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Abstract

The transition matrix of a graph Γ with adjacency matrix A is defined by H(t) := exp(−itA), where t ∈ R

and i =
√
−1. The graph Γ is said to admit perfect state transfer (PST) between a pair of vertices u and

v if there exists τ(> 0) ∈ R such that |H(τ)uv | = 1. Perfect state transfer has great importance due to its

applications in quantum information processing, quantum communication networks and cryptography.

In this paper, we study the existence of perfect state transfer on Cayley graphs over the group V8n. we

present some necessary and sufficient conditions for the existence of perfect state transfer on Cay(V8n, S).
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1 Introduction

The concept of quantum walks on graphs was first introduced by Farhi and Gutmann [14] in the year

1998. Quantum walks on finite graphs provide useful simple models for quantum transport phenomena

which was first discovered by Bose [7] in 2003. Christandl et al. [10] proposed a class of qubit networks

that admit perfect state transfer. Quantum walks are important tools in quantum computation and

information theory and can be used to describe the fidelity of information transfer in a network of

interacting qubits.

Let Γ be a finite simple connected graph with adjacency matrix A. Denoted by V (Γ) the set of vertices

of Γ. The transition matrix of Γ is defined by

H(t) = HΓ(t) =: exp(−itA) =

∞
∑

s=0

(−itA)s

s!
= (Hu,v(t))u,v∈V (Γ),

where t ∈ R and i =
√
−1.
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A graph Γ is said to exhibit perfect state transfer (PST) from a vertex u to the vertex v if there

exists τ(> 0) ∈ R such that the uv-th element of H(τ) has absolute value 1. We describe Γ as exhibiting

periodicity at the vertex u at time τ if the uu-th element of H(τ) has absolute value 1. The graph

Γ is considered to exhibit periodicity if it exhibits the property of periodicity across all its vertices

simultaneously at the same time.

PST has been studied for several families of graphs. Angeles-Canul et al. [1] investigated PST in

integral circulant graphs and the join of graphs. Coutinho and Godsil [11] explored PST in products

and covers of graphs. Pal and Bhattacharjya [22] studied PST on NEPS of the path on three vertices.

Godsil [17] offers a survey on perfect state transfer and related questions up to 2011. He [16] explains

the close relationship between the existence of perfect state transfer on certain graphs and association

schemes. Notably, in [18] Godsil presents a complete characterization of PST on simple connected graphs.

Cayley graphs are good candidates for exhibiting PST due to their nice algebraic structure. Among

these results Basic et al. [4, 5, 3, 23] , Cheung and Godsil [9] and Bernasconi et al. [6] present some

criterions on circulant graphs and cubelike graphs having PST. Tan et al. [25] presented a characterization

on abelian Cayley graphs having PST. They showed that many of the previous results on periodicity and

existence of PST in circulant graphs and cubelike graphs can be derived in unified and more simple

ways. However, relatively little research has been carried out on Cayley graphs over non-abelian groups

exhibiting PST. Cao and Feng [8] investigated PST on Cayley graphs over dihedral groups. Subsequently,

Arezoomand et al. [2] and Luo et al. [21] explored PST on Cayley graphs over dicyclic groups and semi-

dihedral groups, respectively. Recently, Khalilipour and Ghorbani [20] studied PST on Cayley graphs

over the group U6n = 〈a, b : a2n = b3 = 1, a−1ba = b−1〉.
In this paper, we consider the existence of PST on Cayley graphs over the group V8n = 〈a, b : a2n =

b4 = 1, ba = a−1b−1, b−1a = a−1b〉, where n is a positive integer. Using the irreducible representations

of V8n, several necessary and sufficient conditions for a normal Cayley graph Cay(V8n, S) exhibiting PST

are carried out.

The rest of the current work is organized as follows. In Section 2, we give the description of the

irreducible representations of V8n and spectra of normal Cayley graphs Cay(V8n, S) . The existence of

PST on normal Cayley graphs Cay(V8n, S) is explored in Section 3.

2 Irreducible representations of the group V8n and spectra of

Cayley graphs Cay(V8n, S)

A representation of a finite group G is a homomorphism θ : G → GL(U), where GL(U) is the group of

all automorphisms of a finite-dimensional and non-zero complex vector space U . The dimension of U
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is called the degree of θ. Two representations θ and ψ of G on U and W , respectively, are equivalent,

denoted by θ ∼ ψ, if there is an isomorphism T : U →W such that θ(g) = Tψ(g)T−1 for all g ∈ G.

Let θ : G → GL(U) be a representation. The character χθ : G → C of θ is defined by setting

χθ(g) = Tr(θ(g)) for all g ∈ G, where Tr(θ(g)) is the trace of the representation matrix of θ(g). A

subspace W of U is said to be G-invariant if θ(g)w ∈W for all g ∈ G and w ∈ W . Obviously, {0} and U

are G-invariant subspaces, called trivial subspaces. If U has no non-trivial G-invariant subspaces, then θ

is called an irreducible representation and χθ an irreducible character of G.

Let G be a finite group and S be a symmetric subset of G, that is, S = S−1, where S−1 = {s−1 : s ∈ S}
and 1 /∈ S. The Cayley graph of G with respect to S, denoted Cay(G,S), is a graph whose vertices are the

elements of G and there exists an edge between distinct vertices g, h ∈ G if gh−1 ∈ S. The set S is called

the connection set. If Sg = gS for all g ∈ G, then S is called a normal Cayley subset and Cay(G,S) a

normal Cayley graph. Since S is symmetric, Cay(G,S) is a simple graph. We assume G = 〈S〉 to ensure

that Cay(G,S) is a connected graph. The adjacency matrix of Cay(G,S) is defined by A = (ag,h)g,h∈G,

where

ag,h =







1 if gh−1 ∈ S

0 otherwise.

For more properties about Cayley graphs, One can refer to [15].

Let n be a positive integer. The group V8n is defined by

V8n = 〈a, b : a2n = b4 = 1, ba = a−1b−1, b−1a = a−1b〉.

Note that V8n = {ar, arb, arb2, arb3 : 0 ≤ r ≤ 2n− 1}
For odd values of n, the group V8n has 2n+ 3 conjugacy classes as follows:

{1}, {b2}, {a2r+1, a−2r−1b2}, r ∈ {0, . . . , n− 1},

{a2s, a−2s}, {a2sb2, a−2sb2}, s ∈ {1, . . . , (n− 1)/2},

{ajbk : j even, k = 1 or 3} and

{ajbk : j odd, k = 1 or 3}.

