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Abstract
Quantum computation represents a promising frontier in the domain of high-performance comput-
ing, blending quantum information theory with practical applications to overcome the limitations
of classical computation. This study investigates the challenges of manufacturing high-fidelity and
scalable quantum processors. Quantum gate set tomography (QGST) is a critical method for char-
acterizing quantum processors and understanding their operational capabilities and limitations. This
paper introduces Ml4Qgst as a novel approach to QGST by integrating machine learning techniques,
specifically utilizing a transformer neural network model. Adapting the transformer model for QGST
addresses the computational complexity of modeling quantum systems. Advanced training strate-
gies, including data grouping and curriculum learning, are employed to enhance model performance,
demonstrating significant congruence with ground-truth values. We benchmark this training pipeline
on the constructed learning model, to successfully perform QGST for 3 gates on a 1 qubit system
with over-rotation error and depolarizing noise estimation with comparable accuracy to pyGSTi. This
research marks a pioneering step in applying deep neural networks to the complex problem of quantum
gate set tomography, showcasing the potential of machine learning to tackle nonlinear tomography
challenges in quantum computing.
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1 Introduction
Quantum computation is an emerging paradigm
of computation that has captured the attention
of theoretical physicists and computer scientists,
as well as stakeholders in high-performance com-
puting. Quantum algorithms can solve problems
in specific complexity classes that are asymptoti-
cally intractable in all implementations of classical
computation. To demonstrate this acceleration in
practice, a topical research avenue is on matur-
ing the quantum computing hardware in terms
of high-fidelity (decoherence, error rates of quan-
tum operations) and scalability (number of qubits,

connectivity) along with quantum software [1].
Though this research endeavor has proved rather
a challenging engineering feat [2–4], rapid strides
were made in the last decade with a plethora
of physical technologies capable of demonstrating
controllable processing of quantum information.

Constructing a quantum computer requires
that the experimental setup meets certain condi-
tions, succinctly summarized as the DiVincenzo
criteria [5]. A critical criterion is the character-
ization of the quantum processor, which helps
in understanding the fabrication defects and the
computing capabilities of these systems. The char-
acterization is performed by building a model of
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the noise on the system and the set of quantum
operations performed on the quantum informa-
tion units. The latter typically involves inferring
the information-theoretic operation experimen-
tally achieved with respect to a set of target gates
in a circuit model quantum computer. Once this
operation – termed quantum gate set tomography
(QGST) [6] – is performed, the updated experi-
mental model of the quantum gates can be used
precisely to determine the required sequence of
quantum gates to achieve the transformation for
a quantum algorithm.

Tomographic approaches build a detailed
model for a system or component in a latent
space by fitting that model to the data from
numerous independent tests that reveal partial
information about the system. The nature of this
latent space depends on the representation of the
system model. For instance, in medical imaging,
by aggregating information from multiple 2D sino-
grams of CT scans, one can reconstruct a full
2D/3D CT image. Reconstructing a maximally
fitting model for the experimental data is com-
putationally expensive. Quantum tomography is
particularly expensive as the space of possible
observations is continuous and grows exponen-
tially with the system size.

Various machine learning techniques are used
to address the computational cost in tomog-
raphy [7]. However, these techniques have not
yet been utilized for quantum gate set tomog-
raphy. Our contribution presented in this work
is three-fold. Firstly, we develop a first-of-its-
kind machine-learning model for quantum gate set
tomography (Ml4Qgst). To this purpose, we har-
ness the transformer neural network model [8] and
tune it for the input-output settings of QGST.
Generative models like GAN have been used for
quantum state tomography [9]. However, QGST is
substantially different due to non-linearity, multi-
model regression, and worse computational scaling
costs, making it challenging to reuse the mod-
els from other quantum tomography tasks. As
we show later, QGST can be framed as a lan-
guage learning task, thus prompting our choice
of employing the Transformer model. Secondly,
contrary to directly estimating the full process
matrices in traditional algorithms, our approach
ensures the resulting process matrices are always
completely positive and trace preserving (CPTP)
and without the necessity to perform gauge fixing.

