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Abstract—Implantable Brain-machine interfaces (BMIs) are
promising for motor rehabilitation and mobility augmentation,
and they demand accurate and energy-efficient algorithms. In
this paper, we propose a novel spiking neural network (SNN)
decoder for regression tasks for implantable BMIs. The SNN
is trained with enhanced spatio-temporal backpropagation to
fully leverage its capability to handle temporal problems. The
proposed SNN decoder outperforms the state-of-the-art Kalman
filter and artificial neural network (ANN) decoders in offline
finger velocity decoding tasks.

The decoder is deployed on a RISC-V-based hardware plat-
form and optimized to exploit sparsity. The proposed implemen-
tation has an average power consumption of 0.50mW in a duty-
cycled mode. When conducting continuous inference without
duty-cycling, it achieves an energy efficiency of 1.88µJ per
inference, which is 5.5X less than the baseline ANN. Additionally,
the average decoding latency is 0.12ms for each inference, which
is 5.7X faster than the ANN implementation.

Index Terms—Spiking neural network, neural decoder, im-
plantable, brain-machine interface, sparsity, regression

I. INTRODUCTION

BRAIN-MACHINE interfaces (BMIs) bridge neurons in
the brain with external electronic devices. They have

become increasingly popular in both academia and industry as
a promising approach to assist individuals with paralysis and
amputations in regaining or enhancing their motor functions.
An early study in 2004 conducted a human clinical trial
to showcase prosthetic devices with an implanted BMI [1].
A BMI proposed in [2] was able to decode handwriting
movement intentions at a speed close to typical smartphone
texting. In a more recent study, researchers demonstrated a
BMI system that bridges the brain and spinal cord to treat a
patient with spinal cord injury. By recording and processing
the brain’s neural signals to stimulate neurons in the spine, this
new BMI system has restored the person’s ability to walk [3].

A BMI system typically consists of three main components:
data acquisition, data processing, and stimulation or actuation.
Both non-invasive and invasive methods are viable choices for
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acquiring data from the brain. Although non-invasive methods,
such as EEG, reduce risks for patients, invasive methods
such as iEEG or ECoG usually outperform the non-invasive
methods in terms of precision thanks to their higher signal-to-
noise ratio and finer temporal-spatial resolution [4]. Despite
the advantages, implanted BMIs are often tethered using
wires for the transfer of power and the large amount of data
necessary for accurate decoding [1], [2], resulting in a higher
risk of scar tissue formation and infection. One promising
approach to reduce the damage caused by the wires is neural
dust [5], featuring wireless power and data transfer to and from
the miniaturized and distributed devices [6]. However, this
wireless approach faces stringent requirement, arising from
two factors: 1) limited battery life and transferable power, and
2) the risk of tissue damage caused by the heat generated by
the implant. Among the components of a BMI system, the data
transceiver is usually the most power-hungry element, given
its role in handling vast amount of data acquired from high-
channel recording circuits. To mitigate these challenges, edge
computing emerges as a viable solution for BMI systems. By
processing data directly within the sensor system, it reduces
data transfer power. This indicates the growing importance
of developing energy-efficient neuronal decoding algorithms
within the BMI field.

Spiking neural networks (SNNs), inspired by biological neu-
rons, are promising for energy-efficient inference. Neurons in
SNNs employ single-bit spikes to transfer information between
layers, unlike neurons in conventional artificial neural net-
works (ANNs) that generally use multiple bits. This property
allows for efficient hardware implementation. Moreover, SNNs
possess inherent temporal memory, allowing them to extract
temporal features and making them well-suited for time-series
regression tasks such as motor function decoding. Another
beneficial property of SNNs lies in the firing behavior of
neurons, which occurs only occasionally and asynchronously.
This leads to data sparsity that can be harnessed to achieve
more energy-efficient computation. Thanks to their energy-
efficient properties, SNNs have been extensively explored for
classification tasks including image classification [7], [8] and
gesture recognition [9], [10], yet more studies are necessary
to assess their usage in time-series regression tasks.

Although SNNs show promise for energy-efficient imple-
mentation, several challenges remain before this potential can
be fully realized. Firstly, SNNs have a more complex data flow

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

ar
X

iv
:2

40
5.

02
14

6v
1 

 [
ee

ss
.S

P]
  3

 M
ay

 2
02

4



2

Noise 

Injection

2
 x

 L
I

9
6
 x

 S
B

P

S
ta

n
d
a
rd

iz
e

MCU

Training

Test

2
5
6
x
L
IF

2
5
6
x
L
IF

td
B

N
F

C

2
5
6
x
L
IF

td
B

N
F

C

2
5
6
x
L
IF

2
5
6
x
L
IF

td
B

N
F

C

2
5
6
x
L
IF

td
B

N
F

C

2
5
6
x
L
IF

2
5
6
x
L
IF

td
B

N
F

C

2
5
6
x
L
IF

td
B

N
F

C

Noise 

Injection

2
 x

 L
I

9
6
 x

 S
B

P

S
ta

n
d
a
rd

iz
e

MCU

Training

Test

2
5
6
x
L
IF

td
B

N
F

C

2
5
6
x
L
IF

td
B

N
F

C

2
5
6
x
L
IF

td
B

N
F

C

Fig. 1. Application scenario and data flow of the proposed design. The neural signal is obtained from the motor cortex region of a brain before the SBP
feature is extracted. During training, the input data is prepared with a sliding window containing 10 time steps with 9 steps overlapping. Then, noise is injected
before the data is normalized. In test mode, all the data is streamed into an SNN neural decoder deployed on an MCU that predicts the finger velocity.

than conventional ANNs. In contrast to typical fully connected
or convolution networks, SNNs require additional handling
of temporal memory. Secondly, despite the natural temporal
data sparsity of SNNs, effectively exploiting the sparsity on
resource-constrained hardware remains a significant challenge.
The sparsity lies in feature maps varying from one inference to
another, leading to irregular memory access patterns. Thirdly,
many SNN implementations require multiple inference cycles
to form the temporal dimension for a single input data due
to the rate encoding, increasing energy consumption, and pro-
cessing time [11]. Therefore, despite the benefits of single-bit
operation and sparsity of SNNs, their practical application has
been limited to neuromorphic hardware specifically designed
for this purpose with inherent limitations in flexibility and
adaptability [12]. On the other hand, recent general-purpose
edge computing platforms have proven to be energy efficient
and suitable for BMI applications [13], [14]. Exploring SNN
deployment on these platforms is beneficial since they are
more versatile, affordable, and widely accessible. They are op-
timal for algorithmic and implementation explorations before
the final deployment on neural implants, as suggested by [15].

