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Abstract

Stationary processes do not accurately describe the diffuse backgrounds of relic gravitons whose correlations

are homogeneous in space (i.e. only dependent upon the distance between the two spatial locations) but

not in time. The symmetries of the autocorrelations ultimately reflect the quantum mechanical origin of

the diffuse backgrounds and lead to non-stationary observables at late time. In particular, large oscillations

are believed to arise in the spectral energy density that is customarily (but approximately) related to the

tensor power spectrum. When the full expression of the spectral energy density is employed the amplitudes

of oscillation are instead suppressed in the large-scale limit and the non-stationary features of the late-time

signal practically disappear. For similar reasons the relations between the spectral energy density and the

spectral amplitude are ambiguous in the presence of non-stationary features. While it is debatable if the

non-stationary features are (or will be) directly detectable, we argue that the spectral amplitude following

from the Wiener-Khintchine theorem is generally inappropriate for a consistent description of the relic

signal. Nevertheless the strong oscillatory behaviour of the late-time observables is naturally smeared out

provided the spectral energy density is selected as pivotal variable.

1e-mail address: massimo.giovannini@cern.ch
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1 Introduction

The relic gravitational waves produced by the early variation of the space-time curvature [1–4] lead to a

late-time background of diffuse radiation. In the simplest situation the relic gravitons are produced in

pairs of opposite three-momenta from the inflationary vacuum and this is why they appear as a collection

of standing (random) waves which are the tensor analog of the so-called Sakharov oscillations [5]; this

phenomenon has been also independently discussed in the classic paper of Peebles and Yu [6] (see also [7]).

The question analyzed in this paper involves the possibility of describing the relic gravitons in terms of

a stationary and homogeneous stochastic process. As we shall see the answer to this question depends,

to some extent, on the pivotal variable that is selected for the physical description of the relic graviton

background.

A first general observation relevant in this context is that the late-time properties of the signal not

only rest on the features of the inflationary vacuum but also on the post-inflationary evolution. It is well

established that in the concordance paradigm the spectral energy density at late times is quasi-flat [8–10]

and it is maximized in the aHz region2 [11, 12] where the current Cosmic Microwave Background (CMB)

observations are now setting stringent limits on the contribution of the relic gravitons to the temperature

and polarization anisotropies [13–15]. The low-frequency constraints can be viewed as direct bounds on

the tensor to scalar ratio rT and seem to suggest that at higher frequencies (i.e. in the audio band and

beyond) the spectral energy density in critical units should be O(10−17) or even smaller. The minuteness of

the spectral energy density is however based on the presumption that radiation dominates (almost) right

after the end of inflation and it is otherwise invalid [16]. The post-inflationary evolution prior to BBN

nucleosynthesis is not probed by any direct observation and it can deviate from the radiation dominated

evolution; if this is the case, it has been argued long ago that the high-frequency spectrum of the relic

gravitons can be much larger [16] (see also Ref. [17] for a recent review). Even though the detectability

of the signal is essential, for the present ends what matters are mainly the symmetries of the correlation

functions.

The second general remark is that, at the moment, the direct observations that are potentially relevant

for the relic graviton backgrounds involve the pulsar timing arrays (PTA) in the nHz range [18–21] and the

ground-based interferometers [22, 23] operating in the audio band. It is actually well established since the

late 1970s that the millisecond pulsars can be employed as effective detectors of random gravitational waves

for a typical frequency domain that corresponds to the inverse of the observation time during which the

pulsar timing has been monitored (see e.g. [24–26]). The correlation signature of an isotropic and random

gravitational wave background should follow the so-called Hellings-Downs3 curve [26]. A particularly

interesting aspect, for the present purposes, involves the time-dependence of the signal suggested in [18].

At much higher frequencies the wide-band detectors are now setting bounds on the diffuse backgrounds

of gravitational radiation between few Hz and 10 kHz. Since the late 1990s these bounds have been

2As usual we employ the prefixes of the international system of units so that, for instance, 1 aHz = 10−18 Hz, 1 nHz =

10−9 Hz and so on and so forth.
3In case the gravitational waves are not characterized by stochastically distributed Fourier amplitudes the corresponding

signal does not necessarily follow the Hellings-Downs correlation. The previous data releases of the PTAs did not report specific

evidence on the Hellings-Downs correlation [29–32]. The last data releases seem to suggest more compelling evidences [18–21]

even if two competing experiments [18,19] make slightly different statements on the Hellings-Downs correlation.
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greatly improving and are now broadly compatible both with the PTA observations and with the big-bang

nucleosynthesis constraints [33–35]. In the future it would be interesting to have detectors of relic gravitons

operating directly in the MHz or GHz regions [36–39, 41–46] where direct bounds on relic gravitons are

essential for determining the early expansion history of the Universe [47].

All in all, taking into account the considerations of the two previous paragraphs, the current searches

of diffuse backgrounds of gravitational radiation assume that signal is in fact described by a stationary

stochastic process characterized by a time-independent spectral amplitude [48, 49]. In this approach the

correlation functions of the signal at different instants depend on the difference between the two times at

which the random fields are evaluated so that the spectral amplitude is simply given by the Fourier trans-

form of the autocorrelation function [50, 51]. As far as the spatial dependence is concerned the stochastic

process is usually assumed to be homogeneous; by this we mean, according to the usual terminology, that

the ensemble averages of the random fields evaluated at two different points depend on the distance between

the two points. If the relic gravitons are produced from the quantum fluctuations of the gravitational field

the homogeneity of the process is natural but not its stationarity.

The production of relic gravitons stipulates that the initial quantum state has evolved into a correlated

multiparticle state [52]. As a consequence, in the Heisenberg description the field operators exhibit a

characteristic pattern of non-stationary and standing oscillations which are in fact the tensor analog of

the well known Sakharov oscillations [5]. When estimating the signal to noise ratio associated with the

diffuse backgrounds of gravitational radiation the properties of the relic signal are assumed to be similar to

the ones of the intrinsic noises of the detectors namely Gaussian, uncorrelated, stationary and statistically

independent on the possible presence of other diffuse backgrounds [53–59]. In the first part of the present

analysis, following some earlier observations [57,58] we shall first clarify that the relic graviton backgrounds

are per se not equivalent to a stationary stochastic process since their autocorrelation function does not

only depend on the time difference. In the second part of this investigation we shall present a number

of specific examples. Finally in the third portion of the paper we shall analyze the variables where the

non-stationary features are less pronounced. Contrary to a naive intuition we shall argue that the spectral

amplitude is not appropriate for the description of a non-stationary signal while the spectral energy density

is far more convenient. However the most heuristic approaches used for the estimate of the spectral energy

density simply assume a well defined relation between the tensor power spectrum and the energy density

without appreciating that such a relation is indeed approximate. As a consequence the spectral energy

density exhibits late-time oscillations that are instead spurious. The best strategy for a direct evaluation

of the spectral energy density is instead to impose the large-scale limit only after assessing all the relevant

power spectra in their exact form. When this is properly done, the oscillations of the spectral energy

density are suppressed in the large-scale limit and Ωgw(ν, τ) turns out to be quasi-stationary; by this we

mean that the strong oscillations do not arise to leading order but only in the corrections that are irrelevant

for all the wavelengths shorter than the Hubble radius.

The layout of the paper is, in short, the following. In section 2 the stochastic processes are swiftly

introduced with a particular focus on the tensor random fields. In section 3 we discuss the case of the

relic gravitons and demonstrate that they cannot be reduced to the case of a stationary random process

discussed in section 2. For this purpose the correlation functions are defined in terms of the appropriate

quantum field operators. In section 4 the late-time autocorrelation functions are evaluated in two physically
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significant cases: namely the situations where the universe is dominated by radiation and dusty matter.

In section 5 we analyze the physical features of the spectral energy density and show that the order 1

oscillations are not a consequence of the non-stationary nature of the diffuse background but rather of the

approximation scheme. We then compute exactly the spectral energy density in all the physical situations

exemplified in section 4 and conclude that the spectral energy density only contains oscillating corrections

that are suppressed in the large-scale limit. At the end of section 5 the spectral amplitude and the chirp

amplitude are more specifically considered. The concluding remarks are collected in section 6. We found

useful to relegate to the appendix a number of relevant technical discussions that could otherwise look

as unwanted digressions in the bulk of the paper. In particular we discussed in appendix A the case of

scalar random fields; appendix B is instead devoted to the explicit forms of the transition matrices that

are employed in sections 4 and 5.

2 Stationary and non-stationary stochastic processes

The autocorrelation function of a stationary random process only depends upon the difference between the

times at which the random fields of the ensemble average are evaluated [48,49]. The autocorrelation function

must the be invariant under a common shift of the time coordinate and, for this reason, its Fourier transform

is associated with a well defined spectral amplitude [50, 51]. A stochastic process is instead homogeneous

when the correlations of the relevant random fields evaluated at different points only depend upon the

distance between the two spatial coordinates. Both stationarity and homogeneity play an important role

when analyzing the correlation between gravitational wave detectors of arbitrary geometry [53–56]. In

particular the intrinsic noises of the instruments are customarily assumed to be stationary, Gaussian,

uncorrelated, much larger in amplitude than the gravitational strain, and statistically independent on the

strain itself. The stationarity and the homogeneity are also conjectured for the signals associated with the

diffuse background of gravitational radiation [59]. In what follows, after presenting the stationarity in the

case of an ensemble of random functions, we consider the case of tensor random fields. To avoid digressions

the results of the scalar case (employed in some of the derivations of this section) have been collected in

the appendix A.