For even values of n, the group V8n has 2n+ 6 conjugacy classes as follows:

{1}, {b2}, {an}, {anb2},

{a2r+1, a−(2r+1)b2}, r ∈ {0, . . . , n− 1}

{a2s, a−2s}, {a2sb2, a−2sb2}, s ∈ {1, . . . , n/2− 1}

{a2kb(−1)k : 0 ≤ k ≤ n− 1}, {a2kb(−1)k+1

: 0 ≤ k ≤ n− 1},

{a2k+1b(−1)k : 0 ≤ k ≤ n− 1} and {a2k+1b(−1)k+1

: 0 ≤ k ≤ n− 1}.
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Table 1: Irreducible representations of V8n, for n odd

a b

χ1 1 1

χ2 1 −1

χ3 −1 1

χ4 −1 −1

ψj (0 ≤ j ≤ n− 1)





ω2j 0

0 −ω−2j









0 1

−1 0





φk (1 ≤ k ≤ n− 1)





ωk 0

0 ω−k









0 1

1 0





The following lemma presents the well-known irreducible representations and characters for the group

V8n.

Lemma 2.1. [19, 13] Let n be a positive integer and ω = exp(2πi2n ) be a primitive 2n-th root of unity.

(1) The irreducible representations of V8n are listed in Table 1 for n odd and in Table 2 for n even.

(2) The character table of V8n is listed in Table 3 for n odd, in Table 4 for n ≡ 0 (mod 4) and in Table

5 for n ≡ 2 (mod 4).

The following lemma determines the eigenvalues and eigenvectors of the adjacency matrix of a normal

Cayley graph.

Lemma 2.2. [24] Let G = {g1, . . . , gn} be a finite group and φ(1), . . . , φ(t) be a complete set of unitary

representatives of the equivalence classes of irreducible representations of G. Let χk be the character

of φ(k) and dk be the degree of φ(k). Let S be a symmetric subset of G and assume further that S is

conjugation-closed. Then the eigenvalues of the Cayley graph Cay(G,S) are λ1, . . . , λt, where

λk =
1

dk

∑

s∈S

χk(s), 1 ≤ k ≤ t,

and λk has multiplicity d2k. Moreover, the vectors

v
(k)
ij =

√

dk
|G|

(

φ
(k)
ij (g1), . . . , φ

(k)
ij (gn)

)t

, 1 ≤ i, j ≤ dk

form an orthonormal basis for the eigenspace associated with the eigenvalue λk.
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Table 2: Irreducible representations of V8n, for n even

a b

χ1 1 1

χ2 i −i

χ3 −1 −1

χ4 −i i

χ5 1 −1

χ6 i i

χ7 −1 1

χ8 −i −i

ψj (1 ≤ j ≤ n− 1)





ωj 0

0 ω−j









0 i

−i 0





φk (1 ≤ k ≤ n− 1)





iωk 0

0 iω−k









0 1

−1 0





Table 3: Character table of V8n, for n odd

1 b2 a2r+1 (0 ≤ r ≤ n− 1) a2s a2sb2 (1 ≤ s ≤ (n− 1)/2) b ab

ξ1 1 1 1 1 1 1 1

ξ2 1 1 1 1 1 −1 −1

ξ3 1 1 −1 1 1 1 −1

ξ4 1 1 −1 1 1 −1 1

ζj (0 ≤ j ≤ n− 1) 2 −2 ω2j(2r+1) − ω−2j(2r+1) ω4js + ω−4js −ω4js − ω−4js 0 0

νk (1 ≤ k ≤ n− 1) 2 2 ωk(2r+1) + ω−k(2r+1) ω2ks + ω−2ks ω2ks + ω−2ks 0 0
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Table 4: Character table of V8n, for n ≡ 0 (mod 4)

1 b2 an anb2 a4m+1 a4m+3 a4s a4t+2 a4sb2 a4t+2b2 b b−1 ab ab−1

ξ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ξ2 1 -1 -1 1 i -i 1 -1 -1 1 -i i 1 -1

ξ3 1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 1

ξ4 1 -1 -1 1 -i i 1 -1 -1 1 i -i 1 -1

ξ5 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1

ξ6 1 -1 -1 1 i -i 1 -1 -1 1 i -i -1 1

ξ7 1 1 1 1 -1 -1 1 1 1 1 1 1 -1 -1

ξ8 1 -1 -1 1 -i i 1 -1 -1 1 -i i -1 1

ζj 2 2 2(−1)
j

2(−1)
j

αj(4m+1) αj(4m+3) αj(4s) αj(4t+2) αj(4s) αj(4t+2) 0 0 0 0

νk 2 -2 2(−1)k -2(−1)k iαj(4m+1) -iαj(4m+3) αj(4s) -αj(4t+2) -αj(4s) αj(4t+2) 0 0 0 0

αjr = ωjr + ω−jr = 2 cos(πjr
n
), αkr = ωkr + ω−kr = 2 cos(πkr

n
), ω = exp(2πi2n );

m ∈ {0, . . . , n/2− 1}, s ∈ {1, . . . , n/4− 1}, t ∈ {0, . . . , n/4− 1}, j, k ∈ {1, . . . , n− 1}.
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Table 5: Character table of V8n, for n ≡ 2 (mod 4)

1 b2 an anb2 a4m+1 a4m+3 a4s a4t+2 a4sb2 a4t+2b2 b b−1 ab ab−1

ξ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ξ2 1 -1 1 -1 i -i 1 -1 -1 1 -i i 1 -1

ξ3 1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 1

ξ4 1 -1 1 -1 -i i 1 -1 -1 1 i -i 1 -1

ξ5 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1

ξ6 1 -1 1 -1 i -i 1 -1 -1 1 i -i -1 1

ξ7 1 1 1 1 -1 -1 1 1 1 1 1 1 -1 -1

ξ8 1 -1 1 -1 -i i 1 -1 -1 1 -i i -1 1

ζj 2 2 2(−1)
j

2(−1)
j

αj(4m+1) αj(4m+3) αj(4s) αj(4t+2) αj(4s) αj(4t+2) 0 0 0 0

νk 2 -2 -2(−1)k 2(−1)k iαj(4m+1) -iαj(4m+3) αj(4s) -αj(4t+2) -αj(4s) αj(4t+2) 0 0 0 0

αjr = ωjr + ω−jr = 2 cos(πjr
n
), αkr = ωkr + ω−kr = 2 cos(πkr

n
), ω = exp(2πi2n );

m ∈ {0, . . . , n/2− 1}, s ∈ {1, . . . , n/4− 1}, t ∈ {0, . . . , n/4− 1}, j, k ∈ {1, . . . , n− 1}.
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2.1 Spectra of normal Cayley graphs Cay(V8n, S), for odd n

We consider the fixed ordering 1, a, a2, . . . , a2n−1, b, ab, . . . , a2n−1b, b2, ab2, . . . , a2n−1b2, b3, ab3, . . . , a2n−1b3

for the elements of the group V8n. The adjacency matrix of the normal Cayley graph Cay(V8n, S) has the

following eigenvectors corresponding to the one-dimensional irreducible representations χ1, χ2, χ3 and χ4.

u1 =
1√
8n

(1, . . . , 1)t,

u2 =
1√
8n

(1, . . . , 1,−1, . . . ,−1, 1, . . . , 1,−1, . . . ,−1)t,

u3 =
1√
8n

(1,−1, . . . , 1,−1, 1,−1, . . . , 1,−1, 1,−1, . . . , 1,−1, 1,−1, . . . , 1,−1)t and

u4 =
1√
8n

(1,−1, . . . , 1,−1,−1, 1, . . . ,−1, 1, 1,−1, . . . , 1,−1,−1, 1, . . . ,−1, 1)t.

