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The DeepCore sub-detector of the IceCube Neutrino Observatory provides access to neutrinos
with energies above approximately 5 GeV. Data taken between 2012-2021 (3,387 days) are utilized
for an atmospheric νµ disappearance analysis that studied 150,257 neutrino-candidate events with
reconstructed energies between 5-100 GeV. An advanced reconstruction based on a convolutional
neural network is applied, providing increased signal efficiency and background suppression, result-
ing in a measurement with both significantly increased statistics compared to previous DeepCore
oscillation results and high neutrino purity. For the normal neutrino mass ordering, the atmospheric
neutrino oscillation parameters and their 1σ errors are measured to be ∆m2

32 = 2.40+0.05
−0.04×10−3 eV2

and sin2θ23=0.54+0.04
−0.03. The results are the most precise to date using atmospheric neutrinos, and

are compatible with measurements from other neutrino detectors including long-baseline accelerator
experiments.

Introduction– The discovery of neutrino oscillations [1, 2]
triggered significant experimental effort over the course
of the past quarter-century to confirm and subsequently
measure with increasing precision the properties that de-
scribe neutrino flavor oscillations [3]. These oscillations
result from the mixing between neutrino mass and fla-
vor states, described by the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) mixing matrix [4, 5] (often parameter-
ized as three mixing angles and a CP -violation phase),
and differences between the masses of the states. For
GeV-scale atmospheric neutrinos, flavor oscillations oc-
cur primarily between the muon and tau flavors, driven
by the mixing angle θ23 and the mass splitting of the neu-
trino states ∆m2

atm (where ∆m2
atm ≡ ∆m2

32 for the nor-
mal neutrino mass ordering). The probability for these
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neutrino oscillations may be approximated by a vacuum
transitions of muon to tau flavor of the form

P (νµ → ντ ) ≈ sin2(2θ23)sin
2

(
∆m2

atmL

4E

)
, (1)

where L is the distance the neutrino traveled, and E is
the energy of the neutrino. Increasingly precise experi-
mental constraints on the mass splittings and PMNS el-
ements allow stringent tests of the current 3ν paradigm
with any deviation potentially revealing the influence of
new physics in neutrino oscillations [6].

Atmospheric neutrinos produced by cosmic ray inter-
actions in the Earth’s atmosphere create a natural source
of neutrinos arriving from all directions [7–9] with base-
lines (L) varying from O(10 − 10, 000) km. Events ar-
riving from below the local horizon, as in the case of the
neutrino data sample considered here, travel sufficient
distance for neutrino oscillations to be observed, pro-
viding the strongest signal, while mitigating dominant
downward-going atmospheric muon backgrounds. Ver-
tically up-going Earth-crossing neutrinos traversing ap-
proximately 1.3 × 104 km result in nearly complete νµ
disappearance for energies of O(10 GeV).

In this Letter, we present a measurement of ∆m2
32 and

sin2(θ23) leveraging the statistical power available with

mailto:analysis@icecube.wisc.edu
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9.3 years of IceCube DeepCore data. The oscillation sig-
nal extraction follows that applied in [10] where a his-
togram of reconstructed detector data is compared to a
simulation-based template histogram that is re-weighted
based on free parameters in the fit. Calibration and
event selection improvements reported in [10], applied
here, are further improved by convolutional neutral net-
work (CNN)-based reconstruction methods. The previ-
ous reconstruction methods could only be applied to a
relatively small sub-sample of signal-like events to ensure
high-quality reconstruction performance. In contrast, the
CNN-based reconstruction methods described here pro-
vide an approximate 5000× decrease in the event pro-
cessing time and robust interpretations of all event types
in the evaluated data set. A significant increase in neu-
trino candidates compared to previous DeepCore oscilla-
tion results is realized. Combined with nearly two addi-
tional years of detector data, this measurement benefits
from a nearly seven-fold increase in statistics compared to
the previous most sensitive oscillation measurement from
DeepCore [10]. The increased statistics of the study also
allow more precise constraints to be placed on systematic
uncertainties, resulting in the most precise measurement
of oscillations with atmospheric neutrinos to date.
The IceCube DeepCore detector– The IceCube Neutrino
Observatory [11] instruments more than a cubic-km of
the glacial ice sheet at the geographic South Pole. A total
of 5160 Digital Optical Modules (DOMs) [12], each con-
taining a single 10-inch photomultipier tube (PMT) [13],
are deployed on 86 vertical ‘strings’ within the instru-
mented volume. These DOMs detect Cherenkov light
resulting from the charged particles produced by neu-
trino interactions in the ice. A primary high-energy ar-
ray of 78 strings, optimized for detection of events above
O(100 GeV), is deployed on an approximately triangu-
lar grid with a string-to-string spacing of 125 m and a
vertical DOM-spacing of 17 m. The central region of
the detector is more densely instrumented with 8 addi-
tional strings creating the DeepCore sub-array [14]. The
DeepCore sub-array has an average string-to-string spac-
ing of O(50 m) and vertical DOM-spacing of 7 m, with
the DOMs concentrated below 2100 m where the ice is
the clearest and has the best optical properties. The
10 Mton DeepCore volume has detection sensitivity to
neutrinos in the 5–100 GeV energy range where neutri-
nos oscillations are observable.

