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Abstract

In a distributed storage system serving hot data, the data recovery
performance becomes important, captured e.g. by the service rate. We
give partial evidence for it being hardest to serve a sequence of equal user
requests (as in PIR coding regime) both for concrete and random user
requests and server contents.

We prove that a constant request sequence is locally hardest to serve:
If enough copies of each vector are stored in servers, then if a request
sequence with all requests equal can be served then we can still serve it if
a few requests are changed.

For random iid server contents, with number of data symbols constant
(for simplicity) and the number of servers growing, we show that the
maximum number of user requests we can serve divided by the number
of servers we need approaches a limit almost surely. For uniform server
contents, we show this limit is 1/2, both for sequences of copies of a
fixed request and of any requests, so it is at least as hard to serve equal
requests as any requests. For iid requests independent from the uniform
server contents the limit is at least 1/2 and equal to 1/2 if requests are
all equal to a fixed request almost surely, confirming the same.

As a building block, we deduce from a 1952 result of Marshall Hall,
Jr. on abelian groups, that any collection of half as many requests as
coded symbols in the doubled binary simplex code can be served by this
code. This implies the fractional version of the Functional Batch Code
Conjecture that allows half-servers.

1 Introduction

A linear code C ≤ F
n
q is determined by its linear encoder G : Fk

q → F
n
q which

is a full-rank k-by-n matrix over the finite field Fq, known as the generator
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matrix, linearly mapping a row vector of k data symbols of Fq to a row vector
of n coded symbols of Fq by multiplication. Data recovery codes, such as batch
codes [12] and PIR codes [6], see [16] for a survey, in their classical as well
as functional [18] or asynchronous [15] versions, are exactly determined by a
generator matrix up to a permutation of its columns. Thus these codes should
in fact be called encoders. Batch codes were introduced for load-balancing
in a distributed storage system [12] and PIR codes, a generalization of batch
codes (as PIR codes have weaker requirements), were introduced as a coding
layer for multi-server information-theoretic private information retrieval (PIR)
to reduce the storage overhead [6]. Here we only consider so-called “primitive
linear multiset batch codes”, where in particular “linear” implies that we use
coding and not only replication.

For the usufulness of G ∈ Matk×n(Fq), i.e. a k-by-n matrix G over the
finite field Fq, as a code (encoder) optimized for recovery of data, different
parameters have been studied. A general parameter is its service rate region [1]
[2] that we will not discuss here in full generality, but which we can specify to
the “t-parameter”: the biggest t such that any multiset/sequence of t (linear
combinations of) data symbols in Fq (user requests) can be recovered from
pairwise disjoint sets of coded symbols in Fq (servers). What user requests we
allow depends on the setup: whether the code is (functional) batch or PIR. For
an asynchronous batch code user requests come in a stream and the system
should serve a new one when any current (we do not know which) request has
been served.

Serving a data symbol (user request) from a set a coded symbols (servers)
under a linear model exactly corresponds to representing the standard basis
vector (i.e. unit vector) corresponding to the data symbol as a linear combination
of the columns of G corresponding to the coded symbols. We will thus also talk
about serving a vector from a set of columns of G. Therefore the properties of
our codes are exactly determined by the multiset of columns of G.

The matrix G is defined to be a t-(functional) batch code [18] if we are able
to serve any multiset of t standard basis vectors (any vectors) from pairwise
disjoint column sets of G. We will denote the largest t such that G is a t-
(functional) batch code as tb(G) (tfb(G)). For G to be a t-(functional) PIR
code [18] we must be able to serve t copies of the same standard basis vector
(the same vector), for any standard basis vector (any vector), and we denote
such largest t as tP (G) (tfP (G)). The functional case corresponds to allowing
linear combinations of data symbols as user requests. We say the matrix is
t-PIR for r if we are able to serve t copies of request r from it and write trP (G)
for the largest such t. Thus tfP (G) = minr6=0 trP (G).

We will call the t∗(G) the t-parameter of G as a code where ∗ is one of

b, P, fb, fP, rP . We also write t≤w
∗ (G) if each column set in the service, i.e. each

recovery set is required to have size ≤ w. The t-parameter does not depend on
the permutation of the columns/coded symbols. Note the inequalities tfb(G) ≤
tb(G) ≤ tP (G) and tfb(G) ≤ tfP (G) ≤ tP (G), recall tfP (G) = minr6=0 trP (G).

