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Abstract

We introduce a new approach for robotic manipulation tasks in human settings that
necessitates understanding the 3D geometric connections between a pair of objects.
Conventional end-to-end training approaches, which convert pixel observations
directly into robot actions, often fail to effectively understand complex pose rela-
tionships and do not easily adapt to new object configurations. To overcome these
issues, our method focuses on learning the 3D geometric relationships, particularly
how critical parts of one object relate to those of another. We employ Weighted
SVD in our standalone model to analyze pose relationships both in articulated parts
and in free-floating objects. For instance, our model can comprehend the spatial
relationship between an oven door and the oven body, as well as between a lasagna
plate and the oven. By concentrating on the 3D geometric connections, our strategy
empowers robots to carry out intricate manipulation tasks based on object-centric
perspectives 1.

1 Introduction

Numerous robotic tasks involve relocating an object to a position relative to another object. For
instance, a culinary robot might be required to put a lasagna in an oven, set a pot on a stove, place a dish
in a microwave, position a mug on a rack, or situate a cup on a shelf. Mastery in positioning objects
according to task-specific needs is crucial for robots working in human environments. Moreover, this
capability should extend to new items within known categories, such as inserting different trays into
an oven or different mugs onto a rack.

Traditionally in robot learning, policies are trained end2end to translate pixel data directly into robot
actions. However, these end-to-end policies struggle with understanding intricate pose relationships
like those mentioned and often fail to adapt to new object configurations. In response, we suggest a
method that focuses on understanding the 3D geometric relationships between pairs of objects. For
the aforementioned tasks, this involves discerning the spatial relationships between critical parts of
one object in relation to another—for example, analyzing both the connection between an oven door
and the main oven body and between a lasagna plate and the oven itself. Our proposed independent
model uses Weighted SVD to analyze these pose relationships, whether they involve articulated parts
or free-floating objects.

2 Background

Object Pose Estimation: Pose estimation involves detecting and determining the 6DoF (six degrees
of freedom) pose of an object, which encompasses its position and orientation relative to a predefined
object reference frame. Recent research has suggested using 3D semantic keypoints as a novel object
representation form (19; 28; 36; 10; 11; 32). Recent work (20; 27; 33; 21) Although keypoint-based

1https://github.com/harryzhangOG/weighted-pose/tree/main
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Figure 1: Unified Weighted Pose architecture. The model first takes as input a point cloud, and then
learns to predict a weight for the point cloud. This weight is used in the downstream SVD module to
combine the GoalFlow and TAX-Pose outputs.

methods show generalization within object classes, they rely heavily on extensive hand-annotated data
or simulated environments to learn keypoint locations. In contrast, our method can learn from merely
10 real-world demonstrations. Another technique involves using dense embeddings, such as Dense
Object Nets (DON) and Neural Descriptor Fields (NDF), which facilitate class-wide generalization
by predicting and matching dense embeddings from observations to those of demonstration objects.
In contrast, our method is able to learn from just 10 real-world demonstrations. Another approach
is to use dense embeddings, such as Dense Object Nets (DON) (9) and Neural Descriptor Fields
(NDF) (31; 7), which achieve generalization across classes by predicting dense embeddings in the
observation and matching them to embeddings of the demonstration objects. However, both DON
and NDF presuppose that the target object is manipulated relative to a static reference in a "known
canonical configuration" (for example, the fixed pose of a mug rack in NDF). Unlike these methods,
our approach understands the geometric relationships between pairs of objects, allowing it to function
without assuming a static environment (31). In contrast, our method reasons about the geometric
relationship between a pair of objects and hence does not need to assume a static environment.

Articulated Object Manipulation: The manipulation of articulated objects and those with non-rigid
characteristics continues to be a challenging area of research, largely because of their intricate
geometries and kinematics. Earlier research has suggested handling these objects using hand-
crafted analytical methods, for example, by immobilizing a sequence of hinged objects through
(5; 29; 1; 2; 39). Berenson et al. (3) proposed a planning framework for manipulation under kinematic
constraints. Katz et al. (15) proposed an approach to acquire manipulation policies in real-world
settings by using a relational representation that is grounded and learned through interaction. This
method was enhanced by the creation of expansive datasets of articulated objects like the PartNet
dataset Mo et al. (22) and Partnet-Mobility by Xiang et al. (35); Sim et al. (30); Jin et al. (14),
everal studies have suggested using learning techniques that combine large-scale simulation with
supervised visual learning. Mo et al. (23)introduced an approach to develop articulation manipulation
policies through extensive simulation and visual affordance learning. Xu et al. (37) suggested
a framework that acquires knowledge of articulation affordances and includes an action scoring
module, which is utilized to manipulate objects. Various studies have specifically concentrated on the
visual identification and calculation of articulation parameters, developing methods to estimate the
pose (42; 45; 43; 38; 34; 12; 16) and identify articulation parameters (13; 41; 44) to obtain action
trajectories. Moreover, (24; 4; 6; 17; 18; 8) tackle the problem using statistical motion planning.