Now we compute the eigenvectors of the normal Cayley graph Cay(V8n, S) corresponding to the two-

dimensional irreducible representations. The adjacency matrix of the normal Cayley graph Cay(V8n, S)

has the following eigenvectors corresponding to the two-dimensional representations ψj , for 0 ≤ j ≤ n−1.

uj
(1) =

1√
4n

({ω2rj}2n−1
r=0 ,0, {−ω2rj}2n−1

r=0 ,0)t,

uj
(2) =

1√
4n

(0, {ω2rj}2n−1
r=0 ,0, {−ω2rj}2n−1

r=0 )t,

uj
(3) =

1√
4n

(0, {(−1)
r+1

ω−2rj}2n−1
r=0 ,0, {(−1)

r
ω−2rj}2n−1

r=0 )t and

uj
(4) =

1√
4n

({(−1)
r
ω2rj}2n−1

r=0 ,0, {(−1)
r+1

ω2rj}2n−1
r=0 ,0)t.

The adjacency matrix of the normal Cayley graph Cay(V8n, S) has the following eigenvectors corre-

sponding to the two-dimensional representations φk, for 1 ≤ k ≤ n− 1.

vk
(1) =

1√
4n

({ωrk}2n−1
r=0 ,0, {ωrk}2n−1

r=0 ,0)t,

vk
(2) =

1√
4n

(0, {ωrk}2n−1
r=0 ,0, {ωrk}2n−1

r=0 )t,

vk
(3) =

1√
4n

(0, {ω−rk}2n−1
r=0 ,0, {ω−rk}2n−1

r=0 )t and

vk
(4) =

1√
4n

({ω−rk}2n−1
r=0 ,0, {ω−rk}2n−1

r=0 ,0)t.
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2.2 Spectra of normal Cayley graphs Cay(V8n, S), for even n

The adjacency matrix of the normal Cayley graph Cay(V8n, S) has the following eigenvectors correspond-

ing to the one-dimensional irreducible representations χ1, . . . , χ8.

u1 =
1√
8n

(1, . . . , 1)t,

u2 =
1√
4n

({ir}2n−1
r=0 , {ir(−i)}2n−1

r=0 , {ir(−1)}2n−1
r=0 , {ir(i)}2n−1

r=0 )t,

u3 =
1√
8n

(1,−1, . . . , 1,−1,−1, 1, . . . ,−1, 1, 1,−1, . . . , 1,−1,−1, 1, . . . ,−1, 1)t,

u4 =
1√
4n

({(−i)r}2n−1
r=0 , {(−i)r(i)}2n−1

r=0 , {(−i)r(−1)}2n−1
r=0 , {(−i)r(−i)}2n−1

r=0 )t,

u5 =
1√
8n

(1, . . . , 1,−1, . . . ,−1, 1, . . . , 1,−1, . . . ,−1)t,

u6 =
1√
4n

({ir}2n−1
r=0 , {ir(i)}2n−1

r=0 , {ir(−1)}2n−1
r=0 , {ir(−i)}2n−1

r=0 )t,

u7 =
1√
8n

(1,−1, . . . , 1,−1, 1,−1, . . . , 1,−1, 1,−1, . . . , 1,−1, 1,−1, . . . , 1,−1)t and

u8 =
1√
4n

({(−i)r}2n−1
r=0 , {(−i)r(−i)}2n−1

r=0 , {(−i)r(−1)}2n−1
r=0 , {(−i)r(i)}2n−1

r=0 )t.

Now we compute the eigenvectors of the normal Cayley graph Cay(V8n, S) corresponding to the two-

dimensional irreducible representations. The adjacency matrix of the normal Cayley graph Cay(V8n, S)

has the following eigenvectors corresponding to the two-dimensional representations ψj , for 1 ≤ j ≤ n−1.

uj
(1) =

1√
4n

({ωrj}2n−1
r=0 ,0, {ωrj}2n−1

r=0 ,0)t,

uj
(2) =

1√
4n

(0, {iωrj}2n−1
r=0 ,0, {iωrj}2n−1

r=0 )t,

uj
(3) =

1√
4n

(0, {−iω−rj}2n−1
r=0 ,0, {−iω−rj}2n−1

r=0 )t and

uj
(4) =

1√
4n

({ω−rj}2n−1
r=0 ,0, {ω−rj}2n−1

r=0 ,0)t.

The adjacency matrix of the normal Cayley graph Cay(V8n, S) has the following eigenvectors corre-

sponding to the two-dimensional representations φk, for 1 ≤ k ≤ n− 1.

vk
(1) =

1√
4n

({irωrk}2n−1
r=0 ,0, {−irωrk}2n−1

r=0 ,0)t,

vk
(2) =

1√
4n

(0, {irωrk}2n−1
r=0 ,0, {−irωrk}2n−1

r=0 )t,

vk
(3) =

1√
4n

(0, {−irω−rk}2n−1
r=0 ,0, {irω−rk}2n−1

r=0 )t and

vk
(4) =

1√
4n

({irω−rk}2n−1
r=0 ,0, {−irω−rk}2n−1

r=0 ,0)t.
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3 PST on Cayley graphs

Let Γ be a simple graph with n vertices and Spec(Γ) denotes the set of all the eigenvalues of Γ. Let A be

the adjacency matrix of Γ and λ1, . . . , λn are the eigenvalues of A. Let P = (v1, . . . , vn) be an unitary

matrix, where vi is an eigenvector corresponding to the eigenvalue λi (1 ≤ i ≤ n). Then the spectral

decomposition of A is given by

A = λ1E1 + · · ·+ λnEn,

where Ei = viv
∗

i (1 ≤ i ≤ n) satisfies

EiEj =







Ei if i = j

0 otherwise.

Therefore, the spectral decomposition of the transition matrix H(t) is given by

H(t) = exp(−iλ1t)E1 + · · ·+ exp(−iλnt)En.

The 2-adic exponential valuation of rational numbers is denoted by Υ2 and is a mapping defined by

Υ2 : Q → Z ∪ {∞}, such that Υ2(0) = ∞, and Υ2(2
l a

b
) = l, where a, b, l ∈ Z and 2 ∤ ab.

We assume that ∞ +∞ = ∞+ l = ∞ and ∞ > l for any l ∈ Z. Then Υ2 has the following properties.

For β, β′ ∈ Q,

1. Υ2(ββ
′) = Υ2(β) + Υ2(β

′) and

2. Υ2(β + β′) ≥ min(Υ2(β),Υ2(β
′)) and the equality holds if Υ2(β) 6= Υ2(β

′).

We write the vertex set of Cay(V8n, S) as V1 ∪ V2 ∪ V3 ∪ V4, where

V1 = {0, 1, . . . 2n− 1},

V2 = {2n, 2n+ 1, . . . , 4n− 1},

V3 = {4n, 4n+ 1, . . . , 6n− 1} and

V4 = {6n, 6n+ 1, . . . , 8n− 1}.