Detected Cherenkov photons are converted into digi-
tized electronic pulses from which charge and timing in-
formation are extracted. These ‘hits’ are the input data
used to reconstruct the properties of the interacting neu-
trino, and discriminate neutrinos from random detector
noise and atmospheric muon backgrounds.
Reconstruction and Event Selection– A key element in
this measurement is the CNN-based reconstruction [15],
modeled on previously successful image classification and
reconstruction for TeV-scale IceCube events [16]. The
new CNN reconstruction consists of 5 independent neu-
ral networks, optimized for each reconstruction task us-

ing O(10 − 100 GeV) scale IceCube DeepCore neutrino
events [17, 18]. All networks use the same architecture,
with two parallel branches of 8 convolutional layers each,
which combine into a single dense layer that outputs the
desired feature(s). Each of the input branches takes in
5 summary variables from all 60 DOMs on either the 8
DeepCore strings or the 19 center-most IceCube strings.
While DOMs with multiple hits per event are rarer at the
GeV scale, this can still occur, particularly in the impor-
tant region near the neutrino interaction vertex. Thus,
the 5 summary variables are the sum of the charge, time
of the first hit, time of the last hit, charge-weighted mean
of the times of hits, and charge-weighted standard devi-
ation of the times of hits, where a minimum charge of
0.25 photoelectrons is requested to be considered as a hit.
These summary variables allow the network to account
for multiple hits per DOM per event, with emphasis on
the first and last hits, but also include additional infor-
mation in the last two variables to account for the fact
that those hits could be influenced by noise. The vari-
ables only use hits within [-500, 4000] ns of the DeepCore
trigger [14] to avoid noise contamination in the event.

The CNNs are trained separately for neutrino en-
ergy, incoming neutrino angle with respect to the zenith
(θzenith), interaction vertex position (x, y, z), particle
identification (PID) based on event shape, and classify-
ing atmospheric muons. Each network is trained on a
specifically designed sample that is independent of the
analysis sample. Each sample is optimized to have a
flat distribution across the target regression variables or
equal sample sizes between the binary classification la-
bels. In addition, no physical weights were used, such
that the training is not biased by the expected distri-
bution or physics models. Monte Carlo (MC) datasets
for training are simulated using the same MC models
applied in the analysis. The energy, zenith, and ver-
tex CNNs are trained on simulated νµ charged-current
(CC) track-like events since these are the most impor-
tant for the oscillation measurement. The network for
reconstructing the zenith angle is trained on a sample of
approximately 5 million νµ CC MC events with a flat true
zenith angle distribution, true neutrino energies between
5–300 GeV, and with starting and ending points within
the near-DeepCore region (a depth of -495 m to -225 m
in detector coordinates and radius within 200 m relative
to the center-most IceCube string). The networks for re-
constructing neutrino energy and interaction vertex are
trained on a larger νµ CC dataset of 9 million events
with a flat simulated energy distribution below 200 GeV,
and moderately extended to higher energies with a falling
shoulder. Events that have hits on fewer than 7 DOMs
are excluded from the training samples. After training
on the specifically designed training samples, the perfor-
mance was evaluated on other event types (such as νe CC
events) with realistic, physical spectrum to demonstrate
acceptable performance. Figure 1 provides the resultant
zenith and energy resolutions of the trained CNN recon-
structions for νµ CC and νe CC analysis-level events.
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FIG. 1. Reconstruction resolution of cos(θzenith) (top) and
neutrino energy (bottom) compared to the true neutrino en-
ergy. For νµ CC events (blue) and νe CC events (orange), the
median is indicated by the solid curve and the 1σ region is
shown as a shaded band. The observed resolutions are similar
to those realized in traditional log-likelihood methods [19].

