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The effective field theory of multi-field inflationary fluctuations
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We build an effective field theory of multi-field inflationary fluctuations based on the adiabatic
perturbation and on any number of matter fluctuations in the non-adiabatic sector, without im-
posing extra symmetries on the latter. Focusing on terms with at most two derivatives in fields’
fluctuations, we argue that taking the decoupling limit—in which gravitational interactions are
neglected—is justified in a quasi de Sitter spacetime with slow-varying Hubble scale. With these
working hypotheses, we find simple forms of multi-field mixings (quadratic order) and interactions
(cubic order). We explain how to break degeneracies amongst various terms, and we compare the
predictions of the effective field theory to those of non-linear sigma models of inflation and more
general multi-field Lagrangian in the traditional model approach. We stress that several multi-field
cubic interactions are dictated by non-linearly realised spacetime symmetries and are therefore given
in terms of parameters already present in the quadratic action. We propose various directions to
systematically explore the phenomenology generic to multi-field inflation and beyond the lamppost
of known models.

Introduction. Effective field theories (EFT) are
powerful tools to systematically build physical theories
beyond the lamppost of known models. In the inflation-
ary context, the first stones were laid in [1, 2] with the
proposition of an EFT describing the adiabatic degree
of freedom, ever present in cosmology. This elegant for-
malism evades possible criticisms to the model approach
to inflation, which in its paradigmatic expression postu-
lates the existence of an ad hoc fundamental scalar field.
Delegating the details of the background spacetime dy-
namics to the specification of time-dependent Wilson-like
coefficients to be determined by experiments, the EFT
treatment focuses on symmetries to systematically build
a Lagrangian to any order in perturbations and following
consistent approximation schemes.
Quite surprisingly, an EFT for inflation in the general

context of multiple matter fluctuations is not available
in the literature so far. The first notable work in this
direction was [3], but many of the interesting multi-field
effects are absent because an additional shift symmetry
was imposed on the matter sector, as emphasized in [4].
This hole was partially filled by [5], proposing an interest-
ing EFT description of the then recently unveiled Quasi-
Single-Field scenario [6], in which a single additional mat-
ter fluctuation features a mass term and couples non-
derivatively with the adiabatic sector. This paved the
way to an effective description of two-field inflation, im-
plicitly encompassed in many of the subsequent works
dedicated to the study of the oscillatory signal discov-
ered in the squeezed limit of the primordial bispectrum
in this context [5], shortly after dubbed as the cosmo-
logical collider signal [7] for the frequency is mostly set
by the mass of the matter fluctuation (see [8] for an in-
depth discussion of how the quadratic mixing affects this
frequency).
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In the recent years, and despite impressive progresses
in computing correlators in multi-field inflation as illus-
trated by the surge of bootstrap techniques in cosmol-
ogy [9], only very recently was the cosmological collider
signal shown, for any number of massive fields, to lead
to a striking new phenomenon dubbed as inflationary
flavour oscillations [10]. Because no general EFT for in-
flationary fluctuations was available at the time, the lat-
ter reference focuses on known quadratic and cubic La-
grangians for fluctuations [11] in the large class of non-
linear sigma models (NLSM), that may be encountered in
low-energy predictions from tentative fundamental physi-
cal theories like string theory [12]. However, more general
multi-field models may also be predicted by motivated
UV completions, as exemplified by the multi-field ver-
sions of the DBI scenario [13, 14]. It would be desirable
to dispose of a model-independent description of multi-
field interactions in order to derive generic predictions of
multi-field inflation beyond the lamppost of known mod-
els.

In this work, we precisely build an EFT of inflation
that allows for any number of fluctuations’ species and
does not assume additional symmetries in this matter
sector. Our explicit construction is truncated at two-
derivatives order but it allows for straight generalisations
to higher orders. We propose some EFT building blocks
made of matter fluctuations and their derivatives in the
unitary gauge, to be added and combined with usual op-
erators for the adiabatic degree of freedom. We prove
that, even in this generic multi-field context, taking the
decoupling limit is justified in a consistent slow-roll ex-
pansion. Prompted by the knowledge of the consequences
of non-linearly realised spacetime symmetries in the adi-
abatic sector, we identify a set of multi-field cubic inter-
actions whose strengths are fully fixed by parameters in
the quadratic action. Our resulting EFT encompasses
and generalises those of Refs. [3, 5] and, when applica-
ble, matches expectations from the known Lagrangians
for fluctuations in non-linear sigma models [11].
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The traditional model approach. The traditional
model approach to inflation consists in providing a
Lagrangian for the fundamental scalar fields φI(t, ~x).
Those are responsible both for the classical quasi-
exponential expansion of the background spacetime, and
for providing—via their quantum fluctuations—the seeds
for the formation of the large scale structures in our uni-
verse. The most popular multi-field models of inflation
arguably lie in the large class of NLSM models, with the
following action,

SNLSM =

∫ √−gd4x

[

−1

2
GIJ(~φ)g

µν∂µφ
I∂νφ

J − V (~φ)

]