3.1 PST on normal Cayley graphs over the group V8n, for odd n

We want to state the main result of this section.

Theorem 3.1. Let S be a non-empty subset of V8n such that 1 /∈ S and Sg = gS for all g ∈ V8n.

Let Γ = Cay(V8n, S) be a connected Cayley graph with connection set S, where n is odd. Then Γ has

four distinct eigenvalues which corresponds to the one-dimensional representations χ1, χ2, χ3 and χ4,

respectively, with one is α1 = |S| and the other three eigenvalues are denoted by α2, α3 and α4, and some
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multiple eigenvalues corresponding to the two-dimensional representations ψj and φk, denoted by βj and

γk, respectively, for 0 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1.

1. If u ∈ V1, v ∈ V2 or u ∈ V1, v ∈ V4 or u ∈ V2, v ∈ V1 or u ∈ V2, v ∈ V3 or u ∈ V3, v ∈ V2

or u ∈ V3, v ∈ V4 or u ∈ V4, v ∈ V1 or u ∈ V4, v ∈ V3, then Γ cannot have PST between two distinct

vertices u and v.

2. If u, v ∈ V1 or u, v ∈ V2 or u, v ∈ V3 or u, v ∈ V4, then Γ cannot have PST between two distinct

vertices u and v.

3. If u ∈ V1, v ∈ V3 or u ∈ V2, v ∈ V4 or u ∈ V3, v ∈ V1 or u ∈ V4, v ∈ V2, then Γ has PST between

the vertices u and v if and only if the following three conditions hold.

(i) All the eigenvalues of Γ are integers, namely, Γ is integral,

(ii) u = v + 4n and

(iii) Υ2(α1 − βj) is a constant, say µ, and Υ2(α1 − α2), Υ2(α1 − α3), Υ2(α1 − α4) and Υ2(α1 − γk)

are all bigger than µ, for 0 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1.

Furthermore, when the conditions (i), (ii) and (iii) hold, the minimum time at which Γ has PST

between u and v is π
M
, where M = gcd(α− α1 : α ∈ Spec(Γ) \ {α1}).

Proof. The adjacency matrix A of the normal Cayley graph Cay(V8n, S) has the eigenvectors ui, uj
(i)

and vk
(i) (1 ≤ i ≤ 4, 0 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1) which are introduced in section 2.1. Hence we

have the following unitary matrix

P = (u1, u2, u3, u4, u0
(1), u0

(2), u0
(3), u0

(4), . . . , un−1
(1), un−1

(2), un−1
(3), un−1

(4),

v1
(1), v1

(2), v1
(3), v1

(4), . . . , vn−1
(1), vn−1

(2), vn−1(3), vn−1
(4)).

Let Jm be the all-one matrix of order m. Then the projective matrices corresponding to the eigen-

vectors u1, u2, u3 and u4 are given by

E1 = u1u
∗

1 =
1

8n
J8n,

E2 = u2u
∗

2 =
1

8n

















J2n −J2n J2n −J2n
−J2n J2n −J2n J2n

J2n −J2n J2n −J2n
−J2n J2n −J2n J2n

















,

E3 = u3u
∗

3 =
1

8n
((−1)u+v), u, v ∈ {0, 1 . . . , 8n− 1} and

E4 = u4u
∗

4 =
1

8n
(e4(u, v)),

where

(i) e4(u, v) = (−1)u+v, when u, v ∈ V1 ∪ V3 or u, v ∈ V2 ∪ V4

11



(ii) e4(u, v) = (−1)u+v+1, when u ∈ V1 ∪ V3, v ∈ V2 ∪ V4 or u ∈ V2 ∪ V4, v ∈ V1 ∪ V3,

The projective matrices corresponding to the eigenvectors u
(1)
j , u

(2)
j , u

(3)
j and u

(4)
j , where 0 ≤ j ≤ n−1

are given by

Ej
(1) = u

(1)
j u

(1)
j

∗

=
1

4n

















X1 0 −X1 0

0 0 0 0

−X1 0 X1 0

0 0 0 0

















, Ej
(2) = u

(2)
j u

(2)
j

∗

=
1

4n

















0 0 0 0

0 X1 0 −X1

0 0 0 0

0 −X1 0 X1

















,

Ej
(3) = u

(3)
j u

(3)
j

∗

=
1

4n

















0 0 0 0

0 X2 0 −X2

0 0 0 0

0 −X2 0 X2

















and Ej
(4) = u

(4)
j u

(4)
j

∗

=
1

4n

















X2 0 −X2 0

0 0 0 0

−X2 0 X2 0

0 0 0 0

















.

The projective matrices corresponding to the eigenvectors v
(1)
k , v

(2)
k , v

(3)
k and v

(4)
k , where 1 ≤ k ≤ n−1

are given by

Fk
(1) = v

(1)
k v

(1)
k

∗

=
1

4n

















Y1 0 Y1 0

0 0 0 0

Y1 0 Y1 0

0 0 0 0

















, Fk
(2) = v

(2)
k v

(2)
k

∗

=
1

4n

















0 0 0 0

0 Y1 0 Y1

0 0 0 0

0 Y1 0 Y1

















,

Fk
(3) = v

(3)
k v

(3)
k

∗

=
1

4n

















0 0 0 0

0 Y2 0 Y2

0 0 0 0

0 Y2 0 Y2

















and Fk
(4) = v

(4)
k v

(4)
k

∗

=
1

4n

















Y2 0 Y2 0

0 0 0 0

Y2 0 Y2 0

0 0 0 0

















,

where

X1 =

















1 ω−2j · · · ω−2(2n−1)j

ω2j 1 · · · ω−2(2n−2)j

...
...

...
...

ω2(2n−1)j ω2(2n−2)j · · · 1

















, X2 =

















1 −ω2j · · · −ω2(2n−1)j

−ω−2j 1 · · · ω2(2n−2)j

...
...

...
...

−ω−2(2n−1)j ω−2(2n−2)j · · · 1

















,

Y1 =

















1 ω−k · · · ω−(2n−1)k

ωk 1 · · · ω−(2n−2)k

...
...

...
...

ω(2n−1)k ω(2n−2)k · · · 1

















and Y2 =

















1 ωk · · · ω(2n−1)k

ω−k 1 · · · ω(2n−2)k

...
...

...
...

ω−(2n−1)k ω−(2n−2)k · · · 1

















.
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Therefore, the transition matrix H(t) of the normal Cayley graph Cay(V8n, S) is given by

H(t) = exp(−itα1)E1 + exp(−itα2)E2 + exp(−itα3)E3 + exp(−itα4)E4

+

n−1
∑

j=0

exp(−itβj)(E
(1)
j + E

(2)
j + E

(3)
j + E

(4)
j ) +

n−1
∑

k=1

exp(−itγk)(F
(1)
k + F

(2)
k + F

(3)
k + F

(4)
k ).

Now we compute the (u, v)-th element of the transition matrix. We have the following three cases.