3 Method

We first slightly modify the FlowBot 3D training objective. Instead of defining an instantaneous
motion vector field as the training data directly, we make the network learn to output a flow field
to the completely open state directly. Since this version of FlowBot 3D learns to output a dense
representation to the goal state directly, we call this model Goal Flow.

Formally, given a point cloud {pi} ∀i ∈ {1, . . . , N} this Goal Flow model outputs a dense flow
field F ∈ RN×3, where each flow vector δi ∈ R3 in the F represents a goal flow vector such that
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point pi + δi is in the fully open goal state. Ideally, this model should be deployed exclusively for
articulated objects in that Goal Flow was shown to achieve suboptimal performances in (25; 26).

To combine the Goal Flow model with TAX-Pose, we also make the Goal Flow network output an
auxiliary weight w ∈ R, which assigns weight w to Goal Flow and 1− w to TAX-Pose.

For the TAX-Pose component of the Weighted Pose unified architecture, we do not make any
significant modifications and ideally the TAX-Pose model should be deployed for free-floating
objects exclusively.

In TAX-Pose, we have:

J (TAB) =

NA∑
i=1

αA
i ||TAB pA

i − ṽA
i ||22 +

NB∑
i=1

αB
i ||T−1

AB pB
i − ṽB

i ||22,

where

A =
[
P∗⊤

A Ṽ∗⊤
B

]
, B =

[
Ṽ∗⊤

A P∗⊤
B

]⊤
, Γ = diag ([αA αB])

Now we want to add another term in the SVD step. Specifically, we want the network to learn
which one of the two models, TAX-Pose and Goal-Flow, is more important based on point cloud
observations. Thus, we want a SVD step that incorporates the TAX-Pose residual, weighted by
(1− w) and Goal-Flow weighted by w. So the new SVD formulation becomes:

J (TAB) = (1− w)

[
NA∑
i=1

αA
i ||TAB pA

i − ṽA
i ||22 +

NB∑
i=1

αB
i ||T−1

AB pB
i − ṽB

i ||22

]

+ w

NA∑
i=1

||TAB pA
i − (pA

i + δAi )||22,

where δAi is the i−th point’s goal flow. To make this approach viable we optimize R and t in TAB
separately:

J =

NA∑
i

(
(1− w)αi∥RpA

i + t− ṽA
i ∥2 + w∥RpA

i + t− pA
i + δAi ∥2

)
+

NB∑
i

(1− w)αi∥R−1pB
i − t− ṽB

i ∥2
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We first solve for the optimal translation t∗:

∂J

∂t
= 0

=

NA∑
i

(
2(1− w)αi

(
t+RpA

i − ṽA
i

)
+ 2w

(
t+RpA

i − pA
i − δAi

))
+ 2(1− w)

NB∑
i

αi

(
R−1pB

i − t− ṽB
i

)
=

NA∑
i

((2− 2w)αi + 2w) t+ ((2− 2w)αi + 2w)RpA
i − 2wδAi − (2− 2w)αiṽ

A
i − 2wpA

i

+

NB∑
i

−(2− 2w)αit+ (2− 2w)αi(R
−1pB

i − ṽB
i )

=

[
NA∑
i

[(2− 2w)αi + 2w] +

NB∑
i

−(2− 2w)αi

]
t

+

NA∑
i

((2− 2w)αi + 2w)RpA
i − 2wδAi − (2− 2w)αiṽ

A
i − 2wpA

i

+

NB∑
i

(2− 2w)αi(R
−1pB

i − ṽB
i )

t∗ = −
( NA∑

i

((2− 2w)αi + 2w)RpA
i − 2wδAi − (2− 2w)αiṽ

A
i − 2wpA

i

+

NB∑
i

(2− 2w)αi(R
−1pB

i − ṽB
i )

)/[
NA∑
i

[(2− 2w)αi + 2w] +

NB∑
i

−(2− 2w)αi

]

Further simplifying, we have:

t∗ =
(1− w)

∑NA
i αA

i (ṽ
A
i −RpA

i )

