
METALEARNERS FOR RANKING TREATMENT EFFECTS

A PREPRINT

Toon Vanderschueren∗

KU Leuven, University of Antwerp
Wouter Verbeke

KU Leuven
Felipe Moraes
Booking.com

Hugo Manuel Proença
Booking.com

May 6, 2024

ABSTRACT

Efficiently allocating treatments with a budget constraint constitutes an important challenge across
various domains. In marketing, for example, the use of promotions to target potential customers and
boost conversions is limited by the available budget. While much research focuses on estimating
causal effects, there is relatively limited work on learning to allocate treatments while considering
the operational context. Existing methods for uplift modeling or causal inference primarily estimate
treatment effects, without considering how this relates to a profit maximizing allocation policy that
respects budget constraints. The potential downside of using these methods is that the resulting pre-
dictive model is not aligned with the operational context. Therefore, prediction errors are propagated
to the optimization of the budget allocation problem, subsequently leading to a suboptimal allocation
policy. We propose an alternative approach based on learning to rank. Our proposed methodology
directly learns an allocation policy by prioritizing instances in terms of their incremental profit.
We propose an efficient sampling procedure for the optimization of the ranking model to scale our
methodology to large-scale data sets. Theoretically, we show how learning to rank can maximize the
area under a policy’s incremental profit curve. Empirically, we validate our methodology and show
its effectiveness in practice through a series of experiments on both synthetic and real-world data.

Keywords Causal Inference · Treatment Effect Estimation · Learning to Rank

1 Introduction

Decision-makers need to deal with uncertainty regarding the consequences of their decisions. An increasingly popular
paradigm to address this challenge is the prediction-optimization framework. In a first prediction stage, data is used to
estimate the effect of possible actions. In a second optimization stage, these predictions are integrated in an optimization
problem with the aim of assigning personalized treatment recommendations, i.e., allocating treatments to instances
to optimize an objective function, while satisfying operational constraints. These problems are common in various
domains: e.g., marketing [1], healthcare [2], maintenance [3], or policy design [4] (see Table 1 for some examples). We
focus on a specific class of treatment recommendation problems where instances need to be prioritized for treatment
(e.g., recommending whom to treat). Our goal is to learn a treatment policy that prioritizes the optimal instances
for treatment. A key part of this problem is estimating each instance’s response to a treatment–i.e., its treatment
effects–from data using causal inference.

Prediction-Focused Learning: Effect Estimation A common approach to tackle treatment allocation problems is to
first predict the effect of an action for each instance. To this aim, causal inference can support many decision-making
problems: by analyzing the causal effect of past decisions, future decisions can be optimized. A common approach
is to first estimate the causal effect of possible decisions using methods for treatment effect estimation. For example,
in marketing, to estimate how different customers would respond to a marketing incentive. The effect estimates can
be integrated in an optimization problem to make the final decisions regarding treatment allocation (e.g., to target a
specific customer segment). This approach has been adopted to aid decision-making by a variety of technology and
e-commerce companies [5, 6, 7].
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Application Allocation problem Treatment outcome Objective Constraints

 Marketing Targeted advertising Conversion Incremental sales Marketing budget
¿ Healthcare Pandemic response Infection Mortality reduction Vaccine supply
r Maintenance Preventive maintenance Failure rate Asset uptime Available technicians
Ç Policy design Targeted subsidies Bed net purchase Malaria prevention Public/policy budget

Table 1: Treatment Allocation Examples. We highlight several applications where treatment allocation is required,
characterized by (1) an estimated treatment effect, (2) an optimization objective, and (3) operational constraints. In
marketing, the goal is to target customer segments and drive conversions, while adhering to budget constraints. In
healthcare and epidemiology, optimal vaccine allocation during pandemics aims to minimize population mortality,
subject to vaccine supplies. In maintenance, technicians are assigned to maintain assets, prevent failures, and maximizing
operational uptime. Finally, in economics and policy design, subsidy usage needs to be optimized by efficiently allocating
public funds and maximizing health care impact.

Decision-Focused Learning: Effect Ranking Recent work, referred to as decision-focused learning, aims to integrate
the learning and optimization steps. This approach recognizes that the predictive task (i.e., estimating treatment effects)
is only part of a larger optimization problem (i.e., allocating treatments). By integrating the predictive model in the larger
optimization pipeline, decision-focused learning aims to learn a predictive model that results in better performance for
the downstream task [8]. The key idea is to align the construction of the predictive model with the optimization task.

We analyze a common type of treatment allocation problem, where treatments are allocated to the instances with
the largest treatment effect. In these settings, we argue that directly learning an effect ranking might be more useful
than effect estimation. As operational constraints might prevent decision-makers from treating every instance, we
require knowing how to prioritize instances based on their treatment effect. Compared to independently estimating each
instance’s effect, we argue that directly learning the ranking across instances may yield better results. Because effect
estimation prioritizes accurate and well-calibrated effect estimates, it overlooks the estimates’ ranking and resulting
decision quality (i.e., estimation and optimization are not aligned). While successful when predictions are perfect,
this misalignment can result in suboptimal decision-making in reality. Conversely, our work demonstrates that effect
ranking can directly optimize the quality of the treatment assignment (i.e., the ranking objective is perfectly aligned
with the decision-making task). We contrast both approaches in Table 2. Additionally, empirical risk minimization
only guarantees model generalization for the specific objective that was optimized for [9], further motivating us to find
objectives that are aligned to the final optimization problem.

Contributions This work proposes decision-focused learning framework for treatment recommendation problems.
We formalize the class of problems that can be tackled using effect ranking and discuss the underlying assumptions. We
describe how learning to rank can be used for this task and propose different causal metalearners for ranking effects.
Our contributions are as follows. (1) Conceptually, we formalize treatment allocation problems that can be solved
using ranking and analyze the underlying assumptions (see Section 3). (2) Methodologically, we propose different
metalearners for ranking treatment effects, based on pairwise and listwise ranking objectives that scale efficiently to
large-scale data sets. We show how our proposed listwise objective directly optimizes the policy’s area under the Qini
curve (see Section 4). (3) Empirically, we compare our proposed effect ranking with effect estimation using synthetic
and real-world data sets (see Section 5).

2 Related Work

In the following, we discuss two areas of related work. First, causal inference and, more specifically, estimating
treatment effects. Second, learning policies for treatment recommendation.