Thus, instead of fully reconstructing the pro-
cess matrices with no prior knowledge, we are
interested in the pragmatic setting of inferring
the model drift between the intended theoretical
process and the experimentally achieved process.
And, thirdly, we incorporate advanced training
techniques of data grouping, curriculum learning,
and computation of the loss function to increase
the performance of our model. Our model predicts
error parameters from the error channels and sub-
sequently generates the corresponding estimated
process matrices of the gate set.

The rest of the article is organized as follows.
In Section 2, the problem setting and required def-
initions are introduced. We contrast this research
with related works on machine learning for quan-
tum tomography. In Section 3, the method and
the transformer architecture used in this research
are elaborated. Section 4 discusses the advanced
training techniques in the experimental settings,
while in Section 5, the corresponding results of the
experiments are presented. Section 7 concludes the
article.

2 Problem setting and
definitions

In this section, we present some required back-
ground for the article. Firstly, the background
theory of gate set tomography based on the super
operator formalism is presented. After that, we
present how artificial neural networks can be
employed for quantum tomography, directing the
discussion towards the transformer model that is
used in this research.

2.1 Gate set tomography
Different from traditional quantum process
tomography, which implicitly assumes known,
hence near-zero state preparation and measure-
ment (SPAM) errors, as shown in Figure 1,
gate set tomography relaxes this assumption by
directly incorporating gates as both preparation
and measurement operators or formally as prepa-
ration and measurement fiducials. In a quantum
computer characterization setting, rather than
probing each individual gate using traditional pro-
cess tomography, gate set tomography aims to
simultaneously reconstruct the full gate set using
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Fig. 1 Quantum tomography techniques

the maximum likelihood method [10]. By mea-
suring the outcomes prescribed by a list of gate
sequences that acts to amplify errors on each gate,
as shown in the bottom of Figure 1, one can run an
optimization algorithm to find out all the param-
eterized process matrices within the gate set. It
is precisely due to this ‘all in one’ tomographic
method that gate set tomography has the highest
reconstruction accuracy versus traditional state
tomography and process tomography, which are
largely plagued by the problem of SPAM errors.
However, the trade-off of gate set tomography is
immediately obvious, in which way more compu-
tational resources have to be used to solve for
this ‘simultaneous maximum likelihood’ across all
gate sequences. This can be understood as max-
imizing the likelihood function in GST is highly
non-convex, in stark contrast to state and process
tomography, where each observable probability is
a linear function of the parameter [10]. Based on
this observation, using deep learning techniques to
capture complex non-linear relationships would be
a natural choice.

2.1.1 Super operator formalism

Similar to the typical Dirac notation in Hilbert
space, where a row vector is represented by a bra
⟨a|, and column vector by a ket |b⟩, we denote
superbra as ⟨⟨A| and superket as |B⟩⟩. In quan-
tum tomography settings, this conveniently maps

a quantum state ρ in the form of a d × d den-
sity matrix in the d-dimensional Hilbert space
into a complex d2-dimensional vector in Hilbert-
Schmidt space, with the inner product defined as
⟨⟨A|B⟩⟩ = Tr(A†B).

In this paper, we use the Pauli Transfer Matrix
(PTM) as our super-operator representation, as it
is a popular choice in quantum tomography. The
PTM basis {Bi} in Hilbert-Schmidt space has the
following properties:

1. Hermiticity: Bi = B†
i

2. Orthonormality: Tr (BiBj) = δij
3. Traceless for i > 0: B0 = I/

√
d and Tr (Bi) =

0, for i > 0

For a single qubit, the normalized PTM basis
would be {Bi} = {I/

√
d, σx/

√
2, σy/

√
2, σz/

√
2}.

Due to this choice of basis, the PTM vector and
super operator are always real.