Case 1. If u ∈ V1, v ∈ V2 or u ∈ V1, v ∈ V4 or u ∈ V2, v ∈ V1 or u ∈ V2, v ∈ V3 or u ∈ V3, v ∈ V2

or u ∈ V3, v ∈ V4 or u ∈ V4, v ∈ V1 or u ∈ V4, v ∈ V3, then

H(t)uv =
1

8n
(exp(−itα1)− exp(−itα2) + (−1)u+v exp(−itα3) + (−1)u+v+1 exp(−itα4))

+
1

4n

n−1
∑

j=0

exp(−itβj)(0 + 0 + 0 + 0) +
1

4n

n−1
∑

k=1

exp(−itγk)(0 + 0 + 0 + 0)

=
1

8n
(exp(−itα1)− exp(−itα2) + (−1)u+v exp(−itα4) + (−1)u+v+1 exp(−itα4)).

This implies that | H(t)uv |≤ 1

8n
× 4 =

1

2n
< 1.

Therefore, PST cannot occur in this case.

Case 2. If u, v ∈ V1 or u, v ∈ V2 or u, v ∈ V3 or u, v ∈ V4, then

H(t)uv =
1

8n
(exp(−itα1) + exp(−itα2) + (−1)u+v exp(−itα3) + (−1)u+v exp(−itα4))

+
1

4n

n−1
∑

j=0

exp(−itβj)(ω
2(u−v)j + (−1)u+vω2(v−u)j) +

1

4n

n−1
∑

k=1

exp(−itγk)(ω
(u−v)k + ω(v−u)k).

This implies that | H(t)uv |≤ 1

8n
× 4 +

1

4n
× 2n+

1

4n
× 2(n− 1) =

2

4n
+

2n+ 2n− 2

4n
=

4n

4n
= 1

Therefore, | H(t)uv |≤ 1. Thus | H(t)uv |= 1 if and only if for 0 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1, it holds

that,

exp(−itα1) = exp(−itα2)

exp(−itα1) = (−1)u+v exp(−itα3)

exp(−itα1) = (−1)u+v exp(−itα4)

exp(−itα1) = ω2(u−v)j exp(−itβj)

exp(−itα1) = (−1)u+vω2(v−u)j exp(−itβj)

exp(−itα1) = ω(u−v)k exp(−itγk)

exp(−itα1) = ω(v−u)k exp(−itγk)
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From the last two equations, since ω is the 2n-th root of unity, we get that n divides u− v. Without

loss of generality, we assume that u ≥ v. This implies that either u = v or u− v = n. Let t = 2πT . Then

we have

(α1 − α2)T ∈ Z (1)

(α1 − α3)T − u+ v

2
∈ Z (2)

(α1 − α4)T − u+ v

2
∈ Z (3)

(α1 − βj)T ∈ Z (4)

(α1 − βj)T − u+ v

2
∈ Z (5)

(α1 − γk)T − k

2
∈ Z (6)

(α1 − γk)T +
k

2
∈ Z (7)

Since 0 = tr(A) = α1 + α2 + α3 + α4 + 4
∑n−1

j=0 βj + 4
∑n−1

k=1 γk, we have that 8nα1T ∈ Z, and since

α1 = |S| is a positive integer, we have T ∈ Q. This implies that all the eigenvalues of the graph are

rational numbers. It is well known that any rational eigenvalue of a graph is an integer. Therefore in this

case the graph is integral.

From (4) and (5) it follows that u+ v is even. Since u + v and u − v have the same parity, so u− v

cannot be equal to n. Hence, u = v. Therefore, Γ cannot have PST between distinct vertices u and v.

Case 3. If u ∈ V1, v ∈ V3 or u ∈ V2, v ∈ V4 or u ∈ V3, v ∈ V1 or u ∈ V4, v ∈ V2, then

H(t)uv =
1

8n
(exp(−itα1) + exp(−itα2) + (−1)u+v exp(−itα3) + exp(−itα4))

+
1

4n

n−1
∑

j=0

exp(−i tβj)(−ω2(u−v)j + (−1)u+v+1ω2(v−u)j) +
1

4n

n−1
∑

k=1

exp(−itγk)(ω
(u−v)k + ω(v−u)k).

This implies that | H(t)uv |≤ 1

8n
× 4 +

1

4n
× 2n+

1

4n
× 2(n− 1) =

2

4n
+

2n+ 2n− 2

4n
=

4n

4n
= 1.

Therefore, | H(t)uv |≤ 1. Thus, | H(t)uv |= 1 if and only if for 0 ≤ j ≤ n − 1 and 1 ≤ k ≤ n − 1 , it

holds that,

exp(−itα1) = exp(−itα2)

exp(−itα1) = (−1)u+v exp(−itα3)

exp(−itα1) = (−1)u+v exp(−itα4)

exp(−itα1) = −ω2(u−v)j exp(−itβj)

exp(−itα1) = (−1)u+v+1ω2(v−u)j exp(−itβj)

exp(−itα1) = ω(u−v)k exp(−itγk)

exp(−itα1) = ω(v−u)k exp(−itγk)
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From the last two equations, since ω is the 2n-th root of unity, we get that n divides u− v. Without loss

of generality, we assume that u > v. This implies that either u − v = 3n or u − v = 4n or u − v = 5n.

Let t = 2πT,. Then we have

(α1 − α2)T ∈ Z (8)

(α1 − α3)T − u+ v

2
∈ Z (9)

(α1 − α4)T − u+ v

2
∈ Z (10)

(α1 − βj)T +
1

2
∈ Z (11)

(α1 − βj)T +
u+ v + 1

2
∈ Z (12)

(α1 − γk)T +
(u− v)k

2n
∈ Z (13)

(α1 − γk)T +
(v − u)k

2n
∈ Z (14)

Since 0 = tr(A) = α1 + α2 + α3 + α4 + 4
∑n−1

j=0 βj + 4
∑n−1

k=1 γk, we have that 8nα1T ∈ Z, and since

α1 = |S| is a positive integer, we have T ∈ Q. This implies that all the eigenvalues of the graph are

rational numbers. It is well known that any rational eigenvalue of a graph is an integer. Therefore in this

case the graph is integral.

From (11) and (12) it follows that u+ v is even. Since u+ v and u− v have the same parity, so u− v

is neither 3n nor 5n. Therefore u− v = 4n.

Conditions (8) to (14) can be written as follows

(α1 − α2)T ∈ Z (15)

(α1 − α3)T ∈ Z (16)

(α1 − α4)T ∈ Z (17)

(α1 − βj)T − 1

2
∈ Z (18)

(α1 − γk)T ∈ Z (19)

Suppose that (α1 − βr)T, (α1 − βs)T ∈ 1
2 + Z, for r, s ∈ {0, . . . , n − 1}, then Υ2((α1 − βr)T ) =

Υ2((α1 − βs)T ) = −1. This implies that Υ2(α1 − βr) = Υ2(α1 − βs) = −1 − Υ2(T ). Thus for all

j ∈ {0, . . . , n−1}, Υ2(α1−βj) is a constant, µ = −1−Υ2(T ). From (15) it follows that Υ2((α1−α2)T ) ≥ 0.