In this work, we propose a neural decoding algorithm and
deployment methodology for a low-complexity SNN, trained
with an enhanced backpropagation method, aimed at the
offline open-loop finger velocity prediction for implantable
BMIs, as depicted in Fig. 1. Previous research in [16] presents
an SNN-based finger velocity decoder, reporting decoding ac-
curacy and computational complexity. The achieved decoding
coefficients were 0.745 and 0.582 for the two given datasets.
Building on [16], this work introduces new regularization
techniques, yielding improved accuracies of 0.782 and 0.624.
Furthermore, this paper delves into the implementation details,
such as the model, training method, and the entire hardware
deployment flow for inference, including the quantization
and optimization for the deployment on the energy-efficient
hardware platform.

The main contributions of this paper are summarised below:
• We propose an open source1 and low-complexity SNN for

1https://github.com/liaoRichard/SNN-for-Finger-Velocity-iBMI (To be up-
dated on acceptance)

continuous-time finger velocity decoding for low-power
implantable BMIs.

• We demonstrate an SNN backpropagation training strat-
egy enhanced with neuron reset-by-subtraction, trainable
decay factors, and noise injection to achieve a higher
accuracy than the state-of-the-art KF [17] and ANN
decoders [18].

• The proposed design is quantized with quantization-aware
training and deployed to a RISC-V-based GAP9 micro-
controller (MCU) for inference, resulting in a memory
footprint saving of around 4X. The deployment is opti-
mized to leverage SNN sparsity to enhance performance
and efficiency.

• The implementation achieves an energy per inference
of 1.88 µJ for continuous inference, 5.7X less than the
baseline ANN and 2.1X less than the baseline SNN
implementation that does not exploit sparsity. The average
inference latency is only 0.12ms, 5.5X and 1.8X faster
than the conventional ANN and SNN baseline, respec-
tively.

To the best of our knowledge, our work is the first sparsity-
aware implementation of an SNN on a general-purpose edge
computing platform for neural implants.

II. RELATED WORKS

A. Neural decoding algorithms

Neural decoding algorithms translate brain activities into
signals that can be used to operate actuators based on the
user’s intention. Linear decoders, such as linear regression,
linear discriminant analysis, and variants of Kalman filters
have been developed to perform arm and hand control [17],
[25]–[28]. Linear decoders require little computation and can
be implemented in highly energy-efficient hardware. However,
linear decoders can only achieve moderate accuracy. Nonlin-
ear decoders, including recurrent neural networks [29], [30]
and feed-forward neural networks [31], [32] have received
recent attention. While neural networks are powerful, they
come at the cost of high computational complexity, implying
high energy consumption in hardware implementations [33].
Therefore, it is essential to develop decoding algorithms that
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TABLE I
COMPARISON TABLE

This Work BioCAS24 [19] TBioCAS22 [20] TBioCAS16 [21] ISSCC24 [22] Frontiers16 [23] ISCAS23 [24] IEEE Sens.J24 [13]
Type MCU FPGA ASIC ASIC ASIC ASIC MCU MCU

Task BMI Finger
Movement

BMI Finger
Movement

BMI Finger
Movement

BMI Finger
Movement

BMI Hand
Writing

BMI Object
Control

Digit
Recognition

BMI
Motor Imagery

Feature SBP MUA SBP Spike rate Spike rate Spike rate Spike rate EEG
Algorithm SNN SNN SSKF ELM DNC + LDA SNN SNN CNN
Output Type Regression Regression Regression 12 classes 31 classes 4 clases 10 clases 2 classes

Accuracy 0.782 corr
0.627 corr 0.84 corr c 0.601 corrd

0.459 corrd 99.3%c 90.8%c 50% - 70%c 97.2% c 82.51% c

Power 0.50 mW 56.4 mW 0.588 mW a 0.4 uWb 0.22 mW 4 mW 99.5 mW 10.17 mW
Latency 0.12 ms 0.3 ms < 1 ms - - < 100 ms 0.04 ms 2.95 ms
Energy/infer. 1.88 uJ 56.4 uJ - - - - 4.9 uJ 30uJ
a Feature extraction power included b MCU power not included c Not same tasks or datasets, cannot be used for direct comparison
d Reproduced results, assuming SSKF has same accuracy as KF

can achieve high accuracy while consuming low energy. To
this end, SNNs emerge as promising candidates. Our proposed
SNN achieves better accuracy compared with the state-of-the-
art KF and ANN neural decoders in offline neural decoding
tasks reported in table III, which will be discussed in detail in
section V.

B. SNN training and deployment
There are three main methods for SNN training:
1) ANN-to-SNN conversion requires an ANN trained before

converting it to an SNN. Typically, it relies on rate coding
and tries to mimic the computation of the ANN by setting the
parameters of the SNN to correlate the spiking neurons’ firing
rates with the neurons’ activation of the original ANN [34]. In
the same vein, [35] introduced an SNN decoder converted from
a Kalman filter decoder. This approach has shown accuracy
comparable to its ANN or KF counterparts but typically
requires high spike counts due to the conversion process and
rate approximation, resulting in high energy consumption and
latency.

2) Unsupervised learning, which relies on local learning
rules [36] such as spike-timing-dependent-plasticity (STDP).
This is a biologically plausible approach, but without global
supervision, it has not yet achieved state-of-the-art perfor-
mance in terms of accuracy and energy efficiency.

3) SNN backpropagation such as spatio-temporal-back-
propogation (STBP) [7], [8]. This approach establishes an
error backpropagation path for gradient descent training by
applying a surrogate function in the backward flow to approxi-
mate the derivative of the spike activity. It utilizes the temporal
feature of the input and has demonstrated good performance in
classification tasks. In this work, we construct the SNN using
the SNN backpropagation method.

