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Abstract

On a smooth manifold, we associate to any closed differential form a mapping cone

algebra. The cohomology of this mapping cone algebra can vary with the de Rham

cohomology class of the closed form. We present a novel Morse theoretical description

for the mapping cone cohomology. Specifically, we introduce a Morse complex for the

mapping cone algebra which is generated by pairs of critical points with the differential

defined by gradient flows and an integration of the closed form over spaces of gradient

flow lines. We prove that the cohomology of our cone Morse complex is isomorphic to

the mapping cone cohomology and hence independent of both the Riemannian metric

and the Morse function used to define the complex. We also obtain sharp inequalities

that bound the dimension of the mapping cone cohomology in terms of the number

of Morse critical points and the properties of the specified closed form. Our results

are widely applicable, especially for any manifold equipped with a geometric structure

described by a closed differential form. We also obtain a bound on the difference

between the number of Morse critical points and the Betti numbers.
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1 Introduction

Manifolds with a geometric structure given by a closed differential form are widely studied.

For example, a large class are the symplectic manifolds which by definition contain a non-

degenerate, closed two-form. Another large class are special holonomy manifolds which

carry a closed invariant form such as Kähler and G2 manifolds. And even for complex

manifolds that are non-Kähler, there often is a distinguished closed form. For instance,

on a complex threefold that satisfies the balanced condition, the square of the hermitian

form, is a distinguished closed four-form.

For a manifold (M,ψ), with ψ ∈ Ωℓ(M) being a distinguished ℓ-form that is also d-

closed, we seek invariants that are dependent on the geometric structure ψ. Certainly,

without ψ being present, there is the well-known de Rham differential graded algebra

(Ω∗, d,∧) that results in basic invariants, i.e. de Rham cohomology ring and Massey prod-

ucts, for any smooth manifold M . So we begin in this paper with a simple question: Is

there a natural extension of the de Rham algebra that incorporates the additional geomet-

ric structure ψ? Indeed, there is the mapping cone differential graded algebra Cone(ψ)

which provides invariants that in general depend on [ψ] ∈ Hℓ(M).

1.1 Mapping cone algebra

This mapping cone algebra (or the “cone” algebra, for short) can be motivated as follows.

For differential forms, the exterior (or wedge) product is a natural operation. So given

ψ ∈ Hℓ
dR(M), we can turn it into an operator on forms, ψ∧ : Ωk(M) → Ωk+ℓ(M). This

operator can then be combined with the exterior differential d to give what is commonly

called the “twisted” differential, d+ψ. Unfortunately, d+ψ has two notable drawbacks if

it were to be considered as the differential of a complex: (1) d+ψ generally does not square

to zero unless ℓ is odd; (2) d+ψ does not preserves grading as it maps Ωk to a mixture of

Ωk ⊕ Ωk+ℓ. There is however a simple solution to alleviate these two issues. For instance,
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consider instead mapping both d and ψ∧ into Ωk+1. This would require considering a pair

of forms in Ωk ⊕ Ωk−ℓ+1 with the map

Ωk(M) Ωk+1(M)

Ωk−ℓ+1(M).

d

ψ ∧

This is suggestive of defining the space of cone forms, Cone•(ψ) = Ω•(M) ⊕ Ω•−ℓ+1(M),

which consists of just pairs of differential forms. And with it, we can introduce the cone

differential:

dC : Conek(ψ) −→ Conek+1(ψ) (1.1)(
Ωk

Ωk−ℓ+1

)
7−→

(
d ψ ∧
0 (−1)ℓ−1d

)(
Ωk+1

Ωk−ℓ+1

)
=

(
dΩk + ψ ∧ Ωk−ℓ+1

(−1)ℓ−1dΩk−ℓ+1

)
.

It is straightforward to check that dC dC = 0. This allows us to define the following cone

cohomology with respect to ψ:

Hk(Cone(ψ)) =
ker dC ∩ Conek(ψ)

im dC ∩ Conek(ψ)
.

This cone cohomology is not a topological invariant and in general is dependent on ψ. It

contains the product structure information of the de Rham cohomology associated with ψ.

To see this, let us express Conek(ψ) = Ωk(M)⊕Ωk−ℓ+1(M) in terms of an exact sequence

0 Ωk(M) Conek(ψ) Ωk−ℓ+1(M) 0 ,
ιdR πdR

where ιdR is the inclusion map and πdR is the projection onto the second component. This

short exact sequence standardly leads to a long exact sequence of cohomologies

. . . Hk−ℓ
dR Hk

dR Hk(Cone(ψ)) Hk−ℓ+1
dR Hk+1

dR . . .
[ψ] [ιdR] [πdR] [ψ]

(1.2)

which implies that

Hk(Cone(ψ)) ∼= coker( [ψ] : Hk−ℓ
dR → Hk

dR ) ⊕ ker( [ψ] : Hk−ℓ+1
dR → Hk+1

dR ) . (1.3)
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Hence, we see thatHk(Cone(ψ)) encodes the product structure of the de Rham cohomology

under the linear map [ψ] : H•
dR → H•+ℓ

dR . And in general, the kernel and cokernel of such

a map can vary as [ψ] varies in de Rham cohomology.

To proceed with an algebra structure for Cone•(ψ), perhaps the easiest way to motivate

its description is to introduce a formal object, θ, that acts like a differential (ℓ − 1)-form

with two defining properties: (i) dθ = ψ; (ii) θ ∧ θ = 0. Making use of θ, we can express

Conek(ψ) = Ωk(M)⊕θ∧Ωk−ℓ+1(M) which now has the same total degree grading on both

components. Moreover, the cone differential dC can be interpreted simply as an exterior

derivative:

d(Ωk ⊕ θ ∧ Ωk−ℓ+1) = (dΩk + ψ ∧ Ωk−ℓ+1)⊕ θ ∧ (−dΩk−ℓ+1) = dC Cone(ψ) .

We can thus treat Conek(ψ) formally as a differential form space and define the product

operation on cone forms by means of the standard wedge product:

Conej(ψ)× Conek(ψ) : = (Ωj ⊕ θ ∧ Ωj+ℓ−1) ∧ (Ωk ⊕ θ ∧ Ωk+ℓ−1)

= (Ωj ∧ Ωk)⊕ θ ∧
[
Ωj+ℓ−1 ∧ Ωk + (−1)j(ℓ−1)Ωj ∧ Ωk−ℓ+1

]
Altogether, (Cone•(ψ), dC ,×) is a differential graded algebra that is dependent on ψ.

Let us make here two observations. First, the cone cohomology and algebra have

appeared previously in the work of Tanaka-Tseng [TT18] within the context of a symplectic

manifold (M2n, ω) where ψ was specified to be ψ = ωp+1, for p = 0, . . . , n−1. In this special

setting, it was shown that H(Cone(ωp+1)) is isomorphic to the symplectic cohomologies

of differential forms called p-filtered cohomologies, F pH(M,ω), introduced by Tsai-Tseng-

Yau [TTY16] and the underlying algebras of these two cohomologies are quasi-isomorphic

as A∞ algebras. Of interest, the dimensions of F pH(M,ω) have been shown to vary with

the symplectic structure in various examples: a six-dimensional symplectic nilmanifold

[TY12b], a three-torus product with a three-ball, T 3 ×B3 [TW22], and for classes of open

4-manifolds that are homeomorphic but not diffeomorphic [GTV22]. By the isomorphism

of cohomologies, we know that H(Cone(ωp+1)) would also vary with ω in these examples.

Our second observation is especially worthy to emphasize. It is that the cone cohomol-

ogy and algebra defined above only requires ψ to be d-closed and nothing more. Geometric

structures such as a symplectic two-form or an associative three-form on G2 manifolds

often have additional properties like non-degeneracy besides d-closedness. Certainly, when
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ψ has more properties besides being closed, the cone algebra may have added qualities as

well. For instance, if ψ is an even-degree form and additionally an element of the integral

cohomology Hℓ(M,Z), then the cone algebra interestingly can be interpreted geometrically

as the invariant de Rham algebra of Sℓ+1 sphere bundle with Euler class given by ψ and

the formal θ representing the global angular form [TT18]. But the cone algebra is more

widely applicable and it is even useful as we shall see to consider the case when ψ is d-exact.

Though we may have been initially motivated to seek a cohomology/algebra with respect

to a geometric structure, with the cone algebra at hand, it is useful to first study on its

own right without imposing additional properties to ψ. And this we shall do below and

proceed as our main focus in this paper to develop a Morse theory for the cone cohomology

with respect to any d-closed ψ.