2.1 Random functions and stationary processes

Let us consider, for the sake of simplicity, an ensemble of real random functions q(τ) where τ denotes

throughout the (conformal) time coordinate of the problem even if in this section the accurate identification

of τ will not be essential4. With these specifications, the autocorrelation function can be defined in the

context of the generalized harmonic analysis and its existence is associated with the finiteness of the

integral [48]

Γq(∆τ) = lim
T→∞

1

2T

∫ T

−T
q(τ)q(τ +∆τ) dτ, (2.1)

4In this section the curvature of the space-time does not play any role. However, to avoid confusions, τ denotes throughout

the conformal time coordinate. The background geometry will then be assumed to be conformally flat and characterized by a

scale factor a(τ) so that the relations between the cosmic and the conformal time coordinates is given by a(τ)dτ = dt.
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defined in the Lebesgue sense. The expression pf Eq. (2.1) applies in the case of a single function q(τ) and

does not refer to any statistical concept. When dealing with a stationary and ergodic ensemble of random

functions, the autocorrelation of Eq. (2.1) can be raplaced by

Γq(|τ1 − τ2|) = ⟨ q(τ1) q(τ2) ⟩, (2.2)

where now ⟨ . . .⟩ now denotes an ensemble average whose result coincides, by definition, with Eq. (2.1)

because of the hypotheses of ergodicity and stationarity. As we shall see later on in this section Eqs.

(2.1)–(2.2) are easily generalized to the case of a stochastic quantum field. The Fourier transform of the

autocorrelation function is (Sq(ν) in what follows) is, by definition, the spectral amplitude of the process:

q(τ) =

∫ +∞

−∞
e2 i π ν τq(ν) dν, ⟨q(ν) q(ν ′)⟩ = δ(ν + ν ′)Sq(ν), (2.3)

where ν is the frequency5. The autocorrelation function and the spectral amplitudes are then related as

Γq(τ1 − τ2) =
1

2π

∫ ∞

−∞
ei ω(τ1−τ2)Sq(ω)dω =

∫ ∞

−∞
ei ν(τ1−τ2) Sq(ν) dν. (2.4)

According to Eq. (2.4) the spectral amplitude and the autocorrelation function of the process form a

Fourier transform pair; this statement is often referred to as Wiener-Khintchine (see e.g. [49]) theorem and

was originally developed in the framework of the so-called generalized harmonic analysis that establishes a

rigorous connection between Eqs. (2.1) and (2.2) [50, 51]. The possibility of defining a spectral amplitude

relies on the stationary nature of the underlying random process. The nomenclature employed hereunder

is the one established in Eq. (2.4) and we shall call Sq(ν) spectral amplitude. There are however other

terminologies: some authors call Sq(ν) spectral density or even power spectrum. For the sake of accuracy

we stress that, in the present context, the power spectrum can be related to Sq(ν) in the case of a station-

ary process but it is, generally speaking, a different quantity. In particular the power spectrum defined

hereunder is dimensionless whereas the spectral amplitude Sq(ν) has dimensions of an inverse frequency

(or of a time).

2.2 Tensor random fields

2.2.1 Stationary processes

A solenoidal (and traceless) tensor random field can be treated with the same strategy already introduced

in the scalar case. In particular the tensor amplitude can be transformed as

hi j(x⃗, τ) =

∫ ∞

−∞
dν

∫
d k̂ e2 i π ν (τ−k̂·x⃗) hi j(ν, k̂), (2.5)

where h∗i j(ν, k̂) = hi j(−ν, k̂) and ν denotes, as usual, the comoving frequency. The tensor amplitude

hi j(ν, k̂) can be expanded in the basis of the linear polarizations. As usual we introduce three orthogonal

5We shall use throughout the natural units h̄ = c = 1; this means, in particular, that ω = k = 2π ν where ν is the frequency

and ω the angular frequency. Occasionally in the literature involving the diffuse backgrounds of gravitational radiation the

frequency ν is also denoted by f (see e.g. [59]) but we shall not use this notation that would be ambiguous in the present

context.
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unit vectors m̂, n̂ and k̂ so that the two tensor polarizations as e⊕i j = (m̂i m̂j − n̂i n̂j) and e⊗i j = (m̂i n̂j +

n̂i m̂j). With these standard notations we can write

hi j(ν, k̂) =
∑

λ=⊕,⊗
e
(λ)
i j (k̂)hλ(ν, k̂). (2.6)

In analogy with the scalar case Sh(ν) is introduced from the expectation value of the tensor amplitudes

expressed as a function of ν and k̂:

⟨hλ(ν, k̂)hλ′(ν ′, k̂′)⟩ = Ch Sh(ν) δ(ν + ν ′) δ(2)(k̂ − k̂ ′) δλλ′ , (2.7)

where Ch is an overall constant that plays the same role of Cϕ introduced in the scalar case. From Eq.

(2.7) the autocorrelation function Γh(τ1 − τ2) is introduced from:

⟨hλ(k̂, τ1)hλ′(p̂, τ2)⟩ = Ch δλλ′ δ(2)(k̂ − p̂) Γh(τ1 − τ2). (2.8)

Ultimately the connection between the spectral amplitude Sh(ν) and the autocorrelation function Γh(τ1−τ2)

is given by:

Sh(ν) =

∫ ∞

−∞
e2 i ν z Γh(z) dz, (2.9)

in full analogy with the scalar case of Eq. (A.3). We can finally evaluate the expectation value of two

tensor amplitudes with different indices; from Eqs. (2.6)–(2.7) we obtain:

⟨hi j(ν, k̂) hℓm(ν ′, k̂′)⟩ = 4ChSi j mn(k̂)Sh(ν) δ
(2)(k̂ − k̂′) δ(ν + ν ′). (2.10)

In Eq. (2.10) the sum over the polarizations has been expressed in terms of Si j mn

Si j mn = [pim(k̂)pj n(k̂) + pi n(k̂)pj m(k̂)− pi j(k̂)pmn(k̂)]/4. (2.11)

where, as usual, pi j(k̂) = (δi j − k̂i k̂j) denotes the transverse projector.

2.2.2 Homogeneous processes

Using Eq. (2.10) and the observation that Si j i j = 1, the expectation value of the tensor amplitudes at

equal time becomes

⟨hi j(x⃗, τ)hi j(x⃗+ r⃗, τ)⟩ = 32πCh

∫ ∞

0
dν Sh(|ν|) j0(2π |ν| r). (2.12)

The same strategy illustrated in the scalar case suggests that the Fourier amplitudes of the tensor modes

can be related to the tensor power spectrum conventionally denoted by PT (k, τ). For this purpose we write

hi j(x⃗, τ) =
1

(2π)3/2

∫
d3ke−i k⃗·x⃗ hi j(k⃗, τ), hi j(k⃗, τ) = h

∗
i j(−k⃗, τ). (2.13)

In analogy with the scalar case, for a homogeneous stochastic process the Fourier amplitudes obey

⟨hi j(k⃗, τ) hmn(p⃗, τ)⟩ =
2π2

k3
δ(3)(k⃗ + p⃗)PT (k, τ)Si j mn(k̂). (2.14)
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It then follows that the expectation value of the quadratic combination hi j(x⃗, τ)h
i j(x⃗+ r⃗, τ) can be written

in two different ways depending the expansion we use; but since both expansions refer to the same tensor

random field they must ultimately coincide so that

⟨hi j(x⃗, τ)hi j(x⃗+ r⃗, τ) ⟩ = 32πCh

∫ ∞

0
dν Sh(|ν|) j0(2π |ν| r) =

∫ ∞

0

d k

k
PT (k, τ) j0(k r). (2.15)

Again, provided the tensor power spectrum is truly stationary we can then relate PT (k) to the spectral

amplitude with the result that, as expected,

ν Sh(|ν|) = PT (ν), 32πCh = 1, (2.16)

where the difference between the condition appearing in Eq. (A.10) comes from the sum over the polariza-

tions. As in the scalar case, the connection between the spectral amplitude and the tensor power spectrum

obtained in Eq. (2.16) is only rigorous when the stochastic process is both stationary and homogeneous.

3 The relic gravitons and their quantum correlations

3.1 Stochastic processes and quantum expectation values

In a conformally flat background geometry chracterized by a scale factor a(τ) (where τ now denotes

the conformal time coordinate) the tensor modes of the geometry may be amplified from their quantum

mechanical fluctuations [1–4]. For the sake of illustration we shall be considering an inflationary stage

possibly followed by the standard post-inflationary evolution [8–12]. When the scalar and tensor modes

of the geometry are amplified from there quantum fluctuations (see, for instance, [17]) the random fields

introduced in section 2 must be replaced by the appropriate field operators ĥi j(x⃗, τ) that are solenoidal

(i.e. ∂i ĥ
i
j = 0) and traceless (i.e. ĥ i

i = 0). The expectation values of these field operators in Fourier space

define the tensor power spectrum

⟨ ĥi j(k⃗, τ) ĥmn(p⃗, τ)⟩ =
2π2

k3
Si j mn(k̂)PT (k, τ) δ

(3)(k⃗ + p⃗), (3.1)

which is in fact the analog of Eq. (2.14) with the difference that its specific form now depends on the mode

functions of the quantum field. The expectation value of the tensor amplitude must be complemented by

the one of the corresponding time derivatives whose evolution cannot be neglected:

⟨ ∂τ ĥi j(k⃗, τ) ∂τ ĥmn(p⃗, τ)⟩ =
2π2

k3
Si j mn(k̂)QT (k, τ) δ

(3)(k⃗ + p⃗). (3.2)

where QT (k, τ) is the corresponding power spectrum. The explicit form of the field operators in the

Heisenberg representation is:

ĥi j(x⃗, τ) =

√
2 ℓP

(2π)3/2

∑
α=⊕,⊗

∫
d3k e

(α)
i j (k̂)

[
Fk,α(τ) b̂k⃗, αe

−ik⃗·x⃗ +H. c.