,

and minimally coupled to gravity as described by the
Einstein-Hilbert action. These models encompass both
kinetic interactions via the field-space metric GIJ , and
potential interactions in V . Their observational predic-
tions have been thoroughly investigated in the past, with
unique phenomena ranging, e.g., from suppressed tensor-
to-scalar ratio in multi-field α-attractors [15] to (respec-
tively transient) instabilities due to a negative contri-
bution to the mass of entropic fluctuations in hyper-
bolic field spaces [16] (respectively due to a strongly non-
geodesic motion of the background trajectory [17]), and
many other ones.
Most of the aforementioned scenarios specify to the

two-field case, for the physics is already rich enough due
to the quadratic mixing between linear fluctuations. This
becomes even more evident in terms of the adiabatic-
entropic decomposition [18], in which one learns that
the curvature fluctuation is sourced by the entropic one
whenever the background trajectory does not follow a
field-space geodesic. Quadratic and cubic Lagrangians
for fluctuations in the adiabatic-entropic basis for NLSM
were first shown in [19] in the two-field case, and quickly
prompted the generalisation to any number of fluctua-
tions in [11]. The extension is not just technical but
also conceptual, as genuinely many-field effects may af-
fect cosmological observables, as well illustrated by the
discovery of the inflationary flavour and mass bases and
related flavour oscillations [10]. The quadratic action for
the adiabatic fluctuation ζ and the non-adiabatic ones
Fα with α ∈ {1, . . . , Nfield − 1} reads

S
(2)
NLSM =

∫ √−g d4xL(2)
NLSM ,

with [11]

L(2)
NLSM = − 1

2

f4
π

H2
gµν∂µζ∂νζ −

1

2
gµν∂µFα∂νFα ,

− 1

2
m2

αβFαFβ − Ωαβg
µ0∂µFαFβ ,

− 2
f2
π

H
ω1δ1αg

µ0∂µζFα , (1)

where f2
π =

√
2ǫcsHMpl represents the normalisation of

the curvature fluctuation (with cs = 1 so far). The typ-

ical size of ζ is indeed ∆ζ ≡ A
1/2
s = H2/(2πf2

π), with

As = 2.1 × 10−9 [20]. In addition to kinetic terms with

unit speeds of sound, L(2)
NLSM is composed of purely non-

adiabatic mixing via the symmetric mass matrix m2
αβ

and the anti-symmetric kinetic mixing Ωαβ , as well as
an adiabatic-entropic mixing via ω1 and the single fluc-
tuation F1 playing the role of a portal field [10]. No-
tice that Lorentz covariance is explicitly broken at the
level of fluctuations, as expected in a cosmological con-
text. In this traditional model approach, the couplings
have a clear interpretation. The geodesic deviation of the
background trajectory is encoded in ω1 and the higher-
order “curvatures” in Ωαβ . Moreover, the mass matrix
m2

αβ is expressed in terms of properties of the NLSM La-
grangian, including covariant derivatives of the potential
and information about the geometry of the field space
via its Riemann tensor. The most salient features of the
NLSM cubic interactions found in [11] are reviewed in
Appendix A.
Before moving to the EFT construction, it is worth

noting the existence of multi-field models of inflation be-
yond NLSM. A larger class features Lagrangian densi-

ties P (XIJ , ~φ) that are generic functions of both kinetic
terms XIJ = −gµν∂µφ

I∂νφ
J/2 and of fields φI , chief

amongst which is the multi-field DBI scenario [13, 14].
Although quadratic and cubic Lagrangians in terms of
adiabatic-entropic fluctuations for any number of fields
in this larger class of models has not been elucidated yet,
it is instructive to focus on the particular case of two-
field DBI. In addition to a non-unit speed of sound for
ζ (as also in general single-field P (X,φ) scenarios [21])
and F1 [22], cubic interactions appear there with more
derivatives than those found in NLSM [23].

EFT building blocks. An EFT approach to infla-
tionary fluctuations was first proposed in [1, 2]. Within
this celebrated framework, the ever presence of the adi-
abatic mode in cosmology becomes evident as the exis-
tence of a pseudo-Nambu-Goldstone (NG) boson asso-
ciated to the time diffeomorphism invariance broken by
the cosmological background. Since this is already well-
established (see, e.g., [24] for a review), we simply quote
the general Lagrangian density for the adiabatic sector
in the unitary gauge, in which the NG boson is eaten by
the spacetime metric:

Lad =
M2

pl

2
R+M2

plḢg00 −M2
pl(3H

2 + Ḣ) (2)

+
∞
∑

n=2

M4
n

n!

(

δg00
)n

+ . . . ,

where an over-dot represents a derivative with respect
to cosmic time t and δg00 = g00 + 1. The first line is
called the universal part of the EFT as it is uniquely
determined by enforcing a flat FLRW background verify-
ing Friedmann equations without spatial curvature. The
second line represents a tower of operators with time-
dependent Wilson-like coefficients Mn(t), to be deter-
mined by experiments or by matching with a specific UV-
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completion1. The dots represent terms at higher order
in derivatives of the metric, as conveniently described by
the extrinsic curvature perturbation δKµν = Kµν−Hhµν

where hµν is the induced metric on the spatial hypersur-
faces at constant t, as well as the corresponding intrinsic

curvature R
(3)
ij . These interesting terms, which always

result in second-order equations of motion in time but
possibly higher order in space, may have important ef-
fects and are described in Appendix B, but the main body
of this manuscript will overlook them.

Although definitely useful to define blocks for build-
ing a general Lagrangian density, the variables appear-
ing above can hardly be used to make concrete calcu-
lations. We therefore introduce explicitly the NG bo-
son π(t, ~x) that, from the expectation that it should
restore full diffeomorphism invariance, we know must
transform as π → π − ξ(t, ~x) under a time diffeomor-
phism t → t + ξ(t, ~x), such that t + π is invariant. By
analogy with particle physics, this is known as the Stück-
elberg trick. To be specific, and this will be important
when exploring the mixing with gravity and the decou-
pling limit, we define π in the spatially flat gauge where
hij → a2δij . Under Stückelberg, our fundamental build-
ing block transforms as

t → t+ π =⇒ δg00 → δg00flat − 2π̇ − π̇2 +
(∂iπ)

2

a2
. (3)

All time-dependent functions are shifted at the time t+π.
Although we assume that the Hubble scale and its deriva-
tives are slowly varying, we discuss after Eq. (18) impor-
tant effects of time-dependent couplings from the view-
point of non-linearly realised symmetries. Note that four-
dimensional scalars like R and d4x

√−g transform covari-
antly under time diffeomorphisms and do not generate
new terms.