The particle identification (PID) and atmospheric
muon classifiers are trained using MC neutrino events
with true neutrino energy between 5–200 GeV for the
best performance in the low-energy region. The PID dis-
criminator is trained on a sample of balanced track-like
(νµ CC) and cascade-like (νe CC, νe neutral current –
NC, and νµ NC) events using a total of 5 million events
for training. The atmospheric muon classifier, for which
all events are required to have hits on at least 4 DOMs, is
trained on a sub-sample of the neutrino MC used for the
PID network and an additional 2.8 million muon events.
The ratio of atmospheric νe:νµ:µ of this training sample
is 1:2:2. To optimize the rejection of mis-reconstructed
muon events, a boosted decision tree (BDT) is trained on
the events after a cut on reconstructed zenith angle that
requires cos(θzenith) ≤ 0.3, using the CNN atmospheric
muon classifier along with other reconstructed variables
describing positional information of neutrino candidates
as input. These variables include the depth (z) and ra-
dius (relative to the central IceCube string) of the CNN-
reconstructed event interaction vertex, a low-level muon
BDT classifier (see Fig. 7 of [10]), and the z coordinate
of the deepest corridor hit (see Fig. 2 of [10]).

The applied data and MC sample of this analysis
begins with the DeepCore Common Data Sample de-
scribed in Section III of Ref. [10] which reduces the atmo-
spheric muon background and detector noise to achieve
a neutrino-dominated sample. The CNN reconstructions

are then applied to the DeepCore Common Data Sample,
along with a few additional final level cuts. Events are
only selected if the following containment cuts are sat-
isfied: the reconstructed neutrino interaction vertex is
contained in DeepCore; the reconstructed energy is be-
tween 5–100 GeV, and; the reconstructed cos(θzenith) is
below 0.04, indicating that the incoming neutrino arrived
from near or below the horizon. To remove indepen-
dent muon events that occur coincidentally in the same
time window we require no recorded hit in the top 15
layers of IceCube DOMs, and no more than 7 detected
hits in the outermost IceCube strings. Maintaining that
at least 3 DOMs observe direct hits from unscattered
photons [20] effectively filters random coincidences of ra-
dioactive decay noise and events with poor reconstruc-
tion performance. To achieve the best performance of
the CNNs, we keep only the events with at least 7 hits
on DOMs in and near DeepCore. Finally, applying the
BDT classifier described above for a score≥0.8 provides
a final rate for the atmospheric muon background that
is well below 1% of the entire sample (see Table I). We
achieve a neutrino-rich sample with good reconstruction
resolution in the region sensitive to oscillation parameter
measurements.

TABLE I. The expected MC events (integer values), com-
pared to the data sample, for the best-fit to the data consid-
ering neutrino interaction type and atmospheric muons.

Nevents(9.3yrs) % of MC sample
νµ CC 88306 58.8
νe CC 35296 23.5
ντ CC 8772 5.8
ν NC 16981 11.3
atm. µ 917 0.6
Total MC 150272 -
data 150257 -

A kernel density estimator [10] is ultimately employed
to smooth the expected atmospheric muon background
distribution in the final MC sample due to the low statis-
tics in most analysis bins.

