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Abstract

Photon loss rates set an effective upper limit on the size of computations that can be run on current
linear optical quantum devices. We present a family of techniques to mitigate the effects of photon loss
on both output probabilities and expectation values derived from noisy linear optical circuits composed
of an input of n photons, an m–mode interferometer, and m single photon detectors. Central to
these techniques is the construction of objects called recycled probabilities. Recycled probabilities are
constructed from output statistics affected by loss, and are designed to amplify the signal of the ideal
(lossless) probabilities. Classical postprocessing techniques then take recycled probabilities as input and
output a set of loss-mitigated probabilities, or expectation values. We provide analytical and numerical
evidence that these methods can be applied, up to large sample sizes, to produce more accurate outputs
than those obtained from postselection - which is currently the standard method of coping with photon
loss when sampling from discrete variable linear optical quantum circuits. In contrast, we provide strong
evidence that the popular zero noise extrapolation technique cannot improve on on the performance of
postselection for any photon loss rate.

1 Introduction

Discrete variable linear optical quantum computing (DVLOQC) is a framework that uses a discrete number
of photons as well as linear optical hardware to store and process quantum information. Many models of
universal and fault-tolerant quantum computation tailored to this framework have been developed over
the years beginning with the work of [1], and followed by various other models and variants (e.g [2,
3, 4, 5]). Furthermore, promising proposals for the near-term demonstration of quantum-over-classical
advantage such as boson sampling [6] can naturally be implemented in this framework. A quantum device
capable of performing DVLOQC usually consists of three components: single photon sources [7], multimode
interferometers [8], and single photon detectors [9]. We will refer to the collection of these as a linear optical
circuit. One major impediment to scaling up such a device is photon loss [10]. Postselection, where all lossy
output statistics with one or more lost photons are discarded and only those where all photons are detected
are kept, may be used to obtain the ideal output distribution of a linear optical circuit subject to photon loss
[11]. This can be viewed as a form of quantum error mitigation, where the ideal distribution is accessible,
but with a sampling cost scaling exponentially with the depth of the circuit. This scaling comes from the fact
that the probability of at least one photon being lost approaches one exponentially quickly with increasing
circuit depth [12], which results in most outputs being discarded.

In this work we address the question of whether the effects of photon loss in the output distributions of
linear optical quantum circuits can be mitigated by classical postprocessing of lossy output statistics. We
provide a positive answer to this question by presenting various new techniques to mitigate photon loss in
linear optical circuits, and performing a rigorous analysis of their performance. We refer to these techniques
collectively as recycling mitigation, as they all involve the use of lossy output statistics that otherwise would be
discarded. At the heart of recycling mitigation is the construction of the so-called recycled probabilities. The
recycled probabilities can be thought of as precursors of the mitigated outputs. Mitigated probabilities are
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approximations of the ideal probabilities, and can be obtained from the recycled probabilities by appropriate
classical postprocessing. We introduce several techniques by which this classical postprocessing step can be
performed. This in turn gives rise to different photon loss mitigation techniques. Fig. 1 shows the main
steps underlying our mitigation techniques.

We provide strong analytical and numerical evidence that in the high loss regime where the probability,
denoted as η, that a photon is lost in any given mode satisfies η > 0.5, recycling mitigation outperforms
postselection. The intuition being that in this regime, output events where photons are lost are much more
likely to occur than events where no photon is lost. Since recycling mitigation uses lossy output statistics, it is
natural to expect that the resulting mitigated probabilities are more converged than probabilities computed
only from the postselected samples. Furthermore, we provide analytic and numerical evidence showing that
mitigation techniques based on artificially increasing noise and Richardson extrapolation, called zero noise
extrapolation (ZNE) [13, 14], such as those applied to mitigate photon loss in the continuous variable regime
[15], offer no advantage over postselection for the problem of mitigating photon loss in the DVLOQC setting.

Recycling mitigation can be applied to linear optical circuits implementing arbitrary unitaries. In
particular, when these unitaries are randomly chosen according to the Haar measure, this gives rise to
the non-universal model of computation known as boson sampling [6]. There are a number of classical
algorithms for boson sampling that become efficient when photon loss is sufficiently high [16, 12]. In this
spirit, we show that recycled probabilities constructed from lossy output statistics where k out of n photons
are lost, and n− k is a constant independent of n, can be efficiently computed classically. These correspond
to lossy output statistics where the majority of photons are lost. Conversely, and using results from [17],
we provide evidence that recycled probabilities constructed from output statistics where k is a constant
independent of n are hard to compute classically in worst-case. This corresponds to the case of output
statistics where few photons are lost. These results indicate that recycling mitigation provides interesting
performances when looking at output statistics with a small number of lost photons, although there is a set
of intermediate lossy output statistics, where k does not follow either of the above conditions, that we do
not explore, and that might also give interesting performances.

Crucially, our developed methods are applicable to current and near-term photonic quantum hardware,
and, as will be seen later, provide better performances in the regime of high loss (η > 0.5). This is in contrast
with fault-tolerant photonic quantum computing [3, 4] which typically requires large numbers of photons, as
well as very low loss levels (η ≪ 0.5), both of which are beyond the reach of currently available hardware.
Furthermore, as discussed in the previous paragraph, the output statistics used in constructing the mitigated
probabilities should be those where the number of lost photons k is low. Thus, these conditions define the
realm of applicability of recycling mitigation that provides the best performance: Recycling mitigation should
be applied in the η > 0.5 regime, and the output statistics used in constructing the mitigated probabilities
should be those where k is low.

Recycling mitigation can be used in a variety of applications, namely any DVLOQC algorithm where the
desired output is an expectation value of an observable, a set output of probabilities, or a full probability
distribution. Applications include boson sampling [6], photonic variational quantum eigensolvers [18, 19],
photonic differential equation solving [20], photonic quantum machine learning [21], and graph problems
with DVLOQC [22]. In a related article [23], we develop a quantum circuit born machine (QCBM) [24]
tailored to DVLOQC. We also demonstrate significant photon loss mitigation, using recycling mitigation,
for the training of the QCBM in various scenarios.

This paper is structured as follows. Section 2 gives a high-level overview of our main contributions.
Section 3 compares our techniques with those existing in the literature. Section 4 introduces some notation
and basic concepts. Sections 5-8 detail the construction of the recycled distributions, the classical postprocessing
techniques needed to obtain the mitigated distribution, as well as derive analytical conditions for recycling
mitigation techniques to outperform postselection. Sections 9 and 10 contain numerical simulations that aid
in understanding how to use our developed mitigation techniques in practice, as well as examples of our
techniques in action. Section 11 provides strong evidence that techniques based on ZNE do not in general
outperform postselection. Section 12 discusses how our techniques can be used to mitigate both expectation
values of observables as well as full distributions. Section 13 discusses ways to improve our performance
guarantees, and contains a technical result about sums of permanents of i.i.d. Gaussian matrices [6] that
might find use beyond this work. Finally, section 14 presents a set of interesting open questions.
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2 Overview of main results

In this section, we give a high-level overview of our key results, which are expanded upon in later parts of
the paper.

Our first contribution is the construction of the recycled probabilities, which are the input of all our
developed loss mitigation techniques. Consider an ideal n–photon probability pid(s), corresponding to a
detection pattern s of n input photons passed through an m-mode linear optical interferometer, and detected
in m output modes. Its corresponding recycled probability pkR(s) is an n–photon probability computed from
output statistics affected by loss. Namely, pkR(s) is constructed as a sum of of n − k–photon probabilities
where k out of the initial n photons are lost. The precise construction and choice of the n − k–photon
probabilities for each s are detailed in section 5. Using the assumption of uniform loss (η is the same in all
modes) to express the n − k–photon probabilities as a convex sum of n photon probabilities, we show that
for all s the recycled probabilities may be written in the form

pkR(s) =
1(

m−n+k
k

)pid(s) +

(
1− 1(

m−n+k
k

))Is,k,
where Is,k is a convex combination of unwanted n–photon probabilities.

In section 6, we show that recycled probabilities constructed from n−k–photon probabilities where n−k
is a constant independent of n are efficiently computable classically. This motivates using n − k output
statistics where the value of k is low relative to n to construct recycled probabilities for use in recycling
mitigation. One intuition for this is that higher-order photon statistics contain more information on the
ideal n–photon distribution than the lower-order statistics. And there are results indicating that the ideal
n–photon output distribution is hard to classically simulate, and further that simulating the n − k–photon
output distribution is hard when k is a constant [25, 17, 6].

The key idea behind all the techniques we develop for recycling mitigation is simple: try to extract pid(s)
as accurately as possible from pkR(s) via classical postprocessing. Since pkR(s) can be obtained from the n−k
output photon statistics, if we had access to the value of Is,k we could directly compute pid(s) using the
previous equation. Unfortunately it is not straightforward to compute the value of Is,k, so instead we resort
to deriving statistical inequalities bounding the variation of Is,k around its expected value. We derive these
inequalities in the no-collision regime [6]. The details of this are found in section 7. Indeed, our second set
of contributions begins with showing that the expected value Es(Is,k) of Is,k over all s is

Es(Is,k) =
1(
m
n

) .
This holds for arbitrary m-mode linear optical interferometers. Then, we use statistical inequalities [26, 27]
to show that, for arbitrary m-mode interferometers, and all s,

ϵbias,s := |Is,k −Es(Is,k)| ≤ 1

poly(m)
.

The above equation holds, for a given s, with probability 1 − O
(

poly(m)

(m
n)

)
. In addition to this probabilistic

bound, for a broad family of m-mode interferometers having a specific structure, and using a result of [28],
we manage to deterministically bound ϵbias,s as

ϵbias,s ≤ O(e−0.000002n).

Bounding the bias error term ϵbias,s is essential for the later performance analyses of the techniques.
Our third set of contributions regards the development of classical postprocessing techniques for extracting

estimates of {pid(s)} from {pkR(s)}, which we call the mitigated values {pmit(s)}. These classical postprocessing
techniques can be used to mitigate a full probability distribution of n photons, a subset of the full distribution,
or an expectation value of an observable O, ⟨O⟩ :=

∑
i wipid(si), with wi ∈ R, which is a weighted sum over

a set of n–photon probabilities. The main cost incurred in these classical postprocessing techniques is a
memory cost proportional to the size of the set of probabilities to be mitigated. In the worst-case, when
we are mitigating a full probability distribution, this memory cost is O

((
m
n

))
. In practice, however, when

mitigating an expectation value one usually needs access to a poly(n) (often of low degree) sized set of
mitigated probabilities, making the memory cost manageable, and consequently our methods practical to
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apply to near-term DVLOQC hardware. Details about these classical postprocessing techniques can be found
in section 8, and pseudocode for their implementation is given in algorithms 2, 3, 4, and 5. Note that since
recycling mitigation is applied to the statistics relating to relatively few lost photons, the number of samples
(runs of the lossy DVLOQC circuit) required for constructing the recycled probabilities, and computing the
mitigated values to a fixed accuracy, scales exponentially with system size. On the other hand, this is a
limitation common to all error mitigation protocols involving solely classical postprocessing [29, 30, 31], and
not just specific to our technique.

In section 8 we provide performance guarantees for the classical postprocessing techniques. More precisely,
for several of the postprocessing methods we bound the deviation of pmit(s) from pid(s) in terms of the bias
error ϵbias,s, as well as the statistical error ϵstat,k incurred when constructing the recycled probabilities from
a finite number of samples. We observe that, in the η > 0.5 regime, and up to a certain number of samples
Nmax, the combined worst-case bias and statistical errors of recycling mitigation are lower than the statistical
error of postselection. This is strong evidence that our error mitigation methods outperform postselection
in this regime. Furthermore, we observe through various numerical simulations in sections 9-10, that Nmax

is large, meaning our methods are expected to outperform postselection for up to large sample sizes.
Our final contribution is in providing strong evidence that photon loss error mitigation techniques based

on ZNE [32] cannot outperform postselection. Indeed, in section 11 we provide an upper bound on the error
incurred from ZNE, Eextrap, which is larger than the worst-case statistical error of postselection (see Thm.
13). In appendix 21, we also provide numerical evidence that for all n ≥ n0, for some n0 ∈ N, Eextrap is always
larger than the statistical error of postselection. Our result highlights the subtleties involved in adapting
existing error mitigation techniques to mitigate photon loss errors in DVLOQC. Indeed, in DVLOQC there
is a natural way to mitigate photon loss errors, postselection, which is not present for other types of errors
in other types of hardware [32]. This therefore sets a benchmark that a photon loss mitigation technique
in DVLOQC must satisfy to be useful, namely that it must outperform postselection. Our results indicate
that recycling mitigation succeeds in mitigating beyond what postselection can offer whereas ZNE does not.

3 Comparison to recent work

Many techniques have been developed to improve the performance of quantum computations run on currently
available quantum hardware. These are generally referred to as quantum error mitigation (QEM) techniques.
Some well-known QEM techniques are zero noise extrapolation (ZNE) [13, 33, 34, 35], probabilistic error
cancellation [13, 36, 37, 38], verification-based mitigation [39, 40, 41, 42], virtual distillation and exponential
error suppression [43, 44, 45, 46], quantum subspace expansion mitigation [47, 48, 49, 50], and measurement
error mitigation [51, 52, 53, 54] ( see [32] for a review of QEM techniques). These techniques are tailored
to the circuit model of quantum computing, and thus adapting them to DVLOQC can in some cases be
complicated by the considerable differences in the computational setup and the types of noise.

Techniques based on ZNE have been applied to mitigate photon loss in Gaussian boson sampling
experiments [15]. Interestingly, we find that ZNE-based techniques do not seem to provide an advantage over
postselection when adapted to the DVLOQC setting. An important distinction between ZNE-based methods
and recycling mitigation, which is presented in this work, is that the former have an associated sampling
overhead while recycling mitigation does not. In ZNE, many data points are collected, each corresponding to
the expectation value of an observable O computed from a noisy circuit at a given noise level. These points
are used to compute, via extrapolation, the noiseless expectation value of O. Computing each of these data
points to a desired precision has a sample cost, while recycling mitigation uses information from the lossy
output statistics that would otherwise be discarded. This means that recycling mitigation may be applied
with no additional sampling overhead relative to postselection.