After training, SNNs are deployed. The key performance
indicator for deployment is energy efficiency. Due to the
irregular memory access pattern and more complex data
flow, deploying SNNs efficiently can be challenging. FPGA
accelerators [37], and analog [38] or digital [39]–[41] ASIC
accelerators have been designed targeting efficient deployment
of SNNs. There are only a few studies discussing SNN
deployment on MCUs. An SNN is deployed on a low-cost
MCU for digit classification task [24], which, while demon-
strating feasibility, does so without detailed optimization or

deployment strategies. This system reports a relatively high
power consumption of 99.5mW and an energy efficiency
of 4.9 µJ per inference. In contrast, our paper offers an in-
depth optimization of SNN deployment on MCU, with special
emphasis on exploiting sparsity.

C. BMI hardware systems
Table I provides a comparative analysis of our approach

with previous works in the field of BMI hardware deployment
and implementation.

The works in [13], [21]–[23] focus on implementing BMIs
for classification tasks. Specifically, [13] introduces a CNN
deployed on a RISC-V-based MCU for motor imagery tasks,
consuming tens of uJ per inference and showing the feasibility
of applying modern MCUs to BMI applications. [21] discusses
a mixed-signal ASIC for classifying finger movements using
an extreme learning machine (ELM) algorithm, which con-
sumes only 0.4 µW. However, it should be noted that this
measurement excludes the power of the MCU and peripherals.
Moreover, the adaptability of ELM for BMI regression tasks
requires further exploration.

[19], [20] introduce BMI hardware for regression tasks.
[20] describes an ASIC that supports feature extraction and
decoding, maintaining a low power consumption of 588 µW
and a processing latency under 1ms for closed-loop BMI
tasks. However, the KF-based decoder in this system yields
relatively lower accuracy than neural network-based decoders.

In a recent work by Leone, et al. [19], an FPGA-based
SNN decoder was introduced for finger movement regression
tasks, with a latency of only 0.3ms. However, this design has
a power consumption of 56.4mW and energy per inference
of 56.4 µJ which are significantly higher when compared to
other neural decoders.

Compared to the prior works, our design demonstrates an
SNN-based decoder and its sparsity-aware deployment on a
flexible MCU with competitive decoding accuracy, latency of
0.12 µs, and energy efficiency of 1.88 µJ/inference in BMI
regression tasks.

III. ALGORITHM

A. Input feature
The proposed network adopts the spiking band power (SBP)

introduced in [42] as the input feature. SBP is a neural feature
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defined as an absolute average of a 300−1000Hz band-
pass-filtered signal. The advantage of the spiking band power
feature lies in its lower data rate than the direct action potential
acquisition, implying lower power for communication, while
its value is still determined mainly by single neuron spikes.
SBP has shown good performance for motor prediction tasks
when embedded in various algorithms [17], [18]. SBP feature
extractors have been implemented in both digital [20] and
analog [6] circuits consuming very low power. In this work, we
propose a network receiving SBP features from 96 channels.

B. Neuron Model

The proposed network uses a leaky-integrate-and-fire (LIF)
neuron as its neuron model, which is one of the most
commonly applied models in computational neuroscience. It
is inspired by the biological neuron but implemented in a
simplified form. As demonstrated in [43], the LIF neuron
model shows a good compromise between cognitive capabil-
ities and computational complexity, thus making it a suitable
candidate for embedded platforms with limited resources. The
action potentials are simplified to events and neural dynamics,
which are governed by two equations describing the membrane
potential evolution and the spike generation mechanism [44].
The membrane potential is defined by the differential equation

τ
du

dt
= −u+ i, (1)

where u is the membrane potential, i is the input current, and
τ is the time constant for the membrane potential decay.

To make the model more suitable for efficient computation,
we can solve the equation (1) with the forward Euler method,
which gives us the discrete-time equation

u(t+ dt) = (1− dt

τ
)u(t) +

dt

τ
i. (2)

In the scenario of neural networks, the input i is the
weighted sum of the output from a previous layer and can
be represented by

il(t) = W lsl−1(t) +Bl, (3)

where W is the weight matrix, B is the bias vector, and l
represents the layer number.

The neuron fires its output in accordance with its current
membrane potential. This behavior is governed by the second
half of the neural dynamics model, the spike generation
mechanism, represented by a simple Heaviside step function

sl(t) =

{
1 ul(t)− Vth ≥ 0

0 ul(t)− Vth < 0,
(4)

where s represents the single-bit output of a neuron, and Vth
is the threshold voltage.

The membrane potential will reset to a new value after
the neuron fires. Typically, when the membrane potential
exceeds a threshold, the neuron fires and resets its membrane
potential to zero, which means all information regarding recent
input activity is lost after firing. However, we adjusted the
reset scheme to subtract the threshold voltage (Vth) from the
membrane potential when firing, as inspired by [45]. This

×
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Input Multiply Iintegrate SpikeThreshold
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m
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Fig. 2. LIF neuron dynamics. Membrane potential u keeps the internal state
of a neuron. If the membrane potential is higher than a threshold voltage, then
the neuron will fire and reset the membrane potential. Otherwise, the neuron
keeps its membrane potential for the next step and does not fire.

means that the information from very high activities is not
completely lost. The data above the threshold can influence
the neuron’s decision at the next firing. This adaptation poses
only a little hardware overhead, requiring only one subtraction
operation per neuron per inference.

The equation (2) can be further simplified by using decay
factors λ = 1− dt

τ and merging the factor dt
τ into the weights

of the input. After incorporating the spikes and resetting, the
membrane potential can be modeled by

ul(t) = λ(ul(t− 1)− sl−1(t− 1)Vth) + il(t). (5)

The behavior of our neural model follows (3), (4), and (5),
and it is illustrated in Fig. 2. The membrane potential u keeps
the internal state of a neuron. The membrane potential and the
decaying factor λ allow the neuron to partly retain its former
information and inherently capture temporal dynamics.

The decay factor λ determines the length of history that
a neuron can remember. Larger λ leads to slower membrane
potential decay, while small values lead to fast decay. Different
λ values indicate the different lengths of history that a neuron
can remember. Typically, a single λ is employed across the
whole network. However, in our proposed network, each
neuron has its own individually trainable decay factor λ,
allowing for varying sensitivities to historical data among
neurons. In this way, we allow the network to capture more
complex temporal dynamics. Fig. 3 shows the distribution of
the decay factor that spans the entire range between 0 and
1 after training. Introducing trainable decay factors increases
the complexity of training. However, in the inference process,
its overhead of storing the decay factor is negligible since the
number of neurons is far fewer than the number of weights.