We now turn to the non-adiabatic sector and suppose
the existence of Nfield − 1 matter fluctuations, denoted
as Sα, and that covariantly transform as scalars under
diffeomorphisms. We come back to the unitary gauge to
construct EFT building blocks respecting the subset of
unbroken FLRW symmetries, and consider a derivative

1 Two important examples are i) P (X, φ) single-field models,
where Mn depend on P and its derivatives [25]; ii) NLSM af-
ter integrating out entropic fluctuations when they are all much
heavier than the Hubble scale, where Mn depend on diverse
multi-field properties like masses, couplings and geometry of the
field space [11].

expansion up to second order only,

Lnad,0 =
∑

n,k

b
(n,k)
α1...αk

n!k!

(

δg00
)n Sα1 . . .Sαk , (4)

Lnad,1 =
∑

n,k

c
(n,k)
αα1...αk

n!k!

(

δg00
)n

g0µ∂µSαSα1 . . .Sαk ,

Lnad,2 =
∑

n,k

(

δg00
)n

(

d̄
(n,k)
αβα1...αk

g0µg0ν − d
(n,k)
αβα1...αk

gµν
)

× 1

2

1

n!k!
∂µSα∂νSβSα1 . . .Sαk ,

where all (b , c , d , d̄) tensors are time dependent and of
mass dimensions (4−k , 2−k ,−k ,−k). Additionally, b is
fully symmetric, c is symmetric under any permutation of
its last k indices, and d and d̄ are symmetric with respect
to the two first indices on one hand, and the k last ones on
the other hand. The sums are on (n, k) ∈ N

2, but we fix
b(n,0) = 0 to avoid degeneracies with the coefficients Mn

in (2). Additional towers of operators at this derivative
order can be constructed using the 3d curvatures and are
discussed in Appendix B.

Breaking degeneracies. Using the Stückelberg
trick, we restore full diffeomorphism invariance, we spec-
ify to the spatially flat gauge and we regroup terms by
their power in fields’ fluctuations. We use

g0i → g0iflat +
δij

a2
∂jπ, ∂0 → 1

1 + π̇
∂0, ∂i → ∂i −

∂iπ

1 + π̇
∂0,

as well as Sα → Sα. By requiring tadpole cancellation,

i.e. vanishing of L(1)
nad, we find that b

(0,1)
α = c

(0,0)
α = 0,

which will have important consequences when discussing
non-linearly realised symmetries. The quadratic La-
grangian density is found only from the following terms
in the unitary gauge,

b
(0,2)
αβ

2
SαSβ + b(1,1)α δg00Sα + c

(0,1)
αβ g0µ∂µSαSβ + c(1,0)α ×

δg00g0µ∂µSα +
1

2

(

d̄
(0,0)
αβ g0µg0ν − d

(0,0)
αβ gµν

)

∂µSα∂νSβ ,

which however also contain higher-order interactions.
The last line above contains the kinetic terms for the
non-adiabatic sector, with d(0,0) and d̄(0,0) two dimen-
sionless symmetric real bilinear forms. In order to avoid
gradient instabilities, respectively justify us neglecting
higher-order spatial derivatives, we additionally enforce
d(0,0) to be positive, respectively definite. Therefore, we
can simultaneously reduce d(0,0) to the trivial identity
bilinear form and co-diagonalise d̄(0,0). Without loss of
generality, we thus consider

d
(0,0)
αβ → δαβ , d̄

(0,0)
αβ →

(

1

c2α
− 1

)

δαβ (no sum) . (5)

If d̄(0,0) is also enforced to be positive, then, ∀α , 0 6

c2α 6 1. Reintroducing π and using the transformation
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laws under Stückelberg, we find the following quadratic
operators:

∑

α

1

2c2α

[

(

Ṡα
)2

− c2α
(∂iSα)

2

a2

]

+
b
(0,2)
αβ

2
SαSβ (6)

− c
(0,1)
αβ ṠαSβ − 2b(1,1)α π̇Sα + 2c(1,0)α π̇Ṡα + . . . .

Dots denote the remaining gravitational interactions of
the non-adiabatic sector with metric fluctuations in the
flat gauge and can be written explicitly by the formal
replacement −2π̇ → δg00flat in the expression above. Al-
though we put those terms aside for now, we come back
to them in the next section, see Eq. (10).
An additional degeneracy can be broken by decompos-

ing c
(0,1)
αβ = c

(0,1)
(αβ) + c

(0,1)
[αβ] where parentheses (brackets)

denote the (anti-)symmetric part of the tensor, and us-
ing integration by parts for the symmetric part,

−c
(0,1)
αβ ṠαSβ =− c

(0,1)
[αβ] Ṡ

αSβ − d

a3dt

(

a3

2
c
(0,1)
(αβ)S

αSβ

)

+
d

a3dt

(

a3

2
c
(0,1)
(αβ)

)

SαSβ . (7)

Dropping the total time derivative that cannot affect
the dynamics nor the correlation functions of the theory
(see [26] for a detailed discussion on total time derivative
terms in the in-in perturbation theory), we consistently
define a symmetric mass matrixm2

S,αβ of mass dimension
two,

[

b
(0,2)
αβ

2
+

d

a3dt

(

a3

2
c
(0,1)
(αβ)

)

]

SαSβ ≡ −1

2
m2

S,αβSαSβ .