1.2 Morse complex for the mapping cone

On a Riemannian manifold, the de Rham cohomology can be described alternatively as

the cohomology of a Morse complex (or also referred to as the Morse-Witten or Smale-

Thom complex). Besides the Riemannian metric g, to define a Morse complex requires

the introduction of a special function f on M , called a Morse function, which is defined

by the property that the Hessian at each critical point is non-degenerate. The elements of

the Morse complex Ck(M,f) are then generated by the critical points of f , q ∈ Crit(f),

and grouped together by their index, k = ind(q), the number of negative eigenvalues of

the Hessian matrix at q. The differential of the complex, ∂, is defined by the gradient flow,

−∇f , from one critical point to another. Explicitly, in local coordinates {xi}, the gradient
flow is ẋi(t) = −gij∂f/∂xj which involves the Riemannian metric g. (We shall assume

throughout this paper that the metric g satisfies the usual Smale transversality condition,

that is, the submanifolds that flow into or from the critical points are transverse.) The

resulting cohomology of the Morse cohomology is famously known to be isomorphic to the

standard cohomology, and therefore, the Morse cohomology generally does not depend on

the choice of the Morse function f and metric g that are used to define it. As a corollary

of this isomorphism, there are the well-known Morse inequalities which bound the Betti

numbers of M in terms of the number of critical points of the Morse function.

Now, for a smooth manifold equipped with a geometric structure described by a closed

ℓ-form (M,ψ), we have discussed the cone cohomology H(Cone(ψ)) which provides basic

geometrical invariants that are dependent on [ψ] ∈ Hℓ
dR(M). Given the connection between

the mapping cone complex and the de Rham complex, it is natural to ask whether there
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Complex Cochains Differential Cohomology

de Rham Ω•(M) d H•
dR(M)

Morse C•(M,f) ∂ H•
C(f)(M)

Cone Ω•(M)⊕ Ω•−ℓ+1(M) dC =

(
d ψ
0 (−1)ℓ−1d

)
H•(Cone(ψ))(M)

Cone Morse C•(M,f)⊕ C•−ℓ+1(M,f) ∂C =

(
∂ c(ψ)
0 (−1)ℓ−1∂

)
H•(Cone(c(ψ)))(M)

Table 1: The relations between the de Rham and Morse cochain complexes and Cone and
Cone-Morse complexes.

is also a Morse theory-type description for the mapping cone cohomology? Such a Morse

description would necessarily require the involvement of ψ in some intrinsic way. And if a

Morse theory for (M,ψ) exists, can we bound the dimensions of the cone cohomology by

means of the critical points of a Morse function and their gradient flows?

In this paper, we answer both questions in the affirmative.

Motivated by the relationship between de Rham complex and the Morse cochain com-

plex over R (see Table 1), we define in the following a cone Morse complex also over R.

Definition 1.1. Let (M, g) be an oriented, Riemannian manifold and f a Morse function

satisfying the Morse-Smale transversality condition. Let Ck(M,f) be the R-module with

generators the critical points of f with index k. Given a d-closed form ψ ∈ Ωℓ(M), we define

the cone Morse cochain complex of ψ, Cone(c(ψ)) = (C•(M,f)⊕ C•−ℓ+1(M,f), ∂C):

. . . Ck(M,f)⊕ Ck−ℓ+1(M,f) Ck+1(M,f)⊕ Ck−ℓ+2(M,f) . . .
∂C ∂C ∂C

with

∂C =

(
∂ c(ψ)

0 (−1)ℓ−1∂

)
. (1.4)

Here, ∂ is the standard Morse cochain differential defined by gradient flow, and c(ψ) :
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de Rham Morse

Cochains Ω•(M) C•(M,f)

Differential d ∂ (gradient flow)

Cohomology Hk
dR(M) ∼= Hk

C(f)(M)

Morse bk ≤ mk

Inequalities

j∑
k=0

(−1)j−kbk ≤
j∑

k=0

(−1)j−kmk

Table 2: The relations between the de Rham and Morse cochain complexes and Morse
inequalities, where bk = dimHk

dR(M) and mk = dimCk(M,f)

Cone Cone Morse

Cochains Ω•(M)⊕ Ω•−ℓ+1(M) C•(M,f)⊕ C•−ℓ+1(M,f)

Differential dC =

(
d ψ
0 (−1)ℓ−1d

)
∂C =

(
∂ c(ψ)
0 (−1)ℓ−1∂

)
Cohomology Hk(Cone(ψ))(M) ∼= Hk(Cone(c(ψ)))(M)

Cone-Morse bψk ≤ mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1

Inequalities

j∑
k=0

(−1)j−kbψk ≤
j∑

k=0

(−1)j−k(mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1)

Table 3: The relations between the cone complex and the cone Morse complex and in-
equalities in the presence of a closed ℓ-form ψ, where bψk = dimHk(Cone(ψ))(M) and
vk = rank[c(ψ) : Ck(M,f) → Ck+ℓ(M,f)].

Ck(M,f) → Ck+ℓ(M,f) acting on a critical point of index k is defined to be

c(ψ) qk =
∑

ind(r)=k+ℓ

(∫
M(rk+ℓ,qk)

ψ

)
rk+ℓ (1.5)

where M(rk+ℓ, qk) is the ℓ-dimensional submanifold of M consisting of all flow lines from

the index k + ℓ critical point, rk+ℓ , to qk.

Notice that the elements of the Morse cone complex, Conek(c(ω)) = Ck(M,f) ⊕
Ck−l+1(M,f), can be generated by pairs of critical points of index k and k − l + 1. The

differential ∂C consists of the standard Morse differential ∂ from gradient flow couple with

the c(ψ) map which involves an integration of ψ over the space of gradient flow lines.

This c(ψ) map has appeared in Austin-Braam [AB95] and Viterbo [Vit95] to define a cup
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product on Morse cohomology. It satisfies the following Leibniz rule

∂c(ψ) + (−1)ℓ+1c(ψ)∂ = −c(dψ) . (1.6)

A check of the ± signs of this equation together with a description of the orientation

of M(rk+ℓ+1, qk) is given in Appendix A. With (1.6) and ∂∂ = 0 , they together imply

∂C ∂C = 0.

We will prove in Section 2 that the cohomology of our cone Morse complex Cone(c(ψ))

is isomorphic to the cohomology of the cone complex Cone(ψ) of differential forms.

Theorem 1.2. Let M be a closed, oriented manifold and ψ ∈ Ωl(M) a d-closed form.

There exists a chain map PC : (Cone•(ψ), dC) → (Cone•(c(ψ)), ∂C) that is a quasi-

isomorphism, and therefore, for any k ∈ Z,

Hk(Cone(ψ)) ∼= Hk(Cone(c(ψ))) .

Theorem 1.2 importantly shows that the cohomology of the cone Morse complex is

independent of the choice of both the Morse function f and the Riemannian metric g used

to define Cone(c(ψ)). It is also worthwhile to emphasize that the above theorem is a general

one, applicable for any closed smooth manifold, odd or even dimensional, with respect to

any closed differential form on the manifold.

Having obtained a cone Morse theory, we would like to write down the Morse-type

inequalities that bounds the dimension of the cone cohomology which we will denote by

bψk = dimHk(Cone(ψ)). Specifically, we would like to bound the bψk ’s by the properties

of the Morse functions. Recall that the standard Morse inequalities (for a reference, see

e.g. [Mil63]) bounds the k-th Betti numbers bk = dimHk
dR(M) by mk, the number of index

k critical points of a Morse function. The usual Morse inequalities can be stated concisely

as the existence of a polynomial Q(t) with non-negative integer coefficients such that∑
k=0

mk t
k =

∑
k=0

bk t
k + (1 + t)Q(t) . (1.7)

This is equivalent to what is called the strong Morse inequalities

k∑
i=0

(−1)k−i bi ≤
k∑
i=0

(−1)k−imi , k = 0, . . . ,dimM (1.8)
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which imply the weak Morse inequalities

bk ≤ mk , (1.9)

also for k = 0, . . . ,dimM .

We can derive the analogous Morse-type inequalities results for the cone cohomology.

We obtain the following:

Theorem 1.3. Let (M,ψ, f, g) be a closed, oriented Riemannian manifold with Morse

function f and Riemannian metric g and ψ ∈ Ωℓ(M) a d-closed form. Then there exists a

polynomial Q(t) with non-negative integer coefficients such that

(1 + tℓ−1)
∑
k=0

mk t
k − (tℓ−1 + tℓ)

∑
k=0

vk t
k =

∑
k=0

bψk t
k + (1 + t)Q(t)

where bψk = dimHk(Cone(ψ)) and

vk = rank
(
c(ψ) : Ck(M,f) → Ck+ℓ(M,f)

)
. (1.10)

Equivalently, we have the following inequalities:

(A) Weak cone Morse inequalities

bψk ≤ mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1 , k = 0, . . . ,dimM + ℓ− 1; (1.11)

(B) Strong cone Morse inequalities

j∑
k=0

(−1)j−kbψk ≤
j∑

k=0

(−1)j−k(mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1) , (1.12)

for j = 0, . . . ,dimM + ℓ− 1 .

In the special case where ψ is chosen to be a d-exact two-form, then the strong cone

Morse inequalities of (1.12) imply an interesting bound for the difference between the

number of critical points of any Morse function and the Betti numbers.