All these remain true if we replace t∗(G) by t≤w
∗ (G) for a fixed w.
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In Sect. 2 we develop the main building blocks. In Sect. 3 we prove if a
constant request sequence can be served we can still serve it if a few requests
are changed. Next we let G ∈ Matk×n(F2) be uniformly random throughout. In
Sect. 4 we prove concentration bounds for the t-parameters. In Sect. 5 we show
we can asymptotically serve γn requests from n columns where γ = 1

2 , both if
the requests are arbitrary or all equal. In Sect. 6 we show if we additionally let
requests be random we can serve the fewest requests if they are equal to a fixed
request almost surely, and note constant γ exists in more general settings. In
Sect. 7 we conclude the paper.

2 Building blocks

If G ∈ Matk×n(Fq) were uniformly random, from the law of large numbers, if
n grows much faster than k we expect there to be around n/qk copies of each
vector as a column of G. This motivates proving the following proposition that
we will deduce from the result in [8]. For simplicity, from here on we assume
q = 2, but many results will in fact generalize.

Proposition 2.1 Let m be the largest integer such that G contains as columns
at least 2m copies of each vector of Fk

2. Then G is a m2k-functional batch code,

where moreover all recovery sets have size at most 2, i.e., t≤2
fb (G) ≥ m2k.

This means that we can serve any sequence/multiset of m2k user requests
(vectors from F

k
2\{0}) if every e ∈ F

k
2 appears as a column of G at least 2m

times, where moreover each recovery set will have size at most 2.
Proof. For general m, apply the m = 1 case m times, with column vectors as
equally as possible and requests arbitrarily distributed into m (almost) equal
parts that are matched up.

Now let m = 1. Let the sequence of user requests be R = (r1, r2 . . . , r2k) ∈

(Fk
2)

2k . We will let s1 = −
∑2k

i=2 ri in the abelian group F
k
2 and si = ri for

i > 1. By the result in [8], we can find two permutations (a′
i)

2k

i=1 and (b′
i)

2k

i=1 of
the abelian group F

k
2 , such that si = a

′
i − b

′
i for each i. Let ai = a

′
i + c and

bi = b
′
i + c for a fixed c such that now a1 = r1, also si = ai − bi for each i,

and also (ai) and (bi) are permutations of Fk
2 . Finally, we can serve request r1

from column set {a1} and requests ri for i > 1 from column sets {ai,bi}, using
two copies of each vector of Fk

2\{r1 − s1} and one copy of r1 − s1 in total from
the columns of G.

Remark 2.2 1. The m = 1 case of Proposition 2.1 was proved in [17]
Sect. V by a technique similar to the more general [8] by Hall, Jr. from
1952. We point out [8] relatively easily implies the m = 1 case of the
Proposition.

2. In [8] an explicit Θ((2k)2)-time algorithm produces the permutations (ai), (bi)
by adding a new matching edge {aj ,bj} and rewiring the previous ones at
step j ∈ [2k]. A similar algorithm in the special case was employed in [17].
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3. The Proposition implies the fractional version of the Functional Batch
Code Conjecture [3, 9, 10, 13, 17] where we are allowed to split each col-
umn/server into ‘two halves’. The full Functional Batch Code Conjecture
is open and seems to be hard to prove, and it is exactly the statement of
the Proposition for m = 1

2 .

4. It does not necessarily provide the most efficient way to serve the requests.
See Proposition 2.3 for an upper bound on the number of requests that can
be served.

5. To serve request 0 we need no columns, and similarly, column 0 does not
help to serve any request. Vector 0 was not treated differently here for
ease of analysis.

Let NG(e) be the number of occurrences of e as a column of G ∈ Matk×n(F2)
and let NR(e) be the number of occurrences of e ∈ F

k
2\{0} in user request

sequence R = (r1, . . . , rv) ∈ (Fk
2\{0})

v. Let us denote |G| =
∑

e∈F
k

2

NG(e) = n

and |R| =
∑

e∈F
k

2

NR(e) = v and let |G ∩ R| =
∑

e∈F
k

2

min{NG(e), NR(e)} for

sizes as multisets.