Further redefining mixings of mass dimension one as

b
(1,1)
α ≡ f2

πωα, c
(1,0)
α ≡ −(f2

π/H)ω̄α and c
(0,1)
[αβ] ≡ −ΩS,αβ

with ΩS,αβ anti-symmetric, the quadratic Lagrangian
now reads

L(2)
nad =

∑

α

1

2c2α

[

(

Ṡα
)2

− c2α
(∂iSα)

2

a2

]

−
m2

S,αβ

2
SαSβ

+ΩS,αβṠαSβ − 2f2
πωαπ̇Sα − 2

f2
π

H
ω̄απ̇Ṡα . (8)

Decoupling limit and quadratic action. The to-
tal Lagrangian density is given by the sum of Lad in (2)
and Lnad in (4). After reintroducing π, a drastic sim-
plification occurs in the adiabatic sector by taking the
so-called decoupling limit. In this limit, defined as
Ḣ → 0 , Mpl → ∞ while holding ḢM2

pl fixed, the grav-

itational couplings of π become negligible [2]. We here
prove this statement holds true for the multi-field EFT of
fluctuations under study2. Technically, this can be seen

2 In Ref. [3], it was argued that gravitational interactions become
negligible in the decoupling limit even in the multi-field context,

by using the ADM formalism (we recall that R(3) = 0
from our choice of the flat gauge), in which

ds2 = −N2dt2 + a2δij(dx
i +N idt)(dxj +N jdt) , (9)

R = KijKij −K2 , Kij =
1

N

(

a2Hδij − 2∂(iNj)

)

,

and
√−g = Na3. The lapse can be expanded as

N = 1 + δN and the shift as N i = δij∂iθ/a
2 + N̂ i with

∂iN̂
i = 0. The non-trivial multi-field effects concern-

ing the decoupling limit are encoded in the gravitational
mixings,

b(1,1)α δg00flatSα − c(1,0)α δg00flatṠα , (10)

left as dots in (6). Using that δg00flat = 2δN , we see that
only the energy constraint is affected by the presence of
the non-adiabatic sector at linear order. The momentum
constraint (found from varying the action with respect
to the shift) therefore reads exactly as in the purely adi-
abatic case,

δN = ǫHπ +O(ǫ2) , (11)

where we omitted terms of order two and more in the
slow-roll expansion. On the contrary, the energy con-
straint (found from varying the action with respect to
the lapse) now gives

∂2θ

a2
= − ǫHπ̇

c2s
+

b
(1,1)
α

2M2
plH

Sα − c
(1,0)
α

2M2
plH

Ṡα +O(ǫ2) , (12)

where we have identified the usual speed of sound for adi-
abatic fluctuations as c−2

s = 1 + 2M4
2 /(M

2
plḢ) from the

adiabatic building blocks in Eq. (2). But the scalar part
of the shift appears in the quadratic Lagrangian only in
the combination −2M2

pl(HδN + Ḣπ)∂2θ/a2, which van-
ishes upon inserting the solution for the lapse, as usual.
This finishes the proof that at quadratic order in fluctua-
tions, the only new effects of the non-adiabatic sector as
far as gravitational couplings are concerned, are encoded
as small corrections to the mixing interactions from in-
serting the solution (11) for the lapse in (10), giving:

−2f2
πωα (π̇ − ǫHπ)Sα − 2

f2
π

H
ω̄α (π̇ − ǫHπ) Ṡα . (13)

It is therefore justified, in a consistent slow-roll expan-
sion, to take the decoupling limit in the EFT of multi-
field fluctuations that we have built (see Appendix B
for a different viewpoint whenever the extrinsic curva-
ture perturbation is included). Interestingly, the slow-
roll suppressed corrections from gravitational interac-
tions are precisely the ones required to identify deriva-
tives of the curvature perturbation from the ones of π.

but we recall that the EFT constructed in the latter reference is
less generic than ours as it relies on the non-adiabatic sector ver-
ifying a shift symmetry. Moreover, no concrete investigation of
the constraints in the ADM formalism was provided (and neither
in Ref. [5]), which is enough to justify our study.
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Indeed, at linear order the relation between π in the
flat gauge and ζ simply reads ζ = −Hπ: the quadratic
mixings including gravitational interactions are exactly
(2f2

π/H)(ωαζ̇Sα + ω̄αζ̇Ṡα/H). Since the proof is so sim-
ple, we believe there is no obstruction for extending it to
any order in the fields’ fluctuations as in the adiabatic
case [27], but this is left for future work.
In the decoupling limit and in the flat gauge, consis-

tently neglecting slow-roll suppressed interactions, the fi-
nal quadratic Lagrangian for our multi-field EFT reads:

L(2)
EFT =

f4
π

2c3s

[

π̇2 − c2s
(∂iπ)

2

a2

]

(14)

+
∑

α

1

2c2α

[

(

Ṡα
)2

− c2α
(∂iSα)

2

a2

]

−
m2

S,αβ

2
SαSβ

+ΩS,αβṠαSβ − 2f2
πωαπ̇Sα − 2

f2
π

H
ω̄απ̇Ṡα .