Finally, recent work [55] has provided a method for mitigating photon loss in the continuous variable (CV)
setting, adapting pre-existing methods of probabilistic error cancellation [13, 36, 37, 38] to the CV setting.
Although the techniques of [55] are applicable to the DVLOQC setting, these are solely for expectation
value mitigation (weak mitigation) [56]. Our methods, by contrast, can perform both strong (full probability
distribution mitigation) as well as weak mitigation, with a classical memory cost scaling with the size of
the set of probabilities to be mitigated. Furthermore, we present analytical as well as extensive numerical
evidence that our methods provably outperform postselection, whereas, to our knowledge, no comparison
between the performance of the developed mitigation methods and postselection is presented in [55].
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(a) (b)

Figure 1: A schematic illustrating the main steps of the recycling mitigation protocol. (a) An input state
|ψin⟩ of n photons is introduced to a lossy m-mode linear optical interferometer implementing a unitary
transformation. The classical measurement outcomes of each of the output modes is denoted by the classical
m−bit string snl . (b) The classical data set generated by repeatedly sampling from the quantum circuit is
then used as input for classical postprocessing. This classical postprocessing consists of three stages. First,
the data set is used to generate lossy probability estimators. These estimators are then used to construct
recycled probability estimators, which are in turn then used to generate mitigated values.

4 Preliminaries

Consider the DVLOQC setting where a photonic quantum device is composed of a single-photon source [7],
a universal m-mode linear optical interferometer [8] capable of implementing any unitary transformation
U ∈ U(m), with U(m) the group of unitary m ×m matrices, and single photon detectors [9]. Generating a
sample using this device proceeds as follows. First, n single photons emitted from the source pass through
the linear optical inteferometer in an input configuration T := (t1, . . . , tm), where ti is the number of
photons in mode i. Let |ψin⟩ := |t1, . . . , tm⟩ be the input Fock state of single-photons corresponding to
the configuration T. The linear optical interferometer implements a unitary transformation ϕ(U) on the
input state |ψin⟩ [6], resulting in an output state |ψout⟩ := ϕ(U)|ψin⟩, where ϕ(U) represents the action
of the unitary U , implemented by the interferometer, on |ψin⟩. Note that ϕ(U) and U are related by a
homomorphism, detailed in [6]. A sample S := (s1, . . . , sm), with si the number of photons in output mode
i, is then obtained by measuring the number of photons in each output mode using single-photon detectors.
This corresponds to projecting |ψout⟩ onto the state |s1, . . . , sm⟩. Many computational tasks on photonic
quantum devices can be implemented by collecting samples according to the previous procedure, and then
performing classical postprocessing [18, 22, 57, 19, 1].

In the absence of any errors affecting the device,
∑

i=1,...,m ti =
∑

i=1,...,m si = n, furthermore, the
probability of obtaining the sample S is proportional to the modulus squared of the permanent of a submatrix
UT,S of U , whose rows and columns are determined by the input and output occupancies T and S [6].
By appropriately choosing the unitary transformation U , and performing the above mentioned sampling
procedure repeatedly, one can perform both non-universal and universal quantum computing with linear
optics. In particular, if U is chosen to be Haar random, one performs boson sampling, a non-universal
sampling task which is hard for classical computers to carry out efficiently [6]. Alternatively, choosing
specific unitaries U , and postselecting on detecting a specific output configuration, one can perform universal
quantum computation [1].

We will now describe our error model as well as the assumptions we will make throughout this paper.

• We consider photon loss as the only source of error affecting our devices. Our error model is the uniform
loss model, where a photon is equally likely to be lost in any mode i ∈ {1, . . . ,m} with probability
η ∈ [0, 1]. Following the commutation rules of photon loss [58], we assume without loss of generality
that the photons are lost at the output of the interferometer, just before the single-photon detectors
which are assumed to be perfect.

• We assume that sampling occurs in the no-collision regime, where at most one photon occupies any
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output mode. This is approximately true for m ≥ O(n2) [6]. In this regime the samples are given by
S = (s1, . . . , sm), with si ∈ {0, 1}, and are therefore bit strings of length m.

The uniform loss model is a widely used error model for simulating photon loss, and is the standard
assumption used when constructing loss-tolerant quantum error correcting codes [59]. It is also often assumed
when deriving efficient classical algorithms for simulating lossy linear optical setups [60]. Working in the
no-collision regime is primarily interesting for two reasons. Firstly, one can prove statements of quantum
advantage in boson sampling in this regime [6]. And secondly, the fact that at most one photon occupies
each mode allows us to assume the use of the standard and widely available threshold detectors, rather than
number resolving ones which are currently challenging to practically implement. As a final note, while the
no-collision assumption is a useful one, it is not necessary for our techniques to work. Indeed, as discussed
in later parts of this paper, our techniques can be generalised to the case where more than one photon can
occupy a mode.

The uniform loss model induces a binomial distribution on the samples, in the sense that sampling Ntot

times from a uniformly lossy linear optical circuit produces approximately Ntot,k :=
(
n
k

)
Ntotη

k(1 − η)n−k

samples corresponding to k lost photons, for k ∈ {0, . . . , n}. Note that Ntot =
∑

k=0,...,nNtot,k. We will take

sn−k
i to mean a bit string of the form {s1, . . . , sm} where

∑
i si = n−k, si ∈ {0, 1} is the number of photons

in mode i, and k ∈ {0, . . . , n}. This corresponds to a sample drawn from the probability distribution where
k of the initial n input photons have been lost. In order to estimate the probability p(sn−k

i ) from a set
W := {sn−k

j } of samples 1 where |W| ≤ Ntot,k, we perform the following procedure. For each w ranging

from 1 to |W|, assign a value 1 to a random variable Xw ∈ {0, 1} if the sample sn−k
w is the bit string sn−k

i ,
and assign the value 0 to Xw otherwise. The estimate p̃(sn−k

i ) is then

p̃(sn−k
i ) :=

∑
wXw

|W|
. (1)

This estimation therefore induces a statistical error given by

ϵstat(s
n−k
i ) := |p̃(sn−k

i )− p(sn−k
i )|. (2)

As the the size of the system is increased, the probability of postselecting non-lossy outcomes decays
exponentially towards zero. One motivation for the error mitigation techniques we introduce, and which
we will detail in subsequent sections, is that in the high loss regime, where η > 0.5, lossy outputs with
fewer than n photons are considerably more likely than n–photon outputs. The errors ϵstat(s

n−k
i ) for k ̸= 0

are therefore smaller in general than ϵstat(s
n
i ), by standard arguments from statistics such as Hoeffding and

Chebyshev inequalities [26]. Consequently, the estimated probabilities for lossy n − k–photon outputs are
more converged and have lower statistical error than those of (lossless) n–photon outputs. Furthermore,
these lossy probabilities can contain information on the probabilities of the n–photon outputs.

Recycling mitigation uses the n − k–photon probability estimates {p̃(sn−k
i )}, potentially for a range of

k values, and construct from these a mitigated n–photon probability distribution {pmit(s
n
j )}. To have any

utility, a photon loss mitigation technique needs to outperform computing the n–photon probability estimates
{p̃(snj )} from the samples Ntot,0, which we will henceforth refer to as postselection on n–photon outputs,
or just postselection. We will therefore use postselection as the benchmark to evaluate the performance of
recycling mitigation. Postselection is, to our knowledge, the only technique being used to mitigate the effects
of photon loss on current DVLOQC hardware [18]. Another factor motivating recycling mitigation is that
it does not increase the overall sample cost relative to postselection. This contrasts favourably with many
error mitigation results that have an accompanying sampling overhead [32].

5 Recycled probabilities

The recycled probabilities are constructed from n− k output photon statistics, where k ∈ {1, . . . , n− 1}. To
explicitly analyse the signal of the ideal probability within the recycled probability, the recycled probabilities
may be decomposed into a combination of an ideal n–photon output probability, and an interference term
consisting of a mixture of other n–photon output probabilities from the distribution. We first describe the
construction of the recycled probabilities from n−k output photon statistics, which generalises for all k. We
then describe the analytical decomposition of the recycled probabilities into n–photon output probabilities.

1The set can contain repeated identical bit strings, i.e. there can be j1 ̸= j2, such that sn−k
j1

= sn−k
j2

.
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5.1 Construction of recycled probabilities from lossy outputs

We now detail the construction of recycled probabilities from n − k–photon output statistics - that is, the
output statistics in which exactly k of n photons have been lost. This construction should be applied to
obtain the recycled probability distribution in an experiment. The recycled probability for bit string snl
computed from n − k–photon output statistics is denoted pkR(snl ), with k ∈ {1, . . . , n − 1}. Hence there
are n − 1 recycled probabilities one can construct from lossy output statistics for any n–photon output bit
string, one for each possible value of k. Performing the construction involves summing over the n−k output
photon bit string probabilities that relate to a particular ideal probability. Informally, this relation is that
these are the probabilities of n−k–photon output bit strings that the ideal output bit string can be mapped
to through the loss of k photons. We now provide a formal statement of this relation.

We first define a mapping procedure from each n–photon output bit string to a set of n − k–photon
output bit strings. Each mapped set of bit strings represents the set of all possible states that the associated
n–photon output state could become after losing k photons. Let Munocc.,k,i be the subset of {1, . . . ,m}
corresponding to the unoccupied modes of the output bit string sn−k

i . That is, the set of indices of the
modes j ∈ {1, . . . ,m} of the bit string for which sj = 0. The number of unoccupied modes for n− k–photon
outputs is |Munocc.,k,i| = m − n + k. Let Munocc.,k,i be the complement of Munocc.,k,i in {1, . . . ,m}, so
that Munocc.,k,i ∪Munocc.,k,i = {1, . . . ,m}. The subset Munocc.,k,i denotes the occupied modes of sn−k

i ,
consisting of the set of indices of modes j ∈ {1, . . . ,m} for which sj = 1. As the bit string sn−k

i represents
an n− k–photon output the number of occupied modes is |Munocc.,k,i| = n− k. We define the set L(sni ) :=
{sn−k

j |sni ⇒ sn−k
j }. And the set of all size k subsets ofMunocc.,0,i is S0,i := {X ⊂Munocc.,0,i| |X| = k}. The

symbol ‘⇒’ denotes the operation where, for every size k subset {l1, . . . , lk} ∈ S0,i, the n–photon output bit
string sni is mapped to a new n− k–photon output bit string sn−k

j by replacing sli = 1 with sli = 0. In this

case, the number of k−subsets of Munocc.,0,i is
(
n
k

)
, and so |S0,i| =

(
n
k

)
and the size of the generated set of

bit strings is |L(sni )| =
(
n
k

)
.

The recycled probability for the bit string snl can be defined as the sum of probabilities of the
(
n
k

)
bit

strings sn−k
i ∈ L(snl ),

pkR(snl ) :=
∑

sn−k
i ∈L(snl )

p(sn−k
i ).

(3)

To ensure the normalisation of the recycled distribution the above expression is multiplied by a normalisation
factor N = 1

(m−n+k
k )

, so that in practice it is

pkR(snl ) =
1(

m−n+k
k

) ∑
sn−k
i ∈L(snl )

p(sn−k
i ). (4)

A derivation of the normalisation factor is provided in the next section.
To illustrate how this construction might work in practice we now provide a small example. If we would

like to compute the recycled probability for the bit string: 111000, in an experiment in which there are
m = 6 modes, n = 3 input photons and the construction is being performed for k = 1 lost photons. The
recycled probability may be computed directly from eqn. 4 as being

p1R(111000) =
(
p(110000) + p(101000) + p(011000)

)(4

1

)−1

, (5)

where the normalising parameter is N =
(
4
1

)−1
.

In practice, rather than using the set of exact probabilities, {p(sn−k
i )}, to compute recycled probabilities

in the manner shown in eqn. 4, instead empirical estimates of the exact probabilities, {p̃(sn−k
i )}, are used.

These are calculated from the set of measured experimental output bit strings, as described for eqn. 1, and
so include statistical errors due to finite samples. This statistical error is an important consideration when
making comparisons with postselection, and is later included in the analysis of the protocol performance. We
now provide pseudocode detailing how to construct the recycled probability for a specific n output photon
bit string and value of k from a set of N output bit strings sampled from a given circuit.
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Algorithm 1: Construction of a recycled probability estimator from output statistics

input : The n–photon output bit string snl for which the recycled probability estimator is to be
constructed, a set of N output sample bit strings from the DVLOQC circuit {sj}j∈{1,...,N},
and the choice of k value indicating that n− k output photon statistics be used for the
construction.

1 Initialise variable p̃kR(snl )← 0 for the recycled probability estimator to be computed.
2 Create a new set of bit strings by discarding all output bit strings from set {sj}j∈{1,...,N} except

those for which the number of measured output photons was n− k, with the new list denoted
{sl}l∈{1,...,Nest,k} where Nest,k ≤ N .

3 Generate the set of n− k–photon lossy output bit strings L(snl ).
4 for l = 1 to Nest,k do
5 Initialise variable Xsl ← 0.
6 if sl ∈ L(snl ) then
7 Xsl ← Xsl + 1.
8 end

9 end

10 Update recycled probability estimator variable as p̃kR(snl )← Xsl

(m−n+k
k )Nest,k

.

output: Recycled probability estimator p̃kR(snl )

5.2 Decomposition of recycled probabilities into n–photon output bit string
probabilities

In later sections, the recycled probabilities are analysed in terms of their decomposition into n–photon output
probabilities. For a given output bit string snl , this representation allows explicit treatment of the signal
of the ideal n–photon output probability p(snl ) within the recycled probability pkR(snl ). To get the recycled
probabilities in this form, the lossy output probabilities within the sum in eqn. 4 are decomposed into
n–photon output probabilities from the ideal distribution. The details of this decomposition will now be
formalised.

