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Abstract

The transition matriz of a graph I' with adjacency matrix A is defined by H (t) := exp(—itA), where t € R
and i = v/—1. The graph T is said to admit perfect state transfer (PST) between a pair of vertices u and
v if there exists 7(> 0) € R such that |H(7)4,| = 1. Perfect state transfer has great importance due to its
applications in quantum information processing, quantum communication networks and cryptography.
In this paper, we study the existence of perfect state transfer on Cayley graphs over the group Vg,. we

present some necessary and sufficient conditions for the existence of perfect state transfer on Cay(Vgy, S).
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1 Introduction

The concept of quantum walks on graphs was first introduced by Farhi and Gutmann [14] in the year
1998. Quantum walks on finite graphs provide useful simple models for quantum transport phenomena
which was first discovered by Bose [7] in 2003. Christandl et al. [10] proposed a class of qubit networks
that admit perfect state transfer. Quantum walks are important tools in quantum computation and
information theory and can be used to describe the fidelity of information transfer in a network of
interacting qubits.

Let T" be a finite simple connected graph with adjacency matrix A. Denoted by V(T") the set of vertices
of I'. The transition matriz of I' is defined by

H(t) = Hr(t) =: exp(—itA) = i

s=0

—itA)*
L A

S

where t € R and 1 = /—1.
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A graph T is said to exhibit perfect state transfer (PST) from a vertex u to the vertex v if there
exists 7(> 0) € R such that the uv-th element of H(7) has absolute value 1. We describe I' as exhibiting
periodicity at the vertex u at time 7 if the uu-th element of H(7) has absolute value 1. The graph
T" is considered to exhibit periodicity if it exhibits the property of periodicity across all its vertices
simultaneously at the same time.

PST has been studied for several families of graphs. Angeles-Canul et al. [1] investigated PST in
integral circulant graphs and the join of graphs. Coutinho and Godsil [11] explored PST in products
and covers of graphs. Pal and Bhattacharjya [22] studied PST on NEPS of the path on three vertices.
Godsil [17] offers a survey on perfect state transfer and related questions up to 2011. He [16] explains
the close relationship between the existence of perfect state transfer on certain graphs and association
schemes. Notably, in [18] Godsil presents a complete characterization of PST on simple connected graphs.

Cayley graphs are good candidates for exhibiting PST due to their nice algebraic structure. Among
these results Basic et al. [4, 5, 3, 23] , Cheung and Godsil [9] and Bernasconi et al. [6] present some
criterions on circulant graphs and cubelike graphs having PST. Tan et al. [25] presented a characterization
on abelian Cayley graphs having PST. They showed that many of the previous results on periodicity and
existence of PST in circulant graphs and cubelike graphs can be derived in unified and more simple
ways. However, relatively little research has been carried out on Cayley graphs over non-abelian groups
exhibiting PST. Cao and Feng [8] investigated PST on Cayley graphs over dihedral groups. Subsequently,
Arezoomand et al. [2] and Luo et al. [21] explored PST on Cayley graphs over dicyclic groups and semi-
dihedral groups, respectively. Recently, Khalilipour and Ghorbani [20] studied PST on Cayley graphs
over the group Us, = (a,b: a®* = b3 = 1,a " ba = b~ 1).

In this paper, we consider the existence of PST on Cayley graphs over the group Vg, = (a,b: a®" =
b* =1, ba=a"1'b"', b='a = a~'b), where n is a positive integer. Using the irreducible representations
of Vg, several necessary and sufficient conditions for a normal Cayley graph Cay(Vs,,, S) exhibiting PST
are carried out.

The rest of the current work is organized as follows. In Section 2, we give the description of the
irreducible representations of Vg, and spectra of normal Cayley graphs Cay(Vg,,S) . The existence of

PST on normal Cayley graphs Cay(Vs,, S) is explored in Section 3.

2 Irreducible representations of the group Vg, and spectra of
Cayley graphs Cay(Vg,, S)

A representation of a finite group G is a homomorphism 6: G — GL(U), where GL(U) is the group of

all automorphisms of a finite-dimensional and non-zero complex vector space U. The dimension of U



is called the degree of 8. Two representations 6 and v of G on U and W, respectively, are equivalent,
denoted by @ ~ 1, if there is an isomorphism T': U — W such that §(g) = T4 (g)T ! for all g € G.

Let 6: G — GL(U) be a representation. The character xg: G — C of 0 is defined by setting
xo(g) = Tr(6(g)) for all g € G, where Tr(6(g)) is the trace of the representation matrix of 6(g). A
subspace W of U is said to be G-invariant if (g)w € W for all g € G and w € W. Obviously, {0} and U
are G-invariant subspaces, called trivial subspaces. If U has no non-trivial G-invariant subspaces, then 6
is called an irreducible representation and xg an irreducible character of G.

Let G be a finite group and S be a symmetric subset of G, that is, S = S~1, where S~ = {s7! : s € S}
and 1 ¢ S. The Cayley graph of G with respect to S, denoted Cay(G, S), is a graph whose vertices are the
elements of G’ and there exists an edge between distinct vertices g, h € G if gh~! € S. The set S is called
the connection set. If Sg = ¢S for all g € G, then S is called a normal Cayley subset and Cay(G, S) a
normal Cayley graph. Since S is symmetric, Cay(G, S) is a simple graph. We assume G = (S) to ensure
that Cay(G, S) is a connected graph. The adjacency matrix of Cay(G, S) is defined by A = (agn)g,nec,

where
1 ifgh tesS

Qg,n = )
0 otherwise.

For more properties about Cayley graphs, One can refer to [15].