In contrast to the normal ANN implementation where the
information between layers is carried by multi-bit real values,
the information between spiking layers is encoded in 1-bit
spikes. Therefore, one of the advantages of using an SNN
instead of a conventional ANN is that the input current i
can be calculated as cheaper additions of weights instead of
Multiply-Accumulate (MAC) operations due to the 1-bit input
spikes. All hidden neurons fire only occasionally when the
membrane potentials exceed the threshold, introducing a high
degree of sparsity in the intermediate features. The reduced
computational complexity and the high degree of sparsity are
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Fig. 4. Topology sweep. The scope of this exploration includes the number of
spiking layers and the number of neurons in each layer except for the output
layer.

the two main sources of energy efficiency of the proposed
SNN compared to the conventional ANNs.

C. Proposed Network Architecture

In this work, we propose a fully-connected SNN for velocity
regression. A conventional ANN is proposed in [18] for the
same task, where the input layer is a temporal convolution
layer for feature extraction from multiple time steps, followed
by three fully connected layers. However, the large number of
neurons in the flattened output of the temporal convolutional
layers leads to a high number of parameters and computations
in their second layer.

Instead of processing multiple time steps of inputs using a
temporal convolution layer, we only pass inputs from a single
time step in each inference. Then, we rely on the implicit
recurrent nature of the neurons for temporal processing. As a
result our model only uses 4 fully connected spiking layers.
This choice was made to exploit an intrinsic property of SNNs,
i.e., the membrane potential of each neuron acts as a memory
element and stores temporal information from previous inputs.

The input to the first layer of our proposed network are
multi-bit SBP features from 96 channels. Hence, the input
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current is calculated as i(t) =
∑M−1

n=0 wSBPn(t), rather than
the i(t) =

∑M−1
i=0 wlsl−1(t) used in the other layers. Hence,

for the first layer, it is not possible to replace MAC operations
with additions. The second and third layers are spiking layers
formed by the LIF neurons described in section III-B. The
output layer is composed of two leaky-integrate neurons pre-
dicting the velocity of two fingers. In contrast to some works
converting the spikes back to the real value, we directly use
the membrane potential as the output. Therefore, the neurons
in the last layer are modeled by u(t) = λu(t−1)+i(t) without
spike and reset mechanisms.

The number of hidden layers and neurons in each layer is
determined based on the parameter sweep shown in Fig. 4. We
choose a configuration consisting of 4 layers, each comprising
256 neurons except for the output layer, after making a
trade off between the configuration size and the performance
improvement.

Between successive layers, batch normalization is imple-
mented to improve convergence. Training an SNN with a
backpropagation approach requires unfolding the network,
equivalent to expanding the network to more layers. This
severely exacerbates the gradient vanishing or explosion prob-
lems. Unlike the conventional ANN, the SNN has an extra
temporal dimension, and neurons firing too frequently or
scarcely can degrade performance [8]. Therefore, the scale of
the threshold voltage and the input needs to be balanced. We
employ the threshold-based batch normalization introduced
in [8] to address these issues. The threshold-dependent batch
normalization can be described by

y =
Vth(x− E[x])√

V ar[x] + ϵ
∗ γ + β. (6)

In training, E[x] and V ar[x] are calculated over the mini
batches. In inference, we use the mean and standard deviation
calculated in the training dataset. Unlike the standard batch
normalization function, the Vth is also taken into considera-
tion. To account for the additional temporal domain, the mean
and variance are calculated for each channel not only for all
the spatial dimensions but also for the temporal dimension. To
reduce computation complexity, we merge batch normalization
with the pre-synaptic calculation described in (3).

When we export parameters for hardware deployment, batch
normalization is fused into weight and bias to eliminate
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overhead in inference as in

Wfused =
VthW√

V ar[x] + ϵ
∗ γ (7)

and
Bfused =

Vth(B − µ)√
V ar[x] + ϵ

∗ γ + β. (8)

D. Training

Spiking functions for neurons in SNNs are not directly
differentiable. We implement a surrogate function to allow the
gradient to propagate back through the neurons, as suggested
by [7], [46]. In this work, we use a square surrogate function
defined by

∂a

∂u
=

{
1 if|u(t)− Vth| < 0.5

0 else.
(9)

In the forward path, the spike function is governed by (4),
while, in the backpropagation phase, the gradient is calculated
by the surrogate function. We choose this surrogate func-
tion for its simplicity and good performance shown in other
works [7].

The training process is developed on top of the publicly
available PyTorch implementation of the STBP backpropaga-
tion training method introduced in [7]. We modify it to sup-
port the proposed architecture incuding the reset-by-subtract
scheme, trainable decay factor, quantization, hyperparameter
sweeps, regularization as well as non-spiking output layers.

Fig. 5 shows the unfolded network during the training
process. The STBP allows backpropagation through both tem-
poral and spatial dimensions. The network is unfolded for ten
time steps during the training process. This is equivalent to
having a much deeper network, similar to the training process
of RNNs. The time sequence length for training should be
long enough to capture the relevant temporal dependencies;
however, extending the number of time steps overly may lead
to longer training duration and worsen the issue of vanishing
or exploding gradients. We observed that the network does not
need to unfold more than ten frames as it does not improve
the accuracy, shown in Fig. 6. Additionally, we discard the
first two frames in the loss calculation because the network

has not converged to a stable prediction, yet. The loss is then
back-propagated through spatial and temporal dimensions in
this unfolded network.

We generate the training dataset by using a sliding window
with a length of 10 time steps and an overlap of 9 time steps.
These training samples are then shuffled during training. Note
that during the inference process, the network is not unfolded,
and all neurons maintain and update their internal state across
multiple inferences. One time step is used once per inference.
This operating scenario mimics the situation where a real-time
prediction task runs on data that are streamed continuously to
the network.

We apply the AdamW optimizer [47] with a learning rate
and a weight decay of 2 × 10−3 and 1 × 10−2, respectively.
Learning rate decay is configured to decay by 1 decade every
20 epochs for better convergence. The batch size used during
training is 128. The membrane threshold Vth is set to 0.4
which facilitates an optimal firing rate, thereby contributing
to improved accuracy. These hyperparameters are determined
by grid search.