For this purpose we now define another mapping procedure, this time from each lossy n−k–photon output
bit string from the sum in eqn. 4 to a set of n–photon output bit strings. Where each mapped set of bit
strings represents the set of n–photon outputs that the associated lossy output bit string could have been had
loss not occurred. The set of all size k subsets of Munocc.,k,i is defined Sk,i := {X ⊂ Munocc.,k,i| |X| = k}.
We define the set G(sn−k

i ) := {snj |s
n−k
i → snj }. The symbol ‘→’ denotes the operation where, for every size

k subset {l1, . . . , lk} ∈ Sk,i, the bit string sn−k
i is mapped to a new bit string by replacing each bit sli = 0

with sli = 1. The number of k−subsets of Munocc.,k,i is
(
m−n+k

k

)
, and so |Sk,i| =

(
m−n+k

k

)
and the size of

the generated set of bit strings is |G(sn−k
i )| =

(
m−n+k

k

)
.

From the addition rule of probabilities and the uniformity of the loss, the probability p(sn−k
i ) of obtaining

the output bit string sn−k
i is

p(sn−k
i ) =

∑
snj ∈G(sn−k

i )

p(snj )
1(
n
k

) , (6)

where the sum includes all the bit string outputs snj ∈ G(sn−k
i ) from which the loss of k photons maps to

sn−k
i . Each element of the sum is composed of the probability p(snj ) that the output is the n–photon bit

string snj , multiplied by the uniform probability
(
n
k

)−1
of the loss of k photons from snj resulting in the output

sn−k
i .

As in eqn. 6, in the definition of the recycled probabilities in eqn. 4 each of the lossy probabilities can be
decomposed into a convex combination of probabilities from the ideal distribution. That is, the n−k–photon
output probabilities within the sum in eqn. 4 can be replaced with a sum over n–photon output probabilities.
For some arbitrary labelling of bit strings snj , and noting that snl ∈ G(sn−k

i ), we can expand the n−k output
photon probabilities in the form

p(sn−k
i ) = p(snl )

1(
n
k

) +
∑

snj ∈G(sn−k
i ),j ̸=l

p(snj )
1(
n
k

) . (7)
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This can then be used to separate the contribution of the ideal bit string probability p(snl ) out from the rest
of the probabilities which are grouped into a sum we call an interference term in the recycled probability.
So it becomes

pkR(snl ) = p(snl ) +
∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1(
n
k

) . (8)

The last step is to normalise the distribution pkR(snl ), namely to compute N such that N ·
∑

l p
k
R(snl ) = 1.

To do this, note that

(m
n)∑

l=1

pkR(snl ) =

(m
n)∑

l=1

∑
sn−k
i ∈L(snl )

p(sn−k
i )

=

(m
n)∑

l=1

∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i )

p(snj )
1(
n
k

)
=

(
m− n+ k

k

)
,

(9)

This is because
∑

l p(s
n
l ) = 1, and, because |L(sni )| =

(
n
k

)
and |G(sn−k

i )| =
(
m−n+k

k

)
, each distinct bit string

snl appears exactly
(
n
k

)(
m−n+k

k

)
times in the above sum 2. Therefore N = 1

(m−n+k
k )

, and the expression for

the normalised recycled probability is

pkR(snl ) = p(snl )
1(

m−n+k
k

) +
∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1(

m−n+k
k

)(
n
k

) . (10)

Let Nk :=
(
m−n+k

k

)(
n
k

)
, N ′

k :=
((

m−n+k
k

)
− 1
)(

n
k

)
. The recycled probability pkR(snl ) is composed of the ideal

output probability p(snl ) and an interference term, defined as

Isnl ,k :=
∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1

N ′
k

. (11)

The recycled probability may then be written explicitly in this form

pkR(snl ) = p(snl )
1(

m−n+k
k

) +
N ′

k

Nk
Isnl ,k. (12)

Importantly, the photon recycled probability pkR(snl ) contains an amplified signal of the ideal probability
p(snl ), relative to the other probabilities contained within the interference term.

6 Properties of the recycled distribution

As mentioned in the introduction section, recycling mitigation performs best in the regime of high loss
η > 0.5, and when using n−k output photon statistics where k is low to construct the recycled probabilities.
In this section, we show that recycled probabilities constructed from output statistics where most photons
were lost (i.e. when n−k is a constant independent of n) are efficiently classically computable, and therefore
not useful for obtaining interesting mitigation performance. Furthermore, we provide evidence that recycled
probabilities constructed from n− k output statistics where k is a constant independent of n (corresponding
to output statistics where a small number of photons have been lost) are hard to compute classically, making
these interesting to use for recycling mitigation protocols.

2Another way to see this is to consider the sum over recycled probabilities as
∑

l pR(snl ) =
∑

l

∑
sn−k
i ∈L(sn

l
)
p(sn−k

i ) =(m−n+k
k

)
. Where the rightmost equality follows from the fact that each p(sn−k

i ) appears exactly
(m−n+k

k

)
times in this sum,

since there are |G(sn−k
i )| recycled probabilities sharing a single p(sn−k

i ). Furthermore note that
∑

i p(s
n−k
i ) = 1.

9



Recall that, up to normalisation, a recycled probability is a sum of the form∑
sn−k
i ∈L(snl )

p(sn−k
i ),

where the number of terms of this sum is
(
n
k

)
. For Haar-random interferometers U , in the no-collision regime,

we can use the results of [17], and in turn express each p(sn−k
i ) as

p(sn−k
i ) =

1(
n
k

) ∑
i

|Per(Xi)|2

mn
,

where the Xi’s are n − k × n − k matrices with independently distributed Gaussian entries [6], and the
number of terms in this sum is also

(
n
k

)
. We show that in the high loss regime, where k = n− r, and r is a

constant independent of n, the sum
∑

sn−k
i ∈L(snl )

p(sn−k
i ) is computable efficiently classically. Our result is

encompassed in the following lemma proven in appendix 15.

Lemma 1. Let k = n − r, there is a classical algorithm running in time O(2r−1r
((

n
n−r

))2
) which exactly

computes
∑

sn−k
i ∈L(snl )

p(sn−k
i ).

Notice that when r is a constant independent of n, the runtime of the above algorithm is O(
(

n
n−r

)
) ≤

O(nr) ≤ poly(n). Thus, recycled probabilities corresponding to a high number of lost photons are efficiently
computable classically. For low values of loss, in particular when r scales with n, the above efficient classical
simulability results break down, this however does not necessarily imply that there is no other, possibly
efficient, algorithm for computing

∑
sn−k
i ∈L(snl )

p(sn−k
i ).

For the case where k is a constant independent of n, there is evidence that computing
∑

sn−k
i ∈L(snl )

p(sn−k
i )

is probably hard (inefficient) to do classically. Indeed, it is known that in worst-case the probabilities p(sn−k
i )

when k is a constant independent of n are not efficient to compute classically, unless the polynomial hierarchy
collapses to its third level [17]. This motivates the application of recycling mitigation in the low k regime,
as the n − k–photon output statistics are efficiently computable classically when k is high, and therefore
any potential quantum advantage is lost. In all our simulations, we apply our error mitigation techniques to
statistics where the number of lost photons is a constant independent of system size, and discard all other
statistics.

7 Bounding deviation of interference terms

Methods are later presented to extract the ideal probability signals from the recycled probabilities. The
precision with which this operation may be achieved is limited by variation of the interference terms from
their expected value. As such, upper bounding this variation behaviour is crucial when we later assess
the accuracy of the mitigated values. The recycled probabilities have a composite structure, comprising a
mixture of the ideal probability and the interference term. While the interference term,

Isnl ,k =
∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1

N ′
k

, (13)

is itself a mixture of n–photon output probabilities. It is possible to account for the errors caused by using
approximations of the interference terms when generating the mitigated probabilities by upper bounding the
deviation of the interference term away from an expected value.

Firstly, we consider the case of Haar random matrices. As we are working in the no-collision regime, the
output probabilities generated by sampling from a Haar random matrix is linked to permanents of Gaussian
random matrices X ∈ Gn×n [17] with Gn×n the set of all such Gaussian matrices; more precisely the set of
complex matrices whose real and imaginary parts are chosen independently from the normal distribution
N (0, 12 ). Let punif := 1

(m
n)

, in appendix 17 we show the following.

Lemma 2. For all snl , we have

EX∈Gn×n

(
Isnl ,k

)
= punif

(
1 +O(m−1)

)
≈ punif . (14)

with EX∈Gn×n
(.) the expectation value over the set Gn×n.
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With Lemma 2 in hand, it is possible to bound the deviation of the interference terms around this
expected value according to the theorem shown in appendix 17.

Theorem 3. The deviation of interference terms around punif for Haar random matrices is bounded

Pr
(∣∣Isnl ,k − punif ∣∣ ≥ ϵbias,snl ) ≤ np2unif

ϵ2bias,snl
, (15)

where ϵbias,snl is a positive real number.

Secondly, as it is desirable not to be restricted to only mitigating the output of Haar random matrices,
we derive an additional bound for arbitrary matrices. Let Dk

R be the uniform distribution over recycled
probabilities {pkR(snl )}l. Since every recycled probability has an associated interference term Isnl ,k, one can

equivalently think of Dk
R as a distribution over interference terms. A random variable Y chosen from Dk

R

means choosing, with uniform probability punif , a value from the set {pkR(snl )}l (or, equivalently, choosing a
value from {Isnl ,k}l uniformly randomly). In appendix 17, we show the following.

Lemma 4.

EDk
R

(
Isnl ,k

)
= punif , (16)

where EDk
R

(.) denotes the expectation value over Dk
R.

The deviation of interference terms around this expected value is upper bounded according to the following
inequality.

Theorem 5. The deviation of interference terms around punif for an arbitrary matrix is bounded

Pr
(∣∣Isnl ,k − punif ∣∣ ≥ ϵbias,snl ) ≤ punif

ϵ2bias,snl
, (17)

where ϵbias,snl is a positive real number.

While both these upper bounds use Chebyshev’s inequality [27], the Thm. 3 bound applies only to Haar
random matrices, while the Thm. 5 bound applies to arbitrary matrices. However, to upper bound the
variance for the Haar random case we use exact moments originally derived in [61]. While in the case of
arbitrary matrices the Bhatia-Davis inequality [62] is instead used, which results in a looser bound.

We note that a tighter, although distribution-dependent, bound may be found than the one provided
in Thm. 5. This result follows from Lemmas 6 and 7, proven in appendix 17, which will now be stated,
that use the definition of the variance that for a set of real values {xi}i with mean µ and cardinality N ,
Var({xi}i) := N−1

∑
i(xi − µ)2.

Lemma 6. The variance of the set of recycled probabilities is less than or equal to the variance of the set of
ideal probabilities, that is

Var
(
{p(snl )}l

)
≥ Var

(
{pkR(snl )}l

)
. (18)

Lemma 7. The variance of the set of interference terms is less than or equal to the variance of the set of
ideal probabilities, that is

Var
(
{p(snl )}l

)
≥ Var

(
{Isnl ,k}l

)
. (19)

Using these lemmas, an upper bound on the largest probability of the output distribution may be used
to derive a tighter upper bound on the variance using the Bhatia-Davis inequality [62]. Let pupper be an
experimentally derived upper bound on the largest probability in the ideal n–photon output distribution
pmax, such that pupper ≥ pmax. Following similar steps as for the proof for Thm. 5 results in an upper bound

on the confidence of 1− punifpupper

ϵ2
bias,sn

l

− δ
(

1− punifpupper

ϵ2
bias,sn

l

)
, where δ is the confidence parameter for the pupper

estimator. This result is stated formally in the following.

Theorem 8. The deviation of interference terms around punif for an arbitrary matrix is bounded

Pr
(∣∣Isnl ,k − punif ∣∣ ≥ ϵbias,snl ) ≤ punifpupper

ϵ2bias,snl
+ δ
(

1− punifpupper
ϵ2bias,snl

)
,

where ϵbias,snl is a positive real number, and pupper is an empirically computed upper bound on the largest
probability of the ideal n output photon probability distribution with confidence 1− δ.

11



A proof of this result is given in appendix 17. We note also that as pmax ≤ 1 with confidence 1, so that
δ = 0 in Thm. 8, Thm. 5 follows as a corollary.

With assumptions about the structure of the unitaries, like in [28], it is possible to deterministically and
exponentially upper bound the interference terms. For a large class of unitary matrices, we show that the bias
error scales as an inverse exponential in n. As will be seen later, this shows that our mitigation techniques
outperform postselection in estimating output probabilities and expectation values of linear optical circuits
for up to inverse exponential precisions. Here we use the the operator 2-norm and the infinity norm. For
an n × n matrix A the operator 2-norm is defined ∥A∥2 := sup∥x⃗∥2≤1,x⃗∈Cn ∥Ax⃗∥2, where ∥v⃗∥p is the lp

norm, that is ∥v⃗∥p =
(∑

p |vi|p
)1/p

. And the infinity norm which is defined as ∥v⃗∥∞ := maxi |vi|. Let

hA∞ := 1
n

∑
i=1,...,n ∥Ai∥∞, where Ai is the ith row of A. In appendix 20 we show the following.

Theorem 9. For the class of unitary matrices U with submatrices A such that pmax := maxsnl (p(snl )) =

|Per(A)|2, and where these matrices A satisfy
hA
∞

∥A∥2
≪ 1, the bias error ϵbias,snl is bounded

ϵbias,snl ≤≈ O(e−0.000002n). (20)

In other words, for the stated class of unitary matrices the bias error is inverse-exponentially (in n)
close to zero. For this class of unitary matrices, one can show, as will be seen later on, that our mitigation
techniques outperform postselection for up to inverse-exponential additive errors. However the number of
photons required for this bound to become significant (n ≈ 105) is beyond what is possible with current
technology.