(1− w)
∑NA

i αA
i + w

∑NA
i 1 + (1− w)

∑NB
i αB

i

+
w
∑NA

i (pA
i + δAi )−RpA

i

(1− w)
∑NA

i αA
i + w

∑NA
i 1 + (1− w)

∑NB
i αB

i

+
(1− w)

∑NB
i αB

i (ṽ
B
i −R−1pB

i )

(1− w)
∑NA

i αA
i + w

∑NA
i 1 + (1− w)

∑NB
i αB

i

Note here that we colorcode the expression here. Intuitively, the resulting translation is a weighted
sum of three translation terms. The red color represents the action object’s translation via TAX-Pose,
the blue color represents the action object’s translation via GoalFlow, and the purple color represents
the anchor object’s translation via TAX-Pose.

We can then construct the matrices as follows:

A =
[
P⊤

A Ṽ⊤
B P⊤

A
]
, B =

[
Ṽ⊤

A P⊤
B P⊤

A +∆A
]⊤

Γ =

[
(1− w) ·αA 0 0

0 (1− w) ·αB 0
0 0 w

]
where ∆A is the de-meaned goal flow field. Note here that everything here is NOT de-meaned.

We then solve for the SVD:
UΣV ⊤ = svd(AΓB⊤)
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and then we solve for rotation matrix R. Plugging it back into the t∗ equations we get t.

To train the WeightedPose, we use a set of losses defined below, which are similar to those in (25).
We assume we have access to a set of demonstrations of the task, in which the action and anchor
objects are in the target relative pose such that TAB = I.

Point Displacement Loss:

Rather than directly supervising the rotation and translation (as seen in DCP), we manage the
predicted transformation by observing its impact on the points. To do this, we utilize the point
clouds from the objects in their demonstration setup and apply a random transformation to each
cloud for this loss, P̂A = TαPA, and P̂B = TβPB. This would give us a ground truth transform of
TGT

AB = TβT
−1
α ; the inverse of this transform would move object B to the correct position relative to

object A. Using the actual transformation as a reference, we calculate the Mean Squared Error (MSE)
loss by comparing the correctly transformed points to those transformed based on our predicted
values.

Ldisp =
∥∥TABPA −TGT

ABPA
∥∥2 + ∥∥T−1

ABPB −TGT−1
AB PB

∥∥2 (1)

Direct Correspondence Loss. Although the Point Displacement Loss accurately reflects errors
observed during inference, it may result in correspondences that are individually inaccurate yet
average out to the correct pose. To enhance these errors, we directly supervise the correspondences
that are learned ṼA and ṼB:

Lcorr =
∥∥∥ṼA −TGT

ABPA

∥∥∥2 + ∥∥∥ṼB −TGT−1
AB PB

∥∥∥2 . (2)

Correspondence Consistency Loss. Additionally, a consistency loss may be employed. This loss
penalizes any discrepancies between correspondences and the final predicted transformation. An
advantage of this loss is its ability to encourage the network to maintain object rigidity while it learns
precise object placement. It is important to note that this is akin to the Direct Correspondence Loss,
except that it relies on the predicted transformation rather than the ground truth. Therefore, this loss
does not require any ground truth data:

Lcons =
∥∥∥ṼA −TABPA

∥∥∥2 + ∥∥∥ṼB −T−1
ABPB

∥∥∥2 . (3)

Direct SE(3) Transformation Loss. We also define a loss directly for the transformation outputted
in SE(3), supervising between the SVD output pose and ground-truth pose.

Ltf = ||TAB −TGT
AB||F (4)

4 Experiments

We describe a PartNet-Mobility Placement task as the act of positioning an action object in relation to
an anchor object according to a predefined semantic goal position. This task demands that the model
generate a cross-pose for both articulated parts and free-floating objects. We have chosen a collection
of household furniture items from the PartNet-Mobility dataset for this purpose (35) and a set of small
rigid objects released with the Ravens simulation environment (40). When the model is required to
estimate goal pose for the articulated part, following the terminology in (25), articulated part serves
as the action object, while the static body of the furniture acts as the anchor object. Conversely,
when the model estimates the goal pose for free-floating objects, the scenario aligns with the same
setting as previously discussed (25). We compare the proposed method to several baselines. First, we
compare against TAX-Pose trained on both free-floating and articulated objects as well as Goal-Flow
trained on both categories of objects. We then compare against an oracle model that classifies if the
objects of interest are free-floating or articulated, and deploys the model accordingly.