2.1 Prediction-Focused Learning: Effect Estimation

Understanding the impact of an action on an instance or individual is crucial in a variety of domains where personalized
decision-making is valuable, such as marketing, healthcare, or education. Central to this is causal inference: using
data to draw conclusions regarding causal relationships. Especially relevant to our work is treatment (or causal) effect
estimation, where the aim is to learn how some treatment, action, or intervention will affect an instance’s outcome
of interest. For a comprehensive review, we refer to Zhang et al. [10]. In the context of marketing, using machine
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Instances (e.g., customers) Performance
MSE Ranking

True treatment effect 0.20 0.17 0.16 0.15 0.11 0.10 — —

Effect estimation: model 1 0.22 0.15 0.16 0.17 0.10 0.11 
Effect ranking: model 2 0.25 0.22 0.20 0.15 0.10 0.05 

Table 2: Comparing Pointwise Estimation and Effect Ranking for Treatment Allocation. This illustrative example shows
the true treatment effect for several instances, ordered from largest to smallest. The first model estimates each instance’s
treatment effect fairly accurately in terms of MSE. However, the ranking of instances based on these estimates differs
significantly from their true order, which will result in suboptimal treatment allocation when only some instances can be
treated. For the second model, we observe the opposite scenario: estimates are poor in terms of MSE, but their ranking
respects the true order.

learning (ML) for treatment effect estimation is generally referred to as uplift modeling, as discussed in several surveys
[11, 12, 10].

Specialized methods have been proposed for estimating treatment effects. First, general strategies exist for learning these
effects. Causal metalearners are modeling frameworks for effect estimation, compatible with various ML algorithms
[13, 14, 15]. Relatedly, response transformation approaches transform an instance’s outcome so that it can be modeled
using a standard classifier [16, 11]. Second, ML algorithms have been adapted for effect estimation, such as decision
trees [17] or random forests [18, 19].

While uplift modeling has traditionally focused on optimizing conversion, practitioners often seek to optimize other
metrics related to their business and operational context. Recent work explores cost-sensitive or profit-driven uplift
modeling, where the aim is to estimate and maximize profit and cost resulting from targeting policies [20, 21, 22, 23].
For example, the Incremental Profit per Conversion (IPC) has been proposed as a response transformation approach for
incremental profit [24].

All work in this category aims to estimate the effect of a treatment (e.g., a customer’s incremental conversion probability
as a result of receiving a marketing incentive). As discussed in the introduction, these estimates can be used to design a
treatment allocation policy (e.g., by targeting customers with a large estimatd effect). In practice, operational constraints
(such as budget limitations) may call for more complex optimization procedures [25, 26, 27, 1]. The resulting treatment
allocation problem requires solving a constrained optimization problem using the effect estimates as input.

2.2 Decision-Focused Learning: Effect Ranking

As argued before, the prediction-focused approach may suffer from a misalignment between prediction and optimiza-
tion, leading to suboptimal treatment decisions. Additionally, empirical risk minimization only guarantees model
generalization for the specific objective that was optimized [9]. Decision-focused learning aims to align the two phases
by using an integrated approach and directly optimizing a predictive model for the final optimization problem. Related
to this insight, a handful of methods have recently been proposed for treatment recommendation that aim to learn a
ranking of instances in terms of their treatment effect. Although these methods were originally proposed in the context
of uplift modeling–framing targeted marketing as a ranking problem–they are more generally applicable. Finally, it has
been noted that any score–even non-causal estimands–can be used to prioritize instances for treatment, as long as it is a
good proxy for the treatment effect’s magnitude [28, 29].

Table 3 highlights related methods for ranking treatment effects, describing the metalearners and optimization strategies
that were used, where we follow the literature on learning to rank [30, 31]. The first approach, pointwise ranking,
relies on an estimate of the treatment effect and corresponds to prediction-focused learning. The second approach,
pairwise ranking, aims to predict the relative ranking between instances over all pairs of instances. The final approach,
listwise ranking, optimizes the ranking across all instances in the ranking simultaneously. In the literature on learning to
rank, pairwise and listwise ranking approaches have surpassed pointwise approaches, with listwise methods typically
performing best [31].

Most existing approaches for ranking effects rely on alternative objective functions that aim to integrate prediction and
optimization using Lagrangian duality [32, 33, 34] or gradient estimation techniques [35]. Alternatively, the causal
profit ranker [23] ranks instances in a post-processing stage using pointwise estimates of the expected conversion More
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Objective Metalearners
Ref. Point Pair List Z S T X DR R

[32] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
[33] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓
[36] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗
[9] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

[23] ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
[34] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Literature Table. We categorize related work on effect ranking by differentiating between different (1) ranking
approaches (point-, pair-, and listwise) and (2) metalearners.

advanced pairwise [9] and listwise [36] learning to rank have also been explored in this context. Conversely, our work
explores pointwise, pairwise, and listwise objectives, as well as a wide variety of metalearners.

General methodologies have been proposed for learning a treatment policy, directly mapping an instance’s characteristics
to a recommended treatment [37, 38, 39, 40, 41, 42]. In the context of our work, these can be seen as pointwise
approaches, as they do not consider the ranking structure of the optimization task.

3 Problem Formulation

In this work, we aim to learn a treatment policy that prioritizes instances for treatment to maximize the aggregate effect.
As opposed to the existing work, which assumes a problem formulation implicitly, we explicitly formalize our problem
setting. In doing so, we reveal the underlying assumptions required for our approach.

3.1 Notation and Optimization Problem

Let an instance (e.g., a customer) be described by a tuple (xi, ti, yi), representing covariates X ⊂ Rd, an administered
treatment t ∈ {0, 1}, and the outcome to be optimized Y ⊂ R. We denote the potential outcome Y associated with a
treatment t as Y (t) and an instances i’s treatment effect as τi = Yi(1)−Yi(0) (e.g., a customer’s incremental conversion
probability resulting from receiving a discount). We aim to learn a policy π that assigns treatments to instances and
maximizes the overall treatment effect, while respecting possible operational constraints. At test time, we assume n
instances can be treated, subject to a treatment budget B with B ≤ n. This yields the following optimization problem:

max
ti

n∑
i=1

τi(ti)

s.t.
n∑

i=1

ti ≤ B

ti ∈ {0, 1} ∀ i ∈ {0, . . . , n}
At test time, treatment effects τ are unknown and need to be estimated. To this end, we assume access to a historical
data set D = {xi, ti, yi(ti)}mi=1 describing past treatment decisions and the resulting outcomes. These data can be used
to estimate the conditional average treatment effect (CATE): τ̂ = E(Y (1)− Y (0) | X = x).