Let n be a positive integer. The group Vg, is defined by
Van = {a,b: a®" =b* =1, ba=a"'d"", b'a=a"'b).

Note that Vg, = {a”,a"b,a"b?,a"b%: 0 <r < 2n — 1}

For odd values of n, the group Vg,, has 2n + 3 conjugacy classes as follows:

{1}, {6}, {a® "1, a7 0%}, ref{0,...,n—1},
{0, a7}, {a®0%, 0= b7}, se{l,...,(n—1)/2},
{a’b": j even, k=1 or 3} and

{a’b": j odd, k =1 or 3}.
For even values of n, the group Vs, has 2n + 6 conjugacy classes as follows:

{1}, {v°}, {a"}, {a"0"},

{a2T+1,a_(2T+1)b2}, ref{0,...,n—1}
{a®*,a™*},{a*b? a"2b?}, se{l,...,n/2 -1}
o<k <n—1),

71)k+1

{a%b(_l)k :0<k<n-1}, {a?*p=1

{a%*lb(*l)k :0<k<n—1} and {a®'b :0<k<n-1}



Table 1: Irreducible representations of Vg,, for n odd

a b
X1 1 1
X2 1 -1
X3 -1 1
X4 -1 -1
w2 0 0 1
Y; (0<j<n-1) ,
0 —w™% -1 0
wk 0 0 1
o (1<k<n-1)
0 w* 10

The following lemma presents the well-known irreducible representations and characters for the group

Van.

Lemma 2.1. [19, 1] Let n be a positive integer and w = exp(ZZ%) be a primitive 2n-th root of unity.
(1) The irreducible representations of Vg, are listed in Table 1 for n odd and in Table 2 for n even.
(2) The character table of Vg, is listed in Table 3 for n odd, in Table 4 for n =0 (mod 4) and in Table

5 for n =2 (mod 4).

The following lemma determines the eigenvalues and eigenvectors of the adjacency matrix of a normal

Cayley graph.

Lemma 2.2. [2/] Let G = {g1,...,gn} be a finite group and ¢V, ... ¢ be a complete set of unitary
representatives of the equivalence classes of irreducible representations of G. Let xi be the character
of %) and dy be the degree of ¢\¥). Let S be a symmetric subset of G and assume further that S is
conjugation-closed. Then the eigenvalues of the Cayley graph Cay(G,S) are A1, ..., A, where

1
A = d—kzxk(s), 1<k<t,
and N\, has multiplicity dz. Moreover, the vectors

d ¢ o
vgf) = ﬁ (¢§f)(91)7--.,¢§f)(9n)) 1<, j < dy

form an orthonormal basis for the eigenspace associated with the eigenvalue Aj.



Table 2: Irreducible representations of Vg, for n even

a b
X1 1 1
X2 1 —i
X3 —1 —1
X4 —i i
X5 1 —1
X6 i i
X7 -1 1
X8 —1 —1
) wJ 0 0 i
Y;(1<j<n-1) _
0 w™/ —i 0
iwk 0 0 1
Ok (1 <k<n-1)
0 iw*k -1 0

Table 3: Character table of Vg,, for n odd

B2 | el (0<r<n—1) a?s a®*h> (1<s<(n-1)/2) | b | ab

3 1 1 1 1 1 1

& 1 1 1 1 -1 -1

& 1 -1 1 1 1 ] -1

54 1 -1 1 1 -1 !
GO<ji<n-1) —2 | WMD) =22 | Ais 44 —whs — s 010
w(I<k<n—1) | 2] 2 [ wherin purerin | ok oo ks 42 0 |0




Table 4: Character table of Vg, for n =0 (mod 4)

1|2 an ab? gim+1 qdm+3 ats a2 P L I N O A I R
&1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gl1|-1] - 1 i - 1 1 1 1 Al i |1 a1
&1 1 1 1 -1 -1 1 1 1 1 1] -1 |1 1
Gl1|-1] A 1 - i 1 1 1 1 il - |1 -1
& 1] 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
& | 1] -1 -1 1 i -i 1 -1 -1 1 i -i|-1 1
&1 1 1 1 -1 -1 1 1 1 1 1 1 -1 -1
& | 1] -1 -1 1 -i i 1 -1 -1 1 i |-l 1
Gl2] 2 2(_1)j 2(—1)7 | @f@mtl) | qidm+3) | qilds) | qi(4t42) | i(4s) | i(4H2) | 0 0 0
vk | 2] -2 | 2(=1)F | -2(=1)F | igd@mAD) | joi(m3) | qilds) | _qi(it2) | _qits) | i) | o | @ 0 0

jr _ , g7 —Jjr — o TIT
" = w" +wT" = 2cos(TE)

)

(0%

kr

= wh" 4wk = 2 cos(

), w = exp(F);

me{0,...,n/2—1},s€{l,...,n/4 -1}t €{0,...,n/4 -1}, j,k e {1,...,n—1}.




Table 5: Character table of Vg, for n =2 (mod 4)

1|2 an amb2 gim+1 qdm+3 ats a2 P L I N O A I R
&1 1 1 1 1 1 1 1 1 1 1 1 1 1
& | 1] -1 1 1 i - 1 1 1 1 Al i |1 -
&1 1 1 1 -1 -1 1 1 1 1 1] -1 |1 1
&1 -1 1 1 - i 1 1 1 1 il < | 1| -1
& 1] 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
& | 1] -1 1 -1 i -i 1 -1 -1 1 i -i|-1 1
&1 1 1 1 -1 -1 1 1 1 1 1 1 -1 -1
& | 1] -1 1 -1 -i i 1 -1 -1 1 S S B | 1
Gl2] 2 2(_1)j 2(—1)7 | afUmAD) | qi(mE3) | i(4s) | qi(4H2) | gi(ds) | o (442) | 0 0 0
vk | 2] -2 | 2(=1)F | 2(=1)F | igd@mAD) | joimE3) | qilds) | _qi(it2) | _qits) | i) | o | @ 0 0

jr _ , g7 —Jjr — o TIT
" = w" +wT" = 2cos(TE)

)

(0%

kr

= wh" 4wk = 2 cos(

), w = exp(F);

me{0,...,n/2—1},s€{l,...,n/4 -1}t €{0,...,n/4 -1}, j,k e {1,...,n—1}.