]
, (3.3)

where ℓP = 8πG is the Planck length. In Eq. (3.3) the second term inside the square bracket denotes the

Hermitian conjugate of the preceding one and the sum runs over the two orthogonal tensor polarizations
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defined previously (see Eq. (2.5) and discussion thereafter). Sticking to the mode expansion of Eq. (3.3)

the corresponding canonical momenta are given by6:

π̂i j(x⃗, τ) =
a2(τ)

4
√
2 ℓP (2π)3/2

∑
β=⊕,⊗

∫
d3k e

(β)
i j (k̂)

[
Gk,β(τ) b̂k⃗, βe

−ik⃗·x⃗ +H. c.

]
, (3.4)

where a(τ) is the scale factor; the mode functions for the momenta are Gk = F ′
k where the prime will denote,

from now on, the derivation with respect to the conformal time coordinate τ . The Fourier transform of

the Hermitian field operators of Eqs. (3.3)–(3.4) is then given by

ĥi j(q⃗, τ) =
√
2 ℓP

∑
α

[
e
(α)
i j (q̂) b̂q⃗, α Fq,α(τ) + e

(α)
i j (−q̂)b̂†−q⃗,αF

∗
q,α(τ)

]
, (3.5)

π̂mn(p⃗, τ) =
a2

4
√
2 ℓP

∑
β

[
e(β)mn(p̂) b̂p⃗, β Gp,β(τ) + e(β)mn(−p̂)b̂†−p⃗,βG

∗
p,β(τ)

]
. (3.6)

If we then impose canonical commutation relations between the field operators of Eqs. (3.5)–(3.6)[
ĥi j(q⃗, τ), π̂mn(p⃗, τ)

]
= i Si j mn(q̂) δ

(3)(q⃗ + p⃗), (3.7)

must necessarily be normalized as:

Fq(τ)G
∗
q(τ)− F ∗

q (τ)Gq(τ) = i/a2(τ). (3.8)

The condition expressed by Eq. (3.8) is essential to obtain the correct final expressions of the mode

functions and it is verified throughout all the stages of the dynamical evolution.

3.2 Homogeneous processes and generalized autocorrelation functions

If the explicit expressions of Eqs. (3.5)–(3.6) are inserted into Eqs. (3.1)–(3.2) the two power spectra

PT (k, τ) and QT (k, τ) are given by:

PT (k, τ) =
4ℓ2P
π2

k3 |Fk(τ)|2, QT (k, τ) =
4ℓ2P
π2

k3 |Gk(τ)|2. (3.9)

The two-point functions associated with PT (k, τ) and QT (k, τ) are in fact associated with homogeneous

two-point functions of the type of Eq. (2.15)

⟨ĥi j(x⃗, τ) ĥi j(x⃗+ r⃗, τ)⟩ =
∫ ∞

0
PT (k, τ) j0(k r)

dk

k
,

⟨∂τ ĥi j(x⃗, τ) ∂τ ĥi j(x⃗+ r⃗, τ)⟩ =
∫ ∞

0
QT (k, τ) j0(k r)

dk

k
. (3.10)

To analyze the stationarity of the process we therefore need to introduce the autocorrelation functions that

we define as:

Γi j mn(k⃗, p⃗, τ1, τ2) =
1

2

[
⟨ĥi j(k⃗, τ1) ĥmn(p⃗, τ2)⟩+ ⟨ĥi j(p⃗, τ2) ĥmn(k⃗, τ1)⟩

]
, (3.11)

Γi j mn(k⃗, p⃗, τ1, τ2) =
1

2

[
⟨∂τ1 ĥi j(k⃗, τ1) ∂τ2 ĥmn(p⃗, τ2)⟩+ ⟨∂τ2 ĥi j(p⃗, τ2) ∂τ1 ĥmn(k⃗, τ1)⟩

]
. (3.12)

6Both ĥi j(x⃗, τ) and π̂i j(x⃗, τ) are Hermitian, i.e. ĥ †
i j(x⃗, τ) = ĥi j(x⃗, τ) and π̂ †

i j(x⃗, τ) = π̂i j(x⃗, τ).
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From Eq. (3.3) we can deduce the the explicit expressions of ĥi j(k⃗, τ) and then compute directly Eqs.

(3.11)–(3.12) whose explicit form becomes

Γi j mn(k⃗, p⃗, τ1, τ2) = Si j mn(k̂) δ
(3)(k⃗ + p⃗)∆k(τ1, τ2), (3.13)

Γi j mn(k⃗, p⃗, τ1, τ2) = Si j mn(k̂) δ
(3)(k⃗ + p⃗)∆k(τ1, τ2), (3.14)

where ∆k(τ1, τ2) and ∆k(τ1, τ2) are given by:

∆k(τ1, τ2) = 4ℓ2P

[
Fk(τ1) F

∗
k (τ2) + Fk(τ2) F

∗
k (τ1)

]
, (3.15)

∆k(τ1, τ2) = 4ℓ2P

[
Gk(τ1) G

∗
k(τ2) +Gk(τ2) G

∗
k(τ1)

]
. (3.16)

The evolution of the mode functions Fk(τ) and Gk(τ) follows immediately from the action of the problem

Sg =
1

8ℓ2P

∫
d4x

√
−g ∂µ hi j ∂ν h

i j , (3.17)

where gµν is the background metric and g its determinant. In the conformally flat case gµν = a2(τ) ηµν

and the Hamiltonian operator associated with the classical action (3.17) is given by7:

Ĥg(τ) =

∫
d3x

[
8 ℓ2P
a2

π̂i j π̂i j +
a2

8 ℓ2P
∂kĥi j ∂kĥ

i j
]
. (3.18)

From Eq. (3.18) the evolution equations of the field operators is then given by:

∂τ π̂i j =
a2

8 ℓ2P
∇2ĥi j , ∂τ ĥi j =

8ℓ2P
a2

π̂i j , (3.19)

so that the corresponding mode functions obey:

G ′
k + 2HGk = −k2 Fk, Gk = F ′

k , (3.20)

where H = a′/a. During inflation we have that H = −1/[(1 − ϵ) τ ] where ϵ = −Ḣ/H2 is the standard

slow-roll parameter. From the Wronskian normalization condition of Eq. (3.8) the solution of Eq. (3.20)

during the inflationary stage is given by

Fk(τ) =
fk
a(τ)

=
N√

2k a(τ)

√
−kτ H(1)

ν (−kτ), (3.21)

Gk(τ) =
N

a(τ)

√
k

2

[
− 2 ν√

−kτ
H(1)

ν (−kτ) +
√
−kτ H

(1)
ν+1(−kτ)

]
, (3.22)

where H
(1)
ν (z) is the Hankel function of first order [60, 61] and ν = (3 − ϵ)/[2(1 − ϵ)] the Bessel index;

note that in Eq. (3.22) |N| =
√
π/2. The results of Eqs. (3.21)–(3.22) hold during a quasi-de Sitter

stage of expansion taking place for τ < −τr, i.e. when the conformal time coordinate takes negative

values; τr denotes, in this context the end of the inflationary stage and the onset of the decelerated phase.

Thanks to the initial conditions of Eqs. (3.21)–(3.22) the autocorrelation functions (3.15)–(3.16) can then

be estimated in the different stages of the post-inflationary evolution and this is the general theme of the

following section.

7Since the problem is inherently time-dependent, different Hamiltonians (all related by canonical transformations) can be

introduced even if, ultimately, the evolution of the field operators remains unaffected. The transformed Hamiltonians might

however lead to slightly different initial vacua and different canonical momenta. These aspects have been discussed in various

related frameworks (see e.g. [52]) but are not central to the present discussion.
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4 The late-time values of the autocorrelation functions

The late-time autocorrelation functions can be evaluated by enforcing at any stage of the dynamical

evolution the continuity of the background and the Wronskian normalization condition of Eq. (3.8). These

two requirements preserve the canonical form of the commutation relations and ultimately lead to standing

oscillations in the mode functions. The rationale for this peculiar behaviour is related to the production

of pairs of gravitons (with opposite three momenta) from the inflationary vacuum. The presence of the

standing waves at late time also implies that the autocorrelation function does not only depend on the

time-difference |τ1 − τ2|, as as it would happen in the case of a stationary process of the kind examined in

section 1. We are now going to analyze the explicit form of the autocorrelation functions in two relevant

examples.