3.2 Assumptions

We make several assumptions regarding the causal structure of the data and the operational constraint. To estimate
the causal effect from historical data, we require the standard assumptions for identifiability in causal inference [43]
(see Appendix A for a more extensive discussion). Additionally, we more formally define the operational constraint.
Although we assume that not all instances can be treated and, thus, instance prioritization is required, we assume that
the exact budget is not known to the decision-maker a priori. More formally, we state there is no information regarding
the budget B a priori:
Assumption 1 (Operational constraint). We assume the exact budget is unknown, but the expectation is uniformly
distributed among {1, . . . , n}: B ∼ U(1, n).
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Figure 1: Evaluating a Treatment Allocation Policy. We compare targeting policies using a Qini curve, depicting the
cumulative total effect of a policy for a number of treated instances, summarized by the area under the Qini curve
(AUQC).

We discuss how alternative assumptions regarding the budget would affect our proposed solution below.

3.3 Evaluating a Treatment Policy

We assess the quality of a proposed policy using the Qini curve, illustrated in Figure 1. This curve shows the cumulative
total effect of a policy for a number of treated instances [44, 45]. Given that we assume no information regarding
the budget, we measure a policy’s overall quality using the area under the Qini curve (AUQC), quantifying the total
cumulative effect over the entire ranking. Formally, we define the (hypothetical) AUQC as

AUQC =

n∑
k=1

k∑
i=1

τi (1)

with τi the effect of the instance at position i in the ranking. The normalized AUQC is obtained by comparing it with
the expected AUQC of a random ranking and AUQC of a perfect ranking. Typically, the normalized AUQC ranges
between zero and one ∈ [0, 1], though a worse than random policy with AUQC < 0 is also possible. Because effects τ
are not observed in reality, Qini curves need to be estimated from data on past treatment allocations [36, 45].

4 Methodology

Given the problem setup described above, we now present our proposed methodology, which essentially learns a ranking
(or sorting) of each instance’s treatment effect. The optimality of this solution can be seen as follows. If only one
instance can be treated (i.e., B = 1), the optimal solution is to assign the treatment to the instance with the largest
treatment effect τi. Given an unknown budget and uniform expectation regarding this budget, the optimal solution is
then to rank all instances by their treatment effect τi and assign treatments to the top instances until the budget runs
out. Therefore, our goal is to predict an optimal ordering or assignment policy π ∈ Πn that permutes the test instances
{1, . . . , n} to the optimal ordering based on descending treatment effects τ .

As previously discussed, most existing approaches first estimates the effects τ̂ and then rank these estimates. However,
as discussed above and in Table 2, this approach has two drawbacks. First, the estimator’s objective is not aligned with
the optimization task, possibly resulting in suboptimal decisions [8]. Second, the resulting model is only guaranteed to
generalize for the predictive objective that was used [9]. These issues motivate us to directly learn a ranking policy π
based on instance characteristics X , which requires addressing two challenges. First, to find an objective that optimizes
a ranking of instances instead of a pointwise estimate (see Section 4.1). Second, the ranking needs to be based on
the treatment effect τ , which is not observed. Therefore, we extend metalearners for effect estimation to ranking (see
Section 4.2).

4.1 Optimizing a Ranking Objective

In this section, we explore approaches for optimizing a ranking. We discuss pointwise, pairwise, and listwise approaches.
We propose a listwise objective that optimizes the policy’s AUQC directly. Additionally, we propose a sampling strategy
to improve the efficiency of our proposed ranking objectives.

4.1.1 Ranking objectives

We describe three objectives for learning a ranking policy π that can be used by ML algorithms.
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Pointwise The first approach, used by most existing work, is to learn a pointwise estimate of the effect. As the
treatment effect itself is never observed, this corresponds to either learning the observed outcome y(t) or a transformed
outcome, depending on the metalearner used (see Section 4.2). In this work, we use the mean squared error as a
pointwise objective to learn the estimand:

LPoint(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2
. (2)

While other objectives are possible [e.g. 34], pointwise approaches by definition ignore the instance ranking resulting
from the point estimates. This motivates our exploration of alternative objectives.

Pairwise The first ranking approach is the pairwise approach. The idea is to predict, for each pair of instances, how
both instances are ranked respective to each other. If all pairs are ranked correctly, the overall ranking will also be
correct. We build upon the approach proposed for RankNet [46]. Before we define the pairwise objective, we define the
pairwise outcome yi,j that specifies whether instance i or j should be ranked higher, for each pair of instances i and j:

yi,j =

{
1 if yi ≥ yj
0 if yi < yj .

Similarly, we define a smooth pairwise prediction ŷi,j , combining two instances’ predictions ŷi and ŷj as follows:

ŷi,j =
1

1 + exp
(
−σ(ŷi − ŷj)

) , (3)

where the sigmoid parameter σ controls the smoothness of the comparison. In the extreme σ = ∞, this becomes a
step function. This way, we define pairwise ranking as a binary classification task with the pairwise cross-entropy loss
defined as:

LPair(y, ŷ) =

n∑
i=1

n∑
j=1

−yi,j log (ŷi,j)− (1− yi,j)
(
1− log (ŷi,j)

)
. (4)

Other pairwise objectives exist [e.g. 9] which can be applied to our approach, though we consider this outside the scope
of this work.

Listwise A drawback of the pairwise approach is that it overlooks the relative importance of correctly classifying one
pair on the listwise ranking quality. To address this issue, the LambdaMART objective [47] adds a weight NDCGi,j to
the pairwise objective, reflecting the increase in normalized discounted cumulative gain (NDCG, see below) achieved
by swapping that pair:

LList(y, ŷ) =

n∑
i=1

n∑
j=1

(
− yi,j log (ŷi,j)− (1− yi,j)

(
1− log (ŷi,j)

))
∆NDCGi,j .

4.1.2 The AUQC as a specific instance of the NDCG

The normalized discounted cumulative gain (NDCG) is a class of metrics measuring the quality of a ranking [48].
Formally, we define a ranking π, with πi representing the i’th instance in the ranking. An instance’s gain gi represents
its value independent of its position in the ranking (e.g., the treatment effect τ ). The NDCG decreases the gain for
lower ranks, reflecting their decreasing importance, by applying a discount function d(i) to the instance’s gain gi. The
discounted cumulative gain (DCG) is the sum of all discounted gains over the ranking DCG =

∑n
i=1 d(i)gπi

. Finally,
the normalized discounted cumulative gain (NDCG) is obtained by comparing the DCG with the perfect ranking’s DCG
to get a value between zero and one.