2.1 Spectra of normal Cayley graphs Cay(V%,, S), for odd n

We consider the fixed ordering 1,a, a?,...,a® 1, b,ab,...,a?" b, b, ab?,...,a®>" 102, b3, ab, ..., a®" 10>
for the elements of the group Vg,. The adjacency matrix of the normal Cayley graph Cay(Vs,,, S) has the

following eigenvectors corresponding to the one-dimensional irreducible representations x1, x2, x3 and xa4.

(1,-1,...,1,-1,1,-1,...,1,-1,1,-1,...,1,-1,1,-1,...,1,-1)" and
(1,-1,...,1,-1,-1,1,...,-1,1,1,-1,...,1,-1,—-1,1,..., —1,1)".

Now we compute the eigenvectors of the normal Cayley graph Cay(Vs,,, S) corresponding to the two-
dimensional irreducible representations. The adjacency matrix of the normal Cayley graph Cay(Vs,, S)

has the following eigenvectors corresponding to the two-dimensional representations v, for 0 < j < n—1.

u; ) = ﬁm?”}izal,o, {~")25t0)",

0 = (0P 0. (=G

1 = (O () e 0 (-1 W and
us® = (1)WY 0, (1) gt o)

Vin

The adjacency matrix of the normal Cayley graph Cay(Vs,, S) has the following eigenvectors corre-

sponding to the two-dimensional representations ¢y, for 1 < k <n — 1.

(1) _ rk12n—1 rk12n—1
Uk —({w }7‘ 0, {w }7‘ 70)
\/— =0 =0
(2) _ rky2n—1 rk 2n 1\t
g —( AW 0 {w™ )
\/_ 0
1
0 = (0, (w50, {2 and
4dn
1
Uk(4) = an ({w—rk}zrzlgl,(L {w—rk}inol,o)



2.2 Spectra of normal Cayley graphs Cay(V%,, S), for even n

The adjacency matrix of the normal Cayley graph Cay(Vs,,S) has the following eigenvectors correspond-

ing to the one-dimensional irreducible representations x1i,. .., Xxs-
1
u = —(1,...,1),
—\/—({1 o AT (DR (D3 @)1
1
uz = —(1,-1,...,1,-1,-1,1,...,-1,1,1,—1,...,1,—1,—1,1,...,—1,1)",
V8n
1 o\ 2 o\ e\ 2n— n n
“4:—\/@({(_1) 72«:017 (=1)"(i) i:olv (=1)"(-1) 72« 01= (—=1)"(-1) 72« ol)ta
1
us = —(1,...,1,—1,...,—1,1,...,1,—1,...,—1)",
\/871
—\/—({1 b AT O AT (DR (D
1
uy = —(1,-1,...,1,-1,1,-1,...,1,-1,1,—1,...,1,-1,1,-1,...,1,—-1)" and
V8n
1 \7T\2n— T . n— n . n—
Us:ﬁ({(—l) o A ()RS A DR D))"

Now we compute the eigenvectors of the normal Cayley graph Cay(Vs,,, S) corresponding to the two-
dimensional irreducible representations. The adjacency matrix of the normal Cayley graph Cay(Vs,, S)

has the following eigenvectors corresponding to the two-dimensional representations v, for 1 < j < n—1.

0 = (P R0, () 00

0, = (0. i 0, )

0, = Z= (0 iR 0, (iR ) and
0 = —= (w0, T 0"

The adjacency matrix of the normal Cayley graph Cay(Vs,,S) has the following eigenvectors corre-

sponding to the two-dimensional representations ¢y, for 1 < k <n — 1.

0l = S (W P 0 (R )

0l = S (O (WP 0 (TR )
0l = S (O A=V 0 R ) and
wl) = S (w0 T o)



3 PST on Cayley graphs

Let T be a simple graph with n vertices and Spec(I") denotes the set of all the eigenvalues of I'. Let A be
the adjacency matrix of I' and A1,...,\, are the eigenvalues of A. Let P = (v1,...,v,) be an unitary
matrix, where v; is an eigenvector corresponding to the eigenvalue \; (1 < i < n). Then the spectral

decomposition of A is given by
A:)\IE1++)\7LE717

where E; = v;vf (1 < i <n) satisfies

B E E;, ifi=j
il =
0 otherwise.

Therefore, the spectral decomposition of the transition matrix H(t) is given by
H(t) = exp(—iMt)Eq + - - - + exp(—int) E,.
The 2-adic exponential valuation of rational numbers is denoted by Yo and is a mapping defined by
Y5 :Q — Z U {oo}, such that T5(0) = co, and n(zl%) =1, where a,b,1 € Z and 2 { ab.

We assume that oo + 0o =00+ 1 = 0o and co > [ for any [ € Z. Then T3 has the following properties.
For 8,6" € Q,
L. T2(BB') = Ta(B) + T2(B) and
2. Yo(B+ ') > min(T2(8), T2(B8')) and the equality holds if To(3) # YT2(8').
We write the vertex set of Cay(Vs,,S) as V1 U Vo U V3 U Vg, where

Vi=1{0,1,...2n — 1},
Vo={2n,2n+1,...,4n — 1},
Vs ={4n,4n+1,...,6n — 1} and

Vi={6n,6n+1,...,8n—1}.