Eq. (14) (see also Eq. (27) in Appendix B) is the main
result of this work, and it is already in a final form that
can be readily compared to the quadratic Lagrangian for
fluctuations in NLSM, see Eq. (1). Although definitely
similar, we now highlight their differences. The first line
in Eq. (14) concerns the adiabatic sector only and con-
tains a speed of sound for π. The second line shows
that non-adiabatic fluctuations may all have speeds of
sound deviating from unity too. The third line describes
quadratic kinetic mixings, in particular π̇ is coupled via
ωα to all fluctuations Sα (see Appendix C for a related
discussion on flavour and mass bases in the multi-field
EFT) and, via ω̄α, also to their time derivatives. The
quadratic mixing operator∝ ω̄α is also absent in two-field
DBI inflation and contrary, for example, to the speeds of
sound which indeed arise in this model [22]. We are not
aware of any concrete model of inflation that features it,
and this is both the strength and the weakness of the
EFT approach: we can systematically propose operators
allowed by symmetries and go beyond the lamppost of
known models, but the resulting EFT may not have a
motivated UV realisation.

Non-linearly realised symmetries and cubic in-

teractions. Many terms can be written at the cu-
bic order in fields’ fluctuations from the non-adiabatic
blocks (4). Instead of listing all of them, we here focus on
the subset of those that are fixed by non-linearly realised
spacetime symmetries. The existence of the latter, most
famously relating the speed of sound c2s to the strength of
the cubic interactions π̇(∂π)2 in the adiabatic sector [2],
is well known. Less studied are their consequences in the
multi-field context (see however [3] for examples where
the matter content verifies an additional shift symmetry
and the recent works [8, 28] taking advantage of these
symmetries in specific two-field realisations). Here we
list all cubic multi-field operators whose strengths are
fixed by operators already present in the quadratic La-
grangian.

• The operator b
(1,1)
α δg00Sα responsible for the

quadratic mixing ∝ ωα brings the following cubic
order contribution which cannot be reproduced by
other operators:

f2
πωα

(∂iπ)
2

a2
Sα . (15)

Note that we have not highlighted the other con-
tribution −f2

πωαπ̇
2Sα as it can also be generated

from an independent EFT building block, namely

the one ∝ b
(2,1)
α in (4).

• The operator c
(0,1)
αβ g0µ∂µSαSβ whose anti-

symmetric component gives the non-adiabatic
sector mixing ∝ ΩS,αβ also fully fixes

−ΩS,αβ
∂iπ∂iSα

a2
Sβ . (16)

• The operator c
(1,0)
α δg00g0µ∂µSα giving the new

mixing terms ∝ ω̄α also contributes uniquely as

f2
π

H
ω̄α

(∂iπ)
2

a2
Ṡα − 2

f2
π

H
ω̄απ̇

∂iπ∂iSα

a2
. (17)

• The operator with d
(0,0)
αβ is a four-dimensional scalar

and transforms covariantly under time diffeomor-

phisms, while the one with d̄
(0,0)
αβ giving the speeds

of sound for the non-adiabatic fluctuations also re-
sults in an unique cubic operator

−
∑

α

(

1

c2α
− 1

)

∂iπ∂iSα

a2
Ṡα . (18)

In addition to these spatial derivative interactions, all
couplings being a priori time-dependent, they should
be consistently expanded at the time t + π after the
transformation, giving for any quadratic operator O2,
c(t)O2 → ċ(t)πO2 at cubic order. For example, the
quadratic mixing ∝ ωα is found again at cubic order as
−2f2

πω̇απ̇πSα, and here we generalised this to all time-
dependent quadratic couplings of the EFT in Eq. (14).
Cubic operators resulting from this time shift are also
uniquely fixed, as no non-derivative operator π can be in-
troduced from other contributions in the unitary gauge
(except slow-roll suppressed gravitational couplings via
the lapse δN). Symmetries dictating cubic interactions
as proportional to time derivatives of quadratic mixings
are crucial, as they can lead to correlated features in the
primordial power spectrum and bispectrum [8, 28, 29].
When applicable to NLSM, i.e. with ωα = δα1ω1 and
ω̄α = 0 = 1/c2α−1, we check in Appendix A that all those
cubic interactions fixed by symmetries are indeed explic-
itly present with the exact same size, which is an impor-
tant and non-trivial consistency check between those two
independent descriptions of multi-field interactions.
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Discussion. By considering any number of non-
adiabatic fluctuations, and without assuming additional
symmetries in the matter sector, we constructed the gen-
eral effective field theory of multi-field inflationary fluctu-
ations. We proposed adiabatic and non-adiabatic build-
ing blocks verifying the unbroken FLRW symmetries in
the unitary gauge, removed degenerate operators after
reintroducing π with the Stückelberg trick, and identi-
fied the full quadratic Lagrangian pertinent for deriv-
ing model-independent predictions in multi-field infla-
tion. This was done consistently in a derivative and slow-
roll expansion and, using the ADM formalism to solve for
the constraints, we proved explicitly that in the decou-
pling limit all gravitational interactions are small and can
safely be neglected. We showed how non-linearly realised
spacetime symmetries can be used to fix the sizes of sev-
eral multi-field cubic couplings, akin to the purely adia-
batic case. We checked explicitly that all these couplings
protected by symmetries were indeed found in concrete
realisations known as non-linear sigma models, showing
consistency and synergy between these two complemen-
tary approaches.