4.1 The radiation stage and the related autocorrelation functions

A smooth evolution of the extrinsic curvature of the background demands the continuity of the inflationary

scale factor and of its first derivative across the transition to the radiation-dominated phase. It is practical

to introduce the variable u(τ) accounting for the continuity of the mode functions and of the background

geometry

u(τ) = k [τ + (2− ϵ)τr], τ > −τr, ϵ = −Ḣ/H2, (4.1)

where τr conventionally denotes the onset of the radiation-dominated stage and ϵ is the standard slow-

roll parameter; by definition ur = u(−τr) = k(1 − ϵ)τr. It is important to stress that Eq. (4.1) (as

all the subsequent discussion) assumes a quasi-de Sitter evolution during inflation where, according to

the consistency conditions, ϵ ≃ rT /16. Even if according to observational data rT < 0.03 [13–15]( and

consequently ϵ < 0.001) it is important to keep track of the solw-roll corrections since their presence

guarantees the continuity of the mode functions and the enforcement of the Wronskian normalization

condition. In terms of u and ur the late-time values of fk(τ) and gk(τ) during the radiation stage can then

be expressed in terms of a 2× 2 transition matrix

fk(τ) = A
(r)
f f (u, ur)fk + A

(r)
f g(u, ur) gk/k,

gk(τ) = A
(r)
g f (u, ur)k fk + A(r)

g g (u, ur)gk, (4.2)

where, for the sake of convenience, the mode functions have been rescaled as Fk(τ) = fk(τ)/a(τ) and

Gk(τ) = gk(τ)/a(τ). The results holding in for a radiation stage can be easily generalized to any expanding

stage; we also note that the various entries of the transition matrix are all real and they are explicitly given

in the appendix B together with their limits. The values of fk ≡ fk(−τr) and gk ≡ gk(−τr) are fixed by

the mode functions evaluated at the end of inflation (i.e. for τ = −τr) and are explicitly given by

fk =
N√
2k

√
kτr H

(1)
ν (kτr), gk = N

√
k

2

[
− 2 ν√

kτr
H(1)

ν (kτr) +
√
kτr H

(1)
ν+1(kτr)

]
. (4.3)

As discussed in mode detail in appendix B the general condition of Eq. (3.8) demands that the transition

matrix is unitary i.e.

A
(r)
f f (u, ur)A

(r)
g g (u, ur) − A

(r)
f g(u, ur)A

(r)
g f (u, ur) = 1. (4.4)
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The condition (4.4) is written in a particular case but it is obviously a general property that must be

enforced for any continuous transition of the background geometry; see also, in this respect, the discussion

after Eq. (B.4). Let us now consider the modes that reentered the Hubble radius during radiation8. The

mode functions of Eq. (4.2) can be expressed in the following form

fk(τ) = A
(r)
f f (u, ur) fk

[
1 +

A
(r)
f g(u, ur)

A
(r)
f f (u, ur)

(
gk
k fk

)]
,

gk(τ) = A
(r)
g f (u, ur) fk

[
1 +

A
(r)
g g (u, ur)

A
(r)
g f (u, ur)

(
gk
k fk

)]
, (4.5)

where the second term appearing inside each of the squared brackets of Eq. (4.5) is always subleading in

the limit |ur| ≪ 1, i.e. when the relevant wavelengths are all shorter than the Hubble radius for τ > −τr.

Thanks to Eq. (4.5) and bearing in mind the results of Eqs. (B.1)–(B.2) the mode functions Fk(u) and

Gk(u) are explicitly given by:

Fk(u) = F
(r)
k j0(u)

[
1 +O(u2r)

]
, Gk(u) = −k F

(r)
k j1(u)

[
1 +O(u2r)

]
, (4.6)

where j0(u) and j1(u) denote the (spherical) Bessel functions of order 0 and 1 respectively [60, 61]. The

amplitude of the mode functions F
(r)
k determines the amplitude of the tensor power spectrum during

inflation for typical wavelengths larger than the Hubble radius, i.e.

P
(r)
T =

16

π

(
Hr

MP

)2( k

ar Hr

)nT

=
128

3

(
V

M4
P

)
k≃Hrar

, (4.7)

where we defined, for the sake of conciseness, P
(r)
T = P T (k, τr) and nT = −2ϵ = −rT /8. In Eq. (4.7)

V denotes the inflationary potential which is related to the expansion rate in the slow-roll approximation

3H2M
2
P ≃ V ; as already mentioned prior to Eq. (4.5) and in the related footnote Hr is, roughly speaking,

the expansion rat at the end of inflation. Note finally that MP (appearing in Eq. (4.7)), MP and ℓP

(introduced in Eq. (4.11)) are all related as MP = ℓ−1
P = MP /

√
8π. All in all the autocorrelation

functions of Eqs. (3.13)–(3.14) and (3.15)–(3.16) can be directly expressed in terms of P
(r)
T

∆k(τ1, τ2) =
π2 P

(r)
T

k3
[cos (u1 − u2)− cos (u1 + u2)]

u1 u2
, (4.8)

∆k(τ1, τ2) =
π2 P

(r)
T

k

[
cos (u1 − u2)

u1 u2

(
1 +

1

u1 u2

)
+

sin (u1 − u2)

u1 u2

(
1

u2
− 1

u1

)
+

cos (u1 + u2)

u1 u2

(
1− 1

u1 u2

)
− sin (u1 + u2)

u1 u2

(
1

u2
+

1

u1

)]
, (4.9)

where, by definition, u1 = u(τ1) and u2 = u(τ2). But since at late-times u1 ≃ kτ1 and u2 = kτ2, the

autocorrelation functions of Eqs. (3.11)–(3.12) do not only depend on the time difference, as implied in

the case of stationary processes discussed in section 2. On the contrary both autocorrelation functions

∆k(τ1, τ2) and ∆k(τ1, τ2) include terms depending both on (τ1− τ2) and on (τ1+ τ2). There also a number

of corrections going as inverse powers of u1 and u2; some of these corrections are suppressed when the

wavelengths of the gravitons are much smaller than the Hubble radius during the radiation stage.

8In this case the continuity of the evolution of a(τ) and H(τ) implies that, during radiation, ar(τ) = [β(ϵ)(τ/τr)+β(ϵ)+1]

where β(ϵ) = 1/(1 − ϵ). During inflation, as usual, aH = −β(ϵ)/τ ] whereas, at the end of inflation (i.e. for τ → −τr)

ar Hr = β(ϵ)/τr. Grossly speaking Hr denotes the expansion rate at the end of inflation.
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4.2 The autocorrelation functions during the matter stage

The second relevant example involves the evolution during the matter stage. By enforcing at each stage of

the evolution the Wronskian normalization of Eq. (3.8) (and the related canonical form of the commutation

relations) the values of the mode functions during the matter stage are given by

fk(τ) = A
(m)
f f (v, veq) f

(m)
k

[
1 +

A
(m)
f g (v, veq)

A
(m)
f f (v, veq)

(
g
(m)
k

k f
(m)
k

)]
,

gk(τ) = A
(m)
g f (v, veq) f

(m)
k

[
1 +

A
(m)
g g (v, veq)

A
(m)
g f (v, veq)

(
g
(m)
k

k f
(m)
k

)]
. (4.10)

In this case the elements of the transition matrix Eq. (4.10) have been listed in Eqs. (B.3)–(B.4). Moreover

the expression of v = v(τ) is the dust analog9 of u(τ) introduced in Eq. (4.1)

v = v(τ) = k[τ + τeq + 2(2− ϵ) τr], τ ≫ τeq. (4.11)

As in the case of ur we use here the shorthand notation veq = v(τeq). By definition f
(m)
k and g

(m)
k are the

values of the mode functions at the end of the radiation stage. From Eq. (4.5) we then have:

f
(m)
k = A

(r)
f f (ueq, ur) fk

[
1 +

A
(r)
f g(ueq, ur)

A
(r)
f f (ueq, ur)

(
gk
k fk

)]
,

g
(m)
k = A

(r)
g f (ueq, ur) fk

[
1 +

A
(r)
g g (ueq, ur)

A
(r)
g f (ueq, ur)

(
gk
k fk

)]
, (4.12)

where, recalling the expression of Eq. (4.1), ueq = u(τeq) ≃ kτeq. As in the case of Eq. (4.5) the second

term inside each of the squared brackets of Eq. (4.10) turns out to be subleading in the limit |veq| ≪ 1

which is appropriate for all the wavelengths that are shorter than the Hubble radius during the dust stage.

Using then the results of Eqs. (B.3)–(B.4) together with Eqs. (4.10)–(4.12) the evolution of the mode

functions during the matter stage takes the form

Fk(v) = −F
(m)
k

j1(v)

v

[
1 +O(u2r) +O(v2eq) +O(ur veq)

]
,

Gk(v) = G
(m)
k

j2(v)

v

[
1 +O(u2r) +O(v2eq) +O(ur veq)

]
, (4.13)

where j1(v) and j2(v) are, respectively, the spherical Bessel functions of order 1 and 2. Finally the tensor

power spectra PT (k, τ) and QT (k, τ) can be directly expressed in terms of P T (k, τr):

PT (k, v) = 9P
(r)
T

[
cos v

v2
− sin v

v3

]2
, (4.14)

QT (k, v) = 9 k2 P
(r)
T

[
3
sin v

v4
− sin v

v2
− 3

cos v

v3

]2
, (4.15)

9The continuity of the scale factor and of its first conformal time derivative implies a(τ) = {β(ϵ)(τ + τeq) + 2[β(ϵ) +

1]τr}2/{4τr[β(ϵ)τeq + (β(ϵ) + 1)τr]} for τ ≥ τeq.
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implying that, in the limit v ≪ 1, PT (k, v) → P T (k, τr) and QT (k, v) → k2P T (k, τr). The autocorrelation

functions of Eqs. (3.15)–(3.16) can therefore be expressed as

∆k(τ1, τ2) =
9π2

k3
P T (k, τr)

v21 v
2
2

[
cos (v1 − v2)

(
1 +

1

v1 v2

)
+ sin (v1 − v2)

(
1

v2
− 1

v1

)
+ cos (v1 + v2)

(
1− 1

v1 v2

)
− sin (v1 + v2)

(
1

v2
+

1

v1

)]
, (4.16)

∆k(τ1, τ2) =
9π2

k

P T (k, τr)

v21 v
2
2

[
cos (v1 − v2)A−(v1, v2)− cos (v1 + v2)A+(v1, v2)

+ 3 sin (v1 − v2)B−(v1, v2) + 3 sin (v1 + v2)B+(v1, v2)

]
. (4.17)

In Eqs. (4.16)–(4.17) we use the notation v1 = v(τ1) and and v2 = v(τ2). Furthermore the functions

A±(v1, v2) and B±(v1, v2) are defined as:

A±(v1, v2) = 1− 3

v21
− 3

v22
+

9

v21 v
2
2

∓ 9

v1 v2
, B±(v1, v2) =

1

v2

(
1− 3

v21

)
± 1

v1

(
1− 3

v22

)
. (4.18)

As in the case of radiation, it is clear that the autocorrelation function does not simply depend on (v1−v2) =

k(τ1− τ2) but also on (v1+ v2) = k[(τ1+ τ2)+2τeq +4(2− ϵ)]. Moreover there are terms containing inverse

powers of v1 and v2 which are not necessarily suppressed. The two examples proposed in the present and

in the previous subsections can be extended to a various complementary situations where the intermediate

expansion history deviates from the radiation dominated evolution and the high-frequency signal can be

potentially much larger than in the case of the concordance paradigm [62].