3.1 PST on normal Cayley graphs over the group V%,, for odd n
We want to state the main result of this section.

Theorem 3.1. Let S be a non-empty subset of Vg, such that 1 ¢ S and Sg = ¢S for all g € Vz,.
Let T' = Cay(Van, S) be a connected Cayley graph with connection set S, where n is odd. Then I' has
four distinct eigenvalues which corresponds to the one-dimensional representations x1, X2, X3 and X4,

respectively, with one is aq = |S| and the other three eigenvalues are denoted by as, s and oy, and some

10



multiple eigenvalues corresponding to the two-dimensional representations v; and ¢y, denoted by B; and
Yg, respectively, for0 <j<n—1and1 <k <n-1.
1. IfueViveVy or ueVi,veVy or ueVo,veVy or uwelVo,veVz or ueVz,vel,
or ueVg,veVy or ueViyveVy or ue Vy,ve Vs, thenT' cannot have PST between two distinct
vertices u and v.
2. Ifu,veVy or w,veVo or u,veVy or u,ve€Vy, then ' cannot have PST between two distinct
vertices u and v.
S IfueVi,veVs or uelVo,veVy or ueVs,veVy or ueVyveVy, then T has PST between
the vertices uw and v if and only if the following three conditions hold.

(i) All the eigenvalues of T are integers, namely, T is integral,

(i) w = v+ 4n and

(1it) Yolar — By) is a constant, say p, and Yoo — az), Ta(ar — as), To(ar — aq) and To(ar — &)
are all bigger than u, for0<j<n—1andl1 <k <n-—1.

Furthermore, when the conditions (i), (ii) and (iii) hold, the minimum time at which T has PST

n

between u and v is {7, where M = ged(a — a1: a € Spec(I') \ {a1}).

Proof. The adjacency matrix A of the normal Cayley graph Cay(Vs,,.S) has the eigenvectors ui,uj(i)
and v (1<i<4,0<j<n—1 and 1<k<mn-—1)which are introduced in section 2.1. Hence we

have the following unitary matrix

1)

P = (u1,us, uz, tg, uo™, uo®, up®  ug®, Ly @

(2) (3) 4)

, Un—1 y Un—1 y Un—1 )

U1(1)7U1(2), U1(3), U1(4), . 7Un—1(1)7vn—1(2)7 Un—1(3)7vn—1(4))-

Let J,, be the all-one matrix of order m. Then the projective matrices corresponding to the eigen-

vectors w1, ue, uz and ug are given by

N 1
Ey =wui = %ana

Jzn _J2n J2n _J2n
E % 1 _JQn J2n _JQn J2n
= UoUy = —
’ o 8n J2n _JQn J2n _J2n 7
_J2n J2n _J2n J2n

1
E3 = uguj = 8—n((—1)“+”),u,v €{0,1...,8n —1} and

By = uquy = o (ea(w,v)),
where
(i) es(u,v) = (=1)“*" when u,v € V1 U V3 or u,v € Vo UVj

11



(i) eq(u,v) =

The projective matrices corresponding to the eigenvectors u;

are given by

X1 0
B0 = o@Dy = 1] 0 0
: 4n _Xl 0
0 0
0 0
B® = ugs)ugg) _ 1 2
4n 0 0
0 —Xo

The projective matrices corresponding to the eigenvectors v,

are given by

-X

X1

(en]
o O o O

0 0
0 —Xy
0 0
0 X

Y1 0 Y7 O
B — 7 Z L]0 0 00
nly, 0y o0
0 0 0 O
0 0 0 O
* 110 Y5 0 Y
Fk(S)ZU,ig)U,ig) =
nlfo 0 0 O
0 Y2 0 Yy
where
1 w2 w—2@n-1)j
w2 1 w—2(2n—2);
X, =
w2(2n—l)j 2(2n—2)j 1
1 wk w7(2n71)k
Wk 1 w7(2n72)k
Y =
w(?n—l)k w(?n—?)k 1

and E()

3

and Fk(4) =

Fk(Q) =

@ .,

J’J’

WD =

(1)

4) (4)*
(O

_y—202n-1)j

and Ys; =

12

w—(?n—l)k

MCIRC
Yk 5 Uk

2 2)*
o= L

(=)t when u € ViU Va,v € Vo UV oru € VoUVy,v € V3 U V3,

0 0
110 Xy
4n 0 0

0 —X;

Xo
1 0
4n _X2
0
)andv()

0 0
110 %
4n 0 0

0 %

Yo 0
1 0 0
4n }/’2 0
0 0

W2

1
w_2(2"_2)j

wk

1
w—(2n—2)k

0
0
0
0

o o o o

()andu() ,where 0 < j<n-—1

'
0
X1

o O o O

X,
0
Xo
0

o O O O

where 1 <k <n-1

Y

Y,

Y,

Y,

o o o O

_,2(2n—1)j

Ww2(2n—2)j

w(2n71)k

w(2n72)k



Therefore, the transition matrix H(t) of the normal Cayley graph Cay(Vg,,S) is given by

H(t) = exp(—itan) Enr + exp(—itag)Ey + exp(—itaz)Es + exp(—itaq)E,y

n—1
+ Z exp(=itB)(BS) + B + B + EW) + 3 exp(—ity) (L) + FY + FY + YY),
Jj=0 k=1

Now we compute the (u,v)-th element of the transition matrix. We have the following three cases.
Case 1. fueVi,veVy, or ueVi,veVy or uelV,veVy or ue Vo,v e Vs or ue Vz,ve Vs

or ueVz,veVy or ueVyveVy or ue Vy,ve Vs, then

H(t)yy = %(exp(—ital) — exp(—itag) + (—1)"T" exp(—itasz) + (—1)“ " exp(—itay))

n—1 n—1
1 . 1 .
+ 4 ;) exp(—it;)(0 +0+0+0) + ; exp(—ity)(0+ 040+ 0)

1
= 8—n(exp(—ita1) — exp(—itag) + (—1)"TY exp(—itay) + (—1)“ T exp(—itay)).