We will now apply the derived bounds to give performance guarantees for several methods which may
be applied to extract the signal of the ideal probabilities from the recycled probabilities. In the following,

to make the bounds in Thms. 3 and 5 more concrete we will set ϵbias,snl = O
(

1
poly(m)

)
.

8 Generating the loss-mitigated outputs

We now present two methods for constructing loss mitigated outputs from the recycled probabilities, these
we refer to as linear solving and extrapolation. In linear solving, the interference term within each recycled
probability is substituted for its expected value, and the resulting expressions are then solved to find
estimators of the ideal probabilities. While in extrapolation, the decay of the ideal signal in the set of
recycled distributions with k is used to compute estimators of the ideal probabilities. We derive inequalities
that are conditions for recycling mitigation with the relevant postprocessing techniques to beat postselection.

The output photon statistics where most photons have been lost are not used in recycling mitigation.
Indeed, it is clear that if one uses output photon statistics with high k to construct the recycled probabilities,
then these statistics may be efficiently classically simulated; as per Lemma 1. This strongly motivates the
construction of recycled distributions from output statistics where k is low.

While the postprocessing required to generate each mitigated value may be performed efficiently, the
size of the output distribution is exponential in m and n. Meaning the classical postprocessing cost (i.e.
the memory cost) is proportional to the number of mitigated probabilities that are to be generated. So
that to generate a full mitigated output distribution this scales as mn, while for a subset of size Ns the
postprocessing cost is then proportional to Ns.

As the bias errors in the bounds for Thm. 3 and Thm. 5 have been set to ϵbias,snl = O
(

1
poly(m)

)
, the

performance guarantees for the Haar random and arbitrary matrix cases are of the same form. Therefore,
for the sake of concision we state one performance guarantee for each version of the classical postprocessing.
Note, however, that the confidence for the Haar random matrix bias error upper bound is ≈ 1−O∗(p−2

unif ),

whereas for the arbitrary matrix bias error upper bound is ≈ 1−O∗(p−1
unif ) 3.

8.1 Linear solving

The linear solving method involves substituting the interference term within each recycled probability for an
approximate value, and then solving the resulting expressions for the ideal probabilities. As the expectation
of interference terms over the Haar measure and over the recycled distribution are punif + O(m−n+1) and

3The O∗(f) notation means a complexity of O(f) up to polynomial prefactors, that is O∗(f) := O(poly(n)f). Note that,
since m = O(poly(n)) for any useful application, then O∗(f) can equivalently be thought of as O(f) up to a poly(m) prefactor.
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punif , respectively, see Lemmas 2 and 4, the term
N ′

k

Nk
punif is used for this substitution. This allows the

upper bounding of the error introduced by the substitution using Thms. 3 and 5. Each recycled probability
constructed from the n− k output photon statistics may then be written

p̃kR(snl ) =
p(snl )(
m−n+k

k

) +
N ′

k

Nk

(
punif + ϵbias,snl

)
+ ϵstat.,snl , (21)

where
N ′

k

Nk
ϵbias,snl is the bias error introduced by replacing the interference term in recycled probability pkR(snl )

with punif . And ϵstat.,snl is the statistical error from estimating the recycled probabilities from a finite number
of samples. These new expressions can then be solved to generate the mitigated outputs

pmiti(s
n
l ) =

(
m− n+ k

k

)∣∣∣∣p̃kR(snl )− N ′
k

Nk
punif

∣∣∣∣. (22)

We now provide pseudocode with the steps required to use the linear solving method to generate the mitigated
output.

Algorithm 2: Linear solving method

input : Recycled probability estimator p̃kR(snl ), and uniform probability punif .

1 Initialise variable pmiti(s
n
l )← 0 for the mitigated output to be computed.

2 Update mitigated output variable as pmiti(s
n
l )←

(
m−n+k

k

)∣∣p̃kR(snl )− N ′
k

Nk
punif

∣∣.
output: Mitigated output pmit(s

n
l )

There exists a regime of recycling mitigation usefulness, where the combined bias and the statistical errors
present in the mitigated probabilities are lower than the statistical errors of the postselected distribution.
By combining upper bounds for each of these errors we will now provide conditions for recycling mitigation
using linear solving to outperform postselection.

These are stated in the form

Nk

(
N ′

k

Nk
M
(
ϵbias,snl

)
+ M

(
ϵstat.,snl

))
≤ M

(
ϵpost.stat.,snl

)
, (23)

where M
(
ϵbias,snl

)
, M

(
ϵstat.,snl

)
and M

(
ϵpost.stat.,snl

)
are respectively upper bounds for the bias error of the

mitigated probability ϵbias,snl , the statistical error of the mitigated probability ϵstat.,snl , and the statistical

error of the postselected probability ϵpost.stat.,snl
. More explicitly, in the appendix 18 we show the following

Theorem 10. The condition:

O

(√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
+

((
m− n+ k

k

)
− 1

)
O

(
1

poly(m)

)
≤ O

(√ (
m
n

)
(1− η)nNtot

)
, (24)

defines a sampling regime (a range of values of Ntot) where the sum of the worst-case statistical error and
bias error of linear solving recycling mitigation is less than the worst-case statistical error of postselection.

Note that the big O notation here can be interpreted as multiplying by a prefactor, which can be
computed by choosing a confidence for the concentration inequalities (as will be seen in section 9). This
allows for the direct computation of the bounds for a specific confidence. One can intuitively understand
Thm. 10 as follows. For values of loss η > 0.5, it is expected that the statistical error of recycling

mitigation O

(√
(m
n)

(n
k)(1−η)n−kηkNtot

)
is in general smaller than that of postselection O

(√
(m
n)

(1−η)nNtot

)
. Thus,

the sampling regime where recycling outperforms postselection is typically determined by the bias error
2
((

m−n+k
k

)
− 1
)
O
(

1
poly(m)

)
≈ O

(
1

poly(m)

)
, for small values of k independent of n. This means that recycling

is expected to outperform postselection for estimating output probabilities to up to inverse polynomial errors,
with high confidence. Furthermore, Thm. 9 shows that, for many linear optical circuits, the outperformance
is up to inverse exponentially small errors.
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We now introduce the notion of dependency. This quantifies the correlation of the interference terms
with the ideal probability within the recycled probabilities. A positive correlation means that the signal for

the ideal probability is greater than
(
m−n+k

k

)−1
, which can be used to improve the performance of linear

solving. Each recycled probability can be rewritten to include a dependency term dk(snl ) quantifying this
correlation, by reformulating the interference term as a linear function of p(snl ) and punif . The expression

Isnl ,k =
(
1− dk(snl )

)
punif + dk(snl )p(snl ) (25)

defines the dependency term dk(snl ) of each recycled probability, and k ≤ n − 1. An average dependency
term over the distribution, denoted dk, may be calculated from the recycled probabilities (see eqn. 18.2.1
and appendix 18). Each recycled probability constructed from the n− k output photon statistics may then
be expressed in the form

p̃kR(snl ) =
p(snl )(
m−n+k

k

) +
N ′

k

Nk

((
(1− dk)punif + dkp(s

n
l ) + ϵbias,snl

)
+ ϵstat.,snl , (26)

where ϵbias,snl is the bias error introduced by replacing the interference term in recycled probability pkR(snl )

with
(
(1−dk)punif +dkp(s

n
l )
)
. Note that if the computed estimator for dk is negative or greater than 1 then

the dependency approach should be aborted and the original version of linear solving used. We conjecture
it is always the case that 1 ≥ dk ≥ 0. The following pseudocode details the steps required to perform the
linear solving with dependency method and generate the mitigated output.

Algorithm 3: Linear solving with dependency method

input : Recycled probability estimator p̃kR(snl ), uniform probability punif , an estimator for the

absolute average deviation for the n output photon distribution D̃0, and an estimator for
the absolute average deviation for the n− k–photon recycled distribution D̃k (eqn. (29)).

1 Initialise variables for the mitigated output pmit(s
n
l )← 0 and the average dependency term dk ← 0.

2 Update the average dependency term variable dk ← 1

(m−n+k
k )−1

(
(m−n+k

k )D̃k

D̃0
− 1

(m−n+k
k )

)
.

3 Update the mitigated output variable pmit(s
n
l )←

∣∣∣∣∣ p̃k
R(snl )+

N′
k

Nk

(
(−1+dk)punif

)
(m−n+k

k )
−1

+
N′

k
Nk

dk

∣∣∣∣∣
output: Mitigated output pmit(s

n
l )

In appendix 18, we show the following.

Theorem 11. The condition

O

(√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
+ 2

((
m− n+ k

k

)
− 1

)
O

(
1

poly(m)

)
≤ O

(√ (
m
n

)
(1− η)nNtot

)
, (27)

defines a sampling regime where the sum of the worst-case statistical error and bias error of linear solving
with dependency recycling mitigation is less than the worst-case statistical error of postselection.

The performance guarantees for linear solving with and without dependency are too similar to be used
to draw inferences on their relative performance. We do note, however, that in numerical simulation linear
solving with dependency reliably outperforms linear solving without dependency (see Fig. 3 (a) and (b)).

8.2 Extrapolation

We now present methods by which extrapolation may be used to generate loss-mitigated outputs. From the
definition of the recycled probability,

pkR(snl ) =
p(snl )(
m−n+k

k

) +
N ′

k

Nk
Isnl ,k, (28)

the magnitude of the ideal probability signal within the recycled probabilities is proportional to
(
m−n+k

k

)−1
.

As k increases, the ideal signal magnitudes decrease as the recycled distributions converge towards uniform.
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The rate of decay of the ideal signal with k can be computed and then used to extrapolate mitigated outputs.
We present two variations of extrapolation in which different types of dependence of the ideal probability
signal on number of lost photons k are considered. A linear dependence is used for a linear extrapolation
method, and an exponential dependence for an exponential extrapolation method. Both the linear and
exponential extrapolation methods involve two iterations of optimisation. The first iteration is to compute
an average decay parameter using the set of average absolute deviations of the recycled distributions. Where,
for the set of recycled probabilities {pkR(snl )}l constructed from k photon statistics, the average absolute
deviation is defined as

Dk :=

(
m

n

)−1∑
l

∣∣pkR(snl )− punif
∣∣. (29)

The second iteration then uses the decay parameter to compute the mitigated values.
Linear extrapolation applies a linear model function to compute mitigated outputs. Here the least squares

method is used to identify optimal parameters to fit a linear model function to data. Parameter optimisation
is performed by minimising the sum of the squared residuals, where a residual is the difference between a
data point and the model. A data set of N points is denoted {xi, yi}Ni=1, where {xi}Ni=1 are the independent
variables and {yi}Ni=1 are the dependent variables. The model function f(x,α) is optimised by varying the
α parameters to approximate the relation between independent and dependent variables found in the data
set. The residual for each data point is defined ri := yi − f(xi,α). The sum of the squared residuals is
minimised to generate the optimal parameters

αmin = arg min
α

N∑
i=1

r2i , (30)

which are used to generate the optimised model function f(x,αmin). This can then be used to make
predictions about data outside the range of the data set used for optimisation.

In linear extrapolation, the linear model function used for the first iteration of linear least squares is

f(x, gavg) = −gavgx+ D̃0, (31)

where D̃0 is the average absolute deviation of the n–photon distribution from uniform computed from
the statistics corresponding to postselecting on detecting all n photons, and gavg is the optimal global

linear decay parameter. The set {k, D̃k}Kk=1 is used as the data set to compute gavg. Where {k, D̃k}Kk=1

is set of average absolute deviations from uniform for the different distributions, for K ≤ n and D̃k is
the estimated (from statistics where k photons were lost) absolute average deviation for the n − k–photon
recycled distribution. After the optimal decay parameter is identified, another iteration of least squares is
performed with updated model functions this time to generate the mitigated values. The data set used in
this step is {k, |p̃kR(snl )− punif |}Kk=1. For the second iteration of linear least squares, each output bit string
is assigned a linear model function of the form

fsn(x, αsnl
) = sgn(punif − y1)gavgx+ αsnl

. (32)

For each output bit string sn an optimal αsnl
is computed, generating the set {αsnl

}l, and the set of mitigated
outputs is then {αsnl

+ punif}l. We now provide pseudocode for applying the linear extrapolation method
to generate mitigated outputs.

15



Algorithm 4: Linear extrapolation method

input : The number of data points nd ∈ {nd ∈ Z+|nd < n} to be used in both iterations of least
squares, the data set {k, D̃k}nd

k=1 used to compute the gradient parameter gavg in the first

iteration of least squares, D̃0, and the data set {k, |p̃kR(snl )− punif |}nd

k=1 used to compute
the mitigated output in the second iteration of least squares.

1 Initialise an average decay parameter variable g̃avg ← 0, a prefactor variable αsnl
← 0, and a

mitigated output variable pmit(s
n
l )← 0.

2 Use least squares method with model function f(xi, gavg) = −g̃avgxi + D̃0 and data set

{xi, yi}nd
i=1 := {k, D̃k}nd

k=1 to compute the value of the average decay parameter (slope), and assign
this to variable g̃avg.

3 Use least squares method with model function fsnl (xi, αsnl
) = sgn(punif − y1)g̃avgxi + αsnl

and data

set {xi, yi}nd
i=1 := {k, |p̃kR(snl )− punif |}nd

k=1 to compute the value of the y-axis intercept, and assign
this to variable αsnl

.

4 Update mitigated output variable as pmit(s
n
l )← punif + αsnl

.

output: Mitigated output pmit(s
n
l )

The analytic condition for linear extrapolation to outperform postselection is now stated.

