
Data-Driven Stable Neural Feedback Loop Design

Zuxun Xiong, Han Wang, Liqun Zhao, and Antonis Papachristodoulou

Abstract— This paper proposes a data-driven approach to
design a feedforward Neural Network (NN) controller with
a stability guarantee for systems with unknown dynamics.
We first introduce data-driven representations of stability
conditions for Neural Feedback Loops (NFLs) with linear
plants. These conditions are then formulated into a semidefinite
program (SDP). Subsequently, this SDP constraint is integrated
into the NN training process resulting in a stable NN controller.
We propose an iterative algorithm to solve this problem
efficiently. Finally, we illustrate the effectiveness of the proposed
method and its superiority compared to model-based methods
via numerical examples.

I. INTRODUCTION

Decades before the recent rapid development of Artificial
Intelligence (AI), pioneering research had already proposed
the application of neural networks (NN) as controllers for
systems with unknown dynamics [1], [2], [3]. As related
technologies have advanced, this research topic is now rel-
evant in feedback control and has achieved success in sev-
eral applications in recent years. Examples include optimal
control [4], model predictive control [5] and reinforcement
learning [6].

The ability of NNs to act as general function approx-
imators underpins their impressive performance on con-
trol. However, this characteristic also presents challenges
in providing rigorous stability and robustness guarantees.
To address this issue, research in NN verification focuses
on the relationship between inputs and outputs of NNs,
ensuring they can operate reliably. In [7], an interval bound
propagation (IBP) approach was proposed to calculate an
estimate on the output range of every NN layer. The IBP
approach is relatively simple but the output range it provides
could be very conservative. Quadratic constraints (QC) were
later used to bound the nonlinear activation functions in NNs
[8]: the NN verification problem with these QC bounds was
formulated as a semidefinite program and solved efficiently.
In [9], a tighter bound consisting of two sector constraints
for different activation functions with higher accuracy was
proposed. A Lipschitz bound estimation method [10] can also
be used to evaluate the robustness of NNs.

Using these bounds and stability conditions developed in
NN verification research, recent results focussed on the NN
feedback control analysis and design problem. By imposing
a Lipschitz bound constraint in the training process, a robust
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NN controller was designed [11], [12]. In [13], a framework
to design a stable NN controller through imitation learning
for linear time-invariant (LTI) systems was proposed. To
ensure that controllers can retain and process long-term
memories, recurrent neural network controllers were trained
with stability guarantees for partially observed linear systems
[14] and nonlinear systems [15]. However, most of existing
studies assume the dynamics of the controlled systems are
known, or partially known at least. This assumption in
effect contradicts the original intention of designing NN con-
trollers, which is to control systems with unknown dynamics.
This is exactly the gap we want to fill in this work.

With technological advances on computational and storage
capacity, as well as more access to data, data-driven control
for complex systems can facilitate research in both control
and other research fields [16]. A thorough introduction on
how to apply data-driven methods to represent linear systems
and design stable feedback control systems was given in [17].
Relevant methods were applied to analyse the stability of
nonlinear systems [18] using Sum of Squares (SOS) [19].
We recently proposed a data-driven method to analyze the
closed-loop system with a NN controller, and a model-
free verification method for closed-loop stability, safety and
invariance [20]. In this study, we will use the term Neural
Feedback Loop (NFL) to represent the closed-loop feedback
system with an NN controller.

The first contribution in this paper is a data-driven repre-
sentation of stability conditions for an NFL with unknown,
linear plant dynamics. Based on the stability conditions, we
then propose an iterative design algorithm to train a stable
NN. Secondly, an NN fine-tuning algorithm is proposed to
stabilize an existing NN controller for an unknown system.
Both these algorithms require only the collection of “suf-
ficiently large” and at least persistently exciting open-loop
input-output data from the system. Finally, in a case study,
we train NN controllers through imitation learning based on
the proposed design algorithm. We also fine-tune an NN
controller trained by imitation learning using our fine-tuning
algorithm. The effectiveness of both algorithms are verified.