Therefore, Υ2(α1−α2) ≥ µ+1. Simillarly it can be shown that Υ2(α1−α3), Υ2(α1−α4) and Υ2(α1−γk)
are also bigger than µ, for all k ∈ {1, . . . , n− 1}.

Suppose that (i), (ii) and (iii) hold. Let M1 = gcd(α1 −α2, α1 −α3, α1 −α4, α1 − γk : 1 ≤ k ≤ n− 1)

and M2 = gcd(α1 − βj : 0 ≤ j ≤ n− 1). It can be easily seen that Υ2(M2) = µ.

Then the conditions (15), (16), (17) and (19) implies that T ∈ 1
M1

Z and condition (18) imply that
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T ∈ 1
M2

(12 + Z). let T̃ = {t > 0 : Γ has PST between u and v at time t}. Then we get

T̃ =

(

2π

M1
Z

)

∩
(

2π

M2
(
1

2
+ Z)

)

∩R>0 (20)

=
π

M1M2
(2M2Z ∩M1(1 + 2Z)) ∩ R>0 (21)

For every z ∈ Z, it is easy to check that

z ∈ 2M2Z ∩M1(1 + 2Z)

⇔ z = 2M2x0 =M1(1 + 2y0), for some x0, y0 ∈ Z

⇔ 2M2x− 2M1y =M1 has a solution

⇔ gcd(2M1, 2M2) | M1

⇔ Υ2(M1) ≥ µ+ 1 (since Υ2(M2) = µ).

Let M = gcd(M1,M2). Write M1 = m1M , M2 = m2M . Then gcd(m1,m2) = 1. From Υ2(M1) ≥
µ + 1, Υ2(M2) = µ, we get that Υ2(M) = µ and m1 is even, m2 is odd. Then 2M2x − 2M1y = M1 ⇔
m2x−m1y = m1

2 . Since gcd(m1,m2) = 1, so the solutions of the Diophantine equation m2x−m1y = m1

2

are given by

x =
m1

2
+m1l

y =
m2 − 1

2
+m2l, where l ∈ Z.

Thus

z = 2M2x = 2M2
m1

2
(1 + 2l) =

M1M2

M
(1 + 2l),

and

2M2Z ∩M1(1 + 2Z) =
M1M2

M
(1 + 2Z).

By (21), we get

T̃ = (
π

M
+

2π

M
Z) ∩ R>0

= { π
M

+
2π

M
l : l ∈ N ∪ {0}}.

Therefore, the minimum time at which Γ has PST between u and v is π
M
.

This completes the proof.
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3.2 PST on normal Cayley graphs over the group V8n, n even

The main result of this section is as follows.

Theorem 3.2. Let S be a non-empty subset of V8n such that 1 /∈ S and Sg = gS for all g ∈ V8n. Let

Γ = Cay(V8n, S) be a connected Cayley graph with connection set S, where n is even. Then Γ has eight

distinct eigenvalues which corresponds to the one-dimensional representations χ1, . . . , χ8, respectively,

with one is α1 = |S| and the other three eigenvalues are denoted by α2, α3, α4, α5, α6, α7 and α8, and

some multiple eigenvalues corresponding to the two-dimensional representations ψj and φk, denoted by

βj and γk, respectively, for 1 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1.

1. If u ∈ V1, v ∈ V2 or u ∈ V1, v ∈ V4 or u ∈ V2, v ∈ V1 or u ∈ V2, v ∈ V3 or u ∈ V3, v ∈ V2

or u ∈ V3, v ∈ V4 or u ∈ V4, v ∈ V1 or u ∈ V4, v ∈ V3, then Γ cannot have PST between distinct

vertices u and v.

2. If u, v ∈ V1 or u, v ∈ V2 or u, v ∈ V3 or u, v ∈ V4, then Γ has PST between distinct vertices u and

v if and only if the following three conditions hold.

(i) All the eigenvalues of Γ are integers.

(ii) u = v + n.

(iii) (a) If n ≡ 0 (mod 4), then Υ2(α1 − β2j′−1) and Υ2(α1 − γ2k′−1) are the same, say µ1, and

Υ2(α1−α2), Υ2(α1−α3), Υ2(α1−α4), Υ2(α1−α5), Υ2(α1−α6), Υ2(α1−α7), Υ2(α1−α8), Υ2(α1−β2j′)
and Υ2(α1 − γ2k′ ) are all strictly greater than µ1, for 1 ≤ j′ ≤ n−1

2 and 1 ≤ k′ ≤ n−1
2 .

(b) If n ≡ 2 (mod 4), then Υ2(α1 − α2), Υ2(α1 − α4), Υ2(α1 − α6), Υ2(α1 − α8), Υ2(α1 − β2j′−1)

and Υ2(α1 − γ2k′) are the same, say µ2, and Υ2(α1 −α3), Υ2(α1 −α5), Υ2(α1 −α7), Υ2(α1 − β2j′) and

Υ2(α1 − γ2k′−1) are all strictly greater than µ2, for 1 ≤ j′ ≤ n−1
2 and 1 ≤ k′ ≤ n−1

2 .

3. If u ∈ V1, v ∈ V3 or u ∈ V2, v ∈ V4 or u ∈ V3, v ∈ V1 or u ∈ V4, v ∈ V2, then Γ has PST between

distinct vertices u and v if and only if the following three conditions hold.

(i) All the eigenvalues of Γ are integers.

(ii) u = v + 4n.

(iii) Υ2(α1 −α2), Υ2(α1 −α4), Υ2(α1 −α6), Υ2(α1 −α8) and Υ2(α1 − γk) are the same, say µ3, and

Υ2(α1−α3), Υ2(α1−α5), Υ2(α1−α7) and Υ2(α1−βj) are all strictly greater than µ3, for 1 ≤ j ≤ n−1

and 1 ≤ k ≤ n− 1.

Furthermore, the minimum time at which Γ has PST between u and v is π
M
, where M = gcd(α −

α1 : α ∈ Spec(Γ) \ {α1}).

Proof. The adjacency matrix A of the normal Cayley graph Cay(V8n, S) has the eigenvectors ui, uj
(i)

and vk
(i) (1 ≤ i ≤ 8, 1 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1) which are introduced in subsection 2.2. Hence
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we have the following unitary matrix

P = (u1, u2, u3, u4, u5, u6, u7, u8, u1
(1), u1

(2), u1
(3), u1

(4), . . . , un−1
(1), un−1

(2), un−1
(3), un−1

(4),

v1
(1), v1

(2), v1
(3), v1

(4), . . . , vn−1
(1), vn−1

(2), vn−1(3), vn−1
(4)).