Theorem 12. The condition:

nd + 1

2

(
O

((
1

(1− η)nNtot

)1/4)
+O

( 1

poly(m)

))

+O

(
n

m− n+ 1

√ (
m
n

)
n(1− η)n−1ηNtot

)
≤ O

(√ (
m
n

)
(1− η)nNtot

)
,

(33)

defines a sampling regime where the sum of the worst-case statistical error and bias error of linear extrapolation
recycling mitigation using the least squares method is less than the worst-case statistical error of postselection.

Thm. 12 is proven in appendix 19. The left hand side of the above expression is a sum of the upper
bounds of the errors for performing linear extrapolation on the recycled probabilities. Using left-to-right
ordering, the first term and third terms are due to statistical error and the second term is due to bias error.
While the single term on the right side of the inequality is due to the statistical error of the postselected
output.

The method for exponential extrapolation is broadly similar. However, non-linear least squares or a non-
linear numerical optimisation method (e.g. the Levenberg–Marquardt algorithm [63, 64]) is instead used to
compute the decay factor and the mitigated probabilities. The exponential model function used for the first
step is

f(x, αavg) = D̃0e
−αavgx, (34)

where αavg is the optimal global exponential decay parameter. Where again the set {k, D̃k}Kk=1 is used as the
data, this time to compute the optimal value of αavg. And then each output bit string for which a mitigated
probability is to be generated is assigned a model function of the form

fsn(x,Λsn) = Λsnl
e−αavgx + punif . (35)

An optimal prefactor, denoted Λopt
snl

, is computed for each bit string snl using numerical optimisation. This

generates the set of prefactors {Λopt
snl
}l, and the set of mitigated outputs is then {Λopt

snl
+punif}l. The following

pseudocode gives the steps required to use the exponential extrapolation method to generate the mitigated
outputs.
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Algorithm 5: Exponential extrapolation method

input : The number of data points nd ∈ {nd ∈ Z+|nd < n} to be used in both iterations of least
squares, the set {k, D̃k}nd

k=1 used to compute the gradient parameter gavg in the first

iteration of least squares, D̃0, and the data set {k, |p̃kR(snl )− punif |}nd

k=1 used to compute
the prefactor value in the second iteration of least squares.

1 Initialise an average decay parameter variable αavg ← 0, a prefactor variable Λsnl
← 0, and a

mitigated output variable pmit(s
n
l )← 0.

2 Use least squares method with model function f(x, αavg) = D̃0e
−αavgx and data set

{xi, yi}nd
i=1 := {k, D̃k}nd

k=1 to compute the value of the average decay parameter and assign this to
variable αavg.

3 Use least squares method with model function fsn(x,Λsnl
) = Λsnl

e−αavgx + punif and data set

{xi, yi}nd
i=1 := {k, |p̃kR(snl )− punif |}nd

k=1 to compute the value of the prefactor and assign this to
variable Λsnl

.

4 Update mitigated output variable as pmit(s
n
l )← punif + Λsnl

.

output: Mitigated output pmit(s
n
l )

Note that the ideal signal magnitude decays proportionally with
(
m−n+k

k

)−1 ∼ m−k in eqn. 28, which
intuitively motivates the choice of an exponential model function to reflect this decay behaviour. In the
next sections, we provide numerical evidence indicating that there exists a non-trivial sampling regime
where exponential extrapolation outperforms postselection. We also note that in the numerical simulations,
extrapolation using an exponential model function consistently outperforms linear extrapolation (see Fig. 3
(c) and (d)). This may be a consequence of the exponential model function better reflecting the ideal signal
decay behaviour.

9 Numerical computation of regime of mitigation usefulness for
example experiment

To demonstrate how the performance guarantees may be related to a real experiment, we now show how the
performance guarantees for linear solving recycling mitigation may be used to compute a regime of usefulness
where the mitigation outperforms postselection. Let the example experiment consist of a computation with
size m = 100 modes, n = 10 photons, that is run on noisy hardware for which the uniform probability of
photon loss is η = 0.8, and for the linear solving method let k = 1. We now compute a regime of mitigation
usefulness for an arbitrary probability from an arbitrary distribution. The performance guarantee for linear
solving recycling mitigation of a single probability is 4

O

(√
1(

n
k

)
(1− η)n−kηkNtot

)
︸ ︷︷ ︸

Mitigation statistical error

+

((
m− n+ k

k

)
− 1

)
O

(
1

poly(m)

)
︸ ︷︷ ︸

Mitigation bias error

≤ O

(√
1

(1− η)nNtot

)
︸ ︷︷ ︸

Postselection statistical error

. (36)

We need to replace the big O notation with prefactors to allow computation of a bound. So first the
polynomial interference term bias error is set to ϵbias,snl = 1

m2k . And next the confidence for both mitigated
and postselected statistical error bounds is set to 1−δ, δ = m−n. Now from Hoeffding’s inequality [26], with
Nest,k ≈

(
n
k

)
ηk(1− η)n−kNtot, we have

2e−2Nest,kϵ
2
hoeff ≥ m−n. (37)

Taking the log of both sides
−2Nest,kϵ

2
hoeff ≥ − log(2)− n log(m), (38)

and rearranging this becomes

ϵhoeff ≥

√
log(2) + n log(m)

2Nest,k
. (39)

4Note that the statistical errors in eqn. 36 and Thm. 10 differ by a numerator
√(m

n

)
, this is because in our proof of Thm.

10 we divided the sample size by
(m
n

)
to ensure we are computing each recycled probability from an independent sample group

(see appendix 18). Here since we are interested in a single probability, we drop this division step.
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Figure 2: The upper bounds on the total number of samples for which linear solving recycling mitigation will
outperform postselection plotted against photon number. These values were computed from the performance
guarantees for the parameter values m = 100, η = 0.8, k = 1, and with n ∈ [5, 10]. A bias error of ϵbias,snl =

m−2k and confidence for the statistical error bounds of m−n, which gives rise to a logarithmic prefactor term
for the statistical error bounds of

√
2−1 log 2 + n log(m). This displays the exponential dependence on the

photon number of the upper bound on the total number of samples for which the techniques will outperform
postselection.

This leads to a polylogarithmic prefactor term for the statistical error bounds for the mitigated and postselected
outputs of

√
2−1(log 2 + n log(m)). We then get the following condition for an arbitrary probability in the

mitigated distribution to be more accurate than the corresponding probability in the postselected distribution

3

√ (
log 2 + n log(m)

)
2
(
n
k

)
(1− η)n−kηkNtot

+ 3

((
m− n+ k

k

)
− 1

)
1

m2k
≤

√(
log 2 + n log(m)

)
2(1− η)nNtot

. (40)

This can then be rearranged as

Ntot ≤
(

log 2 + n log(m)
)
m4k

2
((

m−n+k
k

)
− 1
)2 (

1

9(1− η)n
− 1(

n
k

)
(1− η)n−kηk

)
. (41)

Substituting in the parameters of the example experiment we get that, with exponentially high confidence in
terms of n, linear solving recycling mitigation should outperform postselection for at least up to 2.42× 1011

samples. The upper bound on the usefulness sampling regime for these experimental parameters, only with
photon number varying in the range n ∈ [5, 10], is plotted in Fig. 2.

10 Numerical simulations

In the numerical simulations recycling mitigation is used to mitigate the effects of uniform photon loss error
on the output of an otherwise ideal simulation of a linear optical quantum circuit. In the simulations, random
matrices are chosen for each experiment which are decomposed and implemented with a linear interferometer,
and a uniform photon loss model is applied with a defined loss parameter. The simulations were performed
using Perceval [20], a pythonic framework for the simulation of photonic quantum circuits. Uniform photon
loss channels commute with the interferometer, and so all loss channels, including loss due to imperfect
sources and measurement, can be propagated to the end of the circuit. And so the effects of loss may be
modelled by an ideal photon source, an ideal interferometer M , and a combined photon loss channel acting
immediately before an ideal measurement operation. This means that rather than an output photon from
the circuit incident on a detector being in the state |1⟩ ⟨1|, it is instead

|1⟩ ⟨1| → (1− p) |1⟩ ⟨1|+ p |0⟩ ⟨0| .
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(a) (b)

(c) (d)

Figure 3: A numerical performance comparison of linear solving and postselection for random unitary circuits
with m = 20 modes and n = 4 photons. (a) The KL divergence of the outputs of linear solving recycling
mitigation and postselection from the ideal outputs for a uniform loss parameter of η = 0.8 against total
sample number. (b) The KL divergence for random unitary circuits with a total number of samples of
Ntot = 1 × 105, and with the uniform loss parameter in the range η ∈ [0.5, 0.9]. (c) KL divergence for
random unitary circuits with 20 modes, 4 photons, a uniform loss parameter of 0.8 against total sample
number. (d) KL divergence for random unitary circuits with a total number of samples of Ntot = 1 × 105,
and with the uniform loss parameter in the range η ∈ [0.5, 0.9].
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Figure 4: The upper bound for the total number of samples for which linear solving recycling mitigation will
outperform postselection according to Thm. 10. The experimental parameters used were m = 20, n = 4 and
η ∈ [0.75, 0.975]. The data point for η = 0.8 may be seen to be in agreement with the data in Fig. 3 (a).
Here for an arbitrary single probability the sample upper bound for which the worst case error for linear
solving recycling mitigation is lower than that for postselection for η = 0.8 is ≈ 1.1× 105. Whereas in Fig.
3 (a) where the full distribution is mitigated it is ≈ 1.1× 106 samples.

With the probability of photon loss, p, the same for all output modes. Noise of this form may be considered
analogous to the types of measurement noise commonly considered in circuit model quantum computing, as
this is often modelled as an error channel followed by an ideal measurement.

For all the experiments in Fig. 3, parameter settings of 20 modes and 4 photons were used. Fig. 3 (a)
plots the performance of linear solving recycling mitigation, both with and without using the dependency
factor, and postselection against the total number of samples used for a fixed uniform loss parameter of
η = 0.8. Linear solving outperformed postselection up to ≈ 1.1 × 106 samples, while linear solving with
dependency outperformed postselection up to ≈ 3.1 × 106 samples. Fig. 3 (b) plots the performance of
the linear solving methods and postselection against changing loss parameter for a fixed number of samples
of 1 × 105. Linear solving outperformed postselection for loss above ≈ 0.6, and linear solving with the
dependency factor above loss of ≈ 0.5. Fig. 3 (c) plots the performance of linear extrapolation, exponential
extrapolation and postselection against the total number of samples used for a fixed uniform loss parameter
of η = 0.8. Linear extrapolation outperformed postselection up to ≈ 1.7 × 106 samples, while exponential
extrapolation does so up to ≈ 3.0 × 106 samples. Fig. 3 (d) plots the performance of the extrapolation
methods and postselection against changing loss parameter for a fixed number of samples of 1× 105. Linear
extrapolation outperformed postselection for loss above ≈ 0.5, and linear solving with the dependency factor
above loss of ≈ 0.5. In current quantum linear optical devices losses including source, interferometer and
measurement are commonly above 50% [18]. Therefore, the evidence from these simulations indicates that
recycling mitigation may be usefully applied to the current generation of linear optical devices. Also, in the
previous section an upper bound on the number of samples was computed for a particular experiment. Fig.
4 was plotted in order to compare the analytical expression in eqn. 41 to the numerics in 3 (a). In Fig. 4,
for experimental parameters m = 20, n = 4 and η ∈ [0.75, 0.975], the sample upper bound for which the
worst-case error for linear solving recycling mitigation for an arbitrary single probability is lower than that
for postselection for η = 0.8 is ≈ 1.1 × 105. Whereas in Fig. 3 (a) where the full distribution is mitigated
it is ≈ 1.1 × 106 samples. And so the mitigation performance prediction based on eqn. 41 is in agreement
with the numerics. Compared with the numerics, eqn. 41 estimates a lower sample threshold up to which
the mitigation will outperform postselection. The most likely explanation for this is that the bias error is
lower in the numerical experiments than is assumed for the analytics.

An intuitive explanation for the results in Fig. 3 is that the mitigated outputs have a lower statistical error
and so converge more quickly than the postselected outputs for increasing sample number and decreasing
loss parameter. Furthermore, the bias errors in the mitigated outputs mean that they do not converge to the
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Figure 5: The mean absolute value of the distance of the interference terms from the uniform probability
were computed for 20 randomly selected unitaries. For all unitaries, and for k = 1 and k = 2, the magnitude
of the computed values were observed to be exponentially small in terms of m and n (being of the order of(
m
n

)−1
). This indicates that it may be possible to derive tighter analytical bounds than those stated in thm.

3 and thm. 5, and that mitigation performance may be better than indicated by the performance guarantee
statements given in section 8.

ideal outputs, whereas the postselected outputs are unbiased estimators. And so for sufficiently high sample
number or low loss parameter postselection will eventually outperform recycling mitigation. There are,
however, large sampling and loss regimes for which recycling mitigation reliably outperforms postselection.

Theorems 3 and 5 in section 7 provide statistical upper bounds on the deviation of the interference terms
from punif . We have shown that with confidence ≈ 1 − O∗(m−n) these upper bounds are within a range
[−O

(
1

poly(m)

)
, O
(

1
poly(m)

)
] around punif . We conjecture that these bounds could be considerably tightened.

In support of this we ran numerical experiments for computations of size m = 16 modes and n = 4 photons,
computing the average of |Isnl ,k − punif | over all bit strings {snl }l. This computation was repeated for 20
randomly selected linear optical intereferometers U . This data is plotted in Fig. 5. It may be observed that

for all unitaries, and both when k = 1 and when k = 2, the computed values were of the order of
(
m
n

)−1
,

and so were in fact exponentially small in terms of the size of the computation. This indicates that the
analytical performance guarantees given in section 8 may under-estimate the size of the sample number up
to which recycling mitigation will outperform postselection. Finally, note that |Isnl ,k − punif | seems to be

generally decreasing with increasing k. However,
(
m−n+k

k

)
|Isnl ,k−punif | actually increases with increasing k,

as can be verified by a direct calculation using data from Figure 5. Ultimately, since
(
m−n+k

k

)
|Isnl ,k − punif |

is directly related to the bias error incurred when computing the mitigated probabilities from the recycled
probabilities (see section 8), increasing values of k in the recycling mitigation will lead to worse performances,
as predicted by Lemma 1. We conjecture that

(
m−n+k

k

)
|Isnl ,k−punif | increases monotonically with increasing

k (see section 14).