Corollary 1.4. For ψ any d-exact two-form, we have the following bounds for k =

9



1, . . . ,dimM ,

bk ≤ mk − vk−1 . (1.13)

This corollary gives an estimate for the difference between mk and bk in terms of

vk−1 (1.10), which involves integration of ψ over the gradient flow lines. It represents an

improvement to the classical Morse inequality (1.9) and can be used to quickly determine

whether a Morse function is perfect or not. (Recall a perfect Morse function is one where

mk = bk for all k.) In considering the inequality (1.13), note that it applies for any exact

two-form ψ = dα where α ∈ Ω1(M). Then vk−1 can only be non-zero if at least one

moduli space of flow lines M(rk+1, qk−1), which is the domain of integration in (1.5), has

a boundary. For if one ∂M ≠ 0, then we can choose to work with a one-form α that

takes value only along a small localized region along the boundary, such that the boundary

integral of α is non-zero and thus generates vk−1 > 0.

It is worthwhile to point out that not all manifolds have perfect Morse functions. For

instance, Morse functions on manifolds that has torsion in its homology class must satisfy

the inequalities [Pit58]

bk + µk + µk−1 ≤ mk

where µk is the minimum number of generators of the torsion components of Hk(M,Z).
Hence our results implies that a manifold with torsion must have a moduli space of flow

lines between two critical points that differ by index two that has non-trivial boundary.

The outline of the paper is the following. In Section 2, we define our cone Morse

complex in detail and proof the isomorphism between the cone and cone-Morse cohomology

of Theorem 1.2. In Section 3, we study the implication of the isomorphism and derive the

cone Morse inequalities of Theorem 1.3. In Section 3, we demonstrate all the various

properties of the cone Morse cohomology and inequalities in the simple, yet rich example

of the two-sphere S2.

Note added: Some of the results of this paper were announced in our arXiv preprint [CTTa].

We have since significantly developed that initial preprint resulting in two separate papers.

The manuscript [CTTb] that has replaced the original preprint is focused on the Morse

theory for symplectic manifolds and gives an analytic-based proof of Theorem 1.2 by means

of the Witten deformation method for the special case where ψ is the symplectic structure.

This paper incorporates the previous algebraic proof in [CTTa] and greatly expands on
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defining the general notion of a cone Morse theory with respect to any closed form on a

manifold.

Acknowledgements. We thank Yu-Shen Lin, Daniel Morrison, Richard Schoen, Daniel

Waldram, and Jiawei Zhou for helpful discussions. The second author was supported in

part by NSF Grants DMS-1800666 and DMS-1952551. The third author would like to

acknowledge the support of the Simons Collaboration Grant No. 636284.

2 Cone Morse complex: Cone(c(ψ))

2.1 Preliminaries: Morse complex and c(ψ)

To begin, let f be a Morse function and g a Riemannian metric on M . We will assume

throughout this paper that (f, g) satisfy the standard Morse-Smale transversality condi-

tion. The elements of the Morse cochain complex C•(M,f) are R-modules with generators

critical points of f , graded by the index of the critical points, with boundary operator ∂

determined by the counting of gradient lines, i.e

∂qk =
∑

ind(r)=k+1

n(rk+1, qk) rk+1,

where n(rk+1, qk) = #M̃(rk+1, qk) is a count of the moduli space of gradient flow lines

with orientation modulo reparametrization.

Note that Morse theory is typically presented as a homology theory, and hence, flowing

from index k to index k − 1 critical points. To match up with the cochain complex of

differential forms, we here work with the dual Morse cochain complex. Hence, our ∂ is the

adjoint of the usual Morse boundary map under the inner product ⟨qki , qkj ⟩ = δij .

Following Austin-Braam [AB95] and Viterbo [Vit95], we define

c(ψ)qk =
∑

ind(r)=k+ℓ

(∫
M(rk+ℓ,qk)

ψ

)
rk+ℓ

where ψ ∈ Ωℓ(M) is an ℓ-form and M(rk+ℓ, qk) is the submanifold of all points that flow

from rk+ℓ to qk, oriented as in [AB95]. From Appendix A, we have the Leibniz-type product

11



relation

∂c(ψ) + (−1)deg(ψ)+1c(ψ)∂ = −c(dψ)

specifying a sign convention that is ambiguous in Austin-Braam [AB95] and Viterbo [Vit95].

Thus, for instance, for ψ = ω, the symplectic structure, we have the relation

∂c(ω)− c(ω)∂ = −c(dω) = 0

2.2 Chain map between Cone(ψ) and Cone(c(ψ))

As explained by Bismut, Zhang and Laudenbach [BZ92, Zha01], there is a chain map

P : Ωk(M) → Ck(M,f) between differential forms and the Morse cochain complex given

by

Pϕ =
∑

qk∈Crit(f)

(∫
Uqk

ϕ

)
qk

where ϕ ∈ Ωk(M) and Uq is the set of all points on a gradient flow away from q. Being a

chain map,

∂ P = P d . (2.1)

Bismut, Zhang and Laudenbach, in [BZ92, Theorem 2.9] (see also [Zha01, Theorem 6.4]),

also proved the following:

P : Hk
dR(M) → Hk

C(f)(M) is an isomorphism. (2.2)

Furthermore, Austin-Braam [AB95, Section 3.5] showed that P(ψ ∧ γ) and c(ψ)Pγ are

cohomologous:

[P][ψ] = [c(ψ)][P] . (2.3)

We wish to find an analogous chain map relating Cone(ψ) = (Ω•(M) ⊕ Ω•−ℓ+1(M), dC)

with Cone(ψ) = (C•(M,f) ⊕ C•−ℓ+1(M,f), ∂C), where as given in (1.1) and Definition

1.1,

dC : Ωk(M)⊕ Ωk−l+1(M) → Ωk+1(M)⊕ Ωk−l+2(M)

∂C : Ck(M,f)⊕ Ck−l+1(M,f) → Ck+1(M,f)⊕ Ck−l+2(M,f)

12



with

dC =

(
d ψ

0 (−1)ℓ−1d

)
, ∂C =

(
∂ c(ψ)

0 (−1)ℓ−1∂

)
.

The chain map, which we will label by PC , that links the two cone complexes will need

to satisfy ∂C PC = PC dC . In fact, such a map exists and can be expressed in an upper-

triangular matrix form.

Definition 2.1. Let PC : Cone•(ψ) → Cone•(c(ψ)) be the upper-triangular matrix map

PC =

(
P K

0 P

)

where K : Ωk−ℓ+1(M) → Ck(M,f) acting on ξ ∈ Ωk−ℓ+1(M) is defined by

Kξ = (−1)ℓ (Pψ − c(ψ)P) d∗Gξ + ∂−1
k,⊥ ((Pψ − c(ψ)P)Hξ ) , (2.4)

in terms of the Hodge decomposition with respect to the de Rham Laplacian ∆ = dd∗+d∗d:

ξ = (H+∆G)ξ = Hξ + dd∗Gξ + d∗dGξ ,

where Hξ is the harmonic component and G is the Green’s operator.

We explain the notation ∂−1
k,⊥ in the second term for the definition of K in ((2.4)).

Let γ be a closed (k−ℓ+1)-form. Then from (2.3), we know that P(ψ∧γ) and c(ψ)Pγ
are cohomologous, and therefore, P(ψ ∧ γ) − c(ψ)Pγ = ∂b for some b ∈ Ck(M,f). Note

that Ck(M,f) is an inner product space under ⟨qki , qkj ⟩ = δij , so we have an orthogo-

nal splitting, Ck(M,f) = ker ∂k ⊕ (ker ∂k)
⊥, and that ∂k gives an isomorphism between(

Ck(M,f)/ ker ∂k
) ∼= (ker ∂k)

⊥ and im ∂k ⊂ Ck+1(M,f). Thus, it follows from the finite-

dimensional assumption on Ck(M,f) and Ck+1(M,f) that we can define a right inverse

∂−1
k,⊥ : im ∂k → (ker ∂k)

⊥ ⊂ Ck(M,f), and ∂−1
k,⊥(P(ψ ∧ γ) − c(ψ)Pγ) ∈ Ck(M,f). For the

second term of K in (2.4), γ = Hξ is the closed form that is the harmonic component of ξ.

With PC defined, we now show that it is a chain map.

Theorem 2.2. PC : Cone•(ψ) → Cone•(c(ψ)) is a chain map. In particular,

∂C PC = PC dC . (2.5)
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Proof. The right and the left hand side of (2.5) acting on η + θξ ∈ Conek(ψ) give

PC dC =

(
P K

0 P

)(
d ψ

0 (−1)ℓ−1d

)
=

(
Pd Pψ + (−1)ℓ−1Kd

0 (−1)ℓ−1Pd

)
,

∂C PC =

(
∂ c(ψ)

0 (−1)ℓ−1∂

)(
P K

0 P

)
=

(
∂P c(ψ)P + ∂K

0 (−1)ℓ−1∂P

)
.