As an example, we write a single qubit 2 × 2
density matrix ρ as |ρ⟩⟩, represented by a real 4×1
column vector, where each coefficient of |ρ⟩⟩ can
be found by taking the inner product Tr

(
B†

i ρ
)
.

|ρ〉〉 =


Tr

(
B†

0ρ
)

Tr
(
B†

1ρ
)

Tr
(
B†

2ρ
)

Tr
(
B†

3ρ
)


To find the measurement probability of |ρ⟩⟩

projecting onto the computational basis {|0⟩ , |1⟩}
we can perform the standard dot product. First,
we write the projectors as row vectors,

|0⟩⟨0| 7→ ⟨⟨E0| = (1/
√
2, 0, 0, 1/

√
2)

|1⟩⟨1| 7→ ⟨⟨E1| = (1/
√
2, 0, 0, −1/

√
2)

And, then, a standard dot product (or trace)
obtains the measurement probabilities p0, p1 of
getting 0 and 1,

p0 = ⟨⟨E0 |ρ ⟩⟩ = Tr (E0ρ)

p1 = ⟨⟨E1 |ρ ⟩⟩ = Tr (E1ρ)

Naturally, for any d2 quantum state vector, we
have the d2 × d2 super operator that describes a
(noisy) quantum channel, which is not necessar-
ily unitary and/or orthogonal. For any quantum
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operator Λ, the PTM satisfies

⟨⟨j |RΛ| k⟩⟩ = Tr (σjΛ (σk)) = (RΛ)jk

where, applying a quantum operation/channel Λ
to a quantum state |ρ⟩⟩ is represented as left-
multiplying a matrix to a vector,

|Λ(ρ)⟩⟩ = RΛ|ρ⟩⟩
For instance, the PTM of a single qubit rotational
gate along the x-axis by π/2 is given by,

RX (π/2) =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0


Corresponding to a quantum operation Λ (ρ) =

UρU†, U is the unitary single qubit operator.

2.2 Tomography using deep neural
networks

The goal of tomography in any general setting is
to learn a latent space z that maximally matches
with the observed data x. The nature of this latent
space depends on different scenarios. For instance,
referring back to medical imaging, the dimension
of z (the reconstructed 2D/3D CT image) is the
same or higher than the observed data x (2D sino-
grams). Notably, both z and x reside in the pixel
space that requires little to no transformation
when passed to typical neural network models like
convolutional neural network (CNN) [11], [12], [13]
or diffusion model [14], [15], [16].

Quantum tomography is strikingly different as
the z and x do not reside in the same space. For
quantum state(process) tomography, the latent
space z is the density(process) matrix that takes
the form of a square matrix, whereas the observed
data x refers to the measured counts or nor-
malized probabilities from the quantum device,
conditioned on a certain measurement and/or
preparation operators.

The same mismatch between latent space and
observed space persists in gate set tomography,
which prevents the direct implementation of typ-
ical deep generative models from image process-
ing [9]. Instead, an intermediate function has to
be used in order to map the latent space to

the observed space, namely, an analytical func-
tion that maps the neural network output to the
expected probabilities under supervised learning.

The advancement of neural network models
and computer hardware in the last decade have
brought forth numerous novel applications in the
industry, such as autonomous robotics via rein-
forcement learning [17], image generation [18] via
diffusion model, text generation via large lan-
guage model [19] and so much more. Riding on
this trend, the quantum physics community has
borrowed these techniques from the industry for
quantum tomography. Earlier work mainly focuses
on using restricted Boltzmann machines for simple
quantum state tomography tasks that can be rep-
resented by pure states. Later works employ deep
neural networks for more difficult tasks such as
general density matrix reconstruction [9] and pro-
cess matrix construction [20] . The methods being
used range from simple feed-forward networks
to more advanced models such as conditional
generative adversarial networks and transformer
models. For instance, GAN demonstrated good
convergence behavior in [9] when reconstructing a
density matrix in the quantum state tomography
setting, but this is only because the QST problem
is linear in nature. It has been shown that GAN is
susceptible to mode collapse [21], which is partic-
ularly troubling when the data being trained on
are multi-modal. In GST, the problem that has to
be solved is highly non-linear, with multi-modal
data corresponding to multiple different gates that
have to be estimated, as well as the underlying
error parameters that represent those gates.