Proposition 2.3 If we can serve R ∈ (Fk
2\{0})

v from G ∈ Matk×n(F2), so
|G| = n and |R| = v, then

2|R| ≤ |G| −NG(0) + |G ∩R|. (1)

Proof. If 2|R| > |G| − NG(0) + |G ∩ R| or equivalently 2(|R| − |G ∩ R|) >
|G| −NG(0)− |G∩R| we can not serve R from G since for each request outside
G ∩R we need at least two nonzero columns of G to serve it.

3 PIR is hardest among almost-PIR: local hard-

ness

We have the intuition that many equal requests should be harder to serve than
as many different requests. We can ask the following question.

Question 3.1 Is it true that tfP (G) = tfb(G) for G ∈ Matk×n(F2)? Perhaps
even trP (G) = tfb(G) if NG(e) is minimized over e ∈ F

k
2\{0} by r?

Proposition 3.2 Answer to Question 3.1 is ‘Yes’ if k = 2.

Proof. We can without loss of generality, i.e., up to a symmetry which is
multiplying each column by a fixed 2-by-2 invertible matrix over F2, assume
NG((01)) ≤ NG((10)) ≤ NG((11)). Since for k = 2 any inclusion-wise min-
imal recovery set has size at most 2, the following Lemma 3.4 tells us that
t(01)P (G) = t(10)P (G) = NG((01)) +NG((10)) ≤ t(11)P = NG((01)) +NG((11)),
so tfP (G) = NG((01)) + NG((10)). To show tfb(G) = tfP (G) = t(01)P (G),
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i.e. that NG((01))+NG((10)) any requests can be served, we will greedily serve
|G ∩ R| requests from recovery sets of size 1 and the rest from recovery sets of
size 2. Enough recovery sets of size 2 remain for that: if ∆(01) := NR((01)) −
NG((01)) > 0 then min{NG((10)) − NR((10)) , NG((11)) − NR((11))} ≥ ∆(01)

and analogous relations hold for ∆(10) and ∆(11).

Example 3.3 Answer to Question 3.1 is ‘No’ already for k = 3. Consider the

matrix G =
(

1 1 1 1
0 0 1 1
0 1 0 1

)

. Note that the sum of columns of G is 0 and rank(G) = 3,

so tfP (G) = 2, as two copies of any r ∈ F
3
2\{0} can be served from some subset

of columns and its complement respectively. But tfb(G) ≤ tb(G) = 1 as request
sequence ((001), (010)) cannot be served.

The previous negative result shows the PIR coding regime is not at least as
hard as the batch coding regime for some concrete matrices. In what follows
we prove the positive results that it is hardest locally in the non-random case
as well as almost surely in natural random models.

We now prove the lemmas towards our local hardness result.

Lemma 3.4 The distinct recovery sets (of nonzero columns) for a fixed r ∈

F
k
2\{0} of size at most 2 are pairwise disjoint. In particular, the number t≤2

rP (G)
of pairwise disjoint such recovery sets for G ∈ Matk×n(F2) is their number which
is

t≤2
rP (G) = NG(r) +

1

2

∑

e∈F
k

2
\{0,r}

min{NG(e), NG(r− e)} (2)

where the last sum counts each recovery set of size 2 twice.

Proof. If r = a + b = a
′ + b

′ then {a,b} = {a′,b′} or {a,b} ∩ {a′,b′} = ∅ as
a− a

′ = b
′ − b and a− b

′ = a
′ − b. So pairs {a,b} with r = a+ b partition

F
k
2 . The recovery set of size one is {r} which can be viewed as {r,0} and vice

versa. The assertion follows.

Lemma 3.5 The maximum number of pairwise disjoint recovery sets for a fixed
r ∈ F

k
2\{0} is not reduced by choosing all recovery sets of size at most 2. That

is,
trP (G) = t≤2

rP (G) + trP (G
′)

where NG′(r) = 0 and NG′(e) = NG(e) − min{NG(e), NG(r − e)} for all e ∈
F
k
2\{0, r}, see also (2). Here G′ is what remains of G after using the columns

in all the recovery sets of size at most 2.
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Proof. Consider a collection of maximum possible size of pairwise disjoint recov-
ery sets for r, where the total size of all recovery sets used is minimum possible
among such collections. Then if A ⊆ B and A and B are both recovery sets for
r we always use A instead of B, i.e. we only use minimal recovery sets. So we
use all recovery sets of 1. There is no recovery set A of size 2 which is not used
where one of its columns is available and the other is used in a recovery set B
of size at least 3, as we could have used A instead of B and reduced the total
size of used recovery sets.