Since P is a chain map (2.1), i.e. dP = P ∂, the only entry we need to check comes from

the off-diagonal one,

Pψ + (−1)ℓ−1Kd = c(ψ)P + ∂K ,

or equivalently, we need to show that

Pψ − c(ψ)P = ∂K + (−1)ℓKd , (2.6)

or K a graded chain homotopy. To compute Kdξ, note first that Hdξ = 0 , ∀ξ ∈
Ωk−l+1(M). Therefore, we find that

Kdξ = (−1)ℓ (Pψ − c(ψ)P) d∗Gdξ = (−1)ℓ (Pψ − c(ψ)P) d∗dGξ ,

having used (2.4) and the fact that Gd = dG. Now, for the ∂Kξ term, we have

∂Kξ = (−1)ℓ∂ [(Pψ − c(ψ)P) d∗Gξ] + ∂
[
∂−1
k,⊥ ((Pψ − c(ψ)P)Hξ )

]
= (−1)ℓ

[
(−1)ℓ (Pψ − c(ψ)P) dd∗Gξ

]
+ (Pψ − c(ψ)P)Hξ

= (Pψ − c(ψ)P) (dd∗Gξ +Hξ)

where in the second line, we have applied the graded commutative properties: ∂P = Pd
and ∂c(ψ) = (−1)ℓc(ψ)∂ for ψ a d-closed ℓ-form. Altogether, we find for the right-hand

side of (2.6)

∂Kξ + (−1)ℓKdξ = (Pψ − c(ψ)P) (dd∗Gξ + d∗dGξ +Hξ)

= (Pψ − c(ψ)P) ξ.

Thus, K is a graded chain homotopy of Pψ and c(ψ)P, and therefore, PC dC = ∂C PC .
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2.3 Isomorphism of cohomologies via Five Lemma

A mapping cone cochain complex can be described by a short exact sequence of chain

maps. For the differential forms case, we have

0 (Ωk(M), d) (Conek(ψ), dC) (Ωk−ℓ+1(M), (−1)ℓ−1d) 0
ιdR πdR

(2.7)

where ιdR is the inclusion into the first component ιdR(η) =

(
η

0

)
and πdR is the projection

of the second component πdR

(
η

ξ

)
= ξ. It is easy to check that these maps are chain maps:

ιdRdη =

(
dη

0

)
= dCιdRη

and

πdR dC

(
η

ξ

)
= πdR

(
dη + ψ ∧ ξ
(−1)ℓ−1dξ

)
= (−1)ℓ−1dξ = (−1)ℓ−1d

{
πdR

(
η

ξ

)}
.

The short exact sequence (2.7) implies the following long exact sequence for the cohomology

of Cone(ψ)

. . . Hk−ℓ
dR (M) Hk

dR(M) Hk(Cone(ψ)) Hk−ℓ+1
dR (M) . . .

[ψ] [ιdR] [πdR]

(2.8)

Analogously, for Cone(c(ψ)), we also have the short exact sequence of chain maps

0 (Ck(M,f), ∂) (Conek(c(ψ)), ∂C) (Ck−ℓ+1(M,f), (−1)ℓ−1∂) 0
ιC(f) πC(f)

(2.9)

and the long exact sequence of cohomology

. . . Hk−ℓ
C(f)(M) Hk

C(f)(M) Hk(Cone(c(ψ))) Hk−ℓ+1
C(f) (M) . . .

[c(ψ)] [ιC(f)] [πC(f)]

(2.10)
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The two short exact sequences, (2.7) and (2.9), fit into a commutative diagram.

0 (Ωk(M), d) (Conek(ψ)), dC) (Ωk−ℓ+1(M), (−1)ℓ−1d) 0

0 (Ck(M,f), ∂) (Conek(c(ψ)), ∂C) (Ck−ℓ+1(M,f), (−1)ℓ−1∂) 0

ιdR

P

πdR

PC P
ιC(f) πC(f)

(2.11)

The commutativity of the above diagram can be checked as follows:

ιC(f)(P(η)) =

(
Pη
0

)
=

(
P K

0 P

)(
η

0

)
= PC(ιdR(η)) ,

πC(f)

(
PC

(
η

ξ

))
= πC(f)

(
Pη +Kξ

Pξ

)
= Pξ = P

(
πdR

(
η

ξ

))
.

The short exact commutative diagram (2.11) gives a long commutative diagram of coho-

mologies:

Hk−ℓ
dR (M) Hk

dR(M) Hk(Cone(ψ)) Hk−ℓ+1
dR (M) Hk+1

dR (M)

Hk−ℓ
C(f)(M) Hk

C(f)(M) Hk(Cone(c(ψ))) Hk−ℓ+1
C(f) (M) Hk+1

C(f)(M)

[ψ]

[P] [P]

[ιdR]

[PC ]

[πdR]

[P]

[ψ]

[P]

[c(ψ)] [ιC(f)] [πC(f)] [c(ψ)]

(2.12)

We can check that each square commutes. The outer squares commute since P(ψ ∧ ξ)

and c(ψ)Pξ are cohomologous when both ξ and ψ are d-closed, by ((2.3)), as was shown

by Austin-Braam in [AB95, Section 3.5]. The middle two squares commute follows from

the commutativity of the chain maps in (2.11). Furthermore, the vertical map [P] is an

isomorphism (2.2) as shown by Bismut-Zhang and Laudenbach [BZ92, Theorem 2.9] (see

also [Zha01, Theorem 6.4]).

We can now apply the Five Lemma to (2.12) which implies that the middle vertical

map [PC ] is also an isomorphism on cohomology, and thus we prove Theorem 1.2.

Theorem 2.3. PC : (Cone•(ψ), dC) → (Cone•(c(ψ)), ∂C) is a Z graded quasi-isomorphism.
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3 Cone Morse inequalities

Having established the quasi-isomorphism between the complexes, Cone(ψ) and Cone(c(ψ)),

we will proceed now to prove Theorem 1.3, which gives the Morse-type inequalities for the

Cone(ψ) complex analogous to those in (1.7)-(1.9) for the de Rham complex.

For a closed, oriented manifold M and a d-closed form ψ ∈ Ωℓ(M), let us denote by

bψk = dimHk(Cone(ψ)). From (1.3), we know that

Hk(Cone(ψ)) ∼= coker
(
[ψ] : Hk−ℓ

dR → Hk
dR

)
⊕ ker

(
[ψ] : Hk−ℓ+1

dR → Hk+1
dR

)
(3.1)

which implies

bψk = dim
[
coker

(
[ψ] : Hk−ℓ

dR → Hk
dR

)]
+ dim

[
ker
(
[ψ] : Hk−ℓ+1

dR → Hk+1
dR

)]
= bk − rk−ℓ + bk−ℓ+1 − rk−ℓ+1 (3.2)

where bk = dimHk
dR(M) and

rk = rank
(
[ψ] : Hk

dR(M) → Hk+ℓ
dR (M)

)
. (3.3)

We would like to bound bψk by means of the Morse function and properties of the cone

Morse complex Cone(c(ψ)). That H(Cone(ψ)) as expressed above is related to the cokernel

and kernel of the ψ map is suggestive that we should look for an analogous relationship

between H(Cone(c(ψ))) with the cokernel and kernel of the c(ψ) map. Indeed, such a

relationship exists for any cone complex. (See [Wei94] or Appendix B for a review.) For

the Morse complex (C•(M,f), ∂), we will make use of two subcomplexes, the kernel and

cokernel complex, associated to the map c(ψ):

• The kernel complex of c(ψ), (ker c(ψ), ∂), is the complex consisting of kerjc(ψ) =

{b ∈ Cj(M,f) | c(ψ)b = 0}, with differential ∂.

• The cokernel complex of c(ψ), (coker c(ψ), ∂π), is the complex cokerjc(ψ) = {[a] ∈
Cj/ im c(ψ)} with differential ∂π[a] = [∂a] ∈ C/ im c(ψ).

The cohomologies of these two subcomplexes together with H(Cone(c(ψ))) forms a long

exact sequence (B.6)

. . . −−→ Hk−ℓ+1(ker c(ψ))
hk−ℓ+1
ker−−−−→ Hk(Cone(c(ψ)))

hkCone−−−−→ Hk(coker c(ψ))
hkcoker−−−−→ . . . (3.4)
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The precise definitions of the maps in the long exact sequence will not be needed in our

discussion here. From (3.4), we can immediately obtain the following weak cone-Morse

inequality.

Theorem 3.1 (Weak Cone Morse Inequalities). On a closed manifold M with ψ ∈ Hℓ
dR(M),

let bψk = dimHk(Cone(ψ)) and mk the number of index k critical points of a Morse function

on M . Then, we have for k = 0, 1, . . . , (dimM + ℓ− 1),

bψk ≤ mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1 , (3.5)

where

vk = rank
(
c(ψ) : Ck(M,f) → Ck+ℓ(M,f)

)
. (3.6)

Proof. From (3.4), we have

bψk ≤ dimHk(coker c(ψ)) + dimHk−ℓ+1(ker c(ψ))

≤ dim(cokerkc(ψ)) + dim(kerk−ℓ+1c(ψ))

= mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1 .

In general, the number vk = rank c(ψ)|Ck(M,f) is not equal to rk = rank [ψ]|Hk
dR(M) as

defined in (3.3). However, we have the following relations.