We expect our EFT construction to stimulate new phe-
nomenological searches for signals of multi-field inflation
in a model-independent way. Directions for future work

include the cosmological collider signal mediated by the
new mixing ∝ ω̄α, effects due to the speeds of sound c2α,
and couplings with tensor modes. On the theoretical side,
our EFT was derived in consistent expansions in deriva-
tives and field’s fluctuations, and allows for straight gen-
eralisations to higher orders in derivatives and to quartic
interactions also fixed by symmetries. Moreover, we have
considered here a quasi de Sitter spacetime, while the ef-
fects of even tiny departures from slow variation may
leave interesting imprints in a multi-field context, and
these scenarios too can be explored with the general tool
provided in this work. Finally, it would be interesting to
apply our EFT to other scalar fluctuations in cosmology,
beyond the inflationary context.
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SUPPLEMENTAL MATERIAL

Appendix A. Cubic interactions in non-linear

sigma models. The cubic Lagrangian density of fluc-
tuations in non-linear sigma models is composed of many
interactions, amongst which notable ones read [11]:

L(3)
NLSM ⊃ f2

π

H2
δα1

{

ω1

[

(∂iζ)
2

a2
− ζ̇2

]

− 2ω̇1ζ̇ζ

}

Fα

+
1

H

[

Ωαβ
∂iζ∂iFα

a2
Fβ − Ω̇αβζḞαFβ

]

+
ṁ2

αβ

2H
ζFαFβ (19)

− 1

6
V;αβγFαFβFγ +

2f2
π

3
RαβγσḞαFβFγ .

The first line contains the interactions fixed by the non-
linearly realised symmetry in the EFT approach for a
mixing of the form ωα = δα1ω1, but note that an ad-
ditional fine-tuning is present in NLSM: the parameter
b(2,1) seems to be vanishing, as otherwise it would addi-
tionally break the symmetry fixing the size of the ζ̇2F1

interaction. The second line is not explicitly present in
the final Lagrangian in [11] as it has been expressed in
terms of other cubic interactions, however it can be found
at an intermediate stage in Eq. (3.7) of the latter refer-
ence, and contains exactly the cubic interactions fixed by
the presence of the kinetic mixing operator in the purely
non-adiabatic sector. The third line contains the inter-
action expected from the EFT viewpoint given the pres-
ence of the mass matrix evaluated at t+ π after Stückel-
berg. As already known from the study of the quadratic
Lagrangian, there is no cubic interaction related to the
presence of speeds of sound, either from ζ or the entropic
fluctuations. Actually, in NLSM, there is no cubic inter-
action at all that involve a total of three derivatives as
in Eqs. (17)–(18), or from operators ∝ c(2,0) and d̄(1,0),
and contrary to, e.g., the two-field DBI scenario [23]. We
therefore suspect that all operators with c(n,0) and d̄(n,k)

are absent in NLSM at every order of perturbation the-
ory. In order to contrast with these terms fixed by sym-
metries, we show in the fourth line two cubic interactions
that we do not expect to be fixed from the EFT view
point. These coefficients are projections of the covari-
ant third derivatives of the potential and of the Riemann
tensor of the internal field space, which are both absent
from the quadratic Lagrangian. Although these terms
cannot, indeed, be predicted from the knowledge of the
quadratic Lagrangian in the EFT, interactions of these
forms are expected from the presence of building blocks
b(0,3), respectively c(0,2), showing once more consistency
and synergy between the two different approaches.

Appendix B. Including three-dimensional cur-

vatures. We explore the effects of including in the EFT
operators made off the 3d extrinsic curvature perturba-

tion δKij and the intrinsic one R
(3)
ij . We first review

known features in the adiabatic sector and then dig into
new ones in the non-adiabatic sector. We will need the
rules of transformation of these objects under the Stück-
elberg trick restoring diffeomorphism invariance,

δKij → δKflat
ij + a2ǫH2πδij − ∂i∂jπ + . . . , (20)

R
(3)
ij → H

(

∂i∂jπ + δij∂
2π

)

+ . . . ,

where we recall that we chose to define π in the flat gauge,

so R
(3),flat
ij vanishes identically. The dots represent terms

of higher order in field’s fluctuations and, together with
slow-roll suppressed terms, we will neglect them in this
discussion.

In the adiabatic sector. We consider the addition
of the following towers of EFT building blocks in the
adiabatic sector and in the unitary gauge,

∆Lad =

∞
∑

n=1

1

2n!

(

δg00
)n

[

M̄3
nδK +m2

nR
(3)

]

(21)

+

∞
∑

n=0

1

n!
m̃2

n

(

δg00
)n (

δKijδKij − δK2
)

+ . . .
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Adding these operators to Eq. (2) leads to the most
general Lagrangian for the adiabatic degree of freedom
with linear equations of motion of order strictly two3,
both in time and space, therefore encompassing the
linearised version of general single-field theories named
after Horndeski [31] and rediscovered as “generalised
galileons” [32, 33], but however surpassing them when-
ever m2

1 6= m̃2
0 [30]. The dots in the expression above

represent operators that eventually lead to terms with
more than one derivative per field’s fluctuations and can
be consistently neglected in the derivative expansion,
with the exception of degenerate kinetic terms like in the
ghost condensate scenario [34]. Actually, the combina-
tion m̃2

0

(

δKijδKij − δK2
)

can be removed by the com-
bination of a disformal and a conformal transformations
of the metric [35] after which gravitational waves have
unit sound speed of propagation [36]. In the following we
directly work in this frame pertinent for comparison of
theoretical predictions with observations, and we there-
fore assume that this operator has been removed. Being
mainly interested in the quadratic Lagrangian density,
we therefore focus on the following two operators giving,
after Stückelberg and at quadratic order,

M̄3
1

2
δg00δK → M̄3

1

2

(

δg00flat − 2π̇
)

(

δKflat −
∂2π

a2

)

,

m2
1

2
δg00R(3) → m2

1

2

(

δg00flat − 2π̇
)

4H
∂2π

a2
, (22)

where we kept explicitly all possible gravitational cou-
plings. Repeating arguments of the main text and since
δg00flat = 2δN in the ADM formalism, we see that m2

1

does not enter the solution for the lapse. On the con-
trary, since δKflat = −3HδN − ∂2θ/a2, M̄1 does change
the lapse at linear order, explicitly,

δN =
1

1 + α
ǫHπ +

α

1 + α
π̇ +O(ǫ2) , with (23)

α =
M̄3

1

2HM2
pl

.