The rest of this paper is organized as follows. In Section
II, we recap NFL analysis and data-driven representation of
linear state-feedback systems. In Section III, we formulate
a data-driven stability condition for NFLs. Based on these
conditions, we propose a stable NFL design algorithm and
an NN fine-tuning algorithm in Section IV, and then validate
the two algorithms using numerical examples in Section V.
We draw conclusions in the last section.

Notation. We use Rn,m, Sn++ and In to denote n-by-m
dimensional real matrices, n-by-n positive definite matrices
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and n-by-n identity matrices respectively. We use || · ||F
to denote the Frobenius norm. tr(·) denotes the trace of a
matrix.

II. PRELIMINARIES

A. Neural Feedback Loop

A generic NFL is a closed-loop dynamical system consist-
ing of a plant G and an NN controller π(·) ∈ Rnπ . In this
work, we consider G to be a linear time-invariant system of
the form:

x(k + 1) = AGx(k) +BGu(k), (1)

where AG ∈ Rnx×nx and BG ∈ Rnx×nπ . Here x(k) ∈ Rnx

and u(k) ∈ Rnπ are the system state and the control input,
respectively. The controller is designed as a feed-forward
fully connected neural network π(k) with l layers as follows:

ω0(k) = x(k), (2a)
νi(k) = W iωi−1(k) + bi, for i = 1, . . . , l, (2b)
ωi(k) = ϕi(νi(k)), for i = 1, . . . , l, (2c)
π(k) = W l+1ωl(k) + bl+1. (2d)

For the ith layer of the NN, we use W i ∈ Rni×ni−1 ,
bi ∈ Rni , ni, νi and ωi to denote its weight matrix, bias
vector, number of neurons, and corresponding vectorized
input and output, respectively. The input of the NN controller
is ω0(k) = x(k), which is the state of the plant at time
k. ϕi(·) : Rνi → Rνi is a vector of nonlinear activation
functions on the ith layer, defined as

ϕi(νi) = [φ(νi1), . . . , φ(ν
i
ni
)]⊤, (3)

where φ(·) : R → R is an activation function, such as ReLU,
sigmoid, and tanh.

B. Stability Verification for Neural Feedback Loop

To verify stability of an NFL, a commonly used method
is to isolate the nonlinear terms introduced by the activation
functions, then treat the nonlinearity as additive disturbances
[13]. The NFL in (2) can be rewritten as:[

π(k)
νϕ(k)

]
= N

[
x(k)
ωϕ(k)

]
(4a)

ωϕ(k) = ϕ(νϕ(k)). (4b)

where νϕ(k) ∈ Rnϕ and ωϕ(k) ∈ Rnϕ are vectors formed
by stacking νi(k) and ωi(k) of each layer i, i = 1, . . . , l,
ϕ(·) : Rnϕ → Rnϕ is the stacked activation function for

all layers, where nϕ :=
∑l

i=1 ni. N :=

[
Nπx Nπω

Nνx Nνω

]
is a matrix consisting of NN weights W l. It should be
noticed that we impose the constraint π(0) = 0 to ensure
the equilibrium remains at the origin with the NN controller.
To achieve this, we also set all bias bl to be 0. To deal
with the nonlinearities in (4b), sector constraints have been
proposed to provide lower and upper bounds for different
kinds of activation functions of NNs. The interested readers
are referred to [8], [9] for a comprehensive review and

comparison on different sectors. In this work, we rely on
a commonly used local sector:

Definition 1: Let α, β, ν, ν̄ ∈ R with α ≤ β and ν ≤ 0 ≤
ν̄. The function φ : R → R satisfies the local sector [α, β]
if

(φ(ν)− αν) · (βν − φ(ν)) ≥ 0 ∀ν ∈ [ν, ν̄] (5)
For example, φ(ν) := tanh(ν) restricted to the inter-
val [−ν̄, ν̄] satisfies the local sector [α, β] with α =
tanh(ν̄)/ν̄ > 0 and β = 1.