Similarly to [32], we use the time-integrated mean square
error as the loss function during training, while the Pearson
correlation coefficient and mean square error are used as the
metric to evaluate the performance of the SNN, which are
commonly adopted for neural decoding algorithm compar-
isons [32], [42].

E. Regularization

Overfitting is a common problem for neural networks that
have numerous parameters and are trained with limited data.
Our model also suffers from overfitting as observed in Fig. 7.
We address this issue by three means. First, the weight
decay function from the AdamW optimizer is applied. Second,
dropout is implemented between each layer. It is performed
for only spatial dimensions. At each time step, a new dropout
mask is generated randomly. The dropout probability must be
carefully calibrated. While low dropout probability provides
insufficient regularization, excessively high probability can
lead to the neglect of too many neurons during training,
causing significant information loss. After a grid search, a
dropout probability of 0.2 is chosen.

Third, white Gaussian noise is inserted before normaliz-
ing the input data to enhance the regularization effect. The
inserted noise has a zero mean, and the standard deviation
is set to 0.9 times the average standard deviation of the
input features across all channels. While the noise helps to
mitigate overfitting by introducing variability and uncertainty
during training, too strong noise obscures the input feature and
reduces accuracy. The standard deviation of 0.9 is determined
as a result of a parameter sweep shown in Fig. 6. The noise
added to input data from all the channels is calculated based
on the same criteria mentioned above.

Noise injection not only adds randomness to the input data
but also serves as a data augmentation method. As introduced
in section III-D, each training sample is prepared by using a
sliding window of 10 time steps with 9 steps overlapped with
the previous sample. Noise is added after these 10-step-long
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Fig. 7. The correlation coefficients over epochs for the training set (dash
line) and the validation set (solid line). The gap between the training line and
the corresponding validation line shows the effectiveness of the regularisation
methods. The baseline is the case when no regularisation method is applied.
Weight decay does not help. Dropout and noise injection significantly alleviate
the overfitting and improve accuracy.

samples are made. This means that the same original data in
different sliding windows will be slightly different due to the
added noise, and this effectively augments the dataset to 10
times larger.

The impact after adding each regularisation scheme is
shown in Fig. 7. Weight decay does not appear to have a
noticeable effect. Dropout, on the other hand, reduces the
disparity between the training and validation curves. The best
accuracy is attained after applying noise injection, which
shows the effectiveness of this approach in mitigating the
overfitting issue.

IV. DEPLOYMENT

A. Quantization

Quantization is an effective method for improving hard-
ware efficiency. Decreasing the bit precision of the data and
weights reduces the memory footprint and enables the usage
of lighter integer computations instead of expensive floating-
point computations. Quantization unleashes the full capability
of the target MCU equipped with 8-bit SIMD instructions.

Before performing quantization, the batch normalization
parameters are first fused into weights and biases. Thanks
to the 1-bit information carrier in an SNN, no scaling is
required between layers. We implement uniform quantization
with a symmetrical range. This quantization is performed on
a layer-by-layer basis, with distinct scaling factors computed
for each individual layer. The scaling factor is primarily
determined by the weights. The scaling factors of weight,
bias, and threshold voltage are calculated by the bit-width
and the maximum values of the weights in that layer as
scale = 2(bitwidth−1)−1/Wmax.

The quantized weight, bias, and threshold voltage are gen-
erated by rounding the scaled values to the closest integer as
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Fig. 8. GreenWaves Technologies GAP9 Microprocessor block diagram.

quant = round(value · scale). The membrane potential uses
more bits than the weights do to provide numerical stability.

The decay factor ranges from 0 to 1 and is quantized differ-
ently. The scaling factor of λ is only determined by the chosen
bit-width. Unlike the weight and bias, which are applied once
per inference for various inputs, the decay factor is repeatedly
multiplied by the membrane potential in each forward pass, so
the scaling factor for the quantized decay factor may impair
numerical stability. To address this issue, we re-scale the
multiplication result back through right-shift and truncation
after performing multiplication with the scaled λ, formulated
as ul(t) = (λ2bw(ul(t− 1)− sl−1(t− 1)Vth) >> bw+ il(t).

To compensate for the accuracy loss caused by quantization,
quantization-aware training (QAT) is adopted. After regular
training epochs, QAT is applied for 20 epochs. During QAT,
a straight through estimator is used [48]. In the forward
path, the simulated quantization is applied to mimic the
effects of quantization, while in the back-propagation, the error
is back-propagated with full precision, as the gradients for
the piece-wise flat operator for quantization are almost zero
everywhere [48].

The neural decoder shows almost no loss even when the
weights are quantized to 4 bits and decay factors are quantized
to 3 bits. The model is exported after quantization and used
for hardware deployment.

B. Hardware Platform

The network is deployed on a GAP9 hardware platform,
a low-power 32-bit microcontroller (MCU), consisting of 10
RISC-V ISA cores as depicted in Fig. 8. A ‘Fabric Controller’
core runs on startup and manages IO-related tasks, such as
interfacing with peripherals and configuring operating voltages
and frequencies. The platform is equipped with a compute
cluster that allows task parallelization, consisting of a ‘master’
core, eight worker cores, and an accelerator (NE). Each core
on GAP9 supports an extended instruction set with support for
zero-overhead hardware loops and various Single-Instruction-
Multiple-Data (SIMD) operations for 8- and 16-bit data types.

The MCU uses a hierarchical memory architecture consist-
ing entirely of SRAM, accessed through interleaved memory
banks. The memory regions of relevance to this work are (1)
1.5 MB located near the Fabric Controller with a longer access
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time to the cluster known as L2, (2) 128 kB located in the
cluster with one cycle of access time known as L1.

Considering the memory hierarchy, care must be taken to
ensure that data is in a low-access cost memory region when
it is needed for execution. To achieve this, a dedicated direct
memory access (DMA) unit is equipped and can be used to
move data between L2 and L1 at high bandwidth without
interrupting execution. A single transfer command consists of
source and destination addresses and the number of bytes to
move.

C. Data Movement & Execution
Eight cores in the compute cluster are used for most of the

execution. Between the execution of each layer, the master
core is responsible for allocating and deallocating buffers,
and configuring the tasks to be executed on each worker
core. The model parameters and the membrane potentials are
ordinarily stored in the L2 memory region. The weights for
each layer are stored in a 2D array. The binary input spike
vector determines which columns are used during the weight
summation operation along each row of the weight matrix.
This is illustrated in Fig. 9 where the weights are denoted
by Wij , and i and j represent the neurons in the current
and previous layers, respectively. To decrease memory access
times, the parameters and inputs are transferred to L1 for
execution.