Lemma 3.2. Let rk = rank [ψ]|Hk
dR(M) and vk = rank c(ψ)|Ck(M,f) as defined in (3.3) and

(3.6), respectively. Then for k = 0, 1, . . . , (dimM + ℓ− 1),

(a) rk = rank
(
[c(ψ)] : Hk

C(f)(M) → Hk+ℓ
C(f)(M)

)
;

(b) rk ≤ vk;

(c) bk − vk−ℓ + bk−ℓ+1 − vk−ℓ+1 ≤ bψk ≤ mk − rk−ℓ +mk−ℓ+1 − rk−ℓ+1;

(d) (vk−ℓ − rk−ℓ) + (vk−ℓ+1 − rk−ℓ+1) ≤ (mk − bk) + (mk−ℓ+1 − bk−ℓ+1) .

Proof. Property (a) follows from (2.2)-(2.3) which implies that rank [ψ] = rank [c(ψ)]. For

(b), if {[c(ψ)a1], ...[c(ψ)ark ]} gives a basis for im [c(ψ)] ⊂ Hk+ℓ
C(f)(M), then {c(ψ)a1, ..., c(ψ)ark}
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must constitute a linearly independent set of elements in im c(ψ) ⊂ Ck+ℓ(M,f), and there-

fore,

rk ≤ dim
(
im c(ψ) ∩ Ck+ℓ(M,f)

)
= vk .

Applying property (b) to (3.2) and (3.5) results in property (c). Lastly, property (d) follows

from combining (3.2) and (3.5).

From the standard Morse inequality, bk ≤ mk, and Lemma 3.2(b), rk ≤ vk, we see that

the relation in Lemma 3.2(d)

(vk−ℓ − rk−ℓ) + (vk−ℓ+1 − rk−ℓ+1) ≤ (mk − bk) + (mk−ℓ+1 − bk−ℓ+1) (3.7)

consist of sums of two non-negative terms on both sides. In particular, if the Morse function

f is perfect, i.e. mk = bk, then (3.7) implies the following result.

Corollary 3.3. If f is a perfect Morse function, then vk = rk and

bψk = (mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1) (3.8)

for k = 0, 1, . . . ,dimM + ℓ− 1.

Hence, for a perfect Morse function, the weak cone-Morse inequality becomes an equal-

ity. And this is as expected since a perfect Morse function implies for the Morse complex

that dimHk
C(f)(M) = dimCk(M,f), and therefore, [c(ψ)]|HC(f)

and c(ψ)|Ck(M,f) are the

same map. Clearly, equation (3.7) constrains the deviations of the vk’s from the rk’s by

the deviations of the mk’s from the bk’s.

We now proceed to prove the strong cone Morse inequalities.

Theorem 3.4 (Strong Cone Morse Inequalities). On a closed manifold M with ψ ∈
Hℓ
dR(M), let bψk = dimHk(Cone(ψ)), mk be the number of index k critical points of a Morse

function onM , and vk = rank c(ψ)|Ck(M,f). Then, we have for j = 0, 1, . . . , (dimM+ℓ−1),

j∑
k=0

(−1)j−kbψk ≤
j∑

k=0

(−1)j−k(mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1). (3.9)

Proof. The j = 0 case is just the weak inequality of (3.5). So we can assume j ≥ 1. We
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note first that (3.4) implies

0 → imhk−ℓ+1
ker −→ Hk(Cone(c(ψ))) −→ imhkCone → 0 (3.10)

0 → imhkCone −→ Hk(coker c(ψ)) −→ imhkcoker → 0 (3.11)

0 → imhk−1
coker −→ Hk−ℓ+1(ker c(ψ)) −→ imhk−ℓ+1

ker → 0 (3.12)

By Theorem 1.2, bψk = dimHk(Cone(c(ψ))). Thus, we can use (3.10) to write

j∑
k=0

(−1)j−kbψk =

j∑
k=0

(−1)j−k
[
dim(imhkCone) + dim(imhk−ℓ+1

ker )
]

= dim(imhjCone)−
j∑

k=0

(−1)j−k
[
dim(imhk−1

Cone)− dim(imhk−ℓ+1
ker )

]

= dim(imhjCone)−
j∑

k=0

(−1)j−k
[
dimHk−1(coker c(ψ))− dimHk−ℓ+1(ker c(ψ))

]

≤
j∑

k=0

(−1)j−k
[
dimHk(coker c(ψ)) + dimHk−ℓ+1(ker c(ψ))

]
(3.13)

where in the third line, we used (3.11)-(3.12), and in the fourth line (3.11) again. Now,

becauseM is assumed to be a closed manifold, both the ker c(ψ) and the coker c(ψ) complex

are finitely generated. In general, for any finitely-generated cochain complex 0 −→ C0 ∂−→
C1 ∂−→ C2 ∂−→ . . . , the dimensions of the associated cohomologies and that of the cochains

satisfy the following inequality:

j∑
k=0

(−1)j−k dimHk(C) ≤
j∑

k=0

(−1)j−k dimCk .

Applying this relation to (3.13) results in

j∑
k=0

(−1)j−kbψk ≤
j∑

k=0

(−1)j−k
[
dim(cokerkc(ψ)) + dim(kerk−ℓ+1c(ψ))

]

=

j∑
k=0

(−1)j−k(mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1)

thus, we obtain the strong cone-Morse inequality for the cone complex.
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In the case where f is a perfect Morse function, Corollary 3.3 immediately implies the

following.

Corollary 3.5. If f is a perfect Morse function, then the strong cone Morse inequalities

become equalities:

j∑
k=0

(−1)j−kbψk =

j∑
k=0

(−1)j−k(mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1) . (3.14)

More generally, when the Morse function is not perfect, Theorem 3.4 implies an analo-

gous strong-version of the inequalities in Lemma 3.2(d).

Corollary 3.6. For j = 0, . . . ,dimM + ℓ− 1,

j∑
k=0

(−1)j−k((vk−ℓ − rk−ℓ)+(vk−ℓ+1 − rk−ℓ+1))

≤
j∑

k=0

(−1)j−k((mk − bk) + (mk−ℓ+1 − bk−ℓ+1)).

Proof. By (3.2) and Theorem 3.4, we have

j∑
k=0

(−1)j−k(bk − rk−ℓ + bk−ℓ+1 − rk−ℓ+1) =

j∑
k=0

(−1)j−kbψk

≤
j∑

k=0

(−1)j−k(mk − vk−ℓ +mk−ℓ+1 − vk−ℓ+1) .

The relation of the Corollary is then obtained by moving the bk’s to the right-hand-side

and the vk’s to the left-hand-side.

In the special case when ψ is a closed two-form, i.e. ℓ = 2, Theorem 3.5 results in an

interesting relation.

Corollary 3.7. For a closed two-form ψ, we have the bounds for k = 0, . . . ,dimM − 1,

0 ≤ vk − rk ≤ mk+1 − bk+1 .
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Proof. When ℓ = 2, equation (3.2) implies for j ≥ 1

j∑
k=0

(−1)j−kbψk =

j∑
k=0

(−1)j−k(bk + rk−2 − bk−1 − rk−1) = bj − rj−1 , (3.15)

and similarly, Theorem 3.4 implies for j ≥ 1

j∑
k=0

(−1)j−kbψk ≤
j∑

k=0

(−1)j−k(mk − vk−2 +mk−1 − vk−1) = mj − vj−1 . (3.16)

Combining (3.15)-(3.16) gives the relation vj−1 − rj−1 ≤ mj − bj .

Corollary 3.7 interestingly shows that when ℓ = 2, the rank of the c(ψ) map on Ck(M,f)

is constrained, not just by mk, the number of critical points of index k, as would be

expected, but also by mk+1, relative to bk+1. Corollary 3.7 also gives a bound for the

difference between mk and bk. The bound becomes especially simple in the case when ψ is

an exact form. For an exact ψ implies rk = 0 and we thus obtain the relation in Corollary

1.4

bk ≤ mk − vk−1 , k = 1, . . . ,dimM . (3.17)

4 Examples of the two-sphere

We will analyze the two-sphere in details. We will give an explicit examples where the cone

cohomology Hk(Cone(ψ)) varies with ψ, and how the cone Morse bounds can vary with

ψ, the metric, and Morse function.

Consider the two-sphere M = S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}, described as the

unit sphere in R3. We will let ψ ∈ Ω2(S2). We note in two dimensions, all two forms are

trivially closed.

We consider first bψk = dimHk(Cone(ψ)). From (3.2), we find

bψk =

1 k = 0, 3

1− r0 k = 1, 2
(4.1)

where r0 = rank[ψ]|H0
dR
. If ψ = ω0 := dϕ ∧ sinϕdθ, the standard symplectic structure of

the round two-sphere, then r0 = 1.
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Figure 1: Two sphere in R3 with six critical points of the Morse function f = x2+2y2+3z2.

In fact, r0 = 1 whenever [ψ] ∈ H2
dR(S

2) is a non-trivial class.

Example 4.1. [Change in bψk = dimHk(Cone(ψ)) as [ψ] varies.] Consider the one-

parameter family

ψs = (z + s)ω0 , s ∈ [−1, 1] . (4.2)

Note that ψs is not symplectic as it vanishes along z = −s. In fact, the cohomology class

[ψs] = s[ω0], and therefore, r0 = 1 for s ̸= 0 and r0 = 0 for s = 0. It follows from (4.1)

that at the special value of s = 0, bψs

k increases by one for k = 1, 2.