1 1
This implies that | H()y, |< — x4=— < 1.
8n 2n

Therefore, PST cannot occur in this case.

Case 2. I[fu,veV; or u,veVy or u,v € Vs or u,v € Vy, then
1
H(t)yy = %(exp(—ital) + exp(—itag) + (=1)"TY exp(—itas) + (1)1 exp(—itay))

n—1
1 . . 1
+ v Z exp(—itﬂj)(w2(u_v)J + (_1)u+vw2(v—u)]) + o I; eXp(—it"yk)(w(u_v)k + w(v—u)k).

1 1 1 2 2 2n—2 4
This implies that |H(t)uv|§8_nX4+RX2n+4_X2(n_1) 4n+n+47::ﬁ:1

Therefore, | H(t)yy |< 1. Thus | H(t)y, |= 1 if and only if for 0 < j <n—1and 1 <k <n—1, it holds
that,

exp(—itay) = exp(—itas)

exp(—itay) = (—1)""" exp(—itas)

exp(—itay) = (—1)"T" exp(—itay)

( ) =
(—itan) =
(—itan) =
exp(—itar) = WY exp(—itf;)
(—itar) =
(—itar) =
( ) =

o ( 1)u+v 2(v—u)j exp(—itﬁj)

(u—v)k

exp(—ita; exp(—ityg)

(v u)k

exp(—ita; exp(—ity)

13



From the last two equations, since w is the 2n-th root of unity, we get that n divides u — v. Without

loss of generality, we assume that v > v. This implies that either uw = v or u —v = n. Let t = 27T. Then

we have
(a1 — a2)T € Z (1)
(a1 —a)T- 2“1tV ez 2)
(1 —a)T -2 ez (3)
(1= B;)T €2 @)
(=T - "L ez )
(a1 —WT~ 3 €2 )
(an — )T + g €z (7)

Since 0 = tr(A) = a1 +as + a3 + ag + 42?:_01 B + 42:;11 vk, we have that 8nayT € Z, and since
a1 = |S] is a positive integer, we have T' € Q. This implies that all the eigenvalues of the graph are
rational numbers. It is well known that any rational eigenvalue of a graph is an integer. Therefore in this
case the graph is integral.

From (4) and (5) it follows that w + v is even. Since u + v and u — v have the same parity, so u — v
cannot be equal to n. Hence, u = v. Therefore, I' cannot have PST between distinct vertices v and v.

Case 3. IfueVi,veV; or ueVo,veVy or ucVz,veVy or ueVy,veVs, then

1
H(t)yw = 8—n(exp(—ita1) + exp(—itag) + (=1)"T" exp(—itas) + exp(—itay))

n—1 ne1
T ZGXP —i 1)) (—w? VT 4 (—1)utvEly, 20w )+ 4 Zexp ity ) (WO vy
k 1
1 1 1 2  2n+2m-2 4
This implies that | H(t)uy [< g x 4+ - x 204 - x 2(n —1) = R+“47: :ﬁ 1

Therefore, | H(t)yy |< 1. Thus, | H(t)y, |= 1 if and only if for 0 < j <n—1land 1 <k <n-—1,it
holds that,

exp(—ita;) = exp(—itaz)

(=1

exp(—itag exp(—itas)

( )u+'u

exp(—ita; exp(—itay)

( )u+'u+1 2(v—u)j exp(—ltﬁj)

u'u

aq

iton

exp ¥ exp(—ity)

( )
(—itar) =
(—itan) =
exp(—itan) = —w "7 exp(—it))
(—itar) =
(—itar) =
( )=

exp(—itay Ik exp(—ityy)
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From the last two equations, since w is the 2n-th root of unity, we get that n divides u —v. Without loss
of generality, we assume that v > v. This implies that either w —v =3n or u —v = 4n or u — v = 5n.

Let t = 27T,. Then we have

(01— a2)T € Z (3)
(al_ag)T—“;“”eZ 9)
(al—a4)T—u;v €z (10)
(041—53')T—|—%€Z (11)
(a1 = B;)T + %m €Z (12)
(01 — )T + % €z (13)
(01 — )T + % €z (14)

Since 0 = tr(4) = a1 + as + az + ag + 42}:01 B + 42:;11 i, we have that 8nayT € Z, and since
ap = |S| is a positive integer, we have T € Q. This implies that all the eigenvalues of the graph are
rational numbers. It is well known that any rational eigenvalue of a graph is an integer. Therefore in this
case the graph is integral.

From (11) and (12) it follows that u + v is even. Since u + v and u — v have the same parity, so u — v
is neither 3n nor 5n. Therefore u — v = 4n.

Conditions (8) to (14) can be written as follows

(a1 —ao)T € Z (15)
(a1 —a3)T € Z (16)
(a1 —au)T € Z (17)
(a1 = B;)T — % €L (18)
(o — )T €Z (19)

Suppose that (o — B,)T, (a1 — Bs)T € § + Z, for r,s € {0,...,n — 1}, then To((a1 — 3,)T) =
To((an — Bs)T) = —1. This implies that To(ay — 5r) = Ta(as — Bs) = —1 — Yo(T). Thus for all
j€{0,...,n—1}, To(a1—p;) is a constant, pp = —1—"o(T"). From (15) it follows that To((a1 —a2)T) > 0.
Therefore, Yo(a; —asz) > p+1. Simillarly it can be shown that To(ag —a3), Ta(a; —ay) and To(ag —vk)
are also bigger than p, for all k € {1,...,n — 1}.