4.3 Asymptotic form of the autocorrelation functions

When the wavelengths are all inside the Hubble radius the expressions of the autocorrelation functions

become simpler since all terms that are suppressed in the limit u ≫ 1 and v ≫ 1 can be neglected in the

first approximation. In particular during the radiation dominated stage for u1 ≃ u2 ≫ 1 the contributions

of the cosines always dominates in Eqs. (4.8)–(4.9) so that

∆k(τ1, τ2) =
π2 P

(r)
T

k3
[cos (u1 − u2)− cos (u1 + u2)]

u1 u2
, (4.19)

∆k(τ1, τ2) =
π2 P

(r)
T

k

[cos (u1 − u2) + cos (u1 + u2)]

u1 u2
, (4.20)

where (u1 − u2) = k(τ1 − τ2) and (u1 + u2) = k[(τ1 + τ2) + 2(2− ϵ)τr]. During the dust-dominated epoch

Eqs. (4.17)–(4.18) can be evaluated in the limit v1 ≃ v2 ≫ 1 and the result is formally similar to the one

of Eqs. (4.19)–(4.20) but with different phases:

∆k(τ1, τ2) =
9π2

k3
P

(r)
T

v21 v
2
2

[
cos (v1 − v2) + cos (v1 + v2)

]
, (4.21)

∆k(τ1, τ2) =
9π2

k

P
(r)
T

v21 v
2
2

[
cos (v1 − v2)− cos (v1 + v2)

]
, (4.22)

The results of Eqs. (4.19)–(4.20) and (4.21)–(4.22) demonstrate in explicit terms that a stationary stochas-

tic process it is not equivalent, strictly speaking, to the random process that describes the relic gravitons at
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late times. The reason for this lack of equivalence is related to the production mechanism: relic gravitons

are produced in pairs of opposite three-momenta. This is why the mode functions are ultimately standing

waves; as a consequence the autocorrelation functions are not invariant under a common shift of the time

coordinate. The possibility of observing the non-stationary nature of the autocorrelation function has been

previously considered in the literature (see [57, 58] and references therein) with particular attention to

the frequency widow of wide-band interferometers. If the frequency falls in the audio band we have that

O(100)Hz. Let us then consider the non-stationary contributions at the present time; the typical oscillation

phase will be

v1 + v2 = k[(τ1 + τ2) + 2τeq + 4(2− ϵ)τr] = O(νref/νp), (4.23)

where νref is a certain reference frequency and νp = O(10−18)Hz. Even if νref is sufficiently small the

oscillation is so strong that the the contribution of cos (v1 + v2), possibly integrated over the instrumental

window of sensitivity (e.g. between νr and a sufficiently close νmax), vanishes in comparison with the

stationary contribution oscillating as cos (v1 − v2). In spite of this argument a non-stationary dependence

of the diffuse background may be easily explained in terms of a relic signal. It is therefore essential

to understand more accurately how the non-stationary corrections impact on the observables and, in

particular, on the spectral energy density in critical units.

5 The oscillations of the spectral energy

The spectral amplitude Sh(ν) is not a well defined pivotal variable for the description of the signal when the

diffuse backgrounds are non-stationary. Following the discussion of section 2 and taking into account the

results of section 4 it turns out that similar conclusions could hold also in the case of other widely employed

quantities like the spectral energy density or the chirp amplitude. In spite of this generic expectation we

are now going to argue that the spectral energy density, when correctly evaluated, is quasi-stationary since

the strong oscillations (potentially present to leading order both in the power spectrum and in the chirp

amplitude) are progressively more suppressed when the wavelengths of the gravitons become shorter than

the Hubble radius at each corresponding epoch. For this purpose it is useful to remind that there are

actually two complementary ways in which the spectral energy density is usually evaluated, at least by

looking at the current literature:

• in the first case the power spectrum is estimated (either analytically or numerically by means of an

appropriate transfer function10) and then related to the spectral energy density; this evaluation only

requires the direct calculation of PT (k, τ);

• the second option is to estimate independently the power spectra PT (k, τ) and QT (k, τ), compute the

spectral energy density and then study the various relevant limits; among them the most relevant for

the present ends is the one where all the wavelengths of the spectrum are shorter than the Hubble

radius at each corresponding epoch.

10The considerations reported here have a direct impact on the transfer functions that can be defined either for the tensor

power spectrum [63,64] or directly in terms of the spectral energy density [65]. If the ultimate purpose is an accurate assessment

of the spectral energy density, between the two strategies the latter is far more consistent than the former. Furthermore a

direct numerical evaluation of the spectral energy density automatically smears the oscillations that are manually averaged

when defining the transfer function with respect to the tensor power spectrum.
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The first strategy turns out to be the limit of the second when the wavelengths are inside the Hubble

radius but, as we shall see, the approximate expression where Ωgw(k, τ) only depends on PT (k, τ) holds

for the overall amplitude but not for the phases. This is why the first approach discussed above leads

to an expression that is not stationary whereas the second one implies a result that is overall stationary

(barring for the effects of the expansion of the background). The quasi-stationarity comes, on a technical

ground, from the destructive interference of the respective phases associated with PT (k, τ) and QT (k, τ).

The approximate and the exact approaches will now be analyzed in detail with the purpose of showing that

the latter is more rigorous than the former. The spectral energy density turns then out to be in practice,

quasi-stationary and therefore particularly suitable for the description of the diffuse backgrounds of cosmic

origin.

5.1 Approximate evaluation and its spurious oscillations

The heuristic strategy for the evaluation of the spectral energy density acknowledges that the spectral

energy density is only determined by the tensor power spectrum PT (k, τ) and that the phases of PT (k, τ)

coincide exactly with the ones of Ωgw(k, τ) according to

Ωgw(k, τ) =
k2

12H2
PT (k, τ) ≡

k2

a2H2
PT (k, τ),

∣∣∣∣ k

aH

∣∣∣∣ ≫ 1. (5.1)

Equation (5.1) admittedly holds when the wavelengths are all shorter than the Hubble radius (i.e. k ≫ aH

)but it also suggests that the strong oscillations of PT (k, τ) are translated into the phases of Ωgw(k, τ).

Let us now apply Eq. (5.1) to two illustrative examples. The first one involves the situation where the

comoving wavelengths are all inside the Hubble radius during the radiation dominated stage. In this case
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Figure 1: According to Eq. (5.2), the left plot we illustrate the common logarithm of Ωgw(k, u) as a

function of the common logarithm of u (see Eq. (4.11)). In the plot at the right we illustrate instead the

common logarithm of Ωgw(k, v) as a function of the common logarithm of v (see Eqs. (4.11) and (5.3)).

Both results are a direct consequence of Eq. (5.1) which is, however, only approximate.

15



inserting Eq. (4.5) into Eq. (5.1) we obtain11

Ωgw(k, u) =
u2

12
P

(r)
T

∣∣∣∣1 + A
(r)
f g(u, ur)

A
(r)
f f (u, ur)

(
gk
k fk

)∣∣∣∣2

=
P

(r)
T

12
sin2 u

[
1 +O(u2r)

]
≡ P

(r)
T

12
sin2 u

[
1 +O(u2r)

]
≃ P

(r)
T

24
(1− cos 2u), u ≫ 1, (5.2)

where P
(r)
T has been already defined in Eq. (4.7). The first equality in Eq. (5.2) follows from the exact

result expressed in terms of the appropriate elements of the transition matrix (see also appendix B). Overall

the result of Eq. (5.2) oscillates as sin2 u up to terms O(u2r): these are in practice the scales that left the

Hubble radius during inflation and reentered in the radiation stage (i.e. for kτr < 1). To be even more

accurate the result of Eq. (5.2) applies for u ≫ 1 and τ ≫ τr so that, eventually, the two conditions are

also equivalent to kτ ≫ 1 and k ≫ aH. The second expression of Eq. (5.2) clearly follows from the first

one by applying standard trigonometric identities and to artificially get rid of the oscillating contributions

some authors just average the obtained result over an oscillation period even if this is, strictly speaking,

an arbitrary procedure.