3 Ml4Qgst model
Contrary to most existing publications that
directly use deep neural networks to reconstruct
the full density or process matrix in quantum state
or process tomography settings, we aim to predict
physical error parameters in gate set tomography
instead and then use analytical functions to recon-
struct the full process matrices afterward, as a way
to ensure that the completely positive and trace
preserving (CPTP) condition is met and remove
the necessity of gauge fixing.

Furthermore, we alleviate the shortcomings of
GANs by proposing a transformer model-based
deep neural network, which excels in encoding and
processing sequences [8], compared to standard
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Fig. 2 The Transformer model architecture with its
encoder block (left) and decoder block (right) [8].

convolution-based methods that are fundamen-
tally limited by kernel sizes. In addition, promising
results have already been shown in quantum state
tomography setting recently using transformer-
based techniques [22], [23].

3.1 Transformer model
Since the invention of the transformer architec-
ture [8], the world has been revolutionized by the
success and capabilities that GPT-4 [24] and other
large language models (LLM) provide. Here we
briefly explain what a transformer is, specifically
the encoder block that we will use in this paper.

Figure 2 shows the complete transformer archi-
tecture that is used for text generation in the orig-
inal implementation, and it can be further divided
into an encoder (left) and a decoder block (left).
Within each block, the main component that
empowers the transformer is the multi-head atten-
tion layer (see orange-colored rectangle). As its
name implies, the attention layer’s goal is to ‘pay

attention’ to the sequences, elements, or struc-
tures of the input data, similar to what humans
do. Mathematically, this is done by construct-
ing arrays (query, key, value) and performing a
dot product between query and key to obtain
an attention score matrix. Afterward, a softmax
operation is applied to the attention score matrix
to obtain a new matrix corresponding to atten-
tion weights(probabilities). Finally, this attention
weight matrix is multiplied with value, yielding a
new weighted value output. The attention mech-
anism is most commonly seen in LLMs to process
sequences of input text or, alternatively, focus on
the underlying structure of images in computer
vision [25].

In our paper, we only make use of the encoder
block to encode input data and subsequently use
a simple feed-forward network for regression. We
skip the transformer decoder commonly used in
natural language processing, as our goal is not
to generate new sequences but to predict error
parameters. This model encodes the gate sequence
data naturally, similar to text encoding which has
been widely adopted in the industry. We make
use of self/cross attention mechanisms, which aim
to focus on the information (process matrix) of
each individual gate and the inter-relationship
between gate sequences and normalized probabil-
ities, respectively. By aggregating all the informa-
tion through the transformer pipeline, we estimate
the error parameters from the gate set tomography
experiment.

The remainder of the section describes the
main components of our Ml4Qgst implemen-
tation. Its components consist of 1) separate
embedding layers for both integer-encoded gate
sequences and normalized probabilities, 2) sepa-
rate positional encoding for both gate sequences
and normalized probabilities, 3) cross attention
layer to aggregate information from two branches,
4) transformer block to encode the aggregated
information, 5) fully connected layer to output
physical error parameters. A schematic of the
neural network architecture is shown in Figure 3.

3.2 Embedding gate sequences and
normalized probabilities

In gate set tomography, each gate sequence output
measures counts for each computational basis and
can be converted into normalized probabilities for
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Fig. 3 A schematic overview of Ml4Qgst, our
transformed-based neural network architecture for GST.

each basis state. By aggregating the information
of multiple pairs of gate sequences and normal-
ized probabilities, one can extract the information
of the process matrix of each gate used. The gate
sequences are first preprocessed by integer encod-
ing and zero padding, where each gate is mapped
to a unique integer, and the gate sequences are
zero-padded to match the longest gate sequence in
the dataset. The encoded gate sequences are then
passed to an embedding layer used in a typical
transformer setting. Besides that, the normalized
probabilities are passed to a fully connected layer
and are subsequently reshaped to emulate the
effect of an embedding layer.

This way, both branches will have an extra
learnable feature dimension that is ready to be
processed by a transformer block later on.