Let Jm be the all-one matrix of order m. Then the projective matrices corresponding to the eigen-

vectors u1, u3, u5, u7 are given by

E1 = u1u
∗

1 =
1

8n
J8n,

E3 = u4u
∗

4 =
1

8n
(e3(u, v)),

E5 = u2u
∗

2 =
1

8n

















J2n −J2n J2n −J2n
−J2n J2n −J2n J2n

J2n −J2n J2n −J2n
−J2n J2n −J2n J2n

















,

E7 = u3u
∗

3 =
1

8n
((−1)u+v), u, v ∈ {0, 1 . . . , 8n− 1}

where

(i) e4(u, v) = (−1)u+v, when u, v ∈ V1 ∪ V3 or u, v ∈ V2 ∪ V4

(ii) e4(u, v) = (−1)u+v+1, when u ∈ V1 ∪ V3, v ∈ V2 ∪ V4 or u ∈ V2 ∪ V4, v ∈ V1 ∪ V3,

and the projective matrices corresponding to the eigenvectors u2, u4, u6 and u8 are given by

E2 = u2u2
∗ =

1

8n

















X iX −X −iX

−iX X iX −X
−X −iX X iX

iX −X −iX X

















, E4 = u4u4
∗ =

1

8n

















Y −iY −Y iY

iY Y −iY −Y
−Y iY Y −iY

−iY −Y iY Y

















,

E6 = u6u6
∗ =

1

8n

















X −iX −X iX

iX X −iX −X
−X iX X −iX

−iX −X iX X

















and E8 = u8u8
∗ =

1

8n

















Y iY −Y −iY

−iY Y iY −Y
−Y −iY Y iY

iY −Y −iY Y

















,

where Xuv = iu−v and Yuv = (−i)u−v.

The projective matrices corresponding to the eigenvectors u
(1)
j , u

(2)
j , u

(3)
j and u

(4)
j , where 1 ≤ j ≤ n−1

are given by
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Ej
(1) = u

(1)
j u

(1)
j

∗

=
1

4n

















X1 0 X1 0

0 0 0 0

X1 0 X1 0

0 0 0 0

















, Ej
(2) = u

(2)
j u

(2)
j

∗

=
1

4n

















0 0 0 0

0 X1 0 X1

0 0 0 0

0 X1 0 X1

















,

Ej
(3) = u

(3)
j u

(3)
j

∗

=
1

4n

















0 0 0 0

0 X2 0 X2

0 0 0 0

0 X2 0 X2

















and Ej
(4) = u

(4)
j u

(4)
j

∗

=
1

4n

















X2 0 X2 0

0 0 0 0

X2 0 X2 0

0 0 0 0

















.

The projective matrices corresponding to the eigenvectors v
(1)
k , v

(2)
k , v

(3)
k and v

(4)
k , where 1 ≤ k ≤ n−1

are given by

Fk
(1) = v

(1)
k v

(1)
k

∗

=
1

4n

















Y1 0 −Y1 0

0 0 0 0

−Y1 0 Y1 0

0 0 0 0

















, Fk
(2) = v

(2)
k v

(2)
k

∗

=
1

4n

















0 0 0 0

0 Y1 0 −Y1
0 0 0 0

0 −Y1 0 Y1

















,

Fk
(3) = v

(3)
k v

(3)
k

∗

=
1

4n

















0 0 0 0

0 Y2 0 −Y2
0 0 0 0

0 −Y2 0 Y2

















and Fk
(4) = v

(4)
k v

(4)
k

∗

=
1

4n

















Y2 0 −Y2 0

0 0 0 0

−Y2 0 Y2 0

0 0 0 0

















,

where

X1 =

















1 ω−j · · · ω−(2n−1)j

ωj 1 · · · ω−(2n−2)j

...
...

...
...

ω(2n−1)j ω(2n−2)j · · · 1

















, X2 =

















1 ωj · · · ω(2n−1)j

ω−j 1 · · · ω(2n−2)j

...
...

...
...

ω−(2n−1)j ω−(2n−2)j · · · 1

















,
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Y1 =

















1 i−1ω−k · · · i−(2n−1)ω−(2n−1)k

iωk 1 · · · i
−(2n−2)ω−(2n−2)k

...
...

...
...

i(2n−1)ω(2n−1)k i(2n−2)ω(2n−2)k · · · 1

















and

Y2 =

















1 i−1ωk · · · i−(2n−1)ω(2n−1)k

iω−k 1 · · · i−(2n−2)ω(2n−2)k

...
...

...
...

i(2n−1)ω−(2n−1)k i(2n−2)ω−(2n−2)k · · · 1

















.

Therefore, the transition matrix H(t) of the normal Cayley graph Cay(V8n, S) is given by

H(t) = exp(−itα1)E1 + exp(−itα2)E2 + exp(−itα3)E3 + exp(−itα4)E4

+ exp(−itα5)E5 + exp(−itα6)E6 + exp(−itα7)E7 + exp(−itα8)E8

+

n−1
∑

j=1

exp(−itβj)(E
(1)
j + E

(2)
j + E

(3)
j + E

(4)
j ) +

n−1
∑

k=1

exp(−itγk)(F
(1)
k + F

(2)
k + F

(3)
k + F

(4)
k ).

Now we compute the (u, v)-th element of the transition matrix. The following three cases arise.

Case 1. If u ∈ V1, v ∈ V2, then

H(t)uv =
1

8n
(exp(−itα1) + exp(−itα2)i

u−v+1 + (−1)u+v+1 exp(−itα3) + (−i)u−v+1 exp(−itα4)

− exp(−itα5) + iu−v+3 exp(−itα6) + (−1)u+v exp(−itα7) + (−i)u−v+3 exp(−itα8)).

This implies that | H(t)uv |≤ 1
8n × 8 = 1

n
< 1.

Simillarly, it can be shown that for u ∈ V1, v ∈ V4 or u ∈ V2, v ∈ V1 or u ∈ V2, v ∈ V3 or u ∈ V3, v ∈ V2

or u ∈ V3, v ∈ V4 or u ∈ V4, v ∈ V1 or u ∈ V4, v ∈ V3, | H(t)uv |< 1.

Therefore, in this case PST cannot occur between the vertices u and v.

Case 2. If u, v ∈ V1 or u, v ∈ V2 or u, v ∈ V3 or u, v ∈ V4, then

H(t)uv =
1

8n
(exp(−itα1) + iu−v exp(−itα2) + (−1)u+v exp(−itα3) + (−i)u−v exp(−itα4)

+ exp(−itα5) + iu−v exp(−itα6) + (−1)u+v exp(−itα7) + (−i)u−v exp(−itα8))

+
1

4n

n−1
∑

j=1

exp(−itβj)(ω
(u−v)j + ω−(u−v)j) +

1

4n

n−1
∑

k=1

exp(−itγk)(i
u−vω(u−v)k + iu−vω−(u−v)k).

This implies that | H(t)uv |≤ 1
8n × 8 + 1

4n × (2n− 2) + 1
4n × (2n− 2) = 1.