A further interesting example follows from the analysis of a dusty phase; if we actually insert the results

of Eqs. (4.10) and (4.12) into Eq. (5.1) we obtain

Ωgw(k, v) =
3

16 v2
P

(r)
T

(
cos2 v +

sin2 v

v2
− sin 2v

v3

)[
1 +O(u2r) +O(v2eq) +O(ur veq)

]
, v ≫ 1. (5.3)

As in the case of Eq. (5.2) the leading order result of Eq. (5.3) is strongly oscillating. In Fig. 1 we

illustrate the results of Eqs. (5.2)–(5.3). We recall that the amplitudes of the spectral energy density is

controlled by P
(r)
T which can be parametrized as AT (k/kp)

nT where kp = 0.002Mpc−1 is the pivot scale

and AT = rT AR the amplitude of the power spectrum. Since the tensor spectral index can be evaluated

in terms of the consistency relations (i.e. nT = −rT /8) we can select, for instance, rT = 0.03 (as suggested

by the current data [13–15]). The results of Fig. 1 refer to the case AR = 2.41× 10−9 and for k = O(kp).

While we purposely employed realistic figures for the various parameters, we stress nonetheless that the

obtained expressions of the spectral energy density are not of direct phenomenological applicability. To be

accurate the equality transition and a number of late-time effects must be numerically discussed [52]. The

full form of the spectral energy density that shall be discussed in the following subsection is also potentially

relevant for the numerical applications [13,14,65].

5.2 Exact expression and the suppression of the oscillations

All in all we can summarize the results of the previous subsection by saying that Eq. (5.1) holds approx-

imately only when the wavelengths are all much shorter than the Hubble radius. If the full form of the

spectral energy density is instead adopted, the O(1) oscillations appearing in Fig. 1 practically disappear

since they are suppressed for k > aH. Consequently their amplitude does not affect the leading term of

the results and to clarify this point it is mandatory to start from a rigorous definition of the spectral energy

11It is important to stress that the result of Eq. (5.2) refers to the spectral energy density computed during the radiation-

dominated stage and not at the present time. Similar comments hold also for other quantities discussed in this section (see e.

g. Eq. (5.3)).
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Figure 2: In the left plot we illustrate the common logarithm of Ωgw(k, u) (given by Eq. (5.7)) as a

function of the common logarithm of u. In the right plot we report instead the common logarithm of

the expression given in Eq. (5.9) as a function of the common logarithm of v. The results of the two

plots should be compared with Fig. 2 which reports exactly the same quantities but computed from the

approximate expression of Eq. (5.1). As already stressed in connection with Eq. (5.2) the results reported

here do not apply at the present time and neglect a number of important damping sources like the neutrino

free-streaming, the evolution of the relativistic species and the transition to the dominance of dark energy;

see, in this respect, the discussion at the end of subsection 5.2.

density. For this purpose the energy density must be introduced from the variation of Eq. (3.17) with

respect to the background metric12; this procedure leads to a consistent energy-momentum pseudo-tensor

of the relic gravitons [3, 4] (see also [66]):

T
(gw)
αβ =

1

4ℓ2P

[
∂αhij ∂βh

ij − 1

2
gαβ

(
gµν ∂µhij ∂νh

ij
)]

. (5.4)

In Eq. (5.4) the indices of T
(gw)
αβ are raised and lowered with the help of the background metric (i.e.

T
(gw) β
α = gβνT

(gw)
αν ). Equation (3.17) implicitly assumes that the underlying background geometry is

conformally flat so that in the case of a spatially flat Friedmann-Robertson-Walker metric gµν = a2(τ) ηµν

Eq. (5.4) leads directly to the energy-momentum tensor suggested by Ford and Parker [3,4] and the related

energy density is [66]

ρgw(x⃗, τ) =
1

8 ℓ2P a2

(
∂τhi j ∂τh

i j + ∂mhi j∂
mhi j

)
. (5.5)

If the field operators of Eqs. (3.1) and (3.3) are now inserted into Eq. (5.5) we can compute the expectation

value ⟨ρgw(x⃗, τ)⟩ so that the spectral energy density in critical units becomes:

Ωgw(k, τ) =
1

ρcrit

d⟨ρgw⟩
d ln k

=
1

24H2a2

[
k2PT (k, τ) +QT (k, τ)

]
. (5.6)

12Different definitions of the energy-momentum pseudo-tensor lead however to the same conclusion. The way the spectral

energy density is assigned is actually not unique and this relevant point will be discussed at the end of this section.
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The evaluations of Eqs. (5.2)–(5.3) can now be repeated and compared with the results of Fig. 1. If we

consider a radiation-dominated stage and insert the results of Eqs. (4.5)–(4.6) inside Eq. (5.6) we obtain:

Ωgw(k, u) =
1

24
P

(r)
T

(
1 +

sin2 u

u2
− sin 2u

u

)
. (5.7)

The main difference between Eqs. (5.2) and (5.7) is that the former oscillates much more strongly than the

latter. Furthermore while the expression of Eq. (5.7) applies both inside and outside the Hubble radius,

Eq. (5.2) only applies when u > 1, i.e. for wavelengths shorter than the Hubble radius. For τ > τr we have

that, approximately, u ≃ kτ and when the wavelengths are shorter than the Hubble radius the spectral

energy density is roughly constant up to oscillating corrections that are suppressed as |kτ |−1 and as |k τ |−2

in the limit |kτ | ≫ 1, i.e.

Ω(r)
gw(k, τr, τ) =

P T (k, τr)

24

(
1 +O

(
1

kτ

)
+O

(
1

k2τ2

))
, kτ ≫ 1. (5.8)

From Eq. (5.1) the amplitude of oscillation is only determined from PT (k, τ) but if we look at Eq. (5.6)

we see that the the final results comes in fact from the mutual interference of PT (k, τ) and QT (k, τ): while

each of the terms is strongly oscillating their combination is quasi-stationary, as anticipated. The same
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Figure 3: In the left plot the common logarithm of Ωgw(k, u) (given by Eq. (5.7)) is illustrated as a

function of the common logarithm of u. In the right plot we report instead the common logarithm of the

expression given in Eq. (5.9) as a function of the common logarithm of v. The left and the right plots

should be compared with Fig. 1 that illustrates the approximate expression of Eq. (5.1). In both plots the

oscillations with the largest amplitude follow from Eqs. (5.7)–(5.9) while the ones with a comparatively

smaller amplitude have been already given in Fig. 2. We therefore conclude that different definitions of

the energy-momentum pseudo-tensor modulate the final result in a different way but always suppress the

oscillations that would appear to leading order.

approach adopted in the derivation of Eqs. (5.7)–(5.8) can be applied during a dust-dominated stage with

18



the result that the spectral energy density becomes

Ωgw(v) =
3P

(r)
T

32 v2

[
1 + 2

sin 2v

v
+

9 cos2 v − 5 sin2 v

v2
− 9 sin 2v

v3
+ 9

sin2 v

v4

]
. (5.9)

As in the case of Eq. (5.8), also the result of Eq. (5.9) holds both for v < 1 and v > 1. Again,

by comparing Eqs. (5.3) and (5.9) the strong oscillations of the leading term disappear and they get

suppressed for v ≫ 1. The results of Eqs. (5.8)–(5.9) depend on a pair of contributions coming, respectively,

from k2 PT (k, τ) and QT (k, τ). The phases of oscillations appearing in Eq. (5.8) are controlled by the

combination [j20(u) + j21(u)] (where, as usual, j0(u) and j1(u) are the spherical Bessel functions). When

u ≫ 1 we have that j20(u) ≃ j21(u) so that we may replace [j20(u) + j21(u)] with 2j20(u). This simplification

correctly captures the amplitudes but not the phases of oscillation. The same argument applies in the case of

Eq. (5.9) where the phases of oscillations are however controlled by the combination [j21(u)+j22(u)]. All in all

the estimate of Ωgw(k, τ) inside the Hubble radius follows from Eq. (5.6) in the limit k2PT (k, τ) ≃ QT (k, τ)

so that, at the very end, the spectral energy density in critical units becomes:

Ωgw(k, τ) =
k2

12H2a2
PT (k, τ), k ≫ aH, (5.10)

which coincides with Eq. (5.1). Equation (5.10) is grossly correct for typical wavelength smaller than the

Hubble radius (i.e. k ≫ aH). But Eq. (5.10) does not correctly reproduce the phases of the spectral

energy density when the corresponding wavelengths are both shorter and larger than the Hubble radius.

The results of Eqs. (5.8) and (5.9) are illustrated in Fig. 2. The left plot of Fig. 2 should be compared with

the left plot of Fig. 1: we clearly see that, in the limit u > 1 the oscillations are suppressed in comparison

with the evaluation based on Eq. (5.1). The horizontal line in both plots illustrates P
(r)
T /24.

It is finally useful to stress that the results discussed in this section do not apply at the present time,

as already mentioned in connection with Eqs. (5.2)–(5.3). On the contrary the obtained results apply in

the ranges defined by their respective arguments. As a general comment the spectral energy density at the

present epoch is more suppressed by a factor that may range between 10−5 and 10−7 (see, for instance, [52]).

This suppression is not only due to the redshift but also various damping sources including the neutron

free streaming [67–70], the evolution of the relativistic species and the transition to the dominance of

dark energy [17]. All these effect, however, are beyond the scope of the present discussion even if they

may be crucial for a faithful assessment of the non-stationary features (especially over intermediate and

high-frequencies) in concrete experimental situations.

5.3 Complementary considerations

The different definitions of the energy density of gravitational waves [71,72] stem directly from the equiva-

lence principle that forbids the localization of the momentum of the gravitational field itself [66]. The same

statement obviously holds for the pressure and the anisotropic stress of the gravitational waves. Since the

energy-momentum tensor of the gravitational waves does not have a unique gauge-invariant (and frame-

invariant) expression, through the years various expressions for the energy-momentum pseudo-tensor of

the gravitational field have been deduced and they all lead to slightly different expressions of the energy

density. Among them we may quote the Landau-Lifshitz approach [73–76], the Brill-Hartle strategy [77],
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the Isaacson pseudotensor [78, 79]. In this analysis we privileged the Ford-Parker energy-momentum ten-

sor [3] which is well defined both inside and outside the Hubble radius and it never leads to a violation of

the energy conditions [66]. Other slightly different approaches have been pursued in the literature [80–84].