The selected sample is binned (see Fig. 2) by recon-
structed energy in 10 logarithmically-spaced bins from 5
to 100 GeV, 8 linear-spaced bins of cos(θzenith) between
[-1, 0.04], and 3 PID bins with bin edges of [0, 0.25,
0.55, 1]. As indicated in Equation 1, the probability of
oscillation is dependent on the neutrino’s distance trav-
eled (calculated from zenith angle) and energy. Thus,
deficits from muon neutrino oscillation should be visible
when the counts are plotted as a function of energy and
baseline. Here νµ CC events largely occupy the track-
like bin, and other types of neutrino interactions, mostly
classified as cascade-like, have quite different detector re-
sponse, and cross-sections [21]. Applying the PID score,
where the highest score indicates the most track-like or
νµ CC events, divides the sample by flavor and provides
the clearest evidence of the appearance/disappearance
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FIG. 2. The nominal MC distributions for the analysis sample, binned logarithmically in reconstructed energy and linearly in
cosine of the reconstructed zenith angle. Each histogram represents one PID bin, selected by the range of the event PID score
(from left to right): 0 – 0.25 (cascade-like), 0.25 – 0.55 (cascade-like and track-like), and 0.55 – 1.0 (track-like). At lower energies,
νµ CC events produce shorter tracks that are more challenging to identify, resulting in these events populating the center panel
and a peak of those events at lower energies. Similarly at higher energies, these events produce longer muon tracks that are
more readily identified, placing these events in the right panel and peaking at higher energies. The oscillation signature region
is observable in this distribution via the dark diagonal band. The left panel contains both event types, causing the distribution
to peak at intermediate energies. The total number of events are taken from Table 1 with a ratio of 22991:99931:27350. Bins
containing very low statistics in data or MC are not used in the analysis.
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FIG. 3. Comparative distributions of observed event data to
the MC as a function of the ratio of reconstructed neutrino
baseline (L) to energy (E) with error bars showing the Poisson
statistical error of data. Shown in the panels top to bottom
are each of the PID score bins: 0 – 0.25 (cascade-like), 0.25 –
0.55 (track- and cascade-like), and 0.55 – 1.0 (track-like). The
dashed histograms show the MC distributions with best-fit
parameters, with the absence of νµ disappearance (θ23 = 0).

signature (see Fig. 2 and Fig. 3). Splitting the analysis
histogram into PID bins provides a more off-signal region
with which to constrain the systematic uncertainties, as
does the inclusion of energies above where oscillations are
expected (see [22] including Figs. 7-9).
Analysis–Models of the systematic uncertainties largely
follow those presented in [10], with some modifications on
the priors and ranges in updated treatments (see [22]).
Uncertainty in the photon detection efficiency is charac-
terised by an absolute DOM efficiency scale and two rela-
tive efficiencies based on the photon incidence angle with

1.0 0.5 0.0 0.5 1.0
 - 0 / Prior range

Atm.  scale
Aeff scale

DOM efficiency
Rel. eff. p0

Rel. eff. p1

Ice scattering
Ice absorption

BFR eff.
Atm. flux 

Atm. flux G +

Atm. flux H +

Atm. flux I +

Atm. flux WK +

Atm. flux YK +

MCCQE
A

MCCRES
A

DIS CSMS

Gaussian prior
Uniform prior

FIG. 4. Showing the pulls for the systematic uncertainty
parameters compared with the ranges of their priors of the
data analysis.

respect to the DOMs (‘Rel. eff. p0’, ‘Rel. eff. p1’) that
account for the local properties of the re-frozen ice near
the sensors following installation [23]. Uncertainty in
the ‘scattering’ and ‘absorption’ properties of the undis-
turbed bulk glacial ice are also included. Furthermore,
a new calibration model accounting for the birefringent
polycrystalline microstructure of the ice [24] has been in-
troduced to describe the azimuthal anisotropy observed
in the ice. We employed a new systematic parameter
(‘BFR eff.’) in this analysis that interpolates between
this new model and the previous baseline model where
the anisotropy was accounted for by an empirical model
(SPICE-3.2.1 [25]).

Conservative uncertainties in the atmospheric neutrino
flux as defined in [26] were adopted with their impact
evaluated using the MCEq software package [27]. Two
(three) effective parameters describing kaon (pion) pro-
duction during cosmic-ray interactions with nuclei in
the atmosphere are varied in the analysis, in addition
to an overall uncertainty in the power law spectral in-
dex (∆γν). The overall normalization of both the neu-
trino (‘Aeff scale’) and muon (‘Atm. µ scale’) rates
are also fit parameters, meaning the oscillation param-
eter measurement is independent of the absolute atmo-
spheric flux. Uncertainties in the neutrino-ice cross sec-
tion due to axial currents in the quasielastic and reso-
nance channels (‘MCCQE/RES

A ’) are included, and inter-
polation is done between the GENIE [21] (low-energy)
and CSMS [28] (high-energy) deep inelastic scattering
(DIS) cross-section models in the analysis energy range
(‘DIS CSMS’).