Suppose that (i), (i¢) and (ié¢) hold. Let M7 = ged(ag — ag, 1 — a3, 0 — g, 00 —Y5: 1 <k <n-—1)
and My = ged(ag — B;: 0 < j <n —1). It can be easily seen that To(M2) = p.

Then the conditions (15),(16), (17) and (19) implies that T € MLIZ and condition (18) imply that
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Te MLQ(% 4+ 7). let T={t>0: I has PST between u and v at time t}. Then we get

~ 27 27 1
T = (EZ> N (E(§ + Z)) NR<o (20)
s
= Mo, (2MZ N M7 (1 + 2Z)) NRso (21)

For every z € Z, it is easy to check that

2 € 2MyZ N My(1 + 2Z)

&z =2Msxg = M (1 + 2yo), for some zp,yo € Z
& 2Mox — 2M7y = My has a solution

& ged(2M4,2Ms) | M,y

< YTo(Mq) > p+ 1 (since To(Ms) = p).

Let M = ng(Ml,MQ). Write Ml = mlM, M2 = mgM. Then gcd(ml,mg) = 1. From TQ(Ml) Z
w1, To(Ms) = p, we get that To(M) = p and my is even, mg is odd. Then 2Mox — 2Myy = My <

mox —myy = 5. Since ged(my, ma) = 1, so the solutions of the Diophantine equation mex — myy = =t
are given by
T = % + mql
-1
Y= m22 + mal, where [ € Z.
Thus
M7 M-
2= 20w = 2My L (14 21) = 22 (1 4 20),
2 M
and
M7 M.
IMLZ N My (1 + 2Z) = ——2(1 + 2Z).
By (21), we get
~ s 2
T= (M + MZ)QR>O
s 2
={—+ —1:1eNU{0}}.
{2+ 271 1€ NU{0})
Therefore, the minimum time at which I' has PST between u and v is 7.
This completes the proof. O
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3.2 PST on normal Cayley graphs over the group V4,, n even

The main result of this section is as follows.

Theorem 3.2. Let S be a non-empty subset of Vs, such that 1 ¢ S and Sg = ¢S for all g € Vg,,. Let
' = Cay(Vsn, S) be a connected Cayley graph with connection set S, where n is even. Then I' has eight
distinct eigenvalues which corresponds to the one-dimensional representations xi,...,Xs, respectively,
with one is ay = |S| and the other three eigenvalues are denoted by s, as, ay,as, as, a7 and ag, and
some multiple eigenvalues corresponding to the two-dimensional representations ¢; and ¢y, denoted by
B; and vy, respectively, for1 <j<n—-1and1 <k<n-1.

1. IfueVijveVy or ueVi,veVy or uelVo,veVj or uelVo,veVs or ueVz,vel,
or ueVag,veVy or ueVyvelVy or ue Vy,ve Vs, then I' cannot have PST between distinct
vertices u and v.

2. Ifu,veVy or u,ve Vo or u,ve Vi or u,v e Vy, then' has PST between distinct vertices u and
v if and only if the following three conditions hold.

(i) All the eigenvalues of T are integers.

(ii) u=v+n.

(11t) (a) If n = 0 (mod 4), then Yo(ar — Pajr—1) and Yo(ar — Yo —1) are the same, say p1, and
To(ar—az), To(an—asz), To(ar—ay), To(on—as), Tolar—ag), To(oar—ar), Tolar—as), To(ar—PBajr)
and Yo(oq — o) are all strictly greater than py, for 1 < j/ < %2 and 1 <k < 251

(b) If n = 2 (mod 4), then Ta(ar — a2), To(ar — aq), Tolar — ag), Yoo — ag), To(ar — Pajr—1)
and Yo(aq —yarr) are the same, say po, and Yo(ar —as), To(or — ), To(ar —az), Yoo — B2jr) and
Yo(an — yaw—1) are all strictly greater than pg, for 1 < j' < 251 and 1 < k' < 251
S IfueVi,veVs or uelVo,veVy or ueVs,veVp or ueVyveVy, then T has PST between
distinct vertices u and v if and only if the following three conditions hold.

(i) All the eigenvalues of T are integers.

(i) uw = v + 4n.

(iii) To(ar — ag), Tolar —ayq), Tolar —ag), Ta(ar —as) and To(ay — i) are the same, say ps, and
To(ar —as), Tolar —as), Tolon —ar) and Yo(ar — B;) are all strictly greater than ps, for1 <j<mn-—1
and 1 <k <n-1.

Furthermore, the minimum time at which T' has PST between u and v is %, where M = ged(a —

M
ay: a € Spec(T) \ {a1}).