3.3 Positional encoding
We use the standard sine and cosine positional
encoding for both embedded gate sequences and
normalized probabilities, that are flattened before-
hand. As each individual pair of gate sequence
and normalized probabilities yields little tomo-
graphic information, we instead group multiple
pairs together to increase the receptive field. Posi-
tional encoding is then applied element-wise to
this flattened embedded gate sequence and nor-
malized probabilities at each branch.

3.4 Cross attention layer
After embedding and positional encoding at each
branch, a cross-attention layer is used to pro-
cess the relationship between the grouped gate
sequences and normalized probabilities. We choose
cross-attention instead of simple concatenation to
avoid the vast data shape mismatch between gate
sequences and normalized probabilities that can
possibly drown out the training signal.

3.5 Transformer encoder block
A standard multi-layer transformer encoder block
is used to process the aggregated information.
It includes typical components such as a multi-
head attention layer, add & norm layer, and
feed-forward layer.

3.6 Fully connected layers
Finally, fully connected layers are used for regres-
sion after the transformer block, outputting pre-
dicted physical error parameters.

4 Experiments
We evaluate Ml4Qgst using the open-source
Python package pyGSTi [26], with the capabil-
ity of: 1) customizing the process matrix of each
individual gate within a gate set, 2) selecting
appropriate fiducials for the customized gate set,
3) generating appropriate gate sequences for the
GST experiment, 4) simulating measured counts
for the gate sequences.

4.1 pyGSTi simulation settings
The pyGSTi Python package uses Pauli Trans-
fer Matrices (PTM) as the default process matrix

6



Fig. 4 Overall data pipeline of Ml4Qgst from input to
output and MSE loss computation.

throughout the GST implementation. Here we
replaced the built-in single qubit XYI model with
our custom PTM, specifically the X and Y rota-
tional gates. These custom gates are parametrized
with physical error parameters and in our case,
the over-rotational angles and depolarizing errors.
We then use the custom X and Y rotational gates,
together with the built-in function, to find suitable
fiducials, that is, a handful of short gate sequences
that are used repeatedly and combinatorially to
generate GST experiments. After that, we run
the built-in single qubit XYI GST experiment
function to generate gate sequences and simu-
lated measured counts. The number of shots is set
to 10, 000, and the maximum sequence length to
25, and the sampling error to binomial. Figure 4
shows the overall data pipeline from input to loss
computation.

4.2 Training details

4.2.1 Data grouping

As mentioned briefly in 3.2, the gate sequences
generated by pyGSTi are converted from strings
to unique integers and, subsequently, zero-padded
to match the maximum length of a sequence in
the dataset, whereas simulated measured counts
are normalized into probabilities. After that, both
gate sequences and probabilities datasets are
divided into groups, specified by a hyperparame-
ter ‘group_size’. In order to ensure all groups have
the same number of elements, we choose to repeat
the elements inside the last group instead of zero
padding to preserve overall data quality.

4.2.2 Curriculum learning

Drawing inspiration from the way humans learn,
curriculum learning aims to achieve better per-
formance and faster convergence by starting with
simpler or more fundamental examples and pro-
gressively introducing more complex ones [27],
we conveniently call it stage training here, start-
ing from easier to more difficult stages. In the
following, We make use of curriculum learning
to further divide the whole dataset into parts,
again specified by a hyperparameter ‘part_size’.
The dataset is sorted in ascending order based
on the non-zero length of the gate sequences.
This ensures that the model learns global features
from shorter gate sequences in the beginning and
then progressively fine-tunes predictions in later
stages when it sees longer gate sequences. This
learning methodology is similar to the algorithm
implemented in the GST paper [10], in which the
authors iteratively add longer sequences, including
the previously seen sequences in an accumula-
tive way during optimization. We instead opt
for a non-accumulative approach as in standard
curriculum learning, and saving computational
resources required.