Thus a recovery set of size 2 is not used only in the case where each of its
columns is used in a different recovery set, which have to have size at least 3
by Lemma 3.4. Assume A and B are disjoint recovery sets of size at least 3
for r, and C ⊆ A ∪ B is a recovery set for r with |C| = 2 and |A ∩ C| = 1 =
|B ∩C|. Replace A and B by C and (A ∪B)\C which is a recovery set for r as
∑

i∈(A∪B)\C ci =
∑

i∈A ci +
∑

i∈B ci −
∑

i∈C ci = r+ r− r = r.
By applying this step repeatedly the total number of used recovery sets and

their total size do not change, and the number of used recovery sets of size at
most 2 goes up. We will eventually have used all recovery sets of size at most 2.

Lemma 3.6 Let G ∈ Matk×n(F2) with NG(e) = 2m for all e ∈ F
k
2\{0}. Then

there is only one way (with equal columns indistinguishable) to serve m2k copies
of a fixed r ∈ F

k
2\{0}, and this uses all the nonzero columns of G.

Proof. Use 2m copies of each of the recovery sets {r} and {e, r − e} where
e ∈ F

k
2\{r,0}, i.e., m2k recovery sets in total. Since each nonzero column of

G is used, and used in the unique possible recovery set for r of minimum size
containing it, we have trP (G) = m2k, and this service is the unique service with
m2k recovery sets.

Next we prove our main local hardness result partially confirming our intu-
ition.

Theorem 3.7 (“PIR is locally hardest”) For an integer m and vector r ∈
F
k
2\{0} let Rm

r
⊆ (Fk

2\{0})
∗ be the family of the request sequences R with at

most m2k requests different from r, and let Gm be the family of such matrices
G ∈ Matk×n(F2) that contain NG(e) ≥ 2m copies of each e ∈ F

k
2\{0} as a

column. Then G ∈ Gm can serve any R ∈ Rm
r

with |R| = trP (G), the maximal
length of a request sequence (r, . . . , r) that can be served by G.

This means that it is at least as hard to serve v copies of request r by a
matrix G ∈ Gm as it is to serve by G any R ∈ Rm

r
consisting of v requests.

Proof. Let H be the matrix obtained by removing 2m columns e from G for all
e ∈ F

k
2 \ {0}, then NH(e) = NG(e)− 2m for all e 6= 0.

Now let G′ and H ′ be the matrices obtained from G and H by removing
columns as in Lemma 3.5. Then NG′(r) = NH′(r) = 0, NG′(e) = NG(e) −
min{NG(e), NG(r−e)} for e 6= 0, r, and NH′(e) = NH(e)−min{NH(e), NH(r−
e)} = NG′(e) for e 6= 0, r. So we conclude that G′ = H ′.

Now using (2), it is easily seen that t≤2
rP (H) = t≤2

rP (G) − m2k and by the
above, we have that trP (G

′) = trP (H
′).
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Then from Lemma 3.5, we conclude that trP (H) = trP (G) −m2k.
Now let R be a request sequence from Rm

r
of length trP (G). Then G can

first serve m2k requests from R including the requests different from r, using
Proposition 2.1, and then use the remaining columns H to serve the remaining
trP (G)−m2k requests r, so G can serve R.

4 Random G: bounded differences

In what follows, we shall consider G ∈ Matk×n(F2) random with entries being
i.i.d. Bernoulli with probability 1

2 . Thus the columns of G are the first n vectors
among i.i.d. random variables (abbreviated to r.v.’s) C1,C2, . . . with uniform
distribution over Fk

2 . We shall refer to theses r.v.’s as the column process. Then
any t-parameter t∗(G) is a function of random columns, hence a r.v.. We shall
denote these r.v.’s by T ∗

n = t∗(C1, . . . ,Cn). It is rather easy to see that all these
r.v.’s satisfy the bounded differences (BD) property: changing one column of G
changes the value of t∗(G) by at most 1. To see that take ∗ = rP and recall that
trP (G) is the maximum number of copies of r the matrix G can serve. Since
each column belongs to at most one recovery set, by changing it, the maximum
number of copies decreases or increases by at most one. By a similar argument
the BD property can be checked for tfP (G) = minr trP (G) and tfb(G) and in

fact for any of our t∗(G) and t≤w
∗ (G). Since the columns are independent, by

McDiarmid’s inequality (see, e.g. [4]), for any c > 0 we have

P (T ∗
n − ET ∗

n ≥ c) ≤ exp

(

−
2c2

n

)

.