By compositing the sector bounds for each individual
activation function, we can obtain sector constraints for the
stacked nonlinearity ϕ(·). One composition method is shown
in the following lemma.

Lemma 1 ([13, Lemma 1]): Let αϕ, βϕ, ν, ν̄ ∈ Rnϕ be
given with αϕ ≤ βϕ, and ν ≤ 0 ≤ ν̄. Assume ϕ element-
wisely satisfies the local sector [αϕ, βϕ] for all νϕ ∈ [ν, ν̄].
Then, for any λ ∈ Rnϕ with λ ≥ 0, and for all νϕ ∈ [ν, ν̄],
ωϕ = ϕ(νϕ), we have[

νϕ
ωϕ

]⊤ [
−2AϕBϕΛ (Aϕ +Bϕ)Λ
(Aϕ +Bϕ)Λ −2Λ

] [
νϕ
ωϕ

]
≥ 0, (6)

where Aϕ = diag(αϕ), Bϕ = diag(βϕ), and Λ = diag(λ). The
computational method of Aϕ and Bϕ, i.e., the sector bound
of every layer of NN, can be found in [7].

Using the result from Lemma 1 into a robust Lyapunov
stability analysis framework, we can obtain a sufficient
condition for a NFL to be stable.

Theorem 1 ([13, Theorem 1]): Consider an NFL with
plant G satisfying (1) and NN controller π as in (2) with
an equilibrium point x∗ = 0nx and a state constraint set
X ⊆ {x : −x̄ ≤ Hx ≤ x̄}. If there exist a positive definite
matrix P ∈ Snx

++, a vector λ ∈ Rnϕ with λ ≥ 0, and a matrix
Λ := diag(λ) that satisfy

R⊤
V

[
A⊤

GPAG − P A⊤
GPBG

B⊤
GPAG B⊤

GPBG

]
RV

+R⊤
ϕ

[
−2AϕBϕΛ (Aϕ +Bϕ) Λ
(Aϕ +Bϕ) Λ −2Λ

]
Rϕ ≺ 0,

(7a)

and [
x̄2
i H⊤

i

Hi P

]
≥ 0, i = 1, ..., nx, (7b)

where

RV :=

[
Inx

0nx×nϕ

Nπx Nπω

]
, Rϕ :=

[
Nνx Nνω

0nϕ×nx
Inϕ

]
,

(7c)
where H⊤

i is the ith row of the matrix H , then the NFL
is locally asymptotically stable around the equilibrium point
x∗, and the ellipsoid E(P ) :=

{
x ∈ Rnx : x⊤Px ≤ 1

}
is an

inner-approximation to the region of attraction (ROA).

C. Data-Driven Representation of the System

Verifying stability of a NFL using (7) requires AG and
BG to be precisely known, or known to belong within an
uncertain set. We refer to this type of approaches model-
based. In contrast to model-based approaches, direct data-
driven approaches aim to bypass the identification step and



use data directly to represent the system. Consider System
(1). We carry out experiments to collect T -long time series
of system inputs, states, and successor states as follows:

U0,T :=
[
u(0) u(1) . . . u(T − 1)

]
∈ Rnu×T (8a)

X0,T :=
[
x(0) x(1) . . . x(T − 1)

]
∈ Rnx×T (8b)

X1,T :=
[
x(1) x(2) . . . x(T )

]
∈ Rnx×T (8c)

It should be noted that here we use u(t) to denote the
instantaneous input signal for the open-loop system. The
signal is not necessary produced by the NN controller π(·).
These data series can be used to represent any T -long
trajectory of the linear dynamical system as long as the
following rank condition holds [17]:

rank

([
U0,T

X0,T

])
= nu + nx. (9)

To satisfy this rank condition, the collected data series should
be “sufficiently long”, i.e., T ≥ (nu+1)nx+nu. Under the
rank condition, System (1) with a state-feedback controller
u(k) = Kx(k) has the following data-driven representation
[17, Theorem 2]:

x(k + 1) = (AG +BGK)x(k) = X1,TGKx(k) (10)

where GK is a T × nx matrix satisfying[
K
Inx

]
=

[
U0,T

X0,T

]
GK (11)

and therefore
u(k) = U0,TGKx(k). (12)

In our problem, the controller π(·) is a highly nonlinear
neural network. This makes it challenging to design a stable
neural feedback loop directly from data. We will demonstrate
how to combine this method with the NFL stability condition
in the sequel.