The nuisance parameters are fit together with the os-
cillation parameters to the data using a log-likelihood
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(LLH) as the test statistic of the form:

LLH =
∑

i∈bins

log
(nno

i e−ni

no!

)
− 1

2

∑
j∈syst

(ŝj − sj)
2

σ2
j

. (2)

Here the first term is a Poisson likelihood where ni (no) is
the number of expected (observed) events in bin i and the
second term serves as a penalty term for the systematic
parameters j which have Gaussian priors σj . The results
of fitted nuisance parameters compared to their priors
are shown in Fig. 4 (and Table II in [22]) and discussed
next.
Results and Conclusion– An atmospheric neutrino
dataset obtained over 3,387 days between 2012-2021,
with a total of 150,257 neutrino candidates, has been
used in this analysis. The most track-like bin has highest
purity of νµ CC events and shows the most distinctive
disappearance signature. We obtain a goodness-of-fit p-
value of 19.2%. As shown in Table II, all nuisance param-
eters fitted to values well within their expected ranges.

To determine the confidence intervals for the oscillation
parameters, the Feldman-Cousins’ unified approach [29,
30] is used for all errors and plots. We report the pa-
rameters and 1σ errors of ∆m2

32 = 2.40+0.05
−0.04 × 10−3 eV2

and sin2(θ23) = 0.54+0.04
−0.03, in the normal neutrino mass

ordering. The 90% confidence level (C.L.) contour of
sin2(θ23) and ∆m2

32 for the normal neutrino mass order-
ing (m3 > m2 > m1) of this result, compared with the
results from the other experiments, is shown in Fig. 5.

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
sin2( 23)

2.0

2.2
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3.2

m
2 32

 [1
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3  e
V2 ]

Normal Ordering 90% C.L.
NOvA 2022
T2K 2023
Super-K 2018

MINOS+ 2020
IceCube 2024
(this result)

FIG. 5. Contours showing Feldman-Cousins 90% C.L. as-
suming neutrino normal mass ordering of this analysis (black,
‘IceCube 2024’) compared to those from NOvA [31], T2K
[32], Super-Kamiokande [33], and MINOS+ [34]. The best-fit
physics parameters are indicated with a black circle.

This result is of similar precision to and consistent

with measurements from accelerator and reactor [35] neu-
trino experiments while uniquely using neutrinos of much
higher energy over longer baselines, supporting the stan-
dard 3ν paradigm of neutrino mixing. The upcoming
IceCube Upgrade [36] next generation detector will en-
able significant improvements to this measurement in the
coming decade.
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I. APPENDIX

Comparison of data and best-fit MC– Additional plot of
data/MC comparison can be found in Fig. 6 where the
MC template is reweighted with the best-fit parameters.

Systematic Nuisance Parameters– Additional informa-
tion about the 17 systematic parameters that are in-
cluded as nuisance parameters in the fit can be found in
Table II. Each parameter has a nominal value that the fit
starts at, a prior which can either be Gaussian with the
given width or uniform, and the resulting best-fit value.
For the parameters that have a Gaussian prior, the pulls
(in units of σ) indicate how far the best-fit value is from
the nominal value.

TABLE II. The systematic uncertainty parameters included
as nuisance parameters in the data analysis, along with their
associated priors. The priors on parameters can either be
Gaussian (in which case the value corresponding to ±1σ is
listed) or Uniform (in which case the allowed range is listed).

Parameter Nominal Prior width Fit value Pull (σ)
Detector:
DOM efficiency +0% ±10% +1.8% 0.18
Ice absorption +0% ±5% −3.5% -0.71
Ice scattering +5% ±10% +1.8% -0.32
Rel. eff. p0 0.10 [-0.6, 0.5] -0.14 -
Rel. eff. p1 -0.05 [-0.2, 0.2] -0.07 -
BFR efficiency 0.0 [0, 1] 0.48 -
Atm. flux:
∆γν 0.0 ±0.1 -0.011 -0.11
∆π± yields I 0.0 ±61% +42% 0.68
∆π± yields G 0.0 ±30% −4.2% -0.14
∆π± yields H 0.0 ±15% −12% -0.81
∆K+ yields W 0.0 ±40% +4.2% 0.11
∆K+ yields Y 0.0 ±30% −6.9% -0.23
Cross-section:
MCCQE