We propose a specific instantiation of the NDCG that matches the AUQC. More specifically, we define an instance’s
gain gi as its treatment effect τ . The discount function is a linearly decreasing function: for rank i, the discount equals
(n− i+ 1)2. In this specification, we can show that the listwise objective that optimizes the NDCG allows us to learn
an optimal ranking policy π that optimizes the metric of interest, the AUQC (generalizing [36, Section 3.2.2] from the
Z-Learner to any model that estimates τ ):

2Technically, we do not discount lower ranked instances (d(i) ≤ 1), but rather promote higher ranked instances (d(i) ≥ 1) [see
36, eq. 25].
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Proof. The area under the Qini curve (AUQC) is an instantiation of the normalized discounted cumulative gain (NDCG):

AUQC =

n∑
k=1

k∑
i=1

τπi
=

n∑
i=1

n∑
k=i

τπi
=

n∑
i=1

τπi

n∑
k=i

1 =

n∑
i=1

τπi
(n− i+ 1) = NDCG

for the NDCG with gain gπi = τπi and d(i) = n− i+ 1.

Given that the listwise objective described above can be shown to optimize the NDCG [49, 47], this result proves that
our proposed objective can be used to directly optimize the metric of interest: the AUQC. There is one remaining
challenge: we do not known the instance’s treatment effect τ and require a valid estimator τ̂ → τ . We will tackle this
part in Section 4.2.

4.1.3 Efficiently scaling to large-scale data sets

Moving from pointwise to pairwise or listwise optimization requires addressing a challenge regarding computational
efficiency. Optimizing over pairs of instances results in an increase of the algorithm’s time complexity from O(n)
to O(n2). This complexity is not compatible with the large data sets commonly encountered in applications such as
marketing or e-commerce [27].

To address this challenge, we propose an efficient sampling procedure that finds a stochastic estimate of the gradient.
Intuitively, instead of calculating the gradient based on all possible pairs, we sample k pairs per instance:

LPair(y, ŷ) =

n∑
i=1

∑
j∈J

−yi,j log (ŷi,j)− (1− yi,j)
(
1− log (ŷi,j)

)
with J ∼ (U[1,...,n])

k,

and equivalently for LList. This again makes the procedure scale linearly in the number of instances with complexity
O(kn). We observe good results for k = 1, effectively obtaining the same computational complexity as the pointwise
objective. We present a sensitivity analysis for the number of samples k below. We opt for this sampling procedure for
its simplicity, although more advanced sampling schemes are possible [see e.g. 50].

4.2 Ranking Metalearners

One challenge when learning a treatment assignment policy π is that decisions need to be made based on the treatment
effect τ . Indeed, the optimization of the AUQC presented above requires a model to predict the treatment effect τ̂ .
Predicting a treatment effect τ is a challenge. We never observe the treatment effect itself, but only one potential
outcome y(t) for each instance, i.e., the outcome when targeted or not targeted–also called the fundamental problem of
causal inference [51]. In other words, we never actually observe what we are trying to estimate and optimize over.

To tackle this challenge, we implement the objective functions introduced above for different causal metalearners–
general strategies for using any ML method for treatment effect estimation. Whereas metalearners have originally
been proposed for effect estimation, we propose adaptations for effect ranking below. In practice, this adaptation
consists of integrating ranking (i.e., pairwise or listwise) objectives in each training procedure–instead of the traditional
pointwise (regression or classification) objectives. In this section, we describe each metalearner and introduce its
ranking equivalent. We focus on several established metalearners, but the extension to other metalearners could be done
using a similar approach. While our optimization of the AUQC requires metalearners that directly predict the treatment
effect τ , we also discuss adaptations of other metalearners–specifically, the S- and T-Learner.

Z-Learner The first metalearner estimates a transformation z of the outcome y–also called the class transformation
approach [52, 53, 24]–adjusting the outcome based on the instance’s propensity score3 ê(x) = P (T = 1|X = x) and
the observed treatment:

zi =

{
yi/êi if ti = 1

−yi/(1− êi) if ti = 0

The Z-Learner estimates the treatment effect using this outcome:

fZ(x) = E(Z|X) with τ̂ = fZ(x)

Instead of training this final model fZ(x) with a pointwise objective, we propose to optimize it using a pairwise or
listwise objective.

3Given that we assume data comes from a randomized trial, we can estimate the propensity score by the proportion of treated
instances without fitting a model.
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S-Learner The S-Learner estimates a single model, which takes the treatment as a (regular) feature:

fS(x, t) = E(Y |X = x, T = t) with τ̂ = fS(x, 1)− fS(x, 0)

Again, the model fS(x, t) can be trained with either a pointwise, pairwise, or listwise objective. For the ranking
objectives, the estimated treatment effect τ corresponds to the increase in the ranking score resulting from receiving the
treatment. Importantly, however, because this metalearner does not directly optimize for τ , the theoretical results of the
previous section do not apply. Nevertheless, although there is no guarantee that the listwise objective optimizes the
AUQC for the S-Learner, the difference in ranking scores could provide a good heuristic for the treatment effect.

T-Learner The T-Learner trains two models: one model for each treatment group— fT1 for the treatment (T = 1)
and fT0 for the control group (T = 0)—trained as follows:

fT1(x) = E(Y |X = x, T = 1), fT0(x) = E(Y |X = x, T = 0).

When combined, these can estimate the treatment effect as follows:

τ̂ = fT1(x)− fT0(x).

We propose to train both models fT1(x) and fT0(x) with a pairwise or listwise objective, instead of the traditional
pointwise objective. This corresponds to a separate optimization of the AUQCof the treatment (fT1(x)) and control
(fT0(x)) groups (based on the outcome y instead of the effect τ ). An instance’s difference in ranking scores between
both groups is used as a proxy for its treatment effect. Similarly to the S-Learner, the theoretical results from the
previous section do not apply. Nevertheless, this separate optimization could be a good heuristic for the AUQC [see
also 11, eq. 26].

X-Learner The X-Learner first estimates an initial treatment effect by imputing the counterfactual potential outcome
using a T-Learner model as follows [14]:

D1
i = yi − fT0(xi) if ti = 1, D0

i = fT1(xi)− yi if ti = 0.

The final two models are then trained on the imputed effects:

τ̂0 = f0
X (x) = E(D0

i |X = x), τ̂1 = f1
X (x) = E(D1

i |X = x).

To obtain the final predicted effect τ̂i, we combine these two models:

with τ̂ = g(x)f0
X(x) + (1− g(x))f1

X(x).