McDiarmid’s inequality allows in particular to obtain non-asymptotic confidence

intervals, e.g. with probability ≥ 1−α we have T ∗
n ≥ ET ∗

n −
√

n
2 ln 1

α . The use of

this lower bound can be complicated in practice as ET ∗
n is generally not known.

Then one can use more tractable suboptimal bounds such as T ∗,≤2
n ≤ T ∗

n which
might have analytically known expectations, or estimate the expectation by
simulations. For the upper bound, we use the superadditivity property: for any
∗ = b, P, fb, fP, rP , any 1 ≤ n′ < n and for any set of column vectors, we have

t∗(C1, . . . ,Cn) ≥ t∗(C1, . . . ,Cn′) + t∗(Cn′+1, . . . ,Cn).

The same holds for expectations, so by Fekete’s Lemma, ET ∗
n/n ր supn ET ∗

n/n.
In the next section, we shall show that the limit or supremum is 1/2, meaning
that ET ∗

n ≤ n/2. Hence in the upper bound, ET ∗
n can be replaced by n/2

and the confidence interval reads: with probability ≥ 1 − α we have T ∗
n ≤

n
2 +

√

n
2 ln 1

α . Another use of McDiarmid’s inequality is to obtain upper bounds

for the absolute central moments:

E |T ∗
n − ET ∗

n |
p ≤ p(n/2)p/2Γ

(p

2

)

for any p > 0. For its derivation, see, e.g. [7]. Setting p = 2, we obtain
Var(T ∗

n) ≤ n.
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Remark 4.1 McDiarmid’s inequality and its consequences above only use the
BD property and that columns of G are independent. Hence the entries within
one column can be dependent and the columns need not be identically distributed.

5 Asymptotic service rate for uniform G is lowest

for constant request sequences

Recall that the r.v.’s T ∗
n satisfy the following inequalities: T fb,≤2

n ≤ T fb
n ≤

T fP
n ≤ T rP

n . We shall now show that when divided by n, all these sequences
converge almost surely (abbreviated to a.s., i.e. with probability 1) to 1/2. This
means that asymptotically serving any constant request sequence is as hard as
serving all sequences. It also implies that the total number of all recovery sets
with sizes more than two that we need is asymptotically negligible. In other
words, for large n we can serve any request with recovery sets consisting of one
or two elements, without losing much.

Theorem 5.1 For any fixed r ∈ F
k
2\{0} we have

lim
n

T fb,≤2
n

n
= lim

n

T rP
n

n
=

1

2

a.s..

Proof. Recall that NG(e) is the number of occurrences of e as a column of G.
From Hoeffdings’s inequality (see, e.g, [4]) we have

P

(

NG(e)

n
−

1

2k
≥ ε

)

≤ exp(−2nε2).

Let εn ց 0 slowly enough s.t.
∑

n exp(−2nε2n) < ∞. By the Borel-Cantelli
Lemma

P

(

NG(e)

n
≥

1

2k
− εn for all e ∈ F

k
2 eventually

)

= 1. (3)

We will abbreviate eventually to ev..
Denote mn := n

(

1/2k+1 − εn/2
)

.
Thus if NG(e)/n ≥ 1/2k − εn for all e ∈ F

k
2 then we have NG(e) ≥ 2mn for

all e ∈ F
k
2 and in that case we deduce from Proposition 2.1 that

T fb,≤2
n ≥ mn2

k = n

(

1

2
− 2k−1εn

)

,

thus
T fb,≤2
n

n
≥

1

2
− 2k−1εn.

From (3) we have P
(

T fb,≤2
n /n ≥ 1

2 − 2k−1εn ev.
)

= 1, thus

lim inf
n

T fb,≤2
n

n
≥

1

2
, a.s.