4.2.3 Analytical PTM reconstruction

Based on the predicted physical error parameters,
namely the over-rotational angles and depolar-
izing errors, we analytically reconstruct PTMs
corresponding to the gates within the gate set.
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4.2.4 Computing loss

As each grouped data outputs one set of physi-
cal error parameters prediction, it also has its own
set of reconstructed PTMs. We compute probabil-
ities analytically for all the gate sequences within a
group, using the same set of reconstructed PTMs.
This procedure is performed iteratively group by
group within a particular stage set by curriculum
learning. Finally, we compute the mean squared
error loss between the ground-truth probabilities
and the reconstructed probabilities.

5 Results
In the following, we will explain the choice of
loss function in our experiment, analyze conver-
gence behavior during neural network training
and compare benchmarking results from different
commonly used metrics.

5.1 Choice of loss function
The GST paper [10] uses two loss functions for
long-sequence GST optimization, the multinomial
log-likelihood function log (L) for a ms outcomes
Bernoulli scheme, and the χ2 estimator.

log (L) =
∑
s

log (Ls) =
∑
s,βs

Nsfs,βs
log (ps,βs

)

χ2 =
∑
s,βs

Ns (ps,βs − fs,βs)
2

ps,βs

where s denotes the index of a circuit, and let
ms be the number of outcomes of s, Ns the total
number of times circuit s was repeated, Ns,βs the
number of times outcome βs was observed, ps,βs

the probability predicted by the model of getting
outcome βs from circuit s, and fs,βs = Ns,βs/Ns

is the corresponding observed frequency.
The authors used the χ2 estimator as a proxy
of log(L) during optimization except for the last
phase, as it is more computationally efficient.
Then, log(L) is used in the final phase to steer
the estimate to comply with the true statistical
derivation. Here, we further simplify the χ2 esti-
mator to mean-squared error (MSE) loss, which
has also been used in simpler linear GST settings.
Alternatively, MSE loss can be seen from the per-
spective of reducing the likelihood function to a

normal distribution by invoking the central limit
theorem [28].

loss =
∑
s,βs

(ps,βs
− fs,βs

)
2

σ2
s,βs

where σ2
s,βs

= ps,βs
(1 − ps,βs

)/Ns is the sam-
pling variance in the measurement.

5.2 Convergence analysis
In the following, we will explain the training tra-
jectories of predicted error parameters by delving
a little bit deeper into the technical implementa-
tion.

Figures 5, 6 show the convergence behavior
plots for depolarizing error and Figures 7, 8 for
over rotational angle. Both types of plots contain
the X-gate and Y-gate training trajectories, the
x-axis always represents the number of training
epochs and the y-axis indicates the depolariza-
tion amplitude and over rotational angle in radian
respectively. For both, the predicted depolarizing
errors and the over-rotational angles, the pre-
dicted values exhibit oscillatory behavior at the
beginning of each stage of curriculum learning,
where an entirely new set of data was fed into the
neural network for further training. This is indi-
cated at epochs 90, 190, and 263, corresponding
to the start of stages 2, 3, and 4.

Because we use the tanh activation function at
the neural network output layer and subsequently
take absolute values in the custom training loop,
the plots for depolarizing errors shown below
will generally have the predicted values jumping
between positive and negative. This is intended,
as we want the predicted depolarizing error val-
ues to be close to and centered at zero, where the
tanh activation function is the prime candidate.

Additionally, we showed that without curricu-
lum learning, the model fails to converge within
the normalized number of epochs, which is equal
to the number of epochs for each stage in the
curriculum learning. Figures 9, 10, 11, 12 show
the convergence trajectories without curriculum
learning. The empirical evidence here shows that
curriculum learning, like the iterative optimization
approach from the GST paper, is indeed required
for proper convergence.
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Loss function With CL Without CL Ground-Truth % Error Ratio
(W.O CL/ CL)

MSE (Training) 1.9668e-05 (-0.08%) 2.1339e-05 (-8.41%) 1.9683e-05 (0%) 105.1
KL divergence 5.2119e-05 (-2.35%) 5.6215e-05 (-10.39%) 5.0923e-05 (0%) 4.4
χ2 estimator 0.003118 (-2.06%) 0.003380 (-10.64%) 0.003055 (0%) 5.2
-log (L) 16.11541 (-1.86e-5%) 16.11554 (-9.93e-4%) 16.11538 (0%) 53.4

Table 1 Benchmarking for different loss functions: MSE, KL divergence, χ2 estimator, -log L, with and without
curriculum learning.
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Fig. 5 Training trajectory of the predicted X-gate depo-
larizing error with curriculum learning, tanh activation
function is used at the final output layer to allow large
gradient near zero, a subsequent absolute value function is
added to ensure predicted value is between 0 and 1.