11 Evidence that zero noise extrapolation (ZNE) techniques present
no advantage over postselection

We will now provide strong evidence that techniques based on ZNE when applied to mitigating photon loss
in DVLOQC in general provide no advantage over postselection. Suppose we are interested in computing a
specific marginal probability p(n1...nl|n) of observing ni photons in mode i ∈ {1, . . . , l}, with l ≤ m, and∑

i=1,...,l ni = c, with c ≤ n. The notation |n indicates that we are computing the ideal marginal probability,
when no photon is lost. Let p(n1 . . . nl ∩ j) be the probability of observing the output (n1, . . . , nl) and
detecting j photons in all m modes, with j ∈ {c, . . . , n}. When postselecting on no photons being lost, we
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are computing
p(n1 . . . nl ∩ n) = (1− η)np(n1 . . . nl|n).

However, if we compute p(n1 . . . nl) without caring about whether no photon is lost, we end up computing

pη(n1...nl) =
∑

i=0,...,n−c

(1− η)n−iηip(n1 . . . nl|n− i). (42)

Extrapolation techniques consist of estimating pη(n1 . . . nl) for different values {ηi} of loss, then deducing
from these an estimate of p(n1 . . . nl|n). One example of how this can be done is the Richardson extrapolation
technique, at the heart of the zero noise extrapolation (ZNE) approach [33]. Interestingly, it is possible to
derive a condition indicating that these techniques offer no advantage over postselection in terms of estimating
p(n1 . . . nl|n). Let η = miniηi, and suppose we collect O( 1

ϵ2max
) samples from our device, where 0 < ϵmax ≤ 1,

then O
( (1−η)n

ϵ2max

)
of these will be samples where no loss has occurred. Using these postselected samples one

can compute, with high confidence, an estimate p̃(n1 . . . nl|n) of p(n1 . . . nl|n) such that |p̃(n1 . . . nl|n) −
p(n1 . . . nl|n)| ≤ ϵmax√

(1−η)n
, by Hoeffding’s inequality. For Richardson extrapolation, in appendix 21 we use

O
(
n 1

ϵ2max

)
samples, and compute an estimate p̃extrap(n1 . . . nl|n), with Eextrap := |p̃extrap(n1 . . . nl|n) −

p(n1 . . . nl|n)| the error incurred. We then explicitly compute M(Eextrap), an upper bound on Eextrap, in
terms of ϵmax and the ηi’s, and show the following

Theorem 13. For all n ≥ n0, with n0 a positive integer, M(Eextrap) ≥ ϵmax√
(1−η)n

.

Thm. 13, proven in appendix 21, is strong evidence that techniques based on Richardson extrapolation
offer no advantage over postselection. Our main technical contribution in proving Thm. 13 is to link
determining the error of ZNE methods to computing the norm of the inverse of a Vandermonde matrix
whose entries are determined by η, we then use existing results to upper bound this norm [65]. Furthermore,
in appendix 21 we also provide numerical evidence to support this conclusion.

12 On normalising the mitigated distribution

The postprocessing techniques we have presented thus far take as input a set of recycled probabilities
{pR(snl )}l and output a set of mitigated values {pmit(s

n
l )}l, or a subset of these values. We have made the

distinction between values and probabilities, as the outputs {pmit(s
n
l )}l satisfy pmit(s

n
l ) > 0 but are not

normalised in general. That is,
∑

l pmit(s
n
l ) = N with no guarantee that N = 1. Analytical and numerical

calculations performed in previous sections have shown that, with high probability,

||p⃗mit − p⃗id||1 ≤ ||p⃗post − p⃗id||1,

and |pmit(s
n
l )−p(snl )| ≤ |ppost(snl )−p(snl )| as long as we are in a sampling regime defined by eqn. (23). p⃗mit,

p⃗id, and p⃗post, are vectors containing respectively the mitigated values, the ideal n–photon probabilities, and
the probabilities obtained by postselection, and ||.||1 is the usual l1 norm, ||v⃗||1 :=

∑
i |vi|.

In practice, one is usually interested in computing the expectation value of some observable O, defined
as ⟨O⟩ =

∑
i piwi, where wi are some weights, and {pi} a subset of probabilities of the quantum circuit.

In this case we can replace the pi’s by the unnormalised mitigated values and obtain guarantees similar to
those stated above. However, if we are interested in mitigating the entire distribution, then we would need
to normalise p⃗mit. The easiest way to do this, and what we do for our numerical simulations, is to define,
p⃗mit,nor := 1

N p⃗mit. One can easily check that ||p⃗mit,nor||1 = 1, and therefore that it is a vector of normalised
probabilities.

We will show that the normalised probabilities p⃗mit,nor exhibit similar guarantees to the unnormalised
mitigated values p⃗mit, albeit in a sampling regime which is slightly more restrictive than eqn. (23). We
believe, however, that this restriction is just an artifact of the proof technique. Let q⃗m be a vector of positive
values which is a closest (in l1-norm) normalised vector to p⃗mit. More precisely, q⃗m satisfies

||q⃗m − p⃗mit||1 = min
q⃗
∣∣||q⃗||1=1

||q⃗ − p⃗mit||1.

An immediate observation, by definition, is that

||q⃗m − p⃗mit||1 ≤ ||p⃗id − p⃗mit||1.

We now prove
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Lemma 14. A valid choice of q⃗m is q⃗m = p⃗mit,nor.

Proof. ||p⃗mit,nor − p⃗mit||1 = ||p⃗mit,nor − p⃗mit,norN ||1 = |1−N | =
∣∣1− ||p⃗mit||1

∣∣.
For any normalized vector of positive values q⃗, we can use a reverse triangle inequality to show ||q⃗ −

p⃗mit||1 ≥
∣∣||q⃗||1 − ||p⃗mit||1

∣∣ ≥ ∣∣1 − ||p⃗mit||1
∣∣ ≥ ||p⃗mit,nor − p⃗mit||1. Thus p⃗mit,nor is a valid choice of q⃗m, by

definition of q⃗m.

This lemma, together with the previous observations can be used to show

||p⃗mit,nor − p⃗id||1 ≤ ||p⃗mit − p⃗id||1 + ||p⃗mit,nor − p⃗mit||1 ≤ 2||p⃗mit − p⃗id||1.

We demand that the normalised mitigated probabilities be closer to the ideal probabilities than their
postselected counterparts, this imposes the constraint

||p⃗mit − p⃗id||1 ≤
1

2
||p⃗post − p⃗id||1.

Using similar analysis as for the linear solving technique in section 8 allows us to derive a condition for the
above constraint to hold. Namely, the following should hold with high probability

Nk

(
N ′

k

Nk
M
(
ϵbias,snl

)
+ M

(
ϵstat.,snl

))
≤ 1

2
M
(
ϵpost.stat.,snl

)
.

This is a slightly more restrictive condition than eqn. (23), since the postselection error is divided by a factor
of 2. Nevertheless, this spans a sampling regime where we expect the normalised mitigated distribution to
be closer, in l1-norm, than the postselected probabilities to the ideal probabilities.

13 Prospects of improving bounds on the interference terms

A natural question is whether one can tighten the bounds, beyond what is guaranteed from Thm. 3, on
the error term ϵbias,snl incurred by replacing the interference term Isnl ,k with its average over the Haar
measure. Indeed, Thm. 3 guarantees with high confidence that for Haar random matrices ϵbias,snl =

O( 1
poly(n) ). It would be interesting to get high confidence guarantees that ϵbias,snl = O( 1

exp(n) ). Ultimately,

because ϵbias,snl determines the precision up to which recycling mitigation can still outperform postselection

(see linear solving section), showing that ϵbias,snl = O( 1
exp(n) ) would guarantee that recycling mitigation

outperforms postselection for up to exponentially small additive errors. This additive error on estimating
output probabilities of linear optical circuits is beyond what can be simulated efficiently classically.

In this section, we explore one attempt to tighten the bound on ϵbias,snl . We will work in the no-collision

regime where m ≫ n2, so that we can approximate output probabilities as moduli squared of permanents
of i.i.d. Gaussian matrices, with appropriate rescaling. In this regime, the interference term Isnl ,k can be
thought of as a sum of N ′

k random variables

Xi :=
|Per(Gi)|2

mn
, (43)

for i ∈ {1, . . . , N ′
k}, where Gi is an i.i.d. Gaussian n × n matrix with entries chosen independently from

NC(0, 1). Note that for some i and j, it is possible that Gi or Gj share some rows in common, or are even
equal. This corresponds to the fact that the interference term is in general a sum of probabilities of output
bit strings sharing some overlap (meaning their associated permanents have common rows [6]). This means
that the random variables Xi need not all be independent. Nevertheless, we will look at a sum of independent
random variables Xi having the form of eqn. (43). Our reason for working with an independent sum is that
it simplifies the analysis, while giving an intuition about what to expect in the more general case of possibly
dependent Xi’s. We will further comment on this point below.

In the remainder of this section, we will show that a poly(n) sized sum of independent Xi’s distributed
according to eqn. (43) does not verify a sufficient condition, the Lyapunov condition [66], for the central
limit theorem (CLT) to hold as n → ∞. Our proof relies on a conjecture of [61] on the expectation value
E(Xt

i ) over the set of Gaussian matrices Gi, where t ∈ N and t > 2. We also provide numerical evidence
that the distribution of this sum is indeed not a normal distribution. Our result shows that it is non-trivial
to improve the bound on ϵbias,snl by trying to link Isnl ,k to some known probability distribution, which was
our initial motivation for trying to prove a CLT convergence result.
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Let Yi, i ∈ {1, . . . , N} be real, independent and identically distributed, random variables satisfying
E(Yi) = 0, where E(.) denotes expectation value over the distribution of the Yi’s. Let

SN :=
∑

i=1,...,N

Yi, (44)

and

σN :=
√
E(S2

N ). (45)

Furthermore, for any r > 2 and r ∈ N let

E(|Y |r) := E(|Yi|r), (46)

for all i ∈ {1, . . . , N}. The Lyapunov condition can be stated in this case as [66]

Theorem 15. (Lyapunov condition) If for some fixed r > 2,

N
E(|Y |r)

σr
N

→ 0, (47)

then as N →∞
SN

σN
→d N (0, 1). (48)

Where →d denotes convergence of the distribution of SN

σN
.

For dependent identically distributed random variables, which correspond to the probabilities constituting
the interference term, the Lyapunov condition becomes stricter to verify. In particular, for a specific type of
dependence, M(n)-dependent random variables [66], the numerator in eqn. (47) is multiplied by M(n)r−1,
where M(n) > 1 and M(n) ∈ N is an integer whose value can depend on n [66]. One would expect, as
mentioned earlier, that the non-convergence results established here for the case of independent random
variables hold as well for the dependent case, although we do not formally prove this.

A final ingredient we will use is the following conjecture appearing in [61] (Section 4.8, Conjecture 4.12),
and whose truth is supported by numerical simulations performed in [61].

Conjecture 16. For n, t > 2 , n, t ∈ N

EG∈Gn×n(|Per(G)|2t) = O

(
(n!)2t(t!)2n

(nt)!

)
. (49)

Where EG∈Gn×n
(.) is the expectation value over the set of n × n Gaussian matrices with entries from

NC(0, 1). For simplicity, we will henceforth denote EG∈Gn×n
(.) as E(.). Let

Yi := Xi −
n!

mn
, (50)

where Xi are as defined in eqn. (43), and are independent, identically distributed random variables, i ∈
{1, . . . , N}. It is immediate to observe that E(Yi) = 0. We show the following in appendix 22.

Theorem 17. For all r > 2, n ≫ 1, and for the independent, identically distributed random variables Yi
defined in eqn. (50), we have that

N
E(|Y |r)

σr
N

≥ O
( β(r)n

N
r
2−1

)
, (51)

where β(r) > 1 is a positive real number dependent on r.

When N = poly(n), Thm. 17 shows that Lyapunov condition is not satisfied. Although this condition is
sufficient, but not necessary, for the CLT to hold we provide numerical evidence that N = n2, N = n3, and
N = n4 sized sums of i.i.d. Gaussian matrices do not converge to a normal distribution for n ∈ {2, 3, 4, 5}.
We plot our results for N = n3 and n ∈ {2, 3, 4, 5} in Figures 6 (a)-(d).

It is interesting to note that in Thm. 17, when N = O(exp(n)), the lower bound on the Lyapunov
condition can converge to 0 as n → ∞. Marginal probabilities corresponding to a large number of lost
photons are sums of, possibly exponential, numbers of probabilities having the form of eqn. (43). Our result
provides evidence that these marginals are asymptotically normally distributed, and therefore efficient to
sample from. Although low order as well as high loss marginals of boson sampling are known to be easy to
compute and sample from [58, 67, 17], our result might provide a new perspective on simulating lossy boson
sampling marginals by linking these to normally distributed random variables.
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(a) (b)

(c) (d)

Figure 6: (a)-(b) Comparison of distributions of SN

σN
and the normal N (0, 1) distribution. (a) Distribution

of SN

σN
compared to the normal N (0, 1) distribution. n = 2, N = n3, and 20000 samples of i.i.d. Gaussian

matrices were used to construct the distribution of SN

σN
. (b) Distribution of SN

σN
compared to the normal

N (0, 1) distribution. n = 3, N = n3, and 20000 samples of i.i.d. Gaussian matrices were used to construct
the distribution of SN

σN
. (c) Distribution of SN

σN
compared to the normal N (0, 1) distribution. n = 4, N = n3,

and 20000 samples of i.i.d. Gaussian matrices were used to construct the distribution of SN

σN
. (d) Distribution

of SN

σN
compared to the normal N (0, 1) distribution. n = 5, N = n3, and 20000 samples of i.i.d. Gaussian

matrices were used to construct the distribution of SN

σN
.