D. Problem Formulation

Our problems of interest are:
Problem 1: Consider an unknown plant G as in (1).

Design a feed-forward fully connected NN controller π :
Rnx → Rnπ that optimises a given loss function and
stabilizes the plant around the origin.

Problem 2: Consider an unknown plant G as in (1) and
a given NN controller π : Rnx → Rnπ . Minimally tune the
NN to guarantee stability of the NFL around the origin.

Throughout this paper, tanh is used as the activation func-
tion φ(·) of the NN π(·). Our result could be easily extended
to other types of activation functions, using different sectors.

III. DATA-DRIVEN STABILITY ANALYSIS FOR NFLS

In this section we provide data-driven stability analysis
conditions for NFLs. To obtain convex conditions, a loop
transformation is used to normalize the sector constraints. A
similar idea has been proposed in [13].

A. Loop Transformation

With a given controller π, we can calculate the bounds ν, ν̄
for every layer’s output based on a given state constraint set.
If the plant G is also given, then the the quantities of AG,
BG, and N are known, the stability condition (7) is convex
in matrices P and Λ. Stability can then be verified by solving
a semi-definite program. However, for the design problem 1,
G is unknown and π is to be designed, which means that AG,
BG and N are all decision variables in the problem (7). The
condition is then nonconvex. To deal with the nonlinearity,
we first utilize a loop transformation to normalize the sector
constraints. [

π(k)
νϕ(k)

]
= Ñ

[
x(k)
zϕ(k)

]
(13a)

zϕ(k) = ϕ̃(νϕ(k)). (13b)

The new internal state zϕ(k) is related to ωϕ(k), as follows

ωϕ(k) =
Bϕ −Aϕ

2
zϕ(k) +

Aϕ +Bϕ

2
νϕ(k). (14)

Through the transformation, the nonlinearity ϕ̃ is normalized,
namely, lies in sector [−1nϕ×1, 1nϕ×1]. Using Lemma 1, we
have [

νϕ
zϕ

]⊤ [
Λ 0
0 −Λ

] [
νϕ
zϕ

]
≥ 0, ∀νϕ ∈ [ν, ν]. (15)

The transformed matrix Ñ can be derived by

Ñ =

[
Nπx + C2(I − C4)

−1Nνx C1 + C2(I − C4)
−1C3

(I − C4)
−1Nνx (I − C4)

−1C3

]
:=

[
Ñπx Ñπz

Ñνx Ñνz

]
(16)

where

C1 = Nπω
Bϕ −Aϕ

2
, C2 = Nπω

Aϕ +Bϕ

2
,

C3 = Nνω
Bϕ −Aϕ

2
, C4 = Nνω

Aϕ +Bϕ

2
.

(17)

Using the new system representation, the stability condition
(7a) and (7c) can be reformulated as:

R̃⊤
V

[
A⊤

GPAG − P A⊤
GPBG

B⊤
GPAG B⊤

GPBG

]
R̃V

+ R̃⊤
ϕ

[
Λ 0
0 −Λ

]
R̃ϕ ≺ 0,

(18a)

where

R̃V :=

[
Inx

0

Ñπx Ñπz

]
, R̃ϕ :=

[
Ñνx Ñνz

0 Inϕ

]
. (18b)

B. Data-Driven Representation of Stability Condition for
NFLs

The following theorem gives a sufficient condition for an
NN controller π to stabilize an NFL with an unknown plant
G.