We now consider the cone Morse inequalities. In order to do so, we introduce a Morse

function on S2. The generic Morse function is not perfect. An example of a non-perfect

Morse function which we will use for the remainder of this section is

f = x2 + 2y2 + 3z2 (4.3)

restricted to S2. This Morse function has six critical points which can be easily seen by

expressing f in terms of only two variables applying the unit circle condition (see Figure

1):

f = 1 + y2 + 2z2 (y2 + z2 ≤ 1) index 0 critical points: p±0 = (±1, 0, 0) ;

f = 2− x2 + z2 (x2 + z2 ≤ 1) index 1 critical points: p±1 = (0,±1, 0) ;

f = 3− 2x2 − y2 (x2 + y2 ≤ 1) index 2 critical points: p±2 = (0, 0,±1) .
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Clearly, mk ̸= bk(S
2).

As for the Riemannian metric, let g0 = dϕ2 + sin2 ϕ dθ2, the standard round met-

ric induced from the standard Euclidean metric on R3. The pair (f, g0) determines the

moduli space of gradient flow lines which goes into the calculation of c(ψ) : Ck(S2, f) →
Ck+2(S2, f). Only for k = 0 is the c(ψ) map non-trivial and this corresponds to integrat-

ing ψ over the moduli space M(p±2 , p
±
0 ) which are the four quarter spheres determined by

(x ≤ 0 or x ≥ 0) and (z ≤ 0 or z ≥ 0).

The weak cone-Morse inequality in (3.5) gives for (S2, f, g0)

bψk ≤

2 k = 0, 3

4− v0 k = 1, 2
(4.4)

where v0 = rank c(ψ)|C0(S2,f).

Example 4.2. [Change in the cone-Morse bound for bψk as [ψ] varies.] We will

take ψ to be again the one-parameter family ψs introduced in (4.2) of the previous exam-

ple. To obtain the weak cone-Morse bound for bψs

k , we calculate v0 = rank c(ψs)|C0(S2,f).

The operator c(ψs) acting on the two index zero critical points (p+0 , p
−
0 ) can be found by

integrating ψs over the quarter spheres, and has the following matrix form:(
p+2
p−2

)
= c(ψs)

(
p+0
p−0

)
=

(
1/2 + s π −1/2 + s π

−1/2 + s π 1/2 + s π

)(
p+0
p−0

)
.

We see that the rank v0 = 2 for s ̸= 0, and v0 = 1 for s = 0. Hence, by (4.4), the weak

cone-Morse bound for bψs

k for k = 1, 2 increases by one at s = 0. This coincides exactly

with the increase in bψs

k at s = 0 as calculated in Example 4.1.

Example 4.3. [Change in the cone-Morse bound of bψk as ψ varies within a fixed

de Rham class.] The weak cone-Morse bound can also vary within the same de Rham

cohomology class [ψ]. Consider the following one-parameter family of ψ:

ψt = (1 + tx+ ty)ω0 , −1

2
< t <

1

2
. (4.5)

Note that [ψt] = [ω0] ∈ H2
dR(S

2) for all t ∈ (−.5, .5), and so bψt

k does not vary. However,
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Figure 2: Two sphere with modified metric deforming the flow line from p+1 to p+0 .

for the weak cone-Morse bound, the c(ψt) map takes the form(
p+2
p−2

)
= c(ψt)

(
p+0
p−0

)
= 4π

(
1 + 2t

3 1

1 1− 2t
3

)(
p+0
p−0

)
.

and has rank v0 = 2 for t ̸= 0, and v0 = 1 for t = 0. This gives the bound for k = 1, 2

bψt

k ≤

3 t = 0

4 t ̸= 0

even though bψt

k remains constant.

Remark 4.4. Notice that the one-parameter family of closed two-forms ψt in (4.5) are

all non-degenerate, and hence, symplectic. Being in the same cohomology class, Moser’s

theorem implies the existence of a one-parameter family of symplectomorphism φt : S
2 →

S2 such that φ∗
tωt = ω0. We can use this symplectomorphism to pull back (S2, ωt, f, g0)

to (S2, ω0, φ
∗
t f, φ

∗
t g0). As symplectomorphisms leave unchanged mk’s and vk’s, we can

reinterpret the above example as varying the Morse-Smale pair (φ∗
t f, φ

∗
t g0) while keeping

fixed the closed-form ψ = ω0 on S2. It thus also represents an example where the cone-

Morse bound bψk changes when the Morse-Smale pair (f, g) is varied.

Example 4.5. [Change in the cone-Morse bound of bψk as the Riemannian metric

g varies.] We demonstrate here that the bound for bψk can jump just by varying the metric.

Let ψ = ω0 the standard area form on S2. For the standard round metric, g0, the moduli
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space M(p±2 , p
±
0 ) of flow lines are just the four quarters of the sphere. Suppose we modify

this round metric within a small neighborhood of a point that is on the flow line between

p+1 and p+0 (the small circle on S2 in Figure 2). In doing so, we can change the gradient

flow lines, so the new boundary is the red line above. As such that we remove an area of

ϵ that is between the red flow line and the original black line. Thus we subtract ϵ from

M(p+2 , p
+
0 ) and add it to M(p−2 , p

+
0 )(

p+2
p−2

)
= c(ω0)

(
p+0
p−0

)
= π

(
1− ϵ 1

1 + ϵ 1

)(
p+0
p−0

)

In this case, the rank of c(ω0)|C0(S2,f) jumps to v0 = 2 when ϵ ̸= 0. By (4.4), this

correspondingly decreases the bound on bω0
k for k = 1, 2, by one, and hence, gives an

explicit example where the bound varies with the metric.

Remark 4.6. The cone cohomology dimension bψk depends only on the cohomology class

[ψ]. We have seen above how the cone Morse inequalities, can explicitly depend on the

Morse function f , the metric g and even the representative form ψ in [ψ]. We can improve

the bound by varying g and ψ within the class [ψ] to maximize vk = rank c(ψ)|Ck(M,f).

Changing the Morse function f would change mk. In the above examples, the variations

considered improved the bounds but did not reach the actual value of bψk as given in (4.1).

If we have chosen to work with a perfect Morse function on S2, then by Corollary 3.3, we

would have obtained the expected bψk exactly.

Finally, we show using the same S2 example with the non-perfect Morse function f =

x2+2y2+3z2 how we can bound the Betti number by considering different exact differential

forms as in (3.17).

Example 4.7. [Change in the Morse bound for an exact 1-form.] Let ψ = dα be

an exact two-form on the sphere. We evaluate

c(ψ)p =
∑(∫

M(p,q)
dα

)
q =

∑(∫
∂M(p,q)

α

)
q .

We will use the notation where a gradient flow curve from p+i to p−j is labelled by γ+−
ij
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(and γ−+
ij represents the flow curve from p−i to p+j ). Explicitly, we have

∂M(p+2 , p
+
0 ) = γ+−

21 + γ−+
10 − γ++

21 − γ++
10 ,

∂M(p−2 , p
+
0 ) = γ−+

21 + γ++
10 − γ−−

21 − γ−+
10 ,

∂M(p+2 , p
−
0 ) = γ++

21 + γ+−
10 − γ+−

21 − γ−−
10 ,

∂M(p−2 , p
−
0 ) = γ−−

21 + γ−−
10 − γ−+

21 − γ+−
10 .

Let us further denote by a+−
21 =

∫
γ+−
21

α and similarly for other line integral over α. The

c(dα) map acting on index zero points then takes the following form.(
p+2
p−2

)
=

(
a+−
21 + a−+

10 − a++
21 − a++

10 a++
21 + a+−

10 − a+−
21 − a−−

10

a−+
21 + a++

10 − a−−
21 − a−+

10 a−−
21 + a−−

10 − a−+
21 − a+−

10

)(
p+0
p−0

)
.

This c(dα) matrix has the following determinant:

(a++
21 − a−+

21 + a−−
21 − a+−

21 )(a++
10 − a−+

10 + a−−
10 − a+−

10 ) .

Note that the first factor is the line integral of α over a meridian and the second factor

the line integral of α over the equator. Thus, if we work with an one-form α such that

both factors are non-zero (such one-forms are abundant, for instance, take α to be a

positive one-form localized along γ++
21 and γ++

10 ), then v0 = 2. From (3.17), we thus find

b1 ≤ m1 − v0 = 0, showing that the first Betti number of the two-sphere must be zero.

A Morse theory conventions and Leibniz rule

We describe here the conventions used to define the differential map ∂ in the Morse cochain

complex and also the orientations of the submanifolds which are integrated over in the c(ψ)

map of (1.5). The main aim of this appendix is to prove the following:

Lemma A.1 (Leibniz Rule on forms in Morse cohomology). Let ψ ∈ Ωℓ(M) then

∂ c(ψ) + (−1)ℓ+1c(ψ) ∂ = −c(dψ) . (A.1)
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This formula appeared in Austin-Braam [AB95] and Viterbo [Vit95] though with am-

biguous signs. To set our conventions and prove the Lemma, we start with a brief back-

ground.