14 Discussion and open questions

In summary, we have presented a family of techniques for mitigating the effects of photon loss on the outputs
of linear optical quantum circuits in the discrete variable setting. We provide analytical and numerical
evidence that these techniques outperform postselection - currently the standard method of dealing with loss
in linear optical circuits.

We first described a novel construction of objects that we refer to as recycled probabilities, each of
which may be decomposed into a convex combination of ideal probability and an interference term. The
deviation of interference terms around their expected values (both for circuits implementing arbitrary unitary
matrices and unitary matrices chosen at random over the Haar measure) was then bounded with high
confidence. This allowed the derivation of analytical bounds on the accuracy with which the ideal probability
signal may be extracted from recycled probabilities. A number of methods for classically postprocessing the
recycled probabilities to generate loss-mitigated outputs were presented, namely linear solving, linear solving
with dependency, linear extrapolation, and exponential extrapolation. Analytical worst-case performance
guarantees were given, indicating that with high confidence and in the regime of high photon loss rate
(η > 0.5) these methods can outperform postselection. Furthermore, numerical evidence was provided which
also strongly indicates that there is a regime where the loss mitigation techniques outperform postselection.
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To demonstrate how the analytical statements may be related to a real experiment, numerical experiments
were performed for a computation of size m = 100 modes, n = 10 photons with a uniform probability of
photon loss with rate η = 0.8 and the results were found to be in agreement with the analytical performance
guarantee. Next, evidence was provided that, in the DVLOQC setting, photon loss mitigation techniques
based on zero noise extrapolation will not outperform postselection for any loss rate. Finally we discussed
how these techniques may be applied to mitigate both expectation values of observables as well as full
distributions, and the question of whether the interference term bounds for Haar random unitaries may be
improved upon.

There are many potential avenues and open questions that would further develop the work presented
here. The first of these is extending our techniques to the collision regime (where more than one photon
can occupy each mode). The construction of the recycled probabilities, and consequently the mitigated
probabilities extends straightforwardly to this regime. However, a number of the proof techniques, such as
those used in computing expectation values of the interference terms, do not. One of the main technical
reasons are that in the collision regime, the probabilities of Haar random circuits are no longer given by
permanents of i.i.d. Gaussians [6]. Although [61] gives a closed-form expression of the expectation (over the
Haar measure) of permanents minors of Haar random matrices, thereby overcoming the previously mentioned
issue, however this expression does not take into account repeated rows in the minors, which one typically
encounters in the collision regime [6]. Another reason is because L(snl ) has a cardinality which varies when
snl is a bit string with collisions. For example, if snl = (n, 0, . . . , 0) , then |L(snl )| = 1, whereas when snl is a
no-collision bit string |L(snl )| =

(
n
k

)
, for any such bit string. We conjecture that the proofs derived here, or

similar versions of them, should hold in the collision regime as well.
Another set of questions arises when considering linear solving with dependency. Firstly, as information

about the dependency of interference terms on ideal probabilities within recycled probabilities can be used
to enhance the numerical performance of linear solving, it would be interesting to see whether this can be
formally linked to the phenomenon of non-uniformity of the marginal probabilities in distributions generated
by linear optical circuits. As this might explain why the dk term is always observed to be positive in our
numerics. Secondly, the bias error bound for linear solving with dependency is very similar to the bound for
linear solving without dependency, however, we expect linear solving with dependency to have a lower bias
error than without including dependency. The better performance of linear solving with dependency term
over linear solving without dependency can be seen in our simulations, as for dk > 0 the set of interference
terms is positively correlated with the set of ideal probabilities with a magnitude quantified by dk. Hence
the following conjecture.

Conjecture 18. The following inequality holds for distributions generated by linear optical circuits constructed
from both Haar random and non-Haar random matrices for dk ≥ 0 and k ≤ n,

EDk
R

(∣∣∣∣∣Isnl ,k −
((

m−n+k
k

)
− 1
)(

m−n+k
k

) punif

∣∣∣∣∣
)

≥ EDk
R

(∣∣∣∣∣Isnl ,k −
((

m−n+k
k

)
− 1
)(

m−n+k
k

) (
(1− dk)punif + dkp(s

n
l )

)∣∣∣∣∣
)
.

(52)

We believe this is true due to the strong numerical evidence that linear solving with dependency outperforms
linear solving without dependency. Furthermore, as mentioned previously, we conjecture that dk ≥ 0 for any
linear optical circuit.

In all numerical simulations it was observed that low loss statistics give better results than high loss ones,
this fact is also implied by Lemma 1. This leads us to the two following conjectures.

Conjecture 19.
(
m−n+k

k

)
|ϵbias,snl | is a monotonically increasing function with k. Similarly, the total

variation distance of the mitigated output distribution from the ideal distribution monotonically increases
with increasing k.

Conjecture 20. The dependency term dk is monotonically decreasing with increasing k.

Another interesting question, motivated by finding ways to eliminate the bias error in our introduced
mitigation techniques is whether one can exactly represent an n–photon probability as a sum of n−k–photon
probabilities. This can be done for the case of minors of unitary matrices with real and positive entries, such
as those used to solve graph problems in DVLOQC [22]. As an example, consider a Laplace expansion of

26



the permanent of an n× n minor Us,t := (uij)i,j∈{1,...,n} of a linear optical unitary U , this reads

Per(Us,t) = u11Per


u22 . . . u2n
. . .
. . .
. . .
un2 . . . unn

+ · · ·+ u1nPer


u21 . . . u2,n−1

. . .

. . .

. . .
un1 . . . un,n−1

 .

If Us,t is composed of positive real entries, then Per(Us,t) is proportional to the square root of a probability√
p(s|t) of a certain output of linear optical circuit U with n input photons [6]. In turn, each of the

permanents of n − 1 × n − 1 matrices on the right hand side of the above equation is proportional to the
square root of a probability of a certain output of a linear optical circuit with n− 1 input photons. Thus, in
the case of minors with positive real entries, there is an exact way to represent an n–photon probability as a
sum of n− 1 photon probabilities. In this case as well, the process can be generalised, by successive Laplace
expansions, to expressing n–photon probabilities exactly as a sum of n− k–photon probabilities.

This idea of exactly representing n–photon probabilities as sums of n−k–photon probabilities is interesting
since, in the presence of photon loss, n−k–photon experiments in general produce more converged statistics
than n–photon experiments, for a comparable number of runs of the experiments in both cases. Furthermore,
since the n–photon probabilities are exactly expressible as a sum of n− k–photon probabilities, one can use
the n − k–photon experiments to compute the n–photon probabilities and indefinitely (because of lower
statistical error) outperform postselection. It is an interesting question to determine whether similar results
hold for broader classes of matrices.
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Variational Quantum Algorithms: A Quantum Optimal Transport Approach. PRX Quantum,
4(1):010309, January 2023. Publisher: American Physical Society.

[30] Ryuji Takagi, Hiroyasu Tajima, and Mile Gu. Universal Sampling Lower Bounds for Quantum Error
Mitigation. Physical Review Letters, 131(21):210602, November 2023. Publisher: American Physical
Society.

[31] Yihui Quek, Daniel Stilck França, Sumeet Khatri, Johannes Jakob Meyer, and Jens Eisert. Exponentially
tighter bounds on limitations of quantum error mitigation. February 2023. arXiv:2210.11505 [math-ph,
physics:quant-ph].

[32] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan. Hybrid Quantum-Classical Algorithms
and Quantum Error Mitigation. Journal of the Physical Society of Japan, 90(3):032001, March 2021.
Publisher: The Physical Society of Japan.

[33] Suguru Endo, Simon C. Benjamin, and Ying Li. Practical Quantum Error Mitigation for Near-Future
Applications. Physical Review X, 8(3):031027, July 2018. Publisher: American Physical Society.

[34] Tudor Giurgica-Tiron, Yousef Hindy, Ryan LaRose, Andrea Mari, and William J. Zeng. Digital zero
noise extrapolation for quantum error mitigation. In 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), pages 306–316, October 2020.

[35] Andre He, Benjamin Nachman, Wibe A. de Jong, and Christian W. Bauer. Zero-noise extrapolation for
quantum-gate error mitigation with identity insertions. Physical Review A, 102(1):012426, July 2020.
Publisher: American Physical Society.

[36] Armands Strikis, Dayue Qin, Yanzhu Chen, Simon C. Benjamin, and Ying Li. Learning-Based Quantum
Error Mitigation. PRX Quantum, 2(4):040330, November 2021. Publisher: American Physical Society.

[37] Andrea Mari, Nathan Shammah, and William J. Zeng. Extending quantum probabilistic error
cancellation by noise scaling. Physical Review A, 104(5):052607, November 2021. Publisher: American
Physical Society.

[38] Ewout van den Berg, Zlatko K. Minev, Abhinav Kandala, and Kristan Temme. Probabilistic
error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Nature Physics,
19(8):1116–1121, August 2023. Number: 8 Publisher: Nature Publishing Group.

[39] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O’Brien. Low-cost error mitigation by symmetry
verification. Physical Review A, 98(6):062339, December 2018. Publisher: American Physical Society.

[40] R. Sagastizabal, X. Bonet-Monroig, M. Singh, M. A. Rol, C. C. Bultink, X. Fu, C. H. Price, V. P.
Ostroukh, N. Muthusubramanian, A. Bruno, M. Beekman, N. Haider, T. E. O’Brien, and L. DiCarlo.
Experimental error mitigation via symmetry verification in a variational quantum eigensolver. Physical
Review A, 100(1):010302, July 2019. Publisher: American Physical Society.

29



[41] Thomas E. O’Brien, Stefano Polla, Nicholas C. Rubin, William J. Huggins, Sam McArdle, Sergio Boixo,
Jarrod R. McClean, and Ryan Babbush. Error Mitigation via Verified Phase Estimation. PRX Quantum,
2(2):020317, May 2021. Publisher: American Physical Society.

[42] Rawad Mezher, James Mills, and Elham Kashefi. Mitigating errors by quantum verification and
postselection. Physical Review A, 105(5):052608, May 2022. Publisher: American Physical Society.

[43] Bálint Koczor. Exponential Error Suppression for Near-Term Quantum Devices. Physical Review X,
11(3):031057, September 2021.

[44] Bálint Koczor. The dominant eigenvector of a noisy quantum state. New Journal of Physics,
23(12):123047, December 2021. Publisher: IOP Publishing.

[45] William J. Huggins, Sam McArdle, Thomas E. O’Brien, Joonho Lee, Nicholas C. Rubin, Sergio Boixo,
K. Birgitta Whaley, Ryan Babbush, and Jarrod R. McClean. Virtual Distillation for Quantum Error
Mitigation. Physical Review X, 11(4):041036, November 2021. Publisher: American Physical Society.

[46] Kaoru Yamamoto, Suguru Endo, Hideaki Hakoshima, Yuichiro Matsuzaki, and Yuuki Tokunaga. Error-
Mitigated Quantum Metrology via Virtual Purification. Physical Review Letters, 129(25):250503,
December 2022. Publisher: American Physical Society.

[47] Jarrod R. McClean, Zhang Jiang, Nicholas C. Rubin, Ryan Babbush, and Hartmut Neven. Decoding
quantum errors with subspace expansions. Nature Communications, 11(1):636, January 2020. Number:
1 Publisher: Nature Publishing Group.

[48] Nobuyuki Yoshioka, Hideaki Hakoshima, Yuichiro Matsuzaki, Yuuki Tokunaga, Yasunari Suzuki, and
Suguru Endo. Generalized Quantum Subspace Expansion. Physical Review Letters, 129(2):020502, July
2022. Publisher: American Physical Society.

[49] Bo Yang, Nobuyuki Yoshioka, Hiroyuki Harada, Shigeo Hakkaku, Yuuki Tokunaga, Hideaki Hakoshima,
Kaoru Yamamoto, and Suguru Endo. Dual-GSE: Resource-efficient Generalized Quantum Subspace
Expansion. September 2023. arXiv:2309.14171 [quant-ph].

[50] Yasuhiro Ohkura, Suguru Endo, Takahiko Satoh, Rodney Van Meter, and Nobuyuki Yoshioka.
Leveraging hardware-control imperfections for error mitigation via generalized quantum subspace.
March 2023. arXiv:2303.07660 [quant-ph].

[51] Filip B. Maciejewski, Zoltán Zimborás, and Micha l Oszmaniec. Mitigation of readout noise in near-
term quantum devices by classical post-processing based on detector tomography. Quantum, 4:257,
April 2020. arXiv:1907.08518 [quant-ph].

[52] Andrew Arrasmith, Andrew Patterson, Alice Boughton, and Marco Paini. Development and
Demonstration of an Efficient Readout Error Mitigation Technique for use in NISQ Algorithms. April
2023. arXiv:2303.17741 [quant-ph].

[53] James Mills, Debasis Sadhukhan, and Elham Kashefi. Simplifying errors by symmetry and
randomisation. May 2023. arXiv:2303.02712 [quant-ph].

[54] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gambetta. Mitigating
measurement errors in multiqubit experiments. Physical Review A, 103(4):042605, April 2021. Publisher:
American Physical Society.

[55] Adam Taylor, Gabriele Bressanini, Hyukjoon Kwon, and M. S. Kim. Quantum error cancellation in
photonic systems – undoing photon losses. March 2024. arXiv:2403.05252 [quant-ph].

[56] Yihui Quek, Daniel Stilck França, Sumeet Khatri, Johannes Jakob Meyer, and Jens Eisert. Exponentially
tighter bounds on limitations of quantum error mitigation. February 2023. arXiv:2210.11505 [math-ph,
physics:quant-ph].