Theorem 2: Consider an unknown LTI plant G (1) with
an equilibrium point x∗ = 0nx and a state constraint set



X ⊆ {x : −x̄ ≤ Hx ≤ x̄}. Let rank condition (9) hold.
Find a matrix Q1 ∈ Snx

++, a diagonal matrix Q2 ∈ Snϕ

++,
matrices L1 ∈ RT×nx , L2 ∈ RT×nϕ , L3 ∈ Rnϕ×nx and
L4 ∈ Rnϕ×nϕ , such that (7b) is satisfied, and

Q1 0 LT
1 X

T
1,T LT

3

0 Q2 LT
2 X

T
1,T LT

4

X1,TL1 X1,TL2 Q1 0
L3 L4 0 Q2

 ≻ 0. (19a)

If we can design an NN to satisfy:

ÑQ = Ū0,TL, (19b)[
I 0

]
Q = X̄0,TL, (19c)

where Q :=

[
Q1 0
0 Q2

]
, L :=

[
L1 L2

L3 L4

]
, Ū0,T :=[

U0,T 0
0 I

]
and X̄0,T :=

[
X0,T 0

]
, then the designed NN

controller can make the LTI system locally asymptotically
stable around x∗. Besides, the set E(P ) is an ROA inner-
approximation for the system.

Proof: By substituting (18b) into (18a) and then uti-
lizing Schur complement, we can obtain stability conditions
as:

P 0 A⊤
G + Ñ⊤

πxB
⊤
G Ñ⊤

νx

0 Λ Ñ⊤
πzB

⊤
G Ñ⊤

νz

AG +BGÑπx BGÑπz P−1 0

Ñνx Ñνz 0 Λ−1

 ≻ 0.

(20)
Here AG, BG are unknown parameters which we can use
data-driven method to replace. Based on condition (9), we
can find a T × nx matrix G1 and a T × nϕ matrix G2 that
satisfy following condition:[

Ñπx

I

]
=

[
U0,T

X0,T

]
G1,

[
Ñπz

0

]
=

[
U0,T

X0,T

]
G2. (21)

With G1 and G2, we can formulate AG + BGÑπx and
BGÑπz as:

AG +BGÑπx =
[
BG AG

] [Ñπx

I

]
=

[
BG AG

] [U0,T

X0,T

]
G1 = X1,TG1,

(22a)

BGÑπz =
[
BG AG

] [Ñπz

0

]
= X1,TG2. (22b)

Now we can replace the terms with system parameters with
these two terms with data. Besides, we also want to eliminate
the inverse terms of P and Λ as they introduce nonconvexity.
Multiplying condition (20) by diag(P−1,Λ−1, Inx

, Inϕ
) on

both left and right, we obtain:
P−1 0 P−1G⊤

1 X
⊤
1 P−1Ñ⊤

νx

0 Λ−1 Λ−1G⊤
2 X

⊤
1 Λ−1Ñ⊤

νz

X1G1P
−1 X1G2Λ

−1 P−1 0

ÑνxP
−1 ÑνzΛ

−1 0 Λ−1

 ≻ 0.

(23)

Let Q1 = P−1, Q2 = Λ−1, L1 = G1Q1, L2 = G2Q2,
L3 = ÑνxQ1 and L4 = ÑνzQ2. Then stability condition
(23) can be expressed as (19a) and condition (21) from data-
driven method can be reformulated to (19b) and (19c).

Constraint (19a) is a linear matrix inequality and thus
convex. The nonconvexity comes from equality constraint
(19b). We will propose an iterative approach to efficiently
deal with the nonconvexity in the next section.

IV. ITERATIVE ALGORITHM FOR STABLE NFL DESIGN

In this section we propose two iterative algorithms to
solve Problem 1, using the data-driven stability conditions
derived in Theorem 2. We incorporate the data-driven stabil-
ity conditions (19) as hard constraints into a neural network
training framework with a certain loss function. For the first
algorithm we make the stability conditions strict while we
lift the stability constraints (19a) into the objective function
for the second algorithm. Based on these algorithms, a fine-
tuning algorithm is proposed for solving Problem 2.