0 50 100 150 200 250 300 350

Epochs

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Y
 D

e
p
o
la

ri
z
in

g
 E

rr
o
r

Fig. 6 Training trajectory of the predicted Y-gate depo-
larizing error with curriculum learning, tanh activation
function is used at the final output layer to allow large
gradient near zero, a subsequent absolute value function is
added to ensure predicted value is between 0 and 1.
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Fig. 7 Training trajectory of the predicted X-gate over-
rotational error with curriculum learning, tanh activation
function is used at the final output layer to ensure the
output value is between -1 and +1 (radian).
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Fig. 8 Training trajectory of the predicted Y-gate over-
rotational error with curriculum learning, tanh activation
function is used at the final output layer to ensure the
output value is between -1 and +1 (radian).
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Fig. 9 Training trajectory of the predicted X-gate depo-
larizing error without curriculum learning, tanh activation
function is used at the final output layer to allow large
gradient near zero, a subsequent absolute value function is
added to ensure predicted value is between 0 and 1.
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Fig. 10 Training trajectory of the predicted Y-gate depo-
larizing error without curriculum learning, tanh activation
function is used at the final output layer to allow large
gradient near zero, a subsequent absolute value function is
added to ensure predicted values is between 0 and 1.

5.3 Benchmarking
To show that our predicted values are in good
agreement with the ground-truth values from the
simulation, we choose KL-divergence, χ2 estima-
tor, and full log (L) function as a benchmark.
We compare the benchmark results among three
cases: ground-truth values, predicted values with
curriculum learning (CL), and predicted values
without curriculum learning, as shown in Table 1.
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Fig. 11 Training trajectory of the predicted X-gate over-
rotational error without curriculum learning, tanh activa-
tion function is used at the final output layer to ensure the
output value is between -1 and +1 (radian).
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Fig. 12 Training trajectory of the predicted Y-gate over-
rotational error without curriculum learning, tanh activa-
tion function is used at the final output layer to ensure the
output value is between -1 and +1 (radian).

The zero reference point for percentage error is set
to ground truth in the table.

We first look at MSE, KL divergence, and
χ2 estimator, which all are the functions that
measure the distance between probability distri-
butions. It is no surprise that MSE has the lowest
percentage error, as it was used as the loss function
during training. We can also see a consistent trend
among the three benchmarks, where the results
without CL are much worse than the ones with
CL, verifying the necessity of CL during training.
Besides looking at just the percentage error, the
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error ratio between the known bad (without CL)
and good (with CL) fit can roughly tell us how
large the training signal would be, whereas a big-
ger ratio usually refers to a larger training signal.
It can be seen that MSE and −log (L) functions
have large error ratios, meanwhile KL divergence
and χ2 estimator yield small ratios, suggesting
MSE and −log (L) functions are more versatile for
training purpose.

Finally, we show the process matrix distance
heatmaps in Figure 13, as a standard practice to
visualize the estimated results, commonly used in
quantum tomography. To show that the model is
indeed estimating the error parameters/ process
matrices sensibly, the PTM distance heatmaps
between (QC - Ideal) and (Ml4Qgst - QC) are
compared, where ideal refers to operations with
no depolarizing error and over rotation, QC means
ground-truth quantum computer (QC) operations
and Ml4Qgst refers to our model predicted oper-
ations. Figure 13(a,b) tells us how bad the quan-
tum computer behaves with respect to the ideal
operations that we actually want, while Figure 13
(c,d) informs us how well our Ml4Qgst model
estimates the ground-truth quantum computer
operations. Comparing the X and Y gate dis-
tance heatmaps in Figure 13 (c,d), we can roughly
see the over-rotation angle and depolarizing error
estimation slightly overshoot, with the exception
of Y gate undershooting the estimation of over-
rotation angle. The percentage differences between
the ground truth and the estimated values are
3.6558%(0.5321%) for X(Y) depolarizing error
and 0.2615%(-0.2850%) for X(Y) over-rotational
angle. This is largely comparable to pyGSTi’s long
gate sequence GST results: -0.0341%(0.2670%)
and 0.5659%(-0.3705%).