For the weighting function g(x), we use the estimated propensity score ê(x) = P (T |X = x) following [14]. Compared
to the pointwise variant, we propose to train the final models f0

X (x) and f1
X (x) with pairwise or listwise ranking

objectives, with the initial models still trained using a pointwise objective. The final ranking score τ̂ is a linear
combination of two ranking scores [see 47, note 7.1].

DR-Learner The Doubly Robust or DR-Learner [54, 55] also relies on a final model estimating a pseudo-outcome. In
this case, the first stage is based on pointwise estimates from a T-Learner and a propensity model ê(x) = P (T |X = x).
These estimates are combined to create a pseudo-outcome ϕ as follows:

ϕi =
ti − ê(xi)

ê(xi)(1− ê(xi))
(yi − fTti (xi)) + fT1(xi)− fT0(xi).

This pseudo-outcome is then used to learn a final model τ̂ = fDR(ϕ|x), which can be learned using a point-, pair-, or
listwise objective.

R-Learner For the R-Learner [56], we first fit an outcome model m̂(x) = E(Y |X = x) and propensity model
ê(x) = P (T |X = x). These can then be used to minimize the R-Loss, based on Robinson’s decomposition [57], which
can be seen as a weighted MSE:

LR
MSE(y, ŷ) =

1

n

n∑
i=1

((yi − m̂(xi))− (ti − ê(xi)) τ(xi))
2
=

1

n

n∑
i=1

1

(ti − ê(xi))
2

((
yi − m̂(xi)

ti − ê(xi)

)
− τ(xi)

)2

.

Instead of this pointwise objective, we propose to use a weighted pair- or listwise objective based on the same weights
and labels.

For simplicity, we do not use out-of-fold estimates for any of the intermediary models for any of the metalearners, but
rather train all models on the same train set.
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Figure 2: Ranking Quality for Different Objectives and Metalearners. For each metalearner, we compare a point-, pair-,
and listwise version. We show the AUQC ± one standard error, scaled to have the best result = 1, for five different data
sets.

5 Empirical Results

This section presents the empirical results, comparing our proposed (pairwise and listwise) effect ranking metalearners
with traditional (pointwise) effect estimation metalearners. Our experiments aim to answer three research questions.
(RQ1) What is the treatment recommendation quality resulting from the different methods, as measured in AUQC?
(RQ2) What are the performance trade-offs of the pointwise, pairwise, and listwise objectives, in terms of MSE (i.e.,
pointwise accuracy), Kendall τ (i.e., pairwise rank correlation), and AUQC (i.e., listwise ranking quality)? (RQ3)
How sensitive are our proposed methods to key hyperparameters? This section presents the setup of our experimental
evaluation and the empirical results.

5.1 Data and Benchmarks

To evaluate the performance of the proposed approaches, we use a total of four data sets based on randomized trials:
1) a synthetic dataset; 2) Criteo [5]; 3) Hillstrom (Male and Female) [58]; 4) a proprietary data set from a promotion
campaign at a global online travel agency.

We first simulate a Synthetic data set. Simulated data allows for a more comprehensive evaluation than real data,
as we know the treatment effect for test instances. The data generating process is inspired by an e-commerce setting
and similar to existing work [24]. First, we generate customer characteristics as follows: X ∼ N (0, 1)d. Then, we
generate a sale (or conversion) probability S based on these characteristics and random coefficients Us ∼ U(−1, 1)d

as S = 1

1+exp (−
∑

d UsX+ϵs)
, where ϵs ∼ N (0, 0.1). Similarly, we generate a potential revenue R using random

coefficients Ur ∼ U(−1, 1)d as R = 1 + |∑d UrX| + ϵr, where ϵr ∼ N (0, 0.1). The cost of the treatment C (the
marketing incentive or discount) is defined as 10% of the revenue: C = 0.1R. The observed outcome Y , the net
revenue generated for that customer, is the revenue for that customer minus the treatment cost–simulated as follows:

yi =


ri − ci if ti = 1 and si = 1

−ci if ti = 1 and si = 0

ri if ti = 0 and si = 1

0 if ti = 0 and si = 0.

We generate 10, 000 instances with d = 10 characteristics.

Next, we also compare with three real-world data sets. The Criteo data set [5] is the result of a randomized trial testing
whether showing an advertisement increases a customer’s visit or conversion probability. For the outcome, we follow
[34] and take the net revenue y as conversion minus visit. To reduce training times, we randomly sample 500, 000
instances from this data set.

The Hillstrom data set was collected to test whether an e-mail campaign resulted in additional sales. Two treatments
were recorded: a Men’s and Women’s e-mail. Therefore, we split the data in two data sets for both treatments, and use the
same control group for both. We calculate each customer’s net revenue as revenue (conversion times spend) minus visit.

Finally, data from a Promotion campaign at a large online travel agency was used as a randomized dataset to evaluate
the offline performance of different approaches in a real-world setting.

9



Metalearners for Ranking Treatment Effects A PREPRINT

100 200 300 400 500 600

MSE

0.1

0.2

0.3
K

en
d

al
l
τ

Pointwise (ρ = −0.77)

Pairwise (ρ = −0.2)

Listwise (ρ = −0.67)

100 200 300 400 500 600

MSE

0.1

0.2

0.3

A
U

Q
C

Pointwise (ρ = 0.12)

Pairwise (ρ = −0.37)

Listwise (ρ = −0.67)

0.05 0.10 0.15 0.20 0.25 0.30

Kendall τ

0.1

0.2

0.3

A
U

Q
C

Pointwise (ρ = 0.22)

Pairwise (ρ = 0.93)

Listwise (ρ = 1.0)

Figure 3: Analyzing Performance Trade-offs on Synthetic Data. We compare the three different objectives (point-,
pair-, and listwise) across metalearners. Using the Synthetic data set, we compare performance in terms of MSE (i.e.,
pointwise accuracy), Kendall τ (i.e., pairwise rank correlation), and AUQC (i.e., listwise decision quality). For each,
we show the correlation ρ.
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Figure 4: What Is the Effect of the Number of Sampling Iterations k? We show performance in terms of AUQC for
the different metalearners on the Synthetic data set. We fix the sigmoid parameter σ = 1 and train with default
hyperparameters.

