f2(x)
will increase by

(
j+1
2

)
−
(
j
2

)
= j if the moving 0 moves

left passing a 1 located at j, and will decrease by
(
i
2

)
−(

i−1
2

)
= i − 1 if the moving 0 moves right passing a 1

located at i. First we insert the two 0’s as far away from

each other as possible to keep f1(x) correct. Then, every

time we move the left 0 right passing a 1 located at i,
the right 0 need to be moved left passing a 1 located at

j. In this process, f2(x) will increase j− i+1. Suppose

the indices of 1’s in the left interval are {i1, . . . , ip},
and in the right interval are {j1, . . . , jq}, where p < P1

and q < P2. When the two moving 0’s are as far close

to each other as possible, the value of f2(x) grows to

maximum, and will increase at most
∑min{p,q}

k=1 (jk−ik+
1) < min{P1, P2}n compared to the beginning.

ii) the two deleted symbols are both 1: The value of f2(x)
will decrease by

(
i+1
2

)
−
(
i
2

)
= i if the moving 1 moves

left passing a 0 located at i, and will increase by
(
j
2

)
−(

j−1
2

)
= j − 1 if the moving 1 moves right passing a 0

located at j. First we insert the two 1’s as far close to

each other as possible to keep f1(x) correct. Then, every

time we move the left 1 left passing a 0 located at i, the

right 1 need to be moved right passing a 0 located at j.

In this process, f2(x) will increase j − i − 1. Suppose

the indices of 0’s in the left interval are {i1, . . . , ip},
and in the right interval are {j1, . . . , jq}, where p < P1

and q < P2. When the two moving 1’s are as far away

from each other as possible, the value of f2(x) grows to

maximum, and will increase at most
∑min{p,q}

k=1 (jk−ik−
1) < min{P1, P2}n compared to the beginning.

iii) the two deleted symbols are 1 and 0: By Lemma 22, The

moving bits can never change their intervals. So we can

consider the two case separately.

– 0 is inserted at the first interval, and 1 the second.

Similar to the above two cases, we insert 0 and 1 as

left as possible to keep f1(x) correct. Once we move

0 right passing a 1 located at i, 1 need to be moved

right passing a 0 located at j. f2(x) will increase by

j − i in this process. When the two moving 0 and 1
are as far right as possible, the value of f2(x) will

increase at most min{P1, P2}n− 1.

– 1 is inserted at the first interval, and 0 the second.

Similar to the previous, f2(x) will increase at most

min{P1, P2}n− 1.

Therefore, it has at most min{P1, P2}n values for f2(x), so

it suffices to apply modular min{P1, P2}n for f2(x).

Construction 10. Define E2 : {0, 1}n → {0, 1}r2(n,P1,P2) as

follows:

for x ∈ {0, 1}n,

E2(x) =
(
f0(x) mod 3, f1(x) mod n+ 1,

f2(x) mod Pn
)
,

where r2(n, P1, P2) = 2 logn+ logP +O(1).

By Lemma 21 and 22, and the above analysis for ranges of

f1(x) and f2(x), we have the following lemma.

Lemma 23. For any integers P1, P2 ≥ 2 and n ≥ 3, there

exists a sketch function E2 : {0, 1}n → {0, 1}r2(n,P1,P2),

computable in linear time, such that for any x ∈ {0, 1}n,

if x′ is obtained by deleting two bits at two non-overlapping

intervals of lengths P1, P2, then given E2(x) and x′ together

with the locations of this two intervals, we can uniquely

recover x, where r2(n, P1, P2) = 2 logn+ logP +O(1).

Construction 11. Define E : {0, 1}n → {0, 1}n+r(n,P1,P2) as

follows:

for x ∈ {0, 1}n,

E(x) =
(
x,E1(x),E2(x), ξ(E1(x),E2(x))

)
,

where r(n, P1, P2) = r1(P1, P2) + r2(n, P1, P2) +
r0(r1(P1, P2) + r2(n, P1, P2)) = 2 logn + 7 log logn +
14 log(P1 + P2) + logP +O(log log(P1 + P2)).

Proof of Lemma 6: To be convenient, we omit the

parameters of r0, r1, r2 and r, and use them to denote the
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lengths of ξ(E1(x),E2(x)),E1(x),E2(x) and E(x), respec-

tively. Since we know the information of the two intervals,

we can distinguish if the two intervals are separated.

• If the intervals do not intersect with [n]: we know the

part of x is correct, so just set x = E′(x)[n].
• If the intervals intersect with [n]:

– if the two intervals are not separated, we first

recover E1(x),E2(x) from E(x)[n+r1+r2+1,n+r−2]

and E(x)[n+1,n+r1+r2−2]. It is obvious that

E(x)[n+r1+r2+1,n+r−2] is a subsequence

of ξ(E1(x),E2(x)) of length r0 − 2, and

E(x)[n+1,n+r1+r2−2] is a subsequence of

E1(x),E2(x) of length r1 + r2 − 2. By Lemma

19, we can recover E1(x),E2(x). Then, we can

recovery x by using E(x)[1,n−2] and E1(x) by

Theorem 20.

– if the two intervals are separated, similar to

above, we can recover E1(x),E2(x), and we use

E(x)[1,n−2] and E2(x) to recover x by Theorem 23.
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