Let ϕt be the flow of the vector field −∇f . For a critical point r ∈ Crit(f), the stable

Sr and unstable Ur submanifolds are defined to be

Sr = {x ∈M : lim
t→∞

ϕt(x) = r} , Ur = {x ∈M : lim
t→−∞

ϕt(x) = r} ,

and the moduli spaces of gradient lines between two critical points, q, r ∈ Crit(f),

M(r, q) = Sq ∩ Ur , M̃(r, q) =
Sq ∩ Ur

{x ∼ y : ϕt(x) = y for some t ∈ R}
.

We define the orientation of the moduli spaces similar to that in Austin-Braam [AB95,

Section 2.2]. For an oriented manifoldM , we first specify an orientation for either the stable

submanifolds, or equivalently, the unstable ones. The orientation of one type determines

the other by the relation

[Sr][Ur] = [M ] . (A.2)

The orientation of the moduli space is then just the orientation of the transversal intersec-

tion which can be expressed as

[M(r, q)] = [Ur][M ]−1[Sq] = [Ur][Uq]
−1 . (A.3)

We will also take as convention

[M(r, q)] = [M̃(r, q)][∇f ] . (A.4)

In the special case when ind(r) = ind(q) + 1, M(r, q) is an oriented one-dimensional

submanifold of gradient flow lines and M̃(r, q) is an oriented collection of points. Also,

recall that the Morse differential is defined by ∂q =
∑
r
n(r, q) r where

n(r, q) = #M̃(r, q) . (A.5)

It follows from (A.4) that n(r, q) is equal to the number of gradient lines flowing in the
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direction of ∇f minus the number flowing in the direction of −∇f .
As an example of why (A.1) has the correct signs, we first prove the zero-form case

with ψ = h, a function.

Corollary A.2. If h ∈ C∞(M), then −c(dh) = ∂c(h)− c(h)∂.

Proof. Evaluating c(dh) by integrating over the gradient curves with orientation, we have

c(dh)qk =
∑
rk+1

(∫
M(rk+1,qk)

dh

)
rk+1

=
∑
rk+1

(n(rk+1, qk)(h(rk+1)− h(qk))) rk+1

=
∑
rk+1

h(rr+1)n(rk+1, qk)rk+1 −
∑
rk+1

n(rk+1, qk)h(qk)rk+1

= c(h)∂qk − ∂c(h)qk = (c(h)∂ − ∂c(h))qk

where c(h)qk = (
∫
M(qk,qk)

h)qk = h(qk)qk. Thus, having taken into account our orientation

convention, we find that −c(dh) = ∂c(h)− c(h)∂ .

To prove (A.1) in general, we re-express the right-hand side by Stokes’ theorem

c(dψ)qk =
∑
rk+ℓ+1

(∫
M(rk+ℓ+1,qk)

dψ

)
rk+ℓ+1 =

∑
rk+ℓ+1

(∫
∂M(rk+ℓ+1,qk)

ψ

)
rk+ℓ+1 .

The relevant components of ∂M(rk+ℓ+1, qk) for integrating ψ consists of⋃
pk+ℓ

M(pk+ℓ, qk)× M̃(rk+ℓ+1, pk+ℓ)

 ⋃ ⋃
pk+1

M(rk+ℓ+1, pk+1)× M̃(pk+1, qk)

 .
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This implies up to signs

c(dψ)qk

=
∑
rk+ℓ+1

±∑
pk+ℓ

∫
M(pk+ℓ,qk)×M̃(rk+ℓ+1,pk+ℓ)

ψ ±
∑
pk+1

∫
M(rk+ℓ+1,pk+1)×M̃(pk+1,qk)

ψ

 rk+ℓ+1

=
∑
rk+ℓ+1

±∑
pk+ℓ

(∫
M(pk+ℓ,qk)

ψ

)
n(rk+ℓ+1, pk+ℓ)±

∑
pk+1

n(pk+1, qk)

(∫
M(rk+ℓ+1,pk+1)

ψ

)rk+ℓ+1

= ±∂c(ψ)qk ± c(ψ)∂qk (A.6)

To fix the signs, we will proceed in two steps. First, we make a choice of the orientation

of the stable and unstable manifolds at the critical points {qk, pk+1, pk+l, rk+l+1}. By

(A.3), this determines the orientation of the various moduli spaces that arise in the Stokes’

theorem calculation above. Then in step two, we compare the orientation of the relevant

boundary components, M(pk+ℓ, qk)×M̃(rk+l+1, pk+l) and M(rk+ℓ+1, pk+ℓ)×M̃(pk+1, qk),

with the orientation needed to satisfy Stokes’ theorem. The relative difference in the

orientations will determine the signs in (A.6).

Step 1: Computing the orientation of the moduli spaces.

By (A.3), the orientation of a moduli space M(r, q) can be determined by the orienta-

tion of the unstable submanifolds Ur and Uq. Hence, we will write below our choice for the

orientation for the relevant unstable submanifolds explicitly. (The orientation of the stable

submanifolds of a critical point are then fixed by (A.2).) Similar to [AB95, Section 2.2],

we will express the orientations in terms of orthonormal frame vectors grouped together

by Clifford multiplication.

Let e1, . . . , ek be an orthonormal set of frame vectors that are shared by both Uqk
and Urk+ℓ+1

. Let ek+1, . . . , ek+ℓ+1 be the additional frame vectors in Urk+ℓ+1
defined such

that they point in the direction away from qk towards rk+l+1, i.e. in the direction of ∇f .
Then, for pk+1, there is a vector eipk+1

that points along the gradient curve M(pk+1, qk)

from qk to pk+1, and for pk+ℓ, there is a vector eipk+ℓ
that points along the gradient curve

M(rk+l+1, pk+l) from pk+ℓ to rk+ℓ+1. Note both eipk+1
and eipk+ℓ

are defined to point in

the direction of ∇f . See Figure 3 below.
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Figure 3: M(rk+ℓ+1, qk) with orientations.

Our choice for the orientation of the relevant unstable submanifolds are

[Uqk ] = ek . . . e1 , [Upk+ℓ
] = ek+ℓ+1 . . . êipk+ℓ

. . . ek . . . e1 ,

[Upk+1
] = eipk+1

ek . . . e1 , [Urk+ℓ+1
] = ek+ℓ+1 . . . ek . . . e1 .

Then by (A.3), [M(r, q)] = [Ur][Uq]
−1, we find the orientations of the moduli spaces:

[M(rk+ℓ+1, qk)] = (ek+ℓ+1 . . . ek . . . e1)(e1 . . . ek) = ek+ℓ+1 . . . ek+1 , (A.7)

[M(pk+ℓ, qk)] = (ek+ℓ+1 . . . êipk+ℓ
. . . ek . . . e1)(e1 . . . ek) = ek+ℓ+1 . . . êipk+ℓ

. . . ek+1 ,

[M(rk+ℓ+1, pk+1)] = (ek+ℓ+1 . . . ek . . . e1)(e1 . . . ekeipk+1
)

= (−1)ipk+1
−k−1 ek+ℓ+1 . . . êipk+1

. . . ek+1 .

And by (A.4), we also have

[M̃(rk+ℓ+1, pk+ℓ)] = [M(rk+ℓ+1, pk+ℓ)][∇f ]−1

= (ek+ℓ+1 . . . ek . . . e1)(e1 . . . ek . . . êipk+ℓ
. . . ek+ℓ+1)(eipk+ℓ

)

= (−1)k+ℓ+1−ipk+ℓ ,

[M̃(pk+1, qk)] = [M(pk+1, qk)][∇f ]−1

= (eipk+1
ek . . . e1)(e1 . . . ek)(eipk+1

) = 1 .
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Hence, we find

[M(pk+ℓ, qk)× M̃(rk+ℓ+1, pk+ℓ)] = (−1)k+ℓ+1−ipk+ℓ ek+ℓ+1 . . . êipk+ℓ
. . . ek+1 , (A.8)

[M(rk+ℓ+1, pk+1)× M̃(pk+1, qk)] = (−1)ipk+1
−k−1 ek+ℓ+1 . . . êipk+1

. . . ek+1 . (A.9)

Step 2: Orientation of the boundary components, M(pk+ℓ, qk) × M̃(rk+ℓ+1, pk+ℓ) and

M(rk+ℓ+1, pk+1)× M̃(pk+1, qk), as specified by Stokes’ theorem.

For a manifold N with boundary ∂N , Stokes’ theorem holds only if the orientation of

the boundary ∂N is chosen such that

[vout][∂N ] = [N ] (A.10)

where vout is the outward pointing normal on the boundary.

For the boundary component M(pk+ℓ, qk) × M̃(rk+ℓ+1, pk+ℓ), the outward pointing

normal at for instance pk+ℓ can be expressed as (see Figure 3)

vout,M(pk+ℓ,qk) = −eipk+ℓ
+

∑
k+j ̸=ipk+ℓ

ajek+j .