We compare the three objectives and metalearners for gradient boosting based on LightGBM [59]. We implement our
proposed pairwise and listwise objectives as a custom objectives and metrics in LightGBM. For each data set, we run
a five-fold cross-validation procedure. We run hyperparameter tuning using 10 random sampling iterations over the
following hyperparameters: “num_leaves” ∈ [10, 50], “learning_rate” ∈ [0.01, 0.20], “max_depth” ∈ [3, 10], and
“min_data_in_leaf” ∈ [10, 30]. We use 64% of all instances for training, 16% for validation, and 20% for testing.

5.2 Comparing Performance for the Different Objectives and Metalearners (RQ1)

For each metalearner, we compare a model trained with only a pointwise objective to our proposed ranking alternatives,
based on either pairwise and listwise objectives. We evaluate the quality of each treatment allocation policy by looking
at the cumulative treatment effect over the instance ranking, measured using the AUQC presented above. We evaluate
the performance for each metalearner and objective over the different data sets (see Figure 2 and Appendix B.1). Across
data sets and metalearners, we observe that listwise metalearners generally result in better treatment prioritization.
Over all tested data sets and metalearners, a pointwise objective gives the highest AUQC in only a minority of cases
(7/30), while the listwise objective obtains best in class performance in a majority of time (16/30) and the pairwise
objective performs similar to the pointwise (7/30). A listwise approach outperforms a pointwise one in a majority of
cases (20/30). Only for the Promotion data, the pointwise objective performs relatively well.

Interestingly, we observe differences across metalearners in terms of which objective gives the best results. The listwise
objective seems favorable for some metalearners (Z-, X-, and R-Learner), while the pairwise objective seems preferable
for the S-Learner and the pointwise objective seems best for the DR-Learner. Generally, we also observe that the choice
of metalearner is at least equally important as the choice of objective. This finding stresses the importance of testing
different metalearners–illustrating the value of our contribution.

When learning a model using ranking objectives, the ranking scores are not properly calibrated. This represents a
possible challenge for metalearners that do not directly learn the treatment effect, i.e., the S- and T-Learner. For these
metalearners, an instance’s predicted ranking score does not necessarily correspond to its potential outcome. Rather, if
one instance’s outcome is larger than another instance’s (yi > yj), its predicted score will be larger (ŷi > ŷj). Although
the ranking might hold for both potential outcomes, there are no guarantees for the rankings of the estimated treatment
effects derived from these ranking scores (τi and τj). Because ranking scores are not calibrated, arithmetic operations
of the scores (as used by these two metalearners) may not be meaningful. Nevertheless, the ranking versions of the
S- and T-Learner perform relatively well in practice, illustrating that they may provide a meaningful heuristic. While
calibration methods for ranking models exists, we leave this extension for future work (see conclusion).
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5.3 Analyzing Alternative Metrics (RQ2) and Design Choices (RQ3)

This section aims to provide a deeper understanding of our proposed approach. To this end, we highlight additional
results using the Synthetic data, which allows for a more comprehensive analysis as we know the ground truth
treatment effects for the test instances.

To answer (RQ2) regarding performance trade-offs of the different objectives and metalearners, we can present additional
metrics to allow for a more holistic evaluation (see Figure 3 and Appendix B.2). Our main metric of interest remains
the AUQC: a listwise metric of ranking quality. Additionally, we present two other metrics: a pointwise error metric
(MSE) and a pairwise rank correlation coefficient (Kendall τ ). First, we observe that ranking objectives give far worse
performance in terms of MSE (Appendix B.2). In other words, the ranking score does not accurately reflect the size of
the treatment effect. In relation to this finding, Figure 3 shows that the MSE is not a good predictor of performance
in terms of AUQC. Conversely, Kendall τ is a good predictor for AUQC for all models (ρ > 0), particularly for the
ranking models (ρ > 0.9). This finding underscores the importance of ranking metrics for evaluating decision quality
and highlights the irrelevance of optimizing pointwise error for treatment prioritization.

Finally, to answer (RQ3), we analyze several design choices of our proposed ranking metalearners in Figure 4 and
Appendix B.3. We observe that the default setting used in the experiments above (sampling iterations k = 1, sigmoid
σ = 1, normalizing ranking scores) generally performs well across ranking objectives and metalearners. Interestingly,
we observe little performance benefits when training with more sampling iterations. This finding shows that our sampled
objective can estimate the ranking objective accurately. Only for the S- and T-Learner without normalization, we
observe better performance for a higher k. Additionally, the stochasticity of our sampled objectives may even provide a
form of regularization [60].

6 Conclusion

This work addressed the problem of optimally prioritizing instances for treatment, an important problem for many
applications where not all instances can receive a treatment. Existing approaches typically tackle this problem in a
prediction-focused approach by first obtaining a pointwise effect estimate for each instance’s treatment effect, and
then ranking instances based on these estimates. Conversely, we explore an alternative, decision-focused approach:
using objectives that learn to rank the treatment effects, we aim to optimize the quality of the resulting treatment policy
directly. Building on the literature on learning to rank, we propose pairwise and listwise ranking objectives and show
that our proposed listwise objective directly optimizes the policy’s AUQC. Moreover, we propose different ranking
metalearners by integrating these ranking objectives in the construction of each metalearner. Empirical results show
that our proposed effect ranking approach can outperform a pointwise, effect estimation approach. In conclusion, our
proposed ranking metalearners offer a valuable tool for applications where instances need to be prioritized for treatment.

Our work opens up several exciting directions for future work. First, by building upon advances in learning to rank,
such as more advanced listwise objectives [e.g., 50] or calibration of ranking scores [e.g., 61, 62]. Alternatively, we
envision extensions of our approach to more complicated settings with, e.g., more advanced operational constraints [63],
multiple or continuous treatments, or more complex objectives (e.g., incremental return on investment). Additionally,
it would be insightful to analyze how our proposed ranking metalearners perform when learning from confounded
observational data with non-random treatment assignments. Finally, while theoretical results regarding convergence or
error bounds are out of the scope of this work, we believe that extending the results obtainedfor the effect estimation
models [e.g., 56, 55] to effect ranking models is a fruitful area of future work.
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[53] Krzysztof Rudaś and Szymon Jaroszewicz. Linear regression for uplift modeling. Data Mining and Knowledge
Discovery, 32:1275–1305, 2018.

[54] Heejung Bang and James M Robins. Doubly robust estimation in missing data and causal inference models.
Biometrics, 61(4):962–973, 2005.

[55] Edward H Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects. Electronic
Journal of Statistics, 17(2):3008–3049, 2023.

[56] Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 108(2):299–
319, 2021.

[57] Peter M Robinson. Root-n-consistent semiparametric regression. Econometrica: Journal of the Econometric
Society, pages 931–954, 1988.