Plugging this solution in the total quadratic Lagrangian
density, we confirm once more that the shift contribu-
tions cancel, and we get new contributions of the forms
π2, ππ̇, π̇2, π∂2π, π̇∂2π both directly from the operators
in Eq. (22) and via all gravitational couplings including
δN above, both kinds of contributions being of similar
order of magnitude. By time and space integration by
parts they can all be recast in three operators only: π2

whose final coefficient cancels at leading order in slow roll
as expected, π̇2 with coefficient c1 and (∂π)2/a2 with co-
efficient c2, thus defining a speed of sound c2s = c2/c1,
see e.g. [30] for the exact expressions.

3 The combination δKijR
(3)
ij

− δKR(3) also brings terms with a
single derivative per fluctuation only, however it is redundant
with other operators quadratic in the 3d curvatures as shown
in [30], and can therefore be dismissed without loss of generality.

We now comment on the possible size of the corrections
induced by these two new operators linear in the 3d cur-
vatures in the unitary gauge, depending on assumptions
about the UV realisation of the EFT. If the non-universal
operators are all fixed by a single energy scale Λ defin-
ing the cutoff of the EFT, e.g. if the parent theory is
of the form Λ4

[

P (X/Λ4, φ/Λ) +G(�φ/Λ3, φ/Λ) + . . .
]

,
then all Wilson coefficients parametrically read M2 ∼
M̄1 ∼ m1 ∼ Λ ∼

√

HMpl where the last approximate
relation comes from the first Friedmann equation. In
this case, the correction from M̄1 in δN is suppressed as
α ∼

√

H/Mpl, and taking the decoupling limit is justi-
fied. Actually, in this regime, it is easy to check that
all contributions from the operators linear in the 3d cur-
vatures are suppressed by positive powers of

√

H/Mpl

compared to M4
2 (δg

00)2, therefore justifying us neglect-
ing them in the main body of this manuscript for this
class of UV realisations. However, it may well happen
that there exist several high-energy scales, as is the case
for example in weakly broken galileons [37, 38], where Λ2

appears in first-order derivative terms like X/Λ4
2, and Λ3

appears in second-order ones like �φ/Λ3
3 with the rela-

tion Λ4
2 = MplΛ

3
3. If, e.g., M2 ∼ Λ2 and M̄1 ∼ Λ3 then

α ∼ M4
2 /(H

2M2
pl) ∼ 1 and one has to consider all con-

tributions to the speeds of sound including gravitational
couplings, as they may all bring order-one corrections.
To put it in a nutshell, we have understood that, in the
adiabatic sector, terms including the 3d curvatures are
either negligible as expected from a naive derivative ex-
pansion in terms of the metric fluctuations, or may bring
sizeable corrections depending on assumptions about the
UV realisation of the EFT and, in the latter case, taking
the decoupling limit is not justified and constraints must
be solved and taken into account.

In the non-adiabatic sector. Based on the under-
standing in the adiabatic sector, we consider the addition
of towers linear in the 3d curvatures in the non-adiabatic
sector and in the unitary gauge, namely

∆Lnad =

∞
∑

n,k

1

n!k!

(

δg00
)n Sα1 . . .Sαk (24)

×
[

b̄(n,k)α1...αk
δK + b̃(n,k)α1...αk

R(3)

+ c̄(n,k)αα1...αk
δKg0µ∂µSα + c̃(n,k)αα1...αk

R(3)g0µ∂µSα

+ . . .
]

,

where we omitted terms of higher-derivative order. The
sums are on (n, k) ∈ N

2, but we fix b̄(0,0) = b̃(0,0) = 0
to avoid tadpoles, as well as more generally all b̄(n,0) =
b̃(n,0) = 0 to avoid degeneracies with operators ∝
M̄3

n ,m
2
n defined in the adiabatic sector. Being mainly

interested in the quadratic Lagrangian density, we specif-
ically focus on the following four operators giving, after
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Stückelberg and at quadratic order,

b̄(0,1)α δKSα → b̄(0,1)α

(

δKflat −
∂2π

a2

)

Sα , (25)

b̃(0,1)α R(3)Sα → b̃(0,1)4H
∂2π

a2
Sα ,

c̄(0,0)α δKg0µ∂µSα → −c̄(0,0)α

(

δKflat −
∂2π

a2

)

Ṡα ,

c̃(0,0)α R(3)g0µ∂µSα → −c̃(0,0)α 4H
∂2π

a2
Ṡα .