A 0.99 GeV +25%
−15% −4.5% -0.30

MCCRES
A 1.12 GeV ±20% −3.9% -0.20

DIS CSMS 0.0 ±1.0 0.12 0.12
Normalization:
Aeff scale +0% [−90%, +100%] −10% -
Atm. muons:
Atm. µ scale +0% ±40% −3.8% -0.10

The models to describe the sources of systematic un-
certainty largely follow those presented in [10], with some
modifications. Based on input from calibration stud-
ies [10], an uncertainty of the order of 5% is expected
and hence is added to Ice absorption. In the study of sys-
tematic impact evaluation, Ice scattering showed a larger
impact and hence has a larger prior of 10%. Addition-
ally, the calibration model accounting for the birefringent
polycrystalline microstructure of the ice [24] is new with
respect to the previous analysis presented in [10]. Post
unblinding, a shift from the median of the underlying
input model for the ice absorption and ice scattering nui-
sance parameters was noted. A study of the shift on

the best fit oscillation parameters was conducted and no
impact was observed on the best fit result of the analy-
sis. The flux and cross-section systematics depend on the
composition of the events in the final sample. The impact
of freeing/fixing these parameters in a physics analysis is
evaluated, and then all parameters with an appreciable
impact on the analysis are included as nuisance parame-
ters. Based on the outcome of these tests, there are some
slight differences in the flux and cross-section parameters
included in this analysis compared to those in [10]. Fi-
nally, a wide Gaussian prior is applied to the atmospheric
muon flux normalization.

To understand how the systematic effects change the
2D distribution of the final sample, examples of chang-
ing some chosen parameters separately and comparing
the changed 2D MC distributions in analysis binning to
the nominal one relative to the statistics of the nominal
MC are discussed below. Figure 7 demonstrates the rela-
tive difference of 2D MC distribution between θ23 = 50◦

and θ23 = 45◦. In the right PID bin, containing track-
like events, the relative difference is more outstanding
in the region of oscillation distortion than that of the
other two PID bins. Therefore, this PID bin contributes
most to constraining the oscillation parameters in the fit.
Figures 8 and 9 show the effects of changing DOM effi-
ciency and ∆γν according to their +1σ values and com-
pared with the nominal MC distribution. Some detector-
related parameters such as DOM efficiency affect distri-
butions of cascade-like and track-like events differently,
as in the left and right PID bins in Fig. 8. Therefore,
including the cascade-like events, i.e. the low-PID bin,
can provide additional off-signal region that can be used
to constrain these systematic parameters. Some param-
eters, such as ∆γν , affect the cascade-like and track-like
events similarly, as in Fig. 9.

By assuming the best-fit values of all systematics in
Table II only fitting to one group of systematics at a
time, their impacts on physics parameters’ 1σ uncertain-
ties are evaluated assuming Wilks’ theorem and com-
pared to those of the statistical uncertainty only as in
Fig. 10.
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FIG. 6. The data/best-fit MC comparison for the analysis sample, binned in reconstructed energy, and cosine of the recon-
structed zenith angle. From left-to-right the PID-score is applied, as shown in Figure 2, to identify cascade-like (0 – 0.25),
cascade-like and track-like (0.25 – 0.55), and track-like (0.55 – 1.0) events. The color scale represents the difference of number
of data to MC events relative to the statistical error in each bin.

FIG. 7. Difference between the nominal (θ23 = 45◦) and pulled (θ23 = 50◦) MC distributions relative to the statistical error
of the nominal MC for the analysis sample in analysis binning.

FIG. 8. Difference between the nominal DOM efficiency value and pulled (+10%) MC distributions relative to the statistical
error of nominal MC for the analysis sample in analysis binning.
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FIG. 9. Difference between the nominal ∆γν value and pulled (+10%) MC distributions relative to the statistical error of
nominal MC for the analysis sample in analysis binning.

FIG. 10. Expected 1σ uncertainty of the physics parameters by assuming the best-fit values from Table II and fitting for each
group of systematic uncertainties independently with the others fixed at their best-fit values compared to statistical uncertainty
assuming Wilks’ theorem.
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