8



To prove the upper bound, fix r and observe that from (1), it follows that

2T rP
n ≤ n−NG(0) + min{NG(r), T

rP
n } ≤ n+NG(r)−NG(0),

because |G ∩ R| = min{NG(r), T
rP
n } when the request sequence R consists of

T rP
n copies of r. Hence

T rP
n

n
≤

1

2
+

NG(r)−NG(0)

2n
→

1

2
, a.s.,

Thus

lim sup
n

T rP
n

n
≤ 1/2.

Remark 5.2 The lower bound followed from Proposition 2.1 and the concentra-
tion of the frequencies of vectors as columns. For a slightly weaker upper bound
lim supn(T

P
n /n) ≤ 1

2 we could also use that tP (G) ≤ d(CG), where d(CG) is the
minimum distance of the code generated by G, i.e. row span of G (see [11,14]),
and that lim supn(d(CG)/n) ≤

1
2 , a.s.

6 Random user requests

We now generalize our model by letting requests be random as well. To be
more precise, let the requests be i.i.d. random vectors R1,R2, . . . taking values
in F

k
2\{0}, we will refer to them as the request process. The distribution Q of

Ri will be referred to as the request distribution. Given G ∈ Matk×n(F2), let
the r.v.

V (G) = max{V : {R1, . . . ,RV } can be served by G}.

Thus R1, . . . ,RV can be served but R1, . . . ,RV+1 can not be. As in the previous
sections, we consider G also random with i.i.d. uniformly distributed columns
and independent from the request process. Let Vn = V (G). Hence Vn is a func-
tion depending on n random columns and at most n random requests. Observe
that when Ri = r a.s., i.e. the request distribution Q is degenerate (Q = δr),
then Vn = T rP

n . Clearly for any Q we have Vn ≥ T fb
n , so by Theorem 5.1 we

have lim infn(Vn/n) ≥
1
2 .

We now argue that when Q is not degenerate, then limn(Vn/n), if it exists,
might be bigger than 1

2 . This confirms the fact that asymptotically, equal
requests are hardest to serve, i.e. allowing randomness in the request process
increases the asymptotic proportion of served requests. We illustrate it for the
case of the uniform Q, i.e. P(Ri = e) = 1/(2k − 1) for all e ∈ F

k
2\{0}. Recall

that 0 is not allowed as a request, so such a Q has maximum entropy.

Proposition 6.1 For Q uniform, Vn/n → 1− 2−k, a.s..

9



Proof. Let 0 < α < 1 − 2−k, hence α/(2k − 1) < 1/2k. For every e 6= 0 let
Nα

R(e) =
∑nα

i=1 Ie(Ri) be the number of occurrences of e among the first nα
requests. Clearly Nα

R(e)/(nα) → 1/(2k − 1) a.s. Take ε > 0 small enough such
that ε < 1/2k − α/(2k − 1), thus

α/(2k − 1) + αε/2 < 1/2k − ε/2. (4)

Clearly, as G is uniform and n → ∞, (“ev.” is “eventually”)

P
(

max
e6=0

Nα
R(e) <

( α

2k − 1
+

αε

2

)

n, ev.
)

= 1,

P
(

min
e6=0

NG(e) >
( 1

2k
−

ε

2

)

n, ev.
)

= 1.

Hence by (4)

P





∑

e6=0

min{NG(e), NR(e)} =
∑

e6=0

Nα
R(e) = αn, ev.



 = 1.

So P(Vn ≥ αn, ev.) = 1, i.e. lim infn(Vn/n) ≥ α, a.s. This holds for any
α < 1− 2−k implying that lim infn(Vn/n) ≥ 1− 2−k a.s.

For the upper bound, argue similarly: take α > 1 − 2−k = (2k − 1)/2k,
hence α/(2k − 1) > 1/2k. For any ε > 0 and any e 6= 0 we have Nα

R(e) >
(

α/(2k − 1)− ε
)

n, eventually. On the other hand NG(e) < (1/2k + ε)n, even-
tually. Hence for every n big enough not all αn requests can be served, so
that Vn < αn, eventually. Thus lim supn(Vn/n) ≤ α, a.s. This holds for any
α > 1− 2−k, so lim supn(Vn/n) ≤ 1− 2−k, a.s. This completes the proof.