The operators proportional to tilde coefficients are al-
ready in a final form and do not affect the constraint
equations and, contrary to the adiabatic sector, they can-
not be rewritten in terms of other quadratic operators
already present in the multi-field Lagrangian. Therefore,
they bring genuinely new interactions to the ones shown
in the main body of this manuscript. This is important
as, e.g., the operator ∂2πSα was encountered in mod-
els of inflation where S1 represents a scalar degree of
freedom of an additional spin-two fluctuation [39], and
predicted in the two-field EFT [5], so they must appear
in our EFT too (note that they are absent from NLSM).
The operators proportional to barred coefficients need
more care as they will affect the solution for the lapse
via the shift appearing in δKflat, and their gravitational
couplings cannot be neglected a priori. At linear order,
the lapse now reads (we do not consider extrinsic cur-
vature terms in the adiabatic sector here, i.e. we tune
M̄1 = 0 for simplicity)

δN = ǫHπ + βαSα + γαṠα +O(ǫ2) , with (26)

βα = − b̄
(0,1)
α

2M2
plH

and γα =
c̄
(0,0)
α

2M2
plH

.

The solution for the shift is also modified, but its final
contributions cancel each other, as usual. One can check
that the non-vanishing contributions from the opera-
tors proportional to barred coefficients are of the forms
πSα, πṠα, ∂2πSα, ∂2πṠα,SαSβ ,SαṠβ , ṠαṠβ. Although
a priori all important, they are degenerate with other
quadratic terms of the multi-field EFT.
To put it in a nutshell, in this appendix we have shown

that, whenever 3d spatial curvatures are included in the
multi-field EFT, two additional quadratic terms arise,

∆L(2)
EFT = −ρα

f2
π

H

∂2π

a2
Sα − ρ̄α

f2
π

H2

∂2π

a2
Ṡα , (27)

with ρα and ρ̄α couplings of mass dimension one. The
second term has more than one derivative per field and
should consistently be neglected at low energies. But
the first one, that can be rewritten as proportional to
∂iπ∂iSα, comes at the same derivative order as the in-
teraction π̇Ṡα4 and is both found in inflationary scenarios

4 Note that both operators, π̇Ṡα and ∂iπ∂iS
α, behave as purely

with spinning fields [39] and expected from the two-field
EFT construction in [5]. Additionally, this new operator
also breaks some of the standard predictions for cubic in-
teractions from non-linearly realised symmetries shown in
the main body, a feature already noticed in the adiabatic
sector [38].

Appendix C. Flavour and mass bases. In this
appendix, we show how unequal speeds of sound cα 6= cβ
forbid in general to define the flavour and mass bases
found in non-linear sigma models [10]. For simplicity,
we fine-tune ω̄α = 0 in this discussion. The flavour ba-
sis is defined as the one in which non-adiabatic fluctu-
ations have i) diagonal kinetic terms; ii) mixings with
the adiabatic sector in a particular symmetric form
−2f2

πωαπ̇Sα → −2f2
πδα1ω1π̇Fα, see Eq. (1). The mass

basis corresponds to the same first criterion i), but with
the second one being ii)bis the mass matrix is diagonal
with m2

S,αβSαSβ → ∑

α m2
α(σ

α)2.
For the flavour basis, a natural possibility consists in

rotating the orthonormal basis Sα to pick a preferred
direction as specified by the mixing ωα. We define

F1 ≡ ωαSα

√

∑

β ω
2
β

, (28)

and all Fα>2 from the knowledge of this F1 and the
remaining Sα>2 using the Gram-Schmidt algorithm. Be-
cause both bases are orthonormal, they are simply re-
lated by a rotation matrix R such that Fα = Rα

βSβ .
In this new basis, the mixing with the adiabatic sector
indeed takes the desired form for criterion ii), and the
mass matrix and other mixings nicely transform under
the change of basis. The gradient terms being indepen-
dent of cα, they simply give −∑

α(∂iFα)2/2. But the
time derivatives are crucially affected, in the new ba-
sis they read (overlooking terms with derivatives of the
rotation matrix that can be incorporated in the mixing
matrices)

∑

γ

1

2c2γ
Rγ

αR
γ
βḞαḞβ . (29)

The resulting kinetic term is therefore not diagonal, as
can be seen explicitly by specifying to a two-dimensional
rotation matrix with parameter ϕ, which gives a canon-
ical kinetic term with speeds of sound c1, plus (c22 −
c21)/(2c

2
1c

2
2) × [cos(ϕ)Ḟ1 + sin(ϕ)Ḟ2]2, therefore contra-

dicting criterion i) for the definition of the flavour basis.

kinetic mixings. In particular, when their wave-numbers are still
deep in the sub-Hubble regime, they do not become negligible in
contrast with the adiabatic-entropic mixing π̇Sα and the mass
and kinetic mixings in the purely entropic sector. Therefore,
they affect the dispersion relation and can potentially lead to
instabilities. In turn, requiring stability of the theory puts upper
bounds on the couplings ω̄α (see [40]) and ρα (see [39]).
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As for the mass basis, we can indeed diagonalise the
mass matrix m2

S,αβ with eigenvectors σα. As it is real
and symmetric, the matrix of change of basis Sα → σα is
again a rotation. Although the mass terms have now the
desired form for criterion ii)bis and the kinetic mixings
again transform nicely, the time derivative kinetic terms
violate condition i) again, from the same reason as above.
We conclude about the impossibility in the multi-field

EFT to simultaneously co-reduce the two bilinear forms

appearing as kinetic terms and, either single out a pre-
ferred direction for the mixing as −2f2

πδα1ω1π̇Fα, or co-
diagonalise the mass matrix, except for the sub-class of
models where all non-adiabatic sound speeds are equal,
i.e. if ∀α , c2α = c2. Non-linear sigma models of inflation
are precisely falling into this class, thus making the strik-
ing phenomenology of inflationary flavour oscillations un-
veiled in Ref. [10] a unique feature in the landscape of
multi-field effective field theories.