Proof. The adjacency matrix A of the normal Cayley graph Cay(Vs,,S) has the eigenvectors ui,uj(i)

and vk(i) (1<i<8,1<j<n—-1 and 1<k<n-—1)which are introduced in subsection 2.2. Hence
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we have the following unitary matrix

1 2 3 4 1 2 3 4
P = (UlaU27U37U4,U5,U6,U7,U8,U1( ),Ul( )7U1( ),Ul( ),'--,Un—l( ),Un—l( ),Un—l( ),Un—l( )7

Ul(l)u U1(2),U1(3),U1(4)7 ceey ’Un—l(l)aUn—l(2)7Un—l(3)7vn—l(4))-

Let J,, be the all-one matrix of order m. Then the projective matrices corresponding to the eigen-

vectors w1, us, us, U7 are given by

1
Ey =wu] = 8—nJ8m
1
Es = uquy = 8—n(e3(u,v)),

J2n _JQn J2n _JQH
1 _J2n J2n _J2n J2n

E = i
’ et 8n J2n _J2n J2n _J2n 7
_JQn J2n _J2n ']271
1
E7 = uguj} = %((—1)““’),%0 €{0,1...,8n—1}

where
(i) es(u,v) = (—=1)“*" when u,v € V1 U V3 or u,v € Vo UVj
(ii) ea(u,v) = (=1)***T1 whenu € ViU V3,0 € VaUVyor u € Vo UVy,v € Vi U V3,

and the projective matrices corresponding to the eigenvectors ug, u4, ug and ug are given by

X iX —-X —iX Y —iY -Y iY
1| -ix X ix -X 1liy v —iv -v
Ey = ugus™ = — JEy = uqug™ = — ,
Sn | _x —ix X iX Sn| .y iy Y iV
iX —-X -iXx X Y -Y iY Y
X —iX —-X iX Y iY Y —iYy
1] ix  x —ix —-X 1 |-y v iv -Yv
Ee = usus” = and Fg = ugug™ = — ,
n | _x iX X —iX Sn| -y iy Y @ iY
X X iX X iv Y Y Y

where Xy, =1"7" and Yy, = (—1)"“7".
The projective matrices corresponding to the eigenvectors ugl), u§-2), ug-g) and u§-4), where 1 <j<n-1

are given by
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X 0 X4 0 0 0 0 O
BV = Dy D* 1 00 00 E,® = 2,7 _ 1 0 X1 0 X
J 4n ’ J J j 4n B
X 0 X5 0 0 0 0 O
0 0 0 O 0 X1 0 Xy
0 0 0 O Xo 0 Xo O
Ej(3) - u;s)u;s) _ 2 2 ond .Ej(4) _ W,
nlo 0 0 0 nl1x, 0 Xy 0
0 Xo 0 Xy 0O 0 0 O

The projective matrices corresponding to the eigenvectors v,(cl), ’U](f), U,(f) and v,(:l), where 1 <k <n-1

are given by

Yi 0 -1 0 0 0 0 0
* 1 0O 0 0 0 % 110 Vv 0 —-Yv;
R o = L  R® oL ,
nl-vy; 0 Y7 O nfo o 0 O
0 0 0 0 0 -5 0 1
0 0 0 0 Yo 0 -Y2 0
RO — @@t L0 Y 0 g L0000
nlo o o o n|_y, 0 v, o0
0 -Y; 0 Y, 0 0 0 0
where
1 e T e Y 1 Wi co @n-1)j
wl 1 cee w—@n—2)j wI 1 co w(@n—2)j
Xl = 5 X2 - N
w@n=13  ,(@2n=2)7 . 1 w1 ,—n=2) . 1
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1 Lok oo @n=1) -1k

- 1 i~ (2n=2)  —(2n—2)k
Y, = and
=1 ,en-Dk  §(2n=2) ,2n-2)k . 1
1 iilwk . i7(2n71)w(2n—1)/€
ok 1 . (2n=2) (2n-2)k
1/2 =
i2n=1) ,—@n-1k ;2n=2) ,—(@2n-2)k | 1

Therefore, the transition matrix H(¢) of the normal Cayley graph Cay(Vg,,.S) is given by

H(t) = exp(—itan) Enr + exp(—itag)Ey + exp(—itaz)Es + exp(—itaq)Ey

+ exp(—itas)E5 + exp(—itas) Es + exp(—itar)E7 4+ exp(—itag)Es

n—1 n—1
+ 3 exp(=itB) (B + B + BY + BEW) + 3 exp(—ity) (FL) + FY + B + FY).
j=1 k=1

Now we compute the (u,v)-th element of the transition matrix. The following three cases arise.

Case 1. If u € V7,v € V3, then

1
H({t)y = %(exp(—ital) + exp(—itag)i* T 4 (=1)u TV exp(—itas) + (—i)“ V! exp(—itay)

— exp(—itas) + iU exp(—itag) + (—1)"TV exp(—itar) + (i) V3 exp(—itag)).

This implies that | H(t)u, [< & x8 =1 < 1.
Simillarly, it can be shown that foru € Vi, v €V, or ue€ Vo,v € Vi or ue Vo,v e V3 or ue Vi, v eV,
or ueVs,veVy or ueVy,veV; or ueVyve Vs, | H{t)y |< 1.
Therefore, in this case PST cannot occur between the vertices u and v.
Case 2. I[fu,veV; or u,veVy or u,v€ Vs or u,v € Vy, then

1

H(t)yy = 8—(exp(—ita1) +i"7Vexp(—itag) + (—1)"“" exp(—itaz) + (—i)" " exp(—itay)
n
+ exp(—itas) + """ exp(—itag) + (—1)“ TV exp(—itar) + (—i)* " exp(—itag))

n—1

n—1
1 . . 1
+ R ;:1 exp(—itﬂj)(w(“fvh + w*(’u.f'u)‘]) + R k§71: exp(_it,}/k)(iu—vw(ufv)k + iu—vwf(uf'u)k).