[58] Kevin Hillstrom. The MineThatData E-Mail Analytics And Data Mining Challenge — blog.minethatdata.com.
https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html,
2008. [Accessed 15-04-2024].

[59] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems,
30, 2017.

[60] Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):367–378,
2002.

[61] David Sculley. Combined regression and ranking. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 979–988, 2010.

[62] Le Yan, Zhen Qin, Xuanhui Wang, Michael Bendersky, and Marc Najork. Scale calibration of deep ranking
models. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
4300–4309, 2022.

[63] Toon Vanderschueren, Bart Baesens, Tim Verdonck, and Wouter Verbeke. A new perspective on classification:
optimally allocating limited resources to uncertain tasks. Decision Support Systems, 179:114151, 2024.

[64] Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement from a finite
universe. Journal of the American statistical Association, 47(260):663–685, 1952.

[65] Miguel A Hernán and James M Robins. Estimating causal effects from epidemiological data. Journal of
Epidemiology & Community Health, 60(7):578–586, 2006.

14

https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html


Metalearners for Ranking Treatment Effects A PREPRINT

Z S T X DR R
0.00

0.05

0.10

0.15

0.20

0.25
AUQC

Synthetic

Z S T X DR R

−0.02

0.00

0.02

0.04

0.06
AUQC

Criteo

Z S T X DR R
−0.15

−0.10

−0.05

0.00

0.05

0.10

AUQC
Hillstrom (Female)

Z S T X DR R

−0.05

0.00

0.05

AUQC
Hillstrom (Male)

Z S T X DR R
0.0

0.1

0.2

0.3
AUQC

Synthetic

Pointwise

Pairwise

Listwise

Figure 5: Ranking Quality for Different Objectives and Metalearners. For each metalearner, we compare three different
objectives: point-, pair-, and listwise. We show performance in terms of AUQC ± one standard error, for five different
data sets. As opposed to the figure in the main body, we do not scale the results here. Due to confidentiality reasons, we
cannot share the raw results for the Promotion data set.

A Problem formulation: Identifiability Assumptions

As introduced in the main body, we require the standard assumptions from causal inference to identify the causal effect.
In this work, we assumed that historical data comes from a randomized controlled trial:

Assumption 2 (Consistency). When Y = y and T = t, we assume that Y (T = t) = y. This implicates that, for each
instance, when given treatment t, the outcome we observe is the potential outcome associated to that treatment Y (t).

Assumption 3 (No interference). An instance’s outcome given a treatment is independent of treatments administered to
other instances: Yi(t0, . . . , ti, . . . , tn) = Yi(ti).

Assumption 4 (Unconfoundedness). We assume Y (T ) ⊥⊥ T , i.e., past treatment decisions were made at random, i.e.,
not based on the instance’s characteristics.

If we do not have data from a randomized trial, we require a stronger assumption called strong ignorability or no
hidden confounding: Y (T ) ⊥⊥ T |x, i.e., past treatment decisions were exclusively based on the instance’s observed
characteristics x. In this case, we also require positivity: for each instance, the probability of administering each
treatment has to be larger than zero, i.e., P (T |x) > 0. We do not consider this scenario in our work. However, our
ranking metalearners can easily be extended to these scenarios: while some metalearners already integrate the propensity
score in their construction, others may be improved by inverse propensity score weighting [64, 65].

B Empirical Results: Additional Experiments

This section presents additional experimental results. We describe additional results for RQ1 in Appendix B.1, and for
RQ2 and RQ3 in Appendix B.2 where we analyze the effect of several design choices and hyperparameters.

B.1 Comparing Performance for the Different Objectives and Metalearners (RQ1): Additional Results

We display the results presented in the main body of the text without normalizing the best value to 1 in Figure 5 and
provide them in table format in Table 4.

B.2 Analyzing Alternative Metrics (RQ2) and Design Choices (RQ3): Additional Results

First, we present additional results to support our investigation surrounding RQ2. For each metalearner, we visualize
the trade-off between different metrics: the MSE (i.e., pointwise accuracy), Kendall τ (i.e., pairwise rank correlation),
and AUQC (i.e., listwise ranking quality). This shows that models that perform well in terms of AUQC, also perform
well in terms of Kendall τ . Conversely, performance in terms of MSE does not seem related to AUQC or Kendall τ .
Finally, we also display these results in table format in Table 5.
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Meta Objective Data
Point Pair List Synthetic Criteo Hillstrom|♀ Hillstrom|♂ Promotion*

Z
✓ ✗ ✗ +0.183 (0.027) +0.038 (0.018) +0.057 (0.030) +0.013 (0.033) +0.407 (0.111)

✗ ✓ ✗ +0.137 (0.016) −0.014 (0.010) +0.016 (0.039) +0.022 (0.044) +0.370 (0.296)

✗ ✗ ✓ +0.242 (0.026) +0.048 (0.009) +0.092 (0.018) +0.027 (0.033) +0.593 (0.037)

S
✓ ✗ ✗ +0.051 (0.050) +0.030 (0.020) +0.011 (0.048) +0.025 (0.041) +0.370 (0.074)

✗ ✓ ✗ +0.052 (0.039) +0.002 (0.008) +0.042 (0.014) −0.021 (0.039) +0.593 (0.296)

✗ ✗ ✓ +0.037 (0.027) +0.048 (0.016) +0.039 (0.054) +0.021 (0.035) +0.222 (0.148)

T
✓ ✗ ✗ +0.054 (0.049) +0.043 (0.021) −0.004 (0.036) +0.015 (0.009) +0.333 (0.148)

✗ ✓ ✗ +0.046 (0.044) −0.015 (0.010) +0.044 (0.014) −0.017 (0.045) +0.630 (0.185)

✗ ✗ ✓ +0.058 (0.043) +0.039 (0.013) +0.021 (0.037) +0.032 (0.028) +0.556 (0.222)

X
✓ ✗ ✗ +0.052 (0.049) +0.034 (0.017) +-0.000 (0.031) −0.028 (0.039) +1.000 (0.296)

✗ ✓ ✗ +0.054 (0.042) +0.002 (0.009) +0.028 (0.039) +0.029 (0.034) +0.704 (0.259)

✗ ✗ ✓ +0.061 (0.038) +0.036 (0.012) +0.033 (0.051) +0.018 (0.033) +0.852 (0.111)

DR
✓ ✗ ✗ +0.055 (0.046) +0.044 (0.007) −0.101 (0.044) +0.043 (0.025) +0.667 (0.111)

✗ ✓ ✗ +0.048 (0.047) +0.022 (0.012) +0.027 (0.019) +0.006 (0.054) −0.481 (0.222)

✗ ✗ ✓ +0.056 (0.038) +0.039 (0.014) +0.005 (0.055) +0.039 (0.033) −0.148 (0.222)

R
✓ ✗ ✗ +0.054 (0.046) +0.029 (0.018) −0.034 (0.042) +0.033 (0.028) +0.593 (0.222)

✗ ✓ ✗ +0.050 (0.047) +0.021 (0.022) +0.036 (0.013) +0.012 (0.043) −0.296 (0.111)

✗ ✗ ✓ +0.056 (0.039) +0.038 (0.014) +0.048 (0.048) +0.034 (0.031) −0.259 (0.259)

*For the Promotion data, we only present scaled results such that the best AUQC = 1 due to reasons of confidentiality.