A. Iterative NFL Design Algorithm with Hard Stability Con-
straints

The stable NFL can be designed by solving the following
optimisation problem.

min
N,Q,L

η1L(N)− η2 log det(Q1) (24a)

s.t. Q1 ∈ Snx
++, Q2 ∈ Snϕ

++, (24b)
(19a), (19c), (24c)
f(N)Q = Ū0,TL, (24d)

where f(N) = Ñ represents the loop transformation. For
the objective function, the first term is to minimize the loss
function L(N) for NN prediction. It should be noted that we
slightly abuse notation here: the prediction loss function L(·)
is actually a function of NN weights W instead of matrix N ,
which is constructed from W using a specific structure. The
second term is to maximize the ROA of the system. Also,
η1 and η2 are trade-off weights. Unlike traditional training
process, we also add constraints for stability guarantee. These
constraints are derived from Theorem 2.

To address the nonconvexity of optimisation problem (24),
we propose two algorithms to solve the problem iteratively.
Following the framework proposed by [13], we dualize the
nonconvex loop transformation equality constraints (24d)
into the objective function using the augmented Lagrangian
method, while keeping (19a) as a hard constraint for stability
guarantees in iterations. The augmented loss function is:

L1
a(N,Q,L, Y ) = η1L(N)− η2 log det(Q1)+

tr(Y T (f(N)Q− Ū0,TL) +
ρ

2
||f(N)Q− Ū0,TL||2F

where Y ∈ R(nu+nϕ)×(nx+nϕ) is the Lagrange multiplier,
and ρ is a regularization parameter. The algorithm is shown
in Algorithm 1.

In this algorithm, k is used to denote the number of
iteration and σ is used as a convergence criterion. In step
4, we use an imitation learning framework to train the NN



Algorithm 1 Iterative design algorithm with hard constraints
1: procedure LINEARNFL1(U0,T , X0,T , X1,T )
2: k = 0, initialization
3: while ||f(Nk)Qk − Ū0,TL

k||2F > σ do
4: Nk+1 = arg minNL1

a(N,Qk, Lk, Y k)
5: (Q,L)k+1 = arg minQ,LL1

a(N
k+1, Q, L, Y k)

s.t. (19a),(19c)
6: Y k+1 = Y k + ρ(f(Nk+1)Qk+1 − Ū0,TL

k+1)
7: k = k + 1
8: end while
9: return the optimal result (Nk,∗, Qk,∗, Lk,∗, Y k,∗)

10: end procedure

controller and update N . Then, we guarantee the stability of
system by solving an SDP in step 5.

B. Iterative NFL Design Algorithm with Soft Stability Con-
straints

Algorithm 1 provides stability guarantees for the NN
controller in iterations. However, for systems that hard to be
controlled, guaranteeing stability can be challenging in iter-
ations. Consequently, the SDP on Step 5 may be infeasible.
To address this issue, we propose an Alternating Directional
Method of Multipliers (ADMM) based training algorithm to
soften the Linear Matrix Inequality (LMI) constraint (19a).
This algorithm guarantees the feasibility in iterations by
lifting the strict LMI constraint into the objective function.
The new augmented objective function can be formulated as
follows.

L2
a(N,Q,L, Y ) = η1L(N)− η2 log det(Q1) + 1LMI(Q,L)

tr(Y T (f(N)Q− Ū0,TL) +
ρ

2
||f(N)Q− Ū0,TL||2F (25)

where 1LMI is an indicator function:

1LMI(Q,L) =

{
0 if (19a) is satisfied
∞ else

(26)

To make the problem tractable for existing solvers, we
use the generalized logarithm barrier function log det(·) [21]
to approximate the indicator function above. The iteration
process is almost the same as Algorithm 1, except with differ-
ent augmented loss function L2

a(N,Q,L, Y ) and without an
LMI constraint in step 5. Now the stability checking problem
becomes a Quadratic Program (QP) with equality constraint.
We will not present this algorithm in detail here due to space
limitations.