6 Outlook
In this article, we have demonstrated our model
is able to produce comparable accuracy with
pyGSTi’s implementation. In this section, we
explore future improvements for Ml4Qgst, focus-
ing on: 1) bootstrapping, 2) scalability for multi-
qubit systems, and 3) zero-shot to few-shot learn-
ing.

The most immediate and universal use case
for a trained deep neural network model would be
bootstrapping existing tomographic approaches,
where an end user queries the trained model to

obtain a list of fairly accurate predictions and sub-
sequently uses this as an initial guess input to
another mathematically rigorous traditional ana-
lytical or numerical model, vastly reduces the
computation resource and time required from tra-
ditional approaches, while still retaining the supe-
rior prediction accuracy, compared to using deep
neural network alone.

The next use case would be scaling up gate set
tomography to multi-qubit systems. Although not
demonstrated in this proof-of-concept paper, the
transformer has been proven for capturing long-
range relationships in natural language processing,
which, in turn, should work well when process-
ing multi-qubit long sequence quantum circuits.
To draw a parallel, in terms of encoding quan-
tum circuits for specific use cases, the transformer
will be a natural extension and improvement to
existing CNN-based quantum circuit optimization
[29]. In essence, we welcome future research in
the quantum community to make use of trans-
former models to process quantum circuit-related
applications.

Finally, our Ml4Qgst model can potentially
benefit from zero to few-shot learning. That is,
focusing on a fixed set of quantum circuits that
were used in training, the model can predict
new error parameters if the end user provide a
new set of probabilities corresponding to those
quantum circuits, with no to little further train-
ing required. Namely, we can treat probabilities
as conditioning information to alter model out-
put accordingly, similar to text-prompted image
generation. This can be done with minor architec-
tural change to Ml4Qgst, where the conditional
information (probabilities) is injected directly to
each transformer block via multi-head cross atten-
tion mechanism or the more advanced adaLN-zero
modulation [30], instead of a single pass multi-
head cross attention before the transformer blocks
as in the current model.

7 Conclusion
In this article, we presented a transformer-based
neural network model for quantum gate set tomog-
raphy. By leveraging self- and cross-attention
mechanisms to aggregate information from the
measured GST data, we subsequently pass the
processed data into a feed-forward neural net-
work to obtain the estimated error parameters. In
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Fig. 13 (a,b) X and Y gate PTM distance heatmaps between the ground-truth quantum computer (QC) and the Ideal
operations, (c,d) X and Y gate PTM distance heatmaps between the ground-truth quantum computer (QC) and the
Ml4Qgst predicted operations

combination with curriculum learning, the model
converges in a stable way, and the final estimated
results are in good agreement with ground-truth
values. Our results are a proof of concept that
demonstrates that deep neural network models
can also be used in tackling difficult highly non-
linear tomography problems like gate set tomog-
raphy. We wish to further improve the efficiency
and accuracy of the model for gate set tomog-
raphy in the future by exploring different neural
network architectures and via model fine-tuning.
In particular, we believe that leveraging the suc-
cess of first compressing data in latent space via an
auto-encoder that was recently used in diffusion
model [18] would greatly reduce the computa-
tional footprint for GST. GST can be understood
as mapping a large set of measurement data into a
small subset of error parameters, where the idea of
latent space would naturally come into the picture.

Software Availability
The software developed for this project is available
at: https://github.com/QML-Group/ML4GST.
The GST data is generated via the pyGSTi soft-
ware: https://github.com/sandialabs/pyGSTi.
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