The purpose of this final subsection is to stress that the suppression of the non-stationary features

associated with the spectral energy density of the relic gravitons does not depend on the specific form of

the pseudo-tensor. The same kind of exercise discussed here can be repeated with all the various forms of

the energy-momentum pseudo-tensor analyzed in Ref. [66]. To give a swift example we then consider the

explicit form of the Landau-Lifshitz pseudo-tensor which is defined from the second-order fluctuations of

the Einstein tensor [73–75] and its explicit form for a conformally flat metric gµν = a2(τ)ηµν is given by:

ρgw =
1

8a2ℓ2P

[
8H ∂τhi j hi j +

(
∂mhi j ∂mhi j + ∂τhi j ∂τh

i j
)]

. (5.11)

If we now compare the expression of ρgw(x⃗, τ) given in Eq. (5.5) with the one of ρgw(x⃗, τ) we see that

the difference is given by the first term inside the square bracket of Eq. (5.11). This term leads to a

computable difference in the averaged energy density which is now given by

⟨ρgw(x⃗, τ)⟩ = ⟨ρgw(x⃗, τ)⟩+
2H

π2 a2

∫
k2 dk(Gk F

∗
k +G∗

kFk). (5.12)

As a consequence the spectral energy density in critical units will be different in the various expanding

stages. In particular during a radiation-dominated stage of expansion we have that the spectral energy

density Ωgw(k, u) is:

Ωgw(k, u) =
P

(r)
T

24

(
1− 7 sin2 u

u2
+ 3

sin 2u

u

)
. (5.13)

If we now compare Eq. (5.13) with Eq. (5.7) we see that the last two terms inside the squared brackets have

different coefficients. These terms, however, do not change the relevant conclusion of our discussion namely

the absence of a dominant oscillating term. Furthermore it turns out that the oscillating contributions are

also suppressed as the wavelengths get shorter than the Hubble radius.

The comparison between the results of Eq. (5.7) and (5.13) is illustrated graphically in the left plot of

Fig. 3. We restricted the interval of u to make the plot more readable; the curve with the largest amplitude

of oscillation corresponds to the Landau-Lifshitz choice leading to Eq. (5.13). The curve with a smaller

amplitude of oscillation corresponds follows from Eq. (5.7). In both cases, as expected, the oscillating

contributions are suppressed in the limit u > 1. The same analysis leading to the comparison of Eqs. (5.7)

and (5.13) is now illustrated in the case of a dust-dominated evolution where Ωgw(k, u) can be written as:

Ωgw(v) =
3P

(r)
T

32 v2

(
1− 6

sin 2v

v
− 14 + 25 cos 2v

v2
+ 39

sin 2v

v3
− 39

sin2 v

v4

)
. (5.14)

The comparison of Eqs. (5.9) and (5.14) suggests once more that the coefficients of the terms appearing

inside the squared bracket are different in the two cases even if the main physical conclusions are not

modified since the oscillations are always suppressed in the limit v > 1. In the right plot of Fig. 3 the

results of Eqs. (5.9) and (5.14) are graphically compared. The curve with the largest oscillatory amplitude

corresponds to the Landau-Lifshitz pseudo-tensor. In both cases, however, the oscillations are suppressed in

the limit v > 1 and this behaviour is crucially different from the one illustrated in Fig. 1. The comparison

shows that the oscillations appearing in Fig. 1 are only caused by the approximation method and not by

the dynamical evolution which is accurately described in terms of the spectral energy density.
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5.4 Some other variables and their quasi-stationary limits

Having established that the spectral energy density is a quasi-stationary variable, it is natural to consider

other variables whose oscillations may also be potentially large. If we consider, for instance, the tensor

power spectrum and the chirp amplitude we see that they are strongly oscillating functions when the

wavelengths are shorter than the Hubble radius. For concrete estimates the oscillations are arbitrarily

averaged and often disregarded. This heuristic approach can be improved by using the spectral energy

density as pivotal variable: in this way the oscillations of all the other observables will be automatically

smeared inside the Hubble radius. Consider, as an example, the radiation-dominated stage; in this case

we have that the exact evaluation of Ωgw(k, u) leads directly to Eq. (5.7). If we are now interested in the

tensor power spectrum inside the Hubble radius (or in the chirp amplitude) we have

PT (k, u) =
P

(r)
T

2u2

(
1 + 3

sin 2u

u
− 7

sin2 u

u2

)
, (5.15)

hc(k, u) =

√
P

(r)
T

2u

√
1 + 3

sin 2u

u
− 7

sin2 u

u2
. (5.16)

Equations (5.15)–(5.16) are only valid when all the relevant wavelengths are inside the Hubble radius,

i.e. u > 1 and kτ > 1. The same analysis can be repeated for a dust-dominated stage and in all other

physical situations. One of the points of the present analysis has been that the spectral amplitude cannot

be used for an explicit evaluation of the signal. We maintain this point since the spectral amplitude is

defined, strictly speaking, only in the case of a process that is truly stationary. However if we really want

to use, for some reason, Sh(ν) also in a non-stationary situation we can use the same logic leading to Eqs.

(5.15)–(5.16): if we use the spectral energy density as pivotal variable we can always estimate

ν Sh(|ν|) = lim
kτ≫1

12H2 a2

k2
Ωgw(k, τ). (5.17)

In the case of a radiation-dominated stage this strategy simply leads to

ν Sh(|ν|) →
P

(r)
T

4π2ν2τ2

[
1 +O

(
aH

2πν

)]
. (5.18)

In Eq. (5.18) the contribution of the expansion is always present but the oscillating contributions disappear

from the leading term. Equation (5.18) does not imply that the relic gravitons lead to a stationary process

but the oscillating contributions are suppressed for wavelengths much smaller than the Hubble radius.

Since these wavelengths correspond to frequencies that are much larger than the present expansion rate

it is not necessary anymore to average by hand strongly oscillating trigonometric contributions. The

considerations developed in this section are necessary for a sound construction of a template family for

the relic graviton backgrounds. The potential signal must be accurately computed both in amplitude and

slope since, as we showed, the shortcuts may enhance some of the spurious features that are simply related

with the approximation methods. For the disambiguation between the relic and the late signals also the

second-order correlation effects should be taken into due account [85,86].
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6 Concluding remarks

When the autocorrelation functions of stationary and ergodic ensembles of random fields are evaluated

at different times τ1 and τ2 they ultimately depend on the difference |τ1 − τ2|. The gravitons produced

quantum mechanically thanks to the early variation of the space-time curvature appear however from the

inflationary vacuum with opposite comoving three-momenta. At the semiclassical level the quantum me-

chanical initial conditions represented by travelling waves turn into standing waves because of the evolution

of the space-time curvature and this is why the diffuse backgrounds of relic gravitons are intrinsically non-

stationary. The production of pairs with opposite momenta is then reflected into the standing oscillations

that appear, with different features, in all the correlation functions and in the related observables. The

lack of stationarity is reflected into the spectral energy density and in all the other observables that are

customarily employed for the description of the relic signal. The first consequence of this observation is

that the spectral amplitude cannot be used for a rigorous description of the signal since it is should be

time-independent and determined, according to the Wiener-Khintchine theorem, by the Fourier transform

of the autocorrelation function of the process. The non-stationary features of the diffuse backgrounds seem

also reflected into the strong oscillations that characterize both the power spectra and the spectral energy

density.

The analysis of the present paper shows however that the spectral energy density is only mildly non-

stationary since the time dependence associated with Ωgw(ν, τ) turns out to be strongly suppressed in

the large-scale limit provided a consistent definition of the energy density is adopted. If, on the contrary,

the spectral energy density is related to the tensor power spectrum within a more heuristic (but rather

standard) perspective the oscillations dominate the leading terms. According to this second approximate

strategy the spectral energy density and the tensor power spectrum are not related in general terms but

only in the limit where all the comoving wavelengths are inside the Hubble radius at the present time. This

investigation shows that the non-stationary nature of the process affects directly also the spectral energy

density but in a much milder way which is furthermore suppressed in the large-scale limit.

If the spectral energy density is used as the pivotal variable the strong oscillations appearing in the

power spectrum and in the chirp amplitude are smeared without assuming any ad hoc time average that

is often employed in the description of the relic signal. For a direct evaluation of the spectral energy

density the optimal strategy is instead to take the large-scale limit after evaluating all the power spectra

in their exact form. While the lack of stationarity of the relic graviton backgrounds is reflected into the

time-dependence of the spectral energy density, it is not true that the phases of oscillation of the tensor

power spectrum are directly reflected in Ωgw(ν, τ). The heuristic arguments suggesting that the phases

of the spectral energy density and of the tensor power spectrum coincide has been clarified and partially

refuted in this analysis. An accurate evaluation of the spectral energy density can be used to bridge the

stationary and quasi-stationary descriptions of the relic gravitons. This means, in practice, that the relic

signal cannot be simply identified by looking either at the slope or at the amplitude of a given observable.