This implies that | H(t)u |< g2 X 8+ 2= X (2n—2) + £ x (2n —2) = 1.
Therefore, | H(t)yy |< 1. Thus | H(t)y, |= 1 if and only if for 1 <j<n—1and 1 <k <n—1, it holds
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that,

exp(—itas “Vexp(—itas)

exp (—1)"" exp(—itaz)

(—1)"7" exp(—itay)
exp(—itas)

‘u

Y exp(—itag)

(—1)*7" exp(—itas)
W= T exp(—itB;)

—(u=v)j T exp(—itB;)

e (u v)k

exp exp(—ity)

e —(u—v)k

=i""w exp(—ity)

(—iten) =
(—iten) =
(—iten) =
(—iten) =
(—iten) =
exp(—itar) = (—1)"" exp(—itar)
(—iten) =
(—iten) =
(—iten) =
(—itar)
(—itar)

exp(—itaq

From the last two equations, since w is the 2n-th root of unity, we get that n divides u — v. Without
loss of generality, we assume that w > v. This implies that u — v = n. Let ¢t = 2#T. Then the preceding

equations implies that

(a1 — )T — % €z (22)
(1 —a3)T €Z (23)
(01 — )T — % €z (24)
(1 —a5)T €Z (25)
(a1 — ag)T — % €z (26)
(i —ar)T €Z (27)
(01 — ag)T — % €z (28)
(o~ )T~ L ez (29)
(01 3T -2 -2 ez (30)

Since 0 = tr(A) = oy +as+ag+as+as+ag+ar+ag+4 Z?:ll B +4 Zz:ll i, we have that 8na T € Z,
and since a; = |S| is a positive integer, we have T' € Q. This implies that all the eigenvalues of the graph
are rational numbers. It is well known that any rational eigenvalue of a graph is an integer. Therefore,
in this case the graph is integral.

Our next discussion is distinguished into two parts according as n = 0 (mod 4) or n = 2 (mod 4).
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(1) n =0 (mod 4). In this case, conditions (22) to (30) turns into

The preceding conditions implies that, To(o — B25—1) and To( —y2rr—1) are the same, say p1, and
To(ar —ag2), To(ar —az), To(ar —ay), To(ar —as), To(ar —ag), Ta(ar —ar), To(ar —ag), Ta(a; —ﬁzj’)
and Ty(a1 — yor') are all strictly greater than i, for 1 < j/ < 251 and 1 < k' < 251,

(#9) n =2 (mod 4). In this case, conditions (22) to (30) turns into

(an — )T — % €z
(1 —a3)T € Z
(on —aq)T — % ez
(a1 —a)T € Z
(a1 —ag)T — % ez
(1 —a7)TE€Z

1
(al—ag)T—IEZ

(al—ﬁj)T—%EZ
1k
(al—’}/k)T—§—§€Z

The preceding conditions implies that, To(a; — ag), Ta(ar — ay), Tolar — ag), To(ar —as), To(ag —
Baj—1) and Yo(aq — ok ) are the same, say po, and Yoo —ag), To(ar —as), Talan —ar), Talon — Bajr)

. . 1 1
and Yp(o — yor—1) are all strictly greater than pp, for 1 < j' < 5= and 1 < k' < 2=,
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Case 3. fueVi,veVs or ueVo,veVy or ueVz,veVy or ueVy,v eV, then

1
H(t)yy = — (exp(—itay) — i" ¥ exp(—itaz) + (—1)“"" exp(—itaz) —

(i)

&n

+ exp(—itas) — iV exp(—itag) + (—1)"“"? exp(—itar) —

n—1

+ % Zexp —itB;)(w!

This implies that | H(t)uo |[< o= X 84 2= x 2n—2) + .= x (2n —2) =

8n

n—1

Y exp(—itag))

1
+w (u—v)j + . Z exp lt’}/k)( su— vw(u v)k _ lufvw—(u—'u)k)'

Therefore, | H(t)y, |< 1. Thus | H(¢ )uv |: lifand only iffor 1 <j<n—1and 1<k <n-—1,it holds

that,
exp(—itag) = —i""" exp(—itas)
exp(—ita;) = (—=1)"“"" exp(—itas)
exp(—iten) = —(—1)""" exp(—itaa)
exp(—itay ) = exp(—itas)
exp(—itag) = —i""" exp(—itag)
exp(—itay) = (=1)""" exp(—itar)
exp(—itay) = —(—1)"" exp(—itasg)
exp(—itay) = w7 exp(— itp;)
exp(—itay) = w7 exp(— itp;)
exp(—itay) = —i"7" WUk exp(—itvyk)
exp(—ita;) = —i* P (WTVIk

exp(—ityk)

From the last two equations, we get that w — v = 4n. Let t = 27T. Then the preceding equations

implies that

(al—ag)T—%EZ
(n —a3)T €Z
(al—a4)T—%€Z
(a1 —a5)T € Z
(al—ag)T—%EZ
(1 —a7)T€Z

1
(al—ag)T—§€Z
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(a1 — ﬁ])T eZ (38)

(1 — )T — % ez (39)

Since 0 = tr(A) = oy +as+ag+as+as+ag+ar+ag+4 Z?;ll B +4 Zz;ll ~r, we have that 8na, T € Z,
and since ap = |S| is a positive integer, we have T' € Q. This implies that all the eigenvalues of the graph
are rational numbers. It is well known that any rational eigenvalue of a graph is an integer. Therefore,
in this case the graph is integral.

The preceding conditions implies that, To(ay — a2), Ta(ar — aq), T2(a1 — ag), Tao(ar — ag) and
To(a1 — yk) are the same, say ps3, and To(ar — ag), To(ar — as), To(ar — ar) and To(a — F;) are all
strictly greater than us, for 1 <j<n—1land1<k<n-1.

Using the same technique in Section 3.1, we can show that the minimum time at which I has PST
between u and v is {7, where M = ged(a — a1: a € Spec(T') \ {a1}).

This completes the proof. O
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