However, it is not feasible to transfer the entire model
from the L2 memory region to L1 due to the model size.
Additionally, transferring the entire model is not optimal due
to the latency and energy overhead. Therefore, we propose
different data moving and execution strategies for different
layers according to their characteristics.

1) Layer 1: The input to the first layer is an 8-bit normal-
ized SBP feature vector. The data movement and execution
scheme for layer 1 is similar to double buffering, where
the data transfer runs concurrently with the model execution.
Firstly, the input vector for the model is transferred to L1,
followed by the membrane potentials of all four layers. Then,
the parameters for the first layer are split into two blocks
of 128 rows, where execution can begin as soon as the first
block has been transferred. Once the first block has finished
executing and the parameters for the second block have arrived
in L1, the second block can be executed. This hides the
latency associated with transferring the second half of layer
1’s parameters, as demonstrated by the program profiler trace
in Fig. 10.

The blocks of parameters were configured to contain all
parameters needed to execute a portion of the layer in a single
contiguous region of memory. This allows all parameters
for layer 1 to be moved into L1 with only two transfer
commands, minimizing the cost of queuing a transfer. Each
block contains 128 rows of the weight matrix W and the 128
corresponding bias and decay factors. The threshold voltages
are read once from L2 at the start of each layer’s execution
by the cluster master core. The task is split row-wise as there
are no data dependencies between rows. The computation is
then distributed and parallelized on the 8 cluster cores, with
each core processing 16 rows of each block in layer 1.

The worker cores perform the weight matrix multiplication
step using a dot product SIMD operation available in each
core on the GAP9 platform. This instruction computes the dot
product between two 4-element 8-bit vectors, allowing four
values from each row of the weight matrix to be processed per
cycle per core. Once the result for a row has been calculated,
the reset and decay factors are applied using 2-element 16-bit
vector instructions.

2) Layer 2, 3 & 4: In contrast to the first layer, each
subsequent layer receives a binary vector as input. This is an
important characteristic since it ensures that only the columns
in the weight matrix corresponding to neurons fired in the
preceding layer contribute to the update of the membrane
potential. Thus, we propose the Sparse Copy implementa-
tion, taking advantage of sparsity by only transferring the
weights required for execution from L2 to L1 (as illustrated
in Fig. 9). This reduces energy consumption and execution
time by decreasing the amount of data transferred. Instead
of transferring data after a layer’s execution is finished, the
transfer is queued during layer execution to give the DMA
more time to complete transfers. Once the membrane potential
for a neuron is updated, the spike condition is checked, and
the transfer of the corresponding weight column in the next
layer is initiated. This allows the DMA peripheral to process
many of the transfers while the cluster is still executing. This
behavior is depicted in Fig. 10. Two large buffers are used in
L1: one for reading during execution, the other for transferring
new data. Due to the limited size of L1, the size of these
buffers is less than the total size of the layer 2 or layer 3 weight
matrices. However, in practice, the number of neuron spikes is
never large enough to result in a buffer overflow, thanks to the
sparsity. Once the transfer is queued, the destination address
for the next transfer in the L1 weight buffer is incremented
by 256 Bytes, the size of one column in the weight matrix.
Besides saving the weights transfer, the sparse copy strategy
also eases the write-back of the results. Saving the binary
spikes is no longer required because the necessary DMA
commands to obtain the relevant weights for the next layer are
issued immediately after comparing the membrane potential to
the threshold voltage.

The transfers were initiated using a DMA mode that al-
lows cores to initiate transfers in chronological order, forcing
subsequent transfers to wait. Because the transfer size is very
small, i.e., 256 bytes, the time spent waiting is usually short.
When multiple cores experience a spike in a short window,
this latency accumulates and may affect execution time. This
issue is further exacerbated for layers with a higher spike rate.
An advantage of the proposed implementation is the capability
of distributing the combined overhead of transfer initialization
across all 8 cores rather than just the master core, as well as
masking the transfer time behind the execution.

As with layer 1, layers 2 and 3 are executed on all 8 cluster
cores. Each core processes 32 of the 256 neurons in each
layer. The program needs to keep track of the location to
write the next column of the weight matrix, so there is a
risk that two cores might initiate DMA transfers to the same
memory address, in which case, one overwrites the other. This
problem is solved using a hardware semaphore, which supports
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Fig. 9. Sparse Copy - The weight matrix calculation and initiation of transfers
for the next layer are depicted in this diagram for a reduced weight matrix
size. The columns required for computation are transferred from L2 to L1
using the DMA peripheral. The membrane potentials are then updated across
multiple cores (two are shown here) using 4-element and 2-element SIMD.
Once the spike conditions of the neurons in the layer are known, the process
may repeat for the next layer.

atomic integer increment and decrement. It is initialized to 0
before each layer executes. Whenever a core wants to transfer
a column of weights, it loads and increments the semaphore
value to determine the destination address in the L1 weight
buffer. It can then safely queue a DMA transfer to this address
from the column’s memory address in L2. It is not necessary
for the weight matrix in L1 to maintain the original column
order as in the weight matrix in L2, the elements transferred
to L1 only need to be summed in a row-wise manner.

As with Layer 1, SIMD operations are used to perform
the weight matrix calculation. A 4-element 8-bit addition
instruction allows four rows of each column in the weight
matrix to be added per cycle, as shown in Fig. 9. The
quantization configuration used during training guarantees that
the 8-bit signed addition will not over- or underflow.

Finally, because the fourth layer consists of only two rows,
it is executed on just the master core. Additionally, the layer
4 weights are padded to 16 bits to enable the use of 2-element
16-bit addition SIMD operations.

TABLE II
MODEL PARAMETERS AND ASSOCIATED QUANTISATION.