Therefore, the specified orientation from Stokes’ theorem (denoted with a subscript ‘S’) is

[M(pk+ℓ, qk)× M̃(rk+ℓ+1, pk+ℓ)]S = [vout,M(pk+ℓ,qk)]
−1[M(rk+ℓ+1, qk)]

= (−eipk+ℓ
)(ek+ℓ+1 . . . ek+1)

= (−1)k+ℓ+ipk+ℓ ek+ℓ+1 . . . êipk+ℓ
. . . ek+1

= −[M(pk+ℓ, qk)× M̃(rk+ℓ+1, pk+ℓ)] (A.11)

having used (A.7) in the first line and (A.8) in the last line.

Similarly, for the boundary component M(rk+ℓ+1, pk+1) × M̃(pk+1, qk), the outward

pointing normal at for instance pk+1 can be expressed as (see Figure 3)

vout,M(rk+ℓ+1,pk+1) = eipk+1
+

∑
k+j ̸=ipk+1

ajek+j .
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This gives for the specified orientation from Stokes’ theorem

[M(rk+ℓ+1, pk+1)× M̃(pk+1, qk)]S = [vout,M(rk+ℓ+1,pk+1)]
−1[M(rk+ℓ+1, qk)]

= (eipk+1
)(ek+ℓ+1 . . . ek+1)

= (−1)k+ℓ+1−ipk+1 ek+ℓ+1 . . . êipk+1
. . . ek+1

= (−1)ℓ[M(rk+ℓ+1, pk+1)× M̃(pk+1, qk)] (A.12)

having used (A.7) in the first line and (A.9) in the last line.

Finally, with (A.11)-(A.12) and matching up with the corresponding terms in (A.6),

we have

c(dψ)qk =
∑
rk+ℓ+1

[
−
∑
pk+ℓ

(∫
M(pk+ℓ,qk)

ψ

)
n(rk+ℓ+1, pk+ℓ)

+
∑
pk+1

(−1)ℓn(pk+1, qk)

(∫
M(rk+ℓ+1,pk+1)

ψ

)]
rk+ℓ+1

= −∂c(ψ)qk + (−1)ℓc(ψ)∂qk

or equivalently, −c(dψ) = ∂c(ψ) + (−1)ℓ+1c(ψ)∂.

B Cochain complexes of a chain map and their relations

We here review some relations between cochain complexes that arise from a chain map.

For a reference, see [Wei94].

Let φ : (B, dB) → (A, dA) be a degree ℓ chain map between two cochain complexes,

. . . An−1 An An+1 . . .

. . . Bn−ℓ−1 Bn−ℓ Bn−ℓ+1 . . .

dA dA dA dA

dB dB

φ

dB

φ

dB

φ (B.1)

that is, the map φ : Bn → An+ℓ satisfy the chain map condition

φdB = dA φ . (B.2)
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Associated to such a map are the following cochain complexes.

(1) The kernel complex (kerφ, dB). This is a subcomplex of (B, dB) where kernφ =

kerφ ∩ Bn. To see that dB : kernφ→ kern+1φ , consider an element bn ∈ kernφ, i.e.

φ bn = 0. By (B.2), we have φ(dBbn) = dA(φ bn) = 0; hence, dBbn ∈ kern+1φ .

(2) The image complex (imφ, dA). This is a subcomplex of (A, dA) where imnφ =

imφ ∩ An. Specifically, if an ∈ imnφ, then there exists an bn−ℓ ∈ Bn−ℓ such that

an = φ bn−ℓ. Again, it follows directly from (B.2) that dA : imnφ→ imn+1φ.

(3) The cokernel complex (cokerφ, dπA). This is also a subcomplex of (A, dA) where

cokernφ = An/ imφ and dπA = π dA is the composition of dA with the quotient

map π : An → cokernφ. To denote elements of the cokernel complex, we shall use a

bracket, i.e. [an] := {an+φ bn−ℓ | bn−ℓ ∈ Bn−ℓ} ∈ cokernφ. Note that dπA[an] = [dAan],

and therefore, dπA d
π
A = 0.

(4) The (mapping) cone complex (Cone(φ), dC), the main focus of this paper, involves

both (B, dB) and (A, dA). Here,

Conen(φ) = An ⊕Bn−ℓ+1 , dC =

(
dA φ

0 −dB

)
.

with dC : Conen(φ) → Conen+1(φ). Note that the chain map relation (B.2) ensures

that dC dC = 0 .

Each of the above cochain complexes results in a cohomology, denoted by Hn(kerφ),

Hn(imφ), Hn(cokerφ), and Hn(Cone(φ)), respectively. We are interested in the rela-

tions amongst these cohomologies and also their relations with Hn(A) and Hn(B). A first

basic relation used throughout the paper follows from the following short exact sequence

of cochain complexes

0 (An, dA) (Conen(φ), dC) (Bn−ℓ+1, dB) 0
ιA πB

where the chain map ιA is the inclusion into the first component of Cone(φ) and πB is

the projection of the second component. The short exact sequence gives the long exact
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sequence

· · · Hn−ℓ(B) Hn(A) Hn(Cone(φ)) Hn−ℓ+1(B) Hn+1(A) · · ·φ ιA πB φ

(B.3)

which implies the following:

Lemma B.1. Given a degree ℓ chain map φ : (B, dB) → (A, dA) between two cochain

complexes, the resulting cone cohomology has the following relation:

Hn(Cone(φ)) ∼= coker(φ : Hn−ℓ(B) → Hn(A) ) ⊕ ker(φ : Hn−ℓ+1(B) → Hn+1(A) ) .

To relate the other cohomologies, it is useful to introduce another cone complex defined

by the inclusion map ι : imnφ → An, which is a degree ℓ = 0 map. We shall denote this

cone complex with a tilde:

C̃one
n
(ι) = An ⊕ imn+1φ , d

C̃
=

(
dA ι

0 −dA

)
.

Of note, the cohomology of this complex, Hn(C̃one(ι)) is isomorphic to Hn(cokerφ).

Lemma B.2. The map π1 : C̃one
n
(ι) → cokernφ given by π1

(
a

ã

)
= π a, where π : An →

cokernφ, induces an isomorphism on cohomology: Hn(C̃one(ι)) ∼= Hn(cokerφ) .

Proof. That the π1 map is a chain map follows straightforwardly from the definition. To

prove the isomorphism, we will show that π1 : H
n(C̃one(ι)) → Hn(cokerφ) is bijective.

Let [a] ∈ cokernφ. To show surjectivity, assume [a] ∈ Hn(cokerφ), that is, [a] is closed

under dπA = π dA, or equivalently, that the representative a ∈ An satisfies

dAa+ φ b = 0 (B.4)

for some b ∈ Bn−ℓ+1. Now let ã = φ b. Then since dAdA = 0 , (B.4) implies dAã = 0.

Therefore, the pair

(
a

ã

)
is d

C̃
-closed, i.e. it is an element of Hn(C̃one(ι)), and moreover,

π1 :

(
a

ã

)
→ [a] as desired.

To show that π1 is also injective, let now [a] = πdA[a
′] representing the trivial class in
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Hn(cokerφ). This implies that a = dAa
′ + φ b′ for some b′ ∈ Bn−ℓ. But this also means,

π1

{
d
C̃

(
a′

φ b′

)}
= π1

(
dAa

′ + φ b′

−dA φ b′

)
= π(dAa

′ + φ b′) = [a] .

Hence, π1 maps trivial class to trivial class.

Now applying Lemma B.1 to Hn(C̃one(φ)) and using Lemma B.2, we find the following:

Lemma B.3. For the cohomology of the cokernel complex, we have

Hn(cokerφ) ∼= coker( ι : Hn(imφ) → Hn(A) ) ⊕ ker( ι : Hn+1(imφ) → Hn+1(A) ) ,

where ι : imnφ→ An is the inclusion map.

Finally, we give a relation that links H(Cone(φ)) with H(kerφ) and H(cokerφ). At the

cochain level, we can write down the following short exact sequence of cochain complexes:

0 (kern−ℓ+1φ, dB) (Conen(φ), dC) (C̃one
n
(ι), d

C̃
) 0

ι2 φ2
(B.5)

where the maps ι2 and φ2 are defined by

ι2 : ker
n−ℓ+1φ −→ Conen(φ). φ2 : Cone

n(φ) −→ C̃one
n
(ι)

b 7−→

(
0

b

) (
a

b

)
7−→

(
a

φ b

)

The short exact sequence (B.5) implies the following long exact sequence of cohomology:

. . .
δ−→ Hn−ℓ+1(kerφ)

ι2−→ Hn(Cone(φ))
φ2−→ Hn(C̃one(ι))

δ−→ Hn−ℓ+2(kerφ)
ι2−→ . . .

where the connecting homomorphism δ can be obtained by standard diagram chasing. Now

using Lemma B.2 to replace Hn(C̃one(ι)) by Hn(cokerφ), we have derived the below long

exact sequence.

Lemma B.4. Let φ : (B, dB) → (A, dA) be a degree ℓ chain map between cochain com-
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plexes. Then there exists a connecting homomorphism δ′ such that

. . .
δ′−→ Hn−ℓ+1(kerφ)

ι2−→ Hn(Cone(φ))
π1 ◦φ2−−−−→ Hn(cokerφ)

δ′−→ Hn−ℓ+2(kerφ)
ι2−→ . . .

(B.6)

is a long exact sequence.
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