A naive viewpoint stipulates that the detection of the relic gravitons should be achieved with instruments

built for general purposes and by only looking at some features of the signal as if a physical template family

for the diffuse backgrounds was just optional. The ideas conveyed in this analysis show the opposite: while

the spectral slopes of a stationary background may be confused with the relic gravitons, this cannot happen
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if the slopes, the amplitudes and the correlation properties are concurrently analyzed in the construction

of an appropriate non-stationary template. It is our opinion, as stressed in the past, that the template

family should wisely include also the second-order correlation effects that are a direct consequence of the

quantum origin of the relic signal.
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A Scalar random fields

A.1 Stationary processes

In the case of scalar random fields the autocorrelation function is introduced in full analogy with the case

of the random functions discussed in section 2. In particular the autocorrelation function is be denoted as

Γϕ(τ1 − τ2) and it appears in the ensemble average of the scalar amplitudes:

⟨ϕ(k̂, τ1)ϕ(p̂, τ2)⟩ = Cϕ δ
(2)(k̂ − p̂) Γϕ(τ1 − τ2). (A.1)

In Eq. (A.1) the numerical constant Cϕ fixes the relation between power spectrum and the spectral

amplitude; δ(2)(k̂ − k̂′) = δ(φ − φ′) δ(cosϑ − cosϑ′) is the angular delta function. From Eq. (A.1) the

spectral amplitude is defined, in practice, as in the case of Eq. (2.3)

ϕ(k̂, ν) =

∫ ∞

−∞
dτ e−2i πντ ϕ(k̂, τ), ⟨ϕ(k̂, ν)ϕ(p̂, ν ′)⟩ = Cϕ δ(ν + ν ′)Sϕ(ν) δ

2(k̂ − p̂). (A.2)

The autocorrelation function Γϕ(τ1−τ2) and the spectral amplitude Sϕ(ν) are then related in a way similar

to the one already established in Eq. (2.4):

Sϕ(ν) =

∫ +∞

−∞
dz Γϕ(z) e

2i π ν z. (A.3)

From Eq. (A.3) we can also argue that to verify whether a given expression is the correlation function of

a stationary random process we must find its Fourier transform and establish whether or not it is always

positive semi-definite. Equation (A.3) explicitly illustrates that if Γ(|τ1 − τ2|) is dimensionless Sϕ(|ν|) has
dimensions of a time. In summary a scalar random field can therefore be represented in Fourier space as:

ϕ(x⃗, τ) =

∫ ∞

−∞
dν

∫
d k̂ e2 i π ν (τ−k̂·x⃗) ϕ(ν, k̂), (A.4)

where the angular integration is performed over dk̂ = d cosϑ dφ; if the field ϕ(x⃗, τ) is real (as we shall assume

throughout this discussion) then ϕ∗(ν, k̂) = ϕ(−ν, k̂). Equations (A.2) and (A.4) are fully consistent the

starting point of Eq. (A.1).

A.2 Homogeneous processes

An ensemble of scalar random fields described by Eqs. (A.2)–(A.4) and characterized by a stationary

autocorrelation function is also homogeneous. To consider this point in more detail we may actually

compute the correlation function for separated spatial locations and

⟨ϕ(x⃗, τ1)ϕ(y⃗, τ2)⟩ = 8πCϕ

∫ ∞

0
Sϕ(|ν|) e2iπν (τ1−τ2) j0(2π ν r) dν, (A.5)

and note that it always depends upon r = |x⃗ − y⃗|. The result (A.5) follows from Eqs. (A.2) and (A.4);

moreover, since j0(z) denotes the spherical Bessel function of zeroth order [60, 61], the result of Eq. (A.5)

is well defined not only for τ1 → τ2 but also when r → 0. A homogeneous random field can also be Fourier

transformed in a slightly different manner, namely

ϕ(x⃗, τ) =
1

(2π)3/2

∫
d3k e−ik⃗·x⃗ ϕ(k⃗, τ), ϕ

∗
(k⃗, τ) = ϕ(−k⃗, τ). (A.6)
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If the stationarity of the process is disregarded, an ensemble of homogeneous scalar random fields must

also obey

⟨ϕ(k⃗, τ)ϕ(p⃗, τ)⟩ = 2π2

k3
δ(3)(k⃗ + p⃗) Pϕ(k, τ), (A.7)

where Pϕ(k, τ) denotes, in the present notations, the scalar power spectrum; as anticipated Pϕ(k, τ) (unlike

the spectral amplitude) is always dimensionless. Equations (A.6)–(A.7) do not assume the stationarity of

the process but since Eqs. (A.4) and (A.7) are both valid Fourier representations of an ensemble of scalar

random fields the two can be related. For this purpose we preliminarily compute from Eqs. (A.6)–(A.7)

the analog of Eq. (A.5) valid in the case τ1 → τ2 = τ :

⟨ϕ(x⃗, τ)ϕ(y⃗, τ)⟩ =
∫ ∞

0

dk

k
Pϕ(k, τ) j0(k r), (A.8)

where, as before, r = |x⃗− y⃗|. Thus Eqs. (A.5) and (A.8) must coincide in the two concurrent limits τ1 → τ2

and r → 0

8πCϕ

∫ ∞

0
Sϕ(|ν|) dν =

∫ ∞

0

dk

k
Pϕ(k, τ). (A.9)

Equation (A.9) implies that by arranging the numerical factor Cϕ the spectral amplitude and the power

spectrum coincide

ν Sϕ(|ν|) = Pϕ(|ν|), 8πCϕ = 1. (A.10)

provided Pϕ(k, τ) does not have an explicit time dependence. The tensor analog of Eq. (A.10) is given in

Eq. (2.16) ad the numerical difference between the two conditions is only due to the sum over the ten-

sor polarizations. According to Eq. (A.10) the connection between the power spectrum and the spectral

amplitude is only well defined in the stationary case. On the other hand, if the process is only homoge-

neous (but not necessarily stationary) the power spectrum is always well defined but does not lead to an

autocorrelation function that depends only on (τ1 − τ2).

B Transition matrices and their limits

The elements of the transition matrix associated with a radiation dominated evolution are given by:

A
(r)
f f (u, ur) = cos (u− ur) +

sin (u− ur)

ur
,

A
(r)
f g(u, ur) = sin (u− ur),

A
(r)
g f (u, ur) =

(
1

ur
− 1

u

)
cos (u− ur)−

(
1 +

1

uur

)
sin (u− ur),

A(r)
g g (u, ur) = cos (u− ur)−

sin (u− ur)

u
, (B.1)

where u(τ) has been introduced already in Eq. (4.1) and, by definition, ur = u(−τr). We furthermore note

that (u − ur) = (τ + τr) and in the limit τ → −τr the off-diagonal terms of the transition matrix vanish

while the diagonal ones tend to 1. Deep in the radiation stage (i.e. u ≫ ur) the various entries of the

transition matrix can also be expanded for |ur| ≪ 1 and, in this limit, Eq. (B.1) becomes:

A
(r)
f f (u, ur) =

(
u

ur

)
j0(u) +

uur
2

j0(u) +O(|ur|2),
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A
(r)
f g(u, ur) = sinu− ur cosu+O(|ur|2),

A
(r)
g f (u, ur) = −

(
u

ur

)
j1(u)−

uur
2

j1(u) +O(|ur|2),

A(r)
g g (u, ur) = −u j1(u)− u y1(u) +O(|ur|2), (B.2)

where jn(z) and yn(z) are the standard spherical Bessel functions of index n and argument z. The spherical

Hankel functions of first and second kind [60,61] are instead defined, respectively, as h
(1)
n (z) = jn(z)+i yn(z)

and as h
(2)
n (z) = jn(z) − i yn(z). The transition matrix associated with the matter-dominated phase can

be swiftly expressed in terms of the spherical Hankel functions:

A
(m)
f f (v, veq) =

i

2
v veq

[
h
(1)
2 (veq)h

(2)
1 (v)− h

(2)
2 (veq)h

(1)
1 (v)

]
,

A
(m)
f g (v, veq) =

i

2
v veq

[
h
(1)
1 (veq)h

(2)
1 (v)− h

(2)
1 (veq)h

(1)
1 (v)

]
,

A
(m)
g f (v, veq) =

i

2
v veq

[
h
(2)
2 (veq)h

(1)
2 (v)− h

(1)
2 (veq)h

(2)
2 (v)

]
,

A(m)
g g (v, veq) =

i

2
v veq

[
h
(2)
1 (veq)h

(1)
2 (v)− h

(1)
1 (veq)h

(2)
2 (v)

]
, (B.3)

where the dimensionless variable v(τ) has been defined in Eq. (4.11); moreover, by definition, veq = v(τeq).

As before the entries of the transition matrix given in Eq. (B.3) are all real. It can be immediately

appreciated that in the limit v → veq the diagonal terms of the matrix go to 1 while the two off-diagonal

contributions vanish. During the matter-dominated epoch the results of Eq. (B.3) can be expanded in the

limit |veq| ≪ 1 and the explicit results become:

A
(m)
f f (v, veq) = 3

(
v

v2eq

)
j1(v) +

v

2
j1(v) +O(|veq|2),

A
(m)
f g (v, veq) = 3

(
v

veq

)
j1(v) +

v veq
2

j1(v) +O(|veq|2),

A
(m)
g f (v, veq) = −3

(
v

v2eq

)
j2(v)−

v

2
j2(v) +O(|veq|2),

A(m)
g g (v, veq) = −

(
v

veq

)
j2(v)−

v veq
2

j2(v) +O(|veq|2). (B.4)

Both in the case of Eqs. (B.1) and (B.4) the commutation relations imply that the transition matrices

must be unitary so that, in particular, A
(X)
f f A

(X)
g g −A

(X)
f g A

(X)
g f = 1 where X = r, m and the various entries

are all functions of their respective arguments in each of the corresponding stages; see also, in this respect,

Eq. (4.4) and the discussion therein.
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