Parameter Layers Bit Precision Total size for all layers
W 1, 2, 3, 4 8 bits 156,160 Bytes
λ 1, 2, 3, 4 16 bits 1,540 Bytes
B 1, 2, 3, 4 16 bits 1,540 Bytes
Vth 1, 2, 3 16 bits 6 Bytes
u 1, 2, 3, 4 16 bits 1,540 Bytes
Total 160,786 Bytes

V. RESULTS AND DISCUSSION

A. Environment
The model is constructed in Python with the Pytorch frame-

work. The training and hyperparameter search are facilitated
with Raytune framework to enable parallel training on multiple
GPUs. The code for deployment to MCU was written in C and
then compiled and deployed with GAP9 SDK Release v5.11.0.

The algorithm is trained and evaluated on two datasets
recorded from non-human primates while they were perform-
ing two-degree-of-freedom finger tasks. The datasets contain
positions and velocities of two fingers, as well as the SBP
feature from 96 channels. Dataset A, also used in [32],
contains 817 s data. Dataset B is an open-source dataset, used
also in [17], containing 610 s data2. The SBP feature in the
dataset is sampled at 2 kHz. The SBP is first time-averaged in
non-overlapping time bins before being fed into the proposed
decoder. Time bin sizes are chosen to be 50ms and 32ms
for dataset A and B, respectively, as introduced in [17], [32].
SBP features are standardized by removing means and scaling
to a standard deviation of 1 before being fed into the SNN.
Predicted velocity is also standardized with statistics from the
training set. Standardized velocity is recovered to the original
scale after inference. Hyperparameter optimization for the
training parameters, unfolding time steps, and noise standard
deviation is only conducted on dataset A.

The first 80% of the data are used for training, and the
remaining 20% are for validation. The non-quantized model
is trained for 60 epochs. The quantized SNN is trained with
full precision for 30 epochs before QAT is enabled for another
20 epochs. An inference is performed for every time frame to
generate two-finger velocities in a streaming fashion.

B. Memory footprint
Although the weights can be quantized to 4 bits, they are

padded to 8 bits for the hardware deployment to take advantage
of the 8-bit SIMD operations of the MCU. The bit precision for
different parameters and their memory footprint are presented
in Table II. Layer 4 is a non-spiking layer, so no threshold
voltage is required. In total, the model requires 159,246 Bytes
of storage for parameters or 160,786 Bytes, including the
neuron membrane potentials.

C. Accuracy
The velocity predicted by the proposed SNN, and the true

velocity of two fingers are plotted in Fig. 11. The accuracy is
presented as the correlation coefficients between the predicted
velocity and the recorded velocity in the validation set. The
reported correlation coefficients are the mean values for two
finger velocities. Table III summarises the mean correlation
and root mean square error (RMSE) over eight runs. To
compare our results with previous work, we replicate the KF
predictor [17] and the ANN predictor [32] using the same
parameters as the original papers. Our proposed work and the
quantized model reach the highest correlation coefficients of
0.783 and 0.624 for datasets A and B, respectively.

2Dataset is available for download: https://deepblue.lib.umich.edu/data/
concern/data sets/0g354f51t

https://deepblue.lib.umich.edu/data/concern/data_sets/0g354f51t
https://deepblue.lib.umich.edu/data/concern/data_sets/0g354f51t
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D. Computation complexity analysis

The SNN’s potential to achieve energy-efficient computation
stems from the sparsity of the spikes. The spike rate for
neurons and the average spike count in different layers are
evaluated for the whole validation set of dataset A to quantify
the sparsity in our network. The spike rate is calculated as the
ratio of a neuron to fire over the total number of inferences.
Fig. 12 shows the histogram for the spike rate distribution
on the three spiking layers. The average spike rates for the
three layers are 19%, 19%, and 9%, respectively. Out of the
770 neurons, only 120 of them fire in each inference step
on average. Ideally, this high degree of sparsity significantly
reduces the necessary number of memory accesses and com-
putation operations. The required operations are summarised
in Table IV.

In conventional ANNs, the weighted sum computation for
each input to a neuron requires a MAC operation. Whereas,
in the proposed SNN, as the spike status is either 1 or 0,
this process has been replaced by the add operations, which
require much less power [49]. It is important to note that for

TABLE III
ACCURACY IN TERMS OF CORRELATION COEFFICIENTS AND RMSE.

Decoder Corr A RMSE A Corr B RMSE B
KF [17] 0.601† 0.026† 0.459† 0.016†

ANN [18] 0.732† 0.032† 0.593† 0.017†
Proposed SNN 0.783 0.022 0.624 0.014
Quantised SNN 0.782 0.021 0.627 0.014
†Reproduced results.

a fair comparison between the proposed SNN and ANN, the
SNN needs to update its membrane potentials, as described
in (5), once per inference, which amounts to an additional
MAC operation per each neuron. In this complexity analysis
comparison, it is assumed that three memory loads and one
store are required for each MAC operation, while for each
addition, two loads and one store are required.

As a reference point, we also include deployment of the
same proposed SNN labeled as SNN baseline in our compari-
son, which does not exploit sparsity in any manner. Each layer
in the SNN baseline implementation uses the double buffering
approach described in section IV-C1.

Thanks to the high degree of sparsity, the proposed SNN
requires up to one order of magnitude fewer operations and
memory accesses than the ANN and the SNN baseline imple-
mentation.

E. Cycle Count Comparison

The preceding analysis examines the potential savings in
SNN operations under ideal circumstances. However, it is
important to note that there may be additional overhead in
actual implementation. For example, addressing the irregular
access pattern resulting from sparsity may require longer pro-
cessing times. Therefore, we implement the decoder described
in section IV targeting deployment on GAP9.

First, we assess the number of cycles required for the
inference to understand the latency of the decoder using
the GAP9 SDK. We compare the implementations in our
work to a baseline ANN [18] that is trained for the same
task and deployed on the same hardware platform using the
nntool, which is an automatic neural network deployment
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TABLE IV
PERFORMANCE AND COMPUTATION COMPLEXITY ANALYSIS.

Theoretical complexity analysis Measurement
# Parameters MAC ADD Memory access Avg. Powera Energy / Inf.b Time/ Inf.