We describe the baselines in details:

• Goal Flow Pretrained (GF Pretrained): Pretrain Goal Flow on articulated objects only and
test on both articulated and free-floating objects.

• TAX-Pose Pretrained (TP Pretrained): Pretrain TAX-Pose on free-floating objects only and
test on both articulated and free-floating objects.
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Figure 2: Task illustration. The model needs to first output goal pose for opening the oven door, and
then output goal pose for putting the block inside the oven.

• Weighted Pose Original Loss (WP OG Loss): Weighted Pose trained and test on both
free-floating and articulated objects using the original TAX-Pose loss.

• Weighted Pose Post-SVD Loss (WP Post-SVD): Weighted Pose trained and test on both
free-floating and articulated objects but using the post-SVD TAX-Pose loss.

• Weighted Pose Post-SVD & Transformation Loss (WP Post-SVD): Weighted Pose trained
and test on both free-floating and articulated objects but using both the post-SVD TAX-Pose
loss and direct transformation loss. Where the transformation loss is the MSE between the
predicted SE(3) transformation and the ground-truth SE(3) transformation.

We use the same PartNet-Mobility dataset as in TAX-Pose to evaluate the system. For semantic
tasks, we will only select the “In” task as it is the most intuitive task. However, other than just
performing evaluation on the free-floating objects, we will also evaluate the method on opening the
articulate objects. Under this formulation, the action object is the articulated part and the anchor
object is the static body. We will measure rotational error. translational error, and per-point MSE in
our experiments. We follow the same train-val split as in TAX-Pose’s PartNet-Mobility dataset.

In Table 1, Goal Flow Pretrained baseline fails on free-floating objects and excels on articulated
objects. Similarly for TAX-Pose pretrained, since it was trained on free-floating objects, it does do
well on articulated objects, as the high rotational and translational errors indicate.

We next evaluate the variations of WeightedPose, which differ in the training paradigms. Using
Weighted Pose Original Loss, which is trained using the original TAX-Pose loss, we are able to
achieve better performance on both articulated and free-floating objects. Interestingly, the results we
achieve using Weighted Pose Original Loss for articulated objects are better than the results from
using Goal Flow pretrained on articulated objects.

While ideally, the w learned in this method should effectively act as a classifier of the input object (1
for articulated objects, 0 for free-floating objects). Intuitively, given a perfect w, the performance of
WeightedPose would be upper-bounded by Goal Flow’s performance on articulated objects and by
TAX-Pose on free-floating objects. However, a weighted combination of the two results due to the
imperfect learned w weight could potentially correct the mistake made by each model by summing
the results with a weighted sum. This may explain why WeightedPose sometimes performs better
than its hypothesized upper bound on some objects.

Lastly, results suggest that the original loss used in TAX-Pose yields the best overall performance.
However, it is worth noting that by using post-SVD loss during training, we are able to achieve lower
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translational error in test time. Interestingly, by introducing a direct SE(3) supervision, the results
degrade marginally.

GF Pretrained TP Pretrained WP OG Loss WP Post-SVD WP Post SVD + T
Metrics FF Art FF Art FF Art FF Art FF Art

Train
Rot err 31.61 5.16 2.61 55.78 11.69 3.15 13.14 3.28 14.04 5.52
Trans err 1.21 0.16 0.04 0.98 0.14 0.08 0.21 0.07 0.21 0.07
PP MSE 1.04 0.04 0.01 0.85 0.07 0.05 0.09 0.04 0.11 0.08

Val
Rot err 35.5 9.14 9.87 59.73 11.22 9.01 14.13 9.71 13.06 10.03
Trans err 1.3 0.19 0.18 0.99 0.26 0.15 0.22 0.18 0.23 0.18
PP MSE 1.07 0.1 0.15 0.82 0.16 0.11 0.17 0.12 0.18 0.11

Table 1: Weighted Pose Results: We compare Rotation Error, Translational Error, and Per-Point MSE
for both training and validation objects.

5 Conclusions and Future Work

In conclusion, we have presented a method to combine the two architectures using weighted SVD.
While this model is more of a proof-of-concept that attempts to unify the two architectures, it is worth
pointing out that using the two models for the two categories of objects is able to help us generate
goal poses for various free-floating and articulated objects. Moreover, by finetuning pretrained
models from a weighted SVD combination, we are able to outperform the models on their respective
training datasets categories. In future work, we wish to generalize the mathematics of the combined
architecture beyond tasks that involve articulated and free-floating objects. We would also like to
explore how such a unified architecture can aid motion planning as a geometric suggestor.
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