Table 4: Ranking Quality for Different Objectives and Metalearners. For each metalearner, we compare three different
objectives: point-, pair-, and listwise. We show performance in terms of AUQC (with standard error in brackets), for the
Synthetic, Criteo, and Hillstrom (Women (♀) and Men (♂) e-mail), and Promotion data.
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Figure 6: Analyzing Performance Trade-offs on Synthetic Data. For each metalearner, we compare three different
objectives: pointwise, pairwise, and listwise. Using the Synthetic data set, we compare performance in terms of
MSE (measuring pointwise accuracy), Kendall τ (measuring pairwise rank correlation), and AUQC (measuring global,
listwise decision quality).
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Meta Objective Metric
Point Pair List MSE Kendall τ AUQC

Z
✓ ✗ ✗ +2.474 (0.255) +0.128 (0.021) +0.183 (0.027)

✗ ✓ ✗ +2.867 (0.263) +0.101 (0.013) +0.137 (0.016)

✗ ✗ ✓ +6.465 (1.260) +0.164 (0.020) +0.242 (0.026)

S
✓ ✗ ✗ +37.916 (3.557) +0.044 (0.033) +0.051 (0.050)

✗ ✓ ✗ +483.712 (159.054) +0.050 (0.028) +0.052 (0.039)

✗ ✗ ✓ +562.509 (300.946) +0.038 (0.022) +0.037 (0.027)

T
✓ ✗ ✗ +41.014 (3.852) +0.045 (0.033) +0.054 (0.049)

✗ ✓ ✗ +213.265 (30.716) +0.049 (0.030) +0.046 (0.044)

✗ ✗ ✓ +513.908 (94.592) +0.057 (0.030) +0.058 (0.043)

X
✓ ✗ ✗ +40.417 (3.697) +0.043 (0.033) +0.052 (0.049)

✗ ✓ ✗ +88.987 (16.651) +0.054 (0.030) +0.054 (0.042)

✗ ✗ ✓ +162.146 (40.750) +0.058 (0.028) +0.061 (0.038)

DR
✓ ✗ ✗ +42.007 (4.017) +0.043 (0.031) +0.055 (0.046)

✗ ✓ ✗ +61.014 (10.268) +0.049 (0.032) +0.048 (0.047)

✗ ✗ ✓ +311.236 (105.607) +0.055 (0.028) +0.056 (0.038)

R
✓ ✗ ✗ +41.263 (4.760) +0.042 (0.031) +0.054 (0.046)

✗ ✓ ✗ +51.008 (12.094) +0.051 (0.032) +0.050 (0.047)

✗ ✗ ✓ +124.400 (18.588) +0.055 (0.028) +0.056 (0.039)

Table 5: Analyzing Performance Trade-offs on Synthetic Data. For each metalearner, we compare three different
objectives: pointwise, pairwise, and listwise. Using the Synthetic data set, we compare performance in terms of
MSE (measuring pointwise accuracy), Kendall τ (measuring pairwise rank correlation), and AUQC (measuring global,
listwise decision quality). For each, we show the standard error in brackets.

B.3 Sensitivity Analysis

To single out the effect of the analyzed design choice, we train with default hyperparameters for each training objective
and metalearner. We explore three hyperparameters: (1) the number of sampling iterations k, i.e., the number of
sampled pairs per instance, (2) the sigmoid parameter σ controlling the steepness of the comparison in the construction
of the pairwise score (see Equation (3)), and (3) whether we normalize the ranking score by feeding it to a logistic
sigmoid and constraining it to [0, 1]. Related work has shown that this normalization might effectively serve as a form
of regularization and help with overfitting [32].

In Figure 7, we vary the number of sampled pairs k in the ranking objectives, for each ranking metalearner, and compare
it to the pointwise model on the Synthetic data. We also show results for the metalearners with normalization of the
score (i.e., constraining the model to outputs between zero and one) and without normalization. Somewhat surprisingly,
with normalization, we see that increasing k does not yield better results. Conversely, without normalization, increasing
k does in fact improve performance for most metalearners. Nevertheless, for the Z-, X-, DR-, and R-Learner, the best
performance is achieved with normalization and k = 1–the same settings used in the experiments in the main body (i.e.,
Table 4). For the S- and T-Learner, deviating from these settings might improve performance. Overall, we see that for
each metalearner and objective, we can obtain the same performance or better than the pointwise equivalent given that
the right hyperparameters are chosen. This insight provides another validation of our proposed approach.

In Figure 8, we vary the sigmoid parametere σ, controlling the steepness of the comparison of the instance scores in
the construction of the pairwise score (see Equation (3)). Generally, we obtain good performance for smaller values
(σ ≤ 1). When using normalization, our method seems more sensitive to this hyperparameter compared to training
without score normalization. Although there may be some benefit of tuning this hyperparameter, we observe that fixing
the sigmoid parameter at σ = 1 seems like a good choice overall–this was the setting used to generate the experimental
results in the main body.
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Pointwise Pairwise Pairwise (no normalization) Listwise Listwise (no normalization)
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Figure 7: What Is the Effect of the Number of Sampling Iterations k? We show performance in terms of AUQC (higher
is better) for the different metalearners on the Synthetic data set. We fix the sigmoid parameter σ = 1 and train with
default hyperparameters.
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Pointwise Pairwise Pairwise (no normalization) Listwise Listwise (no normalization)
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Figure 8: What Is the Effect of the Sigmoid Parameter σ? We show performance in terms of AUQC (higher is better)
for the different metalearners on the Synthetic data set. We fix the number of sampling iterations k = 1 and train
with default hyperparameters.
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