Therefore, | H(t)uv |≤ 1. Thus | H(t)uv |= 1 if and only if for 1 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1, it holds
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that,

exp(−itα1) = iu−v exp(−itα2)

exp(−itα1) = (−1)u+v exp(−itα3)

exp(−itα1) = (−i)u−v exp(−itα4)

exp(−itα1) = exp(−itα5)

exp(−itα1) = iu−v exp(−itα6)

exp(−itα1) = (−1)u+v exp(−itα7)

exp(−itα1) = (−i)u−v exp(−itα8)

exp(−itα1) = ω(u−v)j exp(−itβj)

exp(−itα1) = ω−(u−v)j exp(−itβj)

exp(−itα1) = iu−vω(u−v)k exp(−itγk)

exp(−itα1) = iu−vω−(u−v)k exp(−itγk)

From the last two equations, since ω is the 2n-th root of unity, we get that n divides u− v. Without

loss of generality, we assume that u > v. This implies that u− v = n. Let t = 2πT . Then the preceding

equations implies that

(α1 − α2)T − n

4
∈ Z (22)

(α1 − α3)T ∈ Z (23)

(α1 − α4)T − n

4
∈ Z (24)

(α1 − α5)T ∈ Z (25)

(α1 − α6)T − n

4
∈ Z (26)

(α1 − α7)T ∈ Z (27)

(α1 − α8)T − n

4
∈ Z (28)

(α1 − βj)T − j

2
∈ Z (29)

(α1 − γk)T − n

4
− k

2
∈ Z (30)

Since 0 = tr(A) = α1+α2+α3+α4+α5+α6+α7+α8+4
∑n−1

j=1 βj+4
∑n−1

k=1 γk, we have that 8nα1T ∈ Z,

and since α1 = |S| is a positive integer, we have T ∈ Q. This implies that all the eigenvalues of the graph

are rational numbers. It is well known that any rational eigenvalue of a graph is an integer. Therefore,

in this case the graph is integral.

Our next discussion is distinguished into two parts according as n ≡ 0 (mod 4) or n ≡ 2 (mod 4).
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(i) n ≡ 0 (mod 4). In this case, conditions (22) to (30) turns into

(α1 − α2)T ∈ Z

(α1 − α3)T ∈ Z

(α1 − α4)T ∈ Z

(α1 − α5)T ∈ Z

(α1 − α6)T ∈ Z

(α1 − α7)T ∈ Z

(α1 − α8)T ∈ Z

(α1 − βj)T − j

2
∈ Z

(α1 − γk)T − k

2
∈ Z

The preceding conditions implies that, Υ2(α1−β2j′−1) and Υ2(α1−γ2k′−1) are the same, say µ1, and

Υ2(α1−α2), Υ2(α1−α3), Υ2(α1−α4), Υ2(α1−α5), Υ2(α1−α6), Υ2(α1−α7), Υ2(α1−α8), Υ2(α1−β2j′)
and Υ2(α1 − γ2k′ ) are all strictly greater than µ1, for 1 ≤ j′ ≤ n−1

2 and 1 ≤ k′ ≤ n−1
2 .

(ii) n ≡ 2 (mod 4). In this case, conditions (22) to (30) turns into

(α1 − α2)T − 1

2
∈ Z

(α1 − α3)T ∈ Z

(α1 − α4)T − 1

2
∈ Z

(α1 − α5)T ∈ Z

(α1 − α6)T − 1

2
∈ Z

(α1 − α7)T ∈ Z

(α1 − α8)T − 1

1
∈ Z

(α1 − βj)T − j

2
∈ Z

(α1 − γk)T − 1

2
− k

2
∈ Z

The preceding conditions implies that, Υ2(α1−α2), Υ2(α1−α4), Υ2(α1−α6), Υ2(α1 −α8), Υ2(α1−
β2j′−1) and Υ2(α1−γ2k′) are the same, say µ2, and Υ2(α1−α3), Υ2(α1−α5), Υ2(α1−α7), Υ2(α1−β2j′)
and Υ2(α1 − γ2k′−1) are all strictly greater than µ2, for 1 ≤ j′ ≤ n−1

2 and 1 ≤ k′ ≤ n−1
2 .
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Case 3. If u ∈ V1, v ∈ V3 or u ∈ V2, v ∈ V4 or u ∈ V3, v ∈ V1 or u ∈ V4, v ∈ V2, then

H(t)uv =
1

8n
(exp(−itα1)− iu−v exp(−itα2) + (−1)u+v exp(−itα3)− (−i)u−v exp(−itα4)

+ exp(−itα5)− iu−v exp(−itα6) + (−1)u+v exp(−itα7)− (−i)u−v exp(−itα8))

+
1

4n

n−1
∑

j=1

exp(−itβj)(ω
(u−v)j + ω−(u−v)j) +

1

4n

n−1
∑

k=1

exp(−itγk)(−iu−vω(u−v)k − iu−vω−(u−v)k).

This implies that | H(t)uv |≤ 1
8n × 8 + 1

4n × (2n− 2) + 1
4n × (2n− 2) = 1.

Therefore, | H(t)uv |≤ 1. Thus | H(t)uv |= 1 if and only if for 1 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1, it holds

that,

exp(−itα1) = −iu−v exp(−itα2)

exp(−itα1) = (−1)u+v exp(−itα3)

exp(−itα1) = −(−i)u−v exp(−itα4)

exp(−itα1) = exp(−itα5)

exp(−itα1) = −iu−v exp(−itα6)

exp(−itα1) = (−1)u+v exp(−itα7)

exp(−itα1) = −(−i)u−v exp(−itα8)

exp(−itα1) = ω(u−v)j exp(−itβj)

exp(−itα1) = ω−(u−v)j exp(−itβj)

exp(−itα1) = −iu−vω(u−v)k exp(−itγk)

exp(−itα1) = −iu−vω−(u−v)k exp(−itγk)

From the last two equations, we get that u − v = 4n. Let t = 2πT . Then the preceding equations

implies that

(α1 − α2)T − 1

2
∈ Z (31)

(α1 − α3)T ∈ Z (32)

(α1 − α4)T − 1

2
∈ Z (33)

(α1 − α5)T ∈ Z (34)

(α1 − α6)T − 1

2
∈ Z (35)

(α1 − α7)T ∈ Z (36)

(α1 − α8)T − 1

2
∈ Z (37)
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(α1 − βj)T ∈ Z (38)

(α1 − γk)T − 1

2
∈ Z (39)

Since 0 = tr(A) = α1+α2+α3+α4+α5+α6+α7+α8+4
∑n−1

j=1 βj+4
∑n−1

k=1 γk, we have that 8nα1T ∈ Z,

and since α1 = |S| is a positive integer, we have T ∈ Q. This implies that all the eigenvalues of the graph

are rational numbers. It is well known that any rational eigenvalue of a graph is an integer. Therefore,

in this case the graph is integral.

The preceding conditions implies that, Υ2(α1 − α2), Υ2(α1 − α4), Υ2(α1 − α6), Υ2(α1 − α8) and

Υ2(α1 − γk) are the same, say µ3, and Υ2(α1 − α3), Υ2(α1 − α5), Υ2(α1 − α7) and Υ2(α1 − βj) are all

strictly greater than µ3, for 1 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1.

Using the same technique in Section 3.1, we can show that the minimum time at which Γ has PST

between u and v is π
M
, where M = gcd(α− α1 : α ∈ Spec(Γ) \ {α1}).

This completes the proof.
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