Decoder (K) (K) (K) (K) (mW) (uJ) (ms)
ANN [18] 526 529 - 2116 0.60 10.69 0.66
SNN baseline 158 25 132 496 0.57 3.90 0.22
SNN sparse copy 158 25 26 178 0.50 1.88 0.12
a Average power measured when the MCU is waked up every 50ms, and after the inference, the MCU is put into sleep mode.
b Energy/inference measured when the MCU performs continuous inference without sleep to show the best achievable energy efficiency.

tool provided by the SDK, with the accelerator enabled. The
corresponding cycle counts measured for each layer are shown
in Fig. 13. The cycle counts are averaged over 500 inferences
from the validation dataset and are measured by finding the
time taken from the end of execution of the previous layer
to the end of execution of the current layer. The time for
copying the SBP inputs and membrane potentials to L1 is
not included in the individual layer cycle counts. The ANN
takes many more cycles in the first layer due to the larger
fully connected structure after the temporal convolution. All
the implementations have the same sizes for the layer 2,3, and
4. For the SNN implementations, the input to layer 2, 3, and 4
are binary spikes. Therefore, the sparse copy implementation
can leverage the sparsity and achieve the lowest cycle counts.
The overhead of queuing DMA transfers in the sparse copy
implementation for the weights of the subsequent layer is
demonstrated in the increased execution time of Layer 1 of the
sparse copy method over the SNN baseline implementation.
Nevertheless, the gains made in subsequent layers justify this
cost.

To further evaluate how well the sparsity is utilized, we

also measure the number of cycles required for each layer
when there are different numbers of spikes. The number of
spikes is data-dependent. The distribution for spike counts
observed while performing inference on the validation dataset
is shown in Fig. 12 for the sparse copy implementation.
The cycle count for the sparse copy exhibits a strong linear
relationship with the spike count, which is always significantly
lower than that of the SNN baseline implementation in the
measurement range. However, it is expected that at a higher
spike rate, i.e., lower sparsity, the slope will change as the
DMA peripheral becomes saturated and the bottleneck shifts
away from execution towards data transfer.

F. Power, energy, and latency measurement

The measurements for power, energy, and latency are done
on the physical GAP9 module. The chip runs at 150MHz,
0.65V, for all measurements in order to maximize energy
efficiency. The current consumption of the GAP9 chip is
measured using a DC power analyzer, from which the power
usage is then calculated.
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convolution layer, and the first fully connected layer of the ANN is 16 times
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The measurement results for the SNN baseline, sparse
copy, and ANN implementations, taken over 3000 inferences,
are shown in Table IV. The average energy consumption
for the proposed implementation when running the inference
continuously is 1.88 µJ per inference and the average latency is
0.12ms, while the SNN baseline implementation takes 3.90 µJ
per inference and 0.22ms latency. The baseline ANN takes a
much higher energy of 10.69 µJ per inference and 0.66ms.

For dataset A, which is utilized in the power measurements,
the sampling interval is 50ms. To save power and energy, the
chip is configured to a ‘light sleep’ mode between inferences.
In this mode, the cluster and fabric controller are powered
down, reducing consumption to ≈ 395 uW. However, L2 is
the only retentive memory region during sleep, requiring the
membrane potentials for each layer to be copied to L2 between
each inference. A GPIO pad was configured as a ‘wake-up
source’ from sleep and triggered from an external waveform
generator every 50ms. The power trace for four inferences is
shown in Fig. 14. When the time spent asleep is included, the
average power usage is just 0.50mW. Due to the long sleep
time in this setup, the power is dominated by the sleeping
power.

G. Discussion

The proposed implementation shows significantly improved
performance, particularly in accuracy, energy efficiency, and
latency for continuous measurement. This can be attributed to
the following factors: 1) The sparsity is efficiently utilized.
The proposed implementation effectively reduces the number
of memory accesses and executions. 2) The proposed decoder
exhibits a high level of sparsity. Utilizing sparsity in MCU
comes with the overhead of handling irregular patterns. This
includes the need to determine which parameters to retrieve
based on the output of each individual neuron. An excess
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Fig. 14. Power trace captured over four inferences of the SNN sparse copy
implementation, running at 150MHz, 0.65V; including sleep between each
inference. A zoomed-in capture of a single inference is shown in the top right.

of spikes could lead to congestion and degrade performance.
However, the high sparsity in our network prevents us from
these issues. 3) The MCU features a multi-core cluster with
a DMA. The DMA allows us to hide the latency of fetching
the irregularly positioned parameters by transferring data while
executing. However, if more spikes occur, the DMA peripheral
can be saturated, and the bottleneck may shift from execution
to data transfer. Therefore, it is essential to analyze the
spike rate for each layer to develop effective strategies for
data execution and transfer for the best efficiency. 4) The
proposed SNN has a much higher number of connections
compared to neurons. Despite the overhead of calculating
each neuron’s internal status, the overhead is negligible in our
fully connected structure. In total, the SNN contains 156160
connections while having only 770 neurons. Therefore, the
number of operations is dominated by the operations related
to the connections between neurons instead of the neurons’
internal states.

Our work demonstrates the advantage of using SNNs com-
pared to conventional methods in an application where low
energy and power consumption is a critical requirement. Our
optimized implementation and in-depth complexity analyses
provide important insight for future work in automatizing SNN
deployment on ultra-low-power hardware platforms.

VI. CONCLUSION

We present a new SNN neural decoder to predict finger ve-
locities along with its deployment method for implantable BMI
and successfully demonstrate its capability in solving a real-
world regression problem. The proposed SNN is trained with
STBP backpropagation enhanced by trainable decay factor,
reset-by-subtract, and noise injection techniques to improve
accuracy while keeping computation complexity low. The
model is also fully quantized and deployed with optimization
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to efficiently utilize the sparsity on a general-purpose GAP9
MCU platform.

Compared to previous works, our SNN achieves the best
correlation coefficient of 0.782 and 0.624 for the offline infer-
ence, while showing significantly less computation complexity,
indicating potential in achieving energy-efficient hardware
implementation. The deployed SNN on GAP9 achieves an
average latency of 0.12ms for each inference, which is 5.7X
and 2.1X less than the baseline ANN and SNN baseline
implementation without exploiting sparsity, respectively. The
average power consumption, by duty cycling the MCU with
sleep mode, is 0.50mW. The energy per inference assuming
continuous inference without sleep is 1.88 µJ, which is 1.8X
less than the SNN baseline implementation and 5.5X less than
ANN. To the best of our knowledge, at the time of submission,
this is the first sparsity-aware on-board demonstration showing
that the SNN can be competitive in terms of latency and power
consumption, even with general-purpose hardware platforms.
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