For uniform G, we could also ask about the maximum number of requests
among the given requests that can be served by it. Given an i.i.d. request
process R1,R2, . . . , with Ri ∼ Q and a matrix G, let L(G;R1, . . . ,Rn) be the
maximum size of a subset I ⊆ [n] such that the request sequence {Ri | i ∈ I} can
be served by G. Clearly tfb(G) ≤ V (G) ≤ L(G) ≤ n. Recall that the random
G is just the first n elements of the i.i.d. uniform column process C1,C2, . . .,
so Ln := L(G) = L(C1, . . . ,Cn;R1, . . . ,Rn). Recall the column and request
processes are independent. We obviously have superadditivity: for any 1 ≤ n′ <
n we have

L(C1, . . . ,Cn;R1, . . . ,Rn) ≥ L(C1, . . . ,Cn′ ;R1, . . . ,Rn′)

+ L(Cn′+1, . . . ,Cn;Rn′+1, . . . ,Rn),

so by Kingman’s Subadditive Ergodic Theorem (see, e.g. [5]) there is a constant
γ ∈

[

1
2 , 1

]

such that Ln/n → γ, a.s. and E(Ln)/n → γ. It is not hard to see that
if Q is uniform, then γ = 1− 2−k, just like above. Indeed, γ ≥ 1− 2−k follows
from the fact that Ln ≥ Vn. To obtain the upper bound, take α > 1− 2−k and
note that a necessary condition for Ln ≥ αn is that n−NG(0) =

∑

e6=0
NG(e) ≥

αn. Thus NG(0)/n > (1 − α) implies Ln < αn. Since 1 − α < 2−k, it follows
that P(Ln/n < α) ≥ P

(

NG(0)/n > (1− α)
)

→ 1. Therefore γ ≤ α.
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It is also easy to see that Ln satisfies the BD property, unlike Vn. Since
Ln is a function of 2n independent random variables, (two-sided) McDiarmid’s
inequality in this case reads

P (|Ln − ELn| > c) ≤ 2 exp

(

−
c2

n

)

.

The limit γ in Kingman’s theorem depends on the request distribution Q and on
the column distribution P . In our paper P is uniform over F

k
2 , but it need not

necessarily be so. We have shown that when P is uniform, then γ(P,Q) ≥ 1/2
and when, in addition, Q = δr (degenerate), then γ(P,Q) = 1/2 (PIR is the
hardest). We have also shown that when P and Q are both uniform (Q over non-
zero vectors), then γ(P,Q) = 1−2−k. The other cases are open and determining
the function γ(P,Q) is a challenge for future research. Kingman’s theorem in
fact holds for any ergodic process (C1,R1), (C2,R2), . . . , i.e. the column and
request process need not necessarily be i.i.d. or mutually independent. So, for
example the limit γ also exists when the request process and the column process
are both (possibly dependent) stationary Markov chains.

7 Conclusion

We consider the question if equal user requests are hardest to serve for a dis-
tributed storage/service system, like a batch code or a PIR code. For concrete,
non-random k-by-n generator matrices G over F2 we prove that serving a re-
quest sequence r, . . . , r of v requests is at least as hard as serving any request
sequence in a Hamming ball around this sequence, that is, it is locally hardest.
The radius of the Hamming ball depends on the matrix G, concretely on the
minimum number of occurrences of e as a column of G, over all e 6= 0.

But there are concrete matrices G already with 3 rows which can serve two
copies of any request, but for which there is a pair of two different requests that
cannot be served by G.

For uniformly random generator matrices we prove serving r, . . . , r for any
fixed r 6= 0 is indeed hardest asymptotically, with k fixed and n → ∞, and
we determine that the asymptotic service rate, i.e. the ratio of the number of
requests that can be served to the number of servers needed, is γ = 1/2. Letting
moreover requests be i.i.d. and independent from G, the hardest case is again
where the requests are all equal to a fixed request with probability 1. On the
other hand with requests also uniform but over nonzero vectors, γ = 1− 2−k.

An asymptotic service rate γ = γ(P,Q) exists for any i.i.d. requests (with
distribution Q) and any i.i.d. server contents (with distribution P ) independent
from the requests, and in more general settings. Its determination in other cases
is open.

We explain how to estimate the respective random variables, give confidence
intervals, and estimate their moments.

As a building block, we deduce from a 1952 theorem of Marshall Hall, Jr. on
abelian groups that the doubled binary simplex code can serve any request
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sequence of half its length plus one. This easily implies the fractional version of
the Functional Batch Code Conjecture where half-servers are allowed.
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