C. Fine-Tuning Framework for Existing Unstable Neural
Network Controller

Another problem of interest is tuning an existing NN
controller for stability. Due to the lack of stability guarantees
for the traditional NN training process, the NFL may not
be stable or not easy to verify that it is stable. Herein,
we propose a verification and adaptation framework for an
existing NN controller. First of all, the NFL is verified by
the data-driven stability verification algorithm proposed by

our previous work [20]. If the verification SDP is feasible
(NN is stable), we conclude that the NFL is already stable.
If infeasibility is detected, the NN controller will be fine-
tuned, i.e. minimally adapted, to guarantee local stability.
The objective function for fine-tuning is shown as:

L3
a(Nf , Q, L, Y ) = η3||Nf ||2F − η2 log det(Q1)+

tr(Y T (f(N̄)Q− Ū0,TL) +
ρ

2
||f(N̄)Q− Ū0,TL||2F , (27)

where N̄ = N+Nf represents the weights and biases of the
obtained NN controller after fine-tuning, Nf then represents
the discrepancy between the given NN and the tuned NN.
This equation also guarantees that the original structure of
the NN will not be changed after fine-tuning. The first term
in the objective function reflects discrepancy on Euclidean
space, the other terms are the same as (25). The fine-tuning
algorithm is shown as Algorithm 2.

Algorithm 2 Fine-tuning algorithm for an existing NN
controller

1: procedure FINE-TUNING(N,U0,T , X0,T , X1,T )
2: Data-driven stability verification [20]
3: if verification SDP is feasible then
4: return N̄ = N,Nf = 0
5: else
6: k = 0, initialization
7: while ||f(N̄k)Qk − Ū0,TL

k||2F > σ do
8: i = 0:
9: while ||Nf ||2F > σ′ do

10: N̄k
i+1 =

N̄k
i + arg minNf

L3
a(Nf , Q

k, Lk, Y k)

11: Update f(N̄k
i+1) by (16) and (17)

12: i = i+ 1
13: end while
14: N̄k+1 = N̄k

i

15: (Q,L)k+1 =
arg minQ,LL3

a(N̄
k+1, Q, L, Y k)

s.t. (19a),(19c)
16: Y k+1 = Y k+ρ(f(N̄k+1)Qk+1−Ū0,TL

k+1)
17: k = k + 1
18: end while
19: return the result (N̄k,∗, Qk,∗, Lk,∗, Y k,∗)
20: end if
21: end procedure

Algorithm 1 uses a gradient descent method in an imitation
learning framework to update N . For Algorithm 2, there is
no need to train the NN. However, the objective function to
be solved is nonconvex in N̄ . So we propose an iterative
algorithm as shown in step 9 to step 13 to solve this
nonconvex problem.

In the (i + 1)th iteration, to eliminate the nonconvexity
in the optimisation problem of step 10, we calculate the
stacked sector bounds Aϕ, Bϕ and C1, C2, C3 and C4 based
on the value of N̄k

i from last iteration. This approximation is
based on the assumption that the fine-tuning amount {Nf}ki
is small. Then f(N̄k

i+1) becomes a linear term on variable



{Nf}ki+1, and the optimisation problem becomes a QP. After
the first iterative algorithm converges, we update Q,L in the
same way as that of Algorithm 1.

V. NUMERICAL EXAMPLES

A. Vehicle Controller Design

To demonstrate the effectiveness of our method, we apply
Algorithm 1 to the same numerical case as in [13, Section
VI], and compare the performance of our algorithm with
the model-based NFL design approach by [13]. The vehicle
lateral dynamics have four states, x = [e, ė, eθ, ėθ]

⊤, where e
and eθ represents the perpendicular distance to the lane edge,
and the angle between the tangent to the straight section of
the road and the projection of the longitudinal axis of vehicle,
respectively. Also, u is the steering angle of the front wheel,
a one-dimensional control input.

For the parameters, we use the constraint set X =
[−2, 2] × [−5, 5] × [−1, 1] × [−5, 5]. The NN controller
for this system has two layers and each with 10 neurons.
The expert demonstration data for imitation learning training
comes from an MPC law. Other parameters can be found in
[22]. To compare the proposed data-driven control (DDC)
method with traditional model-based control (MBC) method,
we use exactly the same data set for NN training. We choose
ρ = 1000, σ = 0.005 and the maximum iteration number as
20 for the proposed algorithm.

To demonstrate the effectiveness of the DDC method, we
carry out several simulations with different weight combina-
tions. After 10 experiments, the average prediction loss of
NN trained with (η1 = 100, η2 = 100) is 0.128 while that of
NN trained with (η1 = 1000, η2 = 100) is 0.071. However,
the ROA of the former is significantly larger than that of the
latter. We then consider comparing the DDC approach with
the MBC approach, choosing (η1 = 100, η2 = 100). The
average prediction losses for our proposed DDC approach
is 0.128, and 0.150 for the MBC approach. The region of
attractions of both methods are shown in Figure 1.
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Fig. 1. ROAs of NNs trained by DDC and MBC

Under the same settings, the NN trained by our proposed
DDC approach shows superior performance in terms of both
prediction accuracy and the size of the ROA compared to that
trained by MBC approach. One intuitive explanation is that
the MBC approach relies on one specific identified model for
NFL design, while the DDC approach finds the “best” model
for NFL design. Therefore, an end-to-end direct method may

outperform indirect methods [16]. We will leave rigorous
analysis to our future work.

B. Existing NN Controller Fine-Tuning

We now consider the same task but in a different scenario
to verify the effectiveness of our fine-tuning algorithm. In this
case, we assume that there is already a trained controller for
the vehicle. As there is no stability guarantee in a traditional
NN training algorithm, we want to verify its stability and
this is not possible, modify the NN so that we can verify
that the new NFL is stable. As we have no access to the
training data and hope its structure and other performances
remain unchanged, the Algorithm 2 is applied to fine-tune
it.

After fine-tuning the NN controller, we simulate the state
variation from the same random initial point under input
signals of two controllers. The sampling time is 0.02 s and
the result can be shown as following figure.
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Fig. 2. Simulation under the control of existing NN and fine-tuned NN

Here we use ||x||2 as the value of vertical axis to reflect
the variation of the state. Obviously, the NN controller before
fine-tuning fails to stabilize the system in a long period, and it
is verified as unstable by the data-driven stability verification
method [20]. After 5 iterations, the proposed algorithm
converges and the fine-tuned controller is guaranteed to result
in a stable NFL. The fine-tuning process is more efficient
compared to training a new NN controller in terms of the
running time. The total time for the former is 0.692 s and
the average time for NN training is more than 30 mins. All
simulations are performed on a laptop with Apple M2 chip.
The MOSEK solver is used to solve the SDP and QP in our
problem.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes a data-driven method to design or
fine-tune NN controllers for unknown linear systems. The
design problem can be formulated as an optimisation prob-
lem and then solved by our proposed iterative algorithms
using a data-driven approach. Compared to traditional NN
controller design methods, one algorithm solves an SDP
that includes stability constraints in each iteration. In this
way we obtain a controller with stability guarantees. The
second algorithm we propose can provide stability guarantee
for existing NN controllers by fine-tuning its weights and
biases slightly without changing its structure. Compared to



retraining a controller for the system, this method signifi-
cantly improves efficiency. We use a vehicle lateral control
example to demonstrate the proposed methods and compare
it with model-based approaches. The results demonstrate that
even without identifying the system directly, we can design
NN controllers for unknown systems based on data. In our
example, the controller designed directly even shows better
performance in terms of accuracy and stability (in terms of
region of attraction) compared to that designed indirectly. In
the future we will extend our method to nonlinear Neural
Feedback Loops using Sum of Squares methods.
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