[57] Deepesh Singh, Boxiang Fu, Gopikrishnan Muraleedharan, Chen-Mou Cheng, Nicolas Roussy Newton,
Peter P. Rohde, and Gavin K. Brennen. Proof-of-work consensus by quantum sampling. May 2023.
arXiv:2305.19865 [quant-ph, q-fin].

30



[58] Micha l Oszmaniec and Daniel J. Brod. Classical simulation of photonic linear optics with lost particles.
New Journal of Physics, 20(9):092002, September 2018. Publisher: IOP Publishing.

[59] Thomas M. Stace and Sean D. Barrett. Error correction and degeneracy in surface codes suffering loss.
Physical Review A, 81(2):022317, February 2010. Publisher: American Physical Society.
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15 Results on useful regimes of photon loss

15.1 Proof of Lemma 1

We now prove Lemma 1 from the main text:

Let k = n − r, there is a classical algorithm running in time O(2r−1r(
(

n
n−r

)
)2) which exactly computes∑

sn−k
i ∈L(snl )

p(sn−k
i ).

Proof. Each permanent Per(Xi) in p(sn−k
i ) can be computed exactly via Ryser’s algorithm [68] in time

O(2r−1r). Thus, each p(sn−k
i ) can be computed in O(

(
n

n−r

)
2r−1r) time. Further, we need O(

(
n

n−r

)2
2r−1r)

time to compute all the p(sn−k
i )’s, and therefore to compute

∑
sn−k
i ∈L(snl )

p(sn−k
i ), by an iterative approach

where we first set a variable sum = 0, then iteratively add each computed p(sn−k
i ) to sum as soon as we

compute it.

16 Statistical error bounds for probability estimators

We now give upper bounds for the statistical error of the estimators of the ideal probabilities from postselection,
and for the estimators of the recycled probabilities. These are used in later proofs.

16.1 Proof of Lemma 21

Lemma 21. The statistical error of each postselected probability, ϵhoeff,p̃0(snl )
, is upper bounded

|ϵhoeff,p̃0(snl )
| ≤ O

(√ (
m
n

)
(1− η)nNtot

)
.

Proof. For each sample w ranging from 1 to Nest,0 assign a value 1 to a random variable Xw ∈ {0, 1} if
sample w ∈ L(snl ), and assign the value 0 to Xw otherwise. The estimator p̃0(sni ) of p0(sni ) is then

p̃0(snl ) =

∑
wXw

Nest,0
.

with
|p̃0(snl )− p0(snl )| ≤ |ϵhoeff,p̃0(snl )

|.

There are
(
m
n

)
postselected probabilities, and so if we use Nest,0 ≈ η0(1−η)n−0Ntot

(m
n)

samples to estimate each

p0(snl ), Hoeffding’s inequality [26] guarantees with high confidence

|ϵhoeff,p̃0(snl )
| ≤ O

(
1√
Nest,0

)
= O

(√ (
m
n

)
(1− η)nNtot

)
.

16.2 Proof of Lemma 22

Lemma 22. The statistical error of each recycled probability, ϵhoeff,p̃k
R(snl )

, is upper bounded

|ϵhoeff,p̃k
R(snl )

| ≤ O
(

1(
m−n+k

k

)√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
.

Proof. The probability of losing k out of n photons is

Pr(k) =

(
n

k

)
ηk(1− η)n−k,
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and so the number of samples from n−k–photon outputs is Ntot,k ≈
(
n
k

)
Ntotη

k(1−η)n−k, for k ∈ {0, . . . , n}.
There are

(
m
n

)
recycled probabilities, and to guarantee the independence required for Hoeffding’s inequality

we use Nest,k ≈
(n
k)ηk(1−η)n−kNtot

(m
n)

samples to estimate each pkR(snl ). For each sample w ranging from 1 to

Nest,k assign the value 1 to a random variable Xw ∈ {0, 1} if sample w ∈ L(snl ), and assign the value 0 to
Xw otherwise. The estimator p̃kR(sni ) of pkR(sni ) is then

p̃kR(snl ) =

∑
wXw(

m−n+k
k

)
Nest,k

,

where the
(
m−n+k

k

)−1
term is the normalisation factor detailed in eqn. 9. Finally, Hoeffding’s inequality

guarantees with high confidence

|ϵhoeff,p̃k
R(snl )

| ≤ O
(

1(
m+n−k

k

)√
Nest,k

)
= O

(
1(

m−n+k
k

)√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
,

where
|p̃kR(snl )− pkR(snl )| ≤ |ϵhoeff,p̃k

R(snl )
|.

17 Interference deviation bounds

17.1 Proof of Lemma 2

We now prove Lemma 2 from the main text:

For all snl , we have

EX∈Gn×n

(
Isnl ,k

)
= punif

(
1 +O(m−1)

)
≈ punif .

with EX∈Gn×n
(.) the expectation value over the set Gn×n.

Proof. Let N ′
k :=

((
m−n+k

k

)
− 1
)(

n
k

)
. For k > 0, Isnl ,k is a sum of N ′

k := Nk−
(
n
k

)
terms of the form p(snj ) 1

Nk
.

We can thus rewrite

Isnl ,k =
∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1

N ′
k

.

From [25], when m ≫ n2, and U is Haar random, which corresponds to Boson sampling unitaries, each

p(snj ) ≈ |Per(Xi)|2
mn , where Xi is an n×n matrix of i.i.d. Gaussian random variables whose entries chosen from

the complex normal distribution NC(0, 1) of mean 0 and variance 1. Per(.) denotes the matrix permanent.
Furthermore, from [25, 61], we know that

EX∈Gn×n
(|Per(X)|2) = n!,

where EX∈Gn×n(.) is the expectation value over the set of n×n Gaussian matrices with entries from NC(0, 1).
We can reexpress

Isnl ,k =
1

N ′
k

∑
i

|Per(Xi)|2

mn
.

Now, from the linearity of the expected value

EX∈Gn×n
(Isnl ,k) = EX∈Gn×n

(
1

N ′
k

∑
i

|Per(Xi)|2

mn

)
=

1

mnN ′
k

∑
i

EXi∈Gn×n
(|Per(Xi)|2) =

n!

mn
,

where the rightmost part follows from the fact that EXi∈Gn×n(|Per(Xi)|2) = n!, for all i.
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Now punif =
(
m
n

)−1
, and (

m

n

)−1

=
n!(m− n)!

m!

=
n!

(m)(m− 1) . . . (m− n+ 1)

=
n!

(mn +O(mn−1))

This leads to

n!

mn
=

(
m

n

)−1
(mn +O(mn−1))

mn
,

which then becomes

n!

mn
= punif

(
1 +O(m−1)

)
.

Which was the result to be proved.

17.2 Proof of Thm. 3

We now prove Lemma 3 from the main text:

The deviation of interference terms around punif for Haar random matrices is bounded

Pr
(∣∣Isnl ,k − punif ∣∣ ≥ ϵbias,snl ) ≤ np2unif

ϵ2bias,snl
,

where ϵbias,snl is a positive real number.

Proof. Let X :=
∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l p(s
n
j ), M :=

(
n
k

)
(
(
m−n+k

k

)
−1). For simplicity, relabel p(snj ) :=

pi, so that X can be rewritten as X =
∑

i=1,...,M pi is a sum of, possibly dependent, random variables

pi and EU (pi) := EU (p) = n!
mn ≈ punif , where EU (pi) is the expectation value over the Haar measure

of the m-mode unitary group U(m). From [6], we know that this expectation value is given by n!
mn in

the no-collision regime. Let σ2 = Var(X) = EU (X2) − (EU (X))2. Expanding out, we get that σ2 =
MEU (p2)−M(EU (p))2+2

∑
i

∑
j>i Cov(pi, pj), where Cov(pi, pj) = EU (pipj)−EU (pi)EU (pj) , and EU (p2) =

EU (p2i ) = (n+1)!n!
m2n ≈ (n+ 1)p2unif , for all i, and this is from [6]. Using the Cauchy-Schwarz inequality,

|Cov(pi, pj)| ≤
√
Var(pi)Var(pj) ≤

√
(Var(p))2 ≤ Var(p) ≤ EU (p2)− (EU (p))2

Thus,

σ2 ≤M(EU (p2)−(EU (p))2+2
∑
i

∑
j>i

|Cov(pi, pj)| ≤M(EU (p2)−(EU (p))2)+M(M−1)(EU (p2)−(EU (p))2) ≤

M2(EU (p2)− (EU (p))2) ≤M2np2unif .

Finally, using Chebyshev’s inequality we have

Pr
(∣∣X − EU (X)

∣∣ ≥ ϵbias,snl ) ≤ σ2

ϵ2bias,snl
,

and noting that EU (X) = Mpunif =
∑

i EU (p) from linearity of expectation value, then dividing both sides

of |X − EU (X)| ≥ ϵbias,snl by M and redefining ϵbias,snl :=
ϵbias,sn

l

M , and finally using σ2 ≤M2np2unif , we get

Pr
(∣∣Isnl ,k − punif ∣∣ ≥ ϵbias,snl ) ≤ np2unif

ϵ2bias,snl
.

This completes the proof.
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17.3 Proof of Lemma 4

We now prove Lemma 4 from the main text:

EDk
R

(
Isnl ,k

)
= punif ,

where EDk
R

(.) denotes the expectation value over Dk
R.

Proof. Recalling that

pR(snl ) =
p(snl )(
m−n+k

k

) +
N ′

k

Nk
Isnl ,k,

and

Isnl ,k =
∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1((

m−n+k
k

)
− 1
)(

n
k

) .

EDk
R

(
Isnl ,k

)
=

1(
m
n

) (m
n)∑

l=1

∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1((

m−n+k
k

)
− 1
)(

n
k

)
=

1(
m
n

)((
m−n+k

k

)
− 1
)(

n
k

) (m
n)∑

l=1

∑
sn−k
i ∈L(snl )

( ∑
snj ∈G(sn−k

i )

p(snj )− p(snl )

)

=
1(

m
n

)((
m−n+k

k

)
− 1
)(

n
k

)( (m
n)∑

l=1

∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i )

p(snj )−
(m
n)∑

l=1

(
n

k

)
p(snl )

)

=
1(

m
n

)((
m−n+k

k

)
− 1
)(

n
k

)( (m
n)∑

l=1

(
m− n+ k

k

)(
n

k

)
p(snl )−

(m
n)∑

l=1

(
n

k

)
p(snl )

)

=
1(

m
n

)((
m−n+k

k

)
− 1
)(

n
k

)((m− n+ k

k

)(
n

k

)
−
(
n

k

))
= punif .

Where between the third and fourth lines we have used the cardinality of the sets |L(snl )| =
(
n
k

)
and

|G(sn−k
i )| =

(
m−n+k

k

)
, and between the fourth and fifth lines that

∑(m
n)

l=1 p(s
n
l ) = 1.

17.4 Proof of Thm. 5

We now prove Thm. 5 from the main text:

The deviation of interference terms around punif for an arbitrary matrix is bounded

Pr
(∣∣Isnl ,k − punif ∣∣ ≥ ϵbias,snl ) ≤ punif

ϵ2bias,snl
,

where ϵbias,snl is a positive real number.

Proof. Let X := Isnl ,k be a random variable defined over the uniform distribution of bit strings snl that

returns interference terms as values, µ := Esnl
(X) = punif = 1

(m
n)

, with Esnl
(.) denoting the expectation

value of X over the uniform distribution of snl , it is equal to punif from lemma 4. Let σ2 := Var(X). From
Chebyshev’s inequality,

Pr(|X − µ| ≥ ϵbias,snl ) ≤ σ2

ϵ2bias,snl
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Let M := maxsnl (X), m := minsnl (X), and note that M ≤ 1 and m ≥ 0. We now use the Bhatia-Davis
inequality [62]

σ2 ≤ (M − µ)(µ−m)

with the upper and lower bounds on M and m to obtain

σ2 ≤ (1− punif )(punif ) ≤ punif .

Replacing this in Chebyshev’s inequality completes the proof.

17.5 Proofs of Lemmas 6 and 7

Both proofs will make use of Jensen’s inequality [69]:

Theorem 23. (Jensen’s inequality) Let f(x) be a convex function on (a, b) and suppose a < x1 ≤ x2 ≤
. . . ≤ xn < b. Then

f(x1) + f(x2) + . . .+ f(xn)

n
≥ f

(x1 + x2 + . . .+ xn
n

)
.

Equality holds if, and only if, x1 = x2 = . . . = xn.

We now prove Lemma 6 from the main text:

The variance of the set of recycled probabilities is less than or equal to the variance of the set of ideal
probabilities, that is

Var
(
{p(snl )}l

)
≥ Var

(
{pkR(snl )}l

)
.

Proof. Let µ = punif and f(x) = (x− µ)2. Defining the variance of the ideal n output photon distribution
as

Var
(
{p(snl )}l

)
:=

(
m

n

)−1∑
l

(p(snl )− µ)2,

and the variance of the n− k output photon recycled distribution as

Var
(
{pkR(snl )}l

)
:=

(
m

n

)−1∑
l

(pkR(snl )− µ)2.

These definitions are equivalent to the variance of random variables uniformly distributed over the set of
bit strings {snl } that return ideal n output photon probabilities in the first case, and n − k output photon
recycled probabilities in the second case. Recall that the recycled probabilities are defined by the expression

pkR(snl ) :=
∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i )

p(snj )
1(

m−n+k
k

)(
n
k

) .
As f(x) is concave, by applying Jensen’s inequality it is true that∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i )

f(p(snj ))(
m−n+k

k

)(
n
k

) ≥ f( ∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i )

p(snj )
1(

m−n+k
k

)(
n
k

)).
From which it follows(

m

n

)−1∑
l

∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i )

f(p(snj ))(
m−n+k

k

)(
n
k

) ≥ (m
n

)−1∑
l

f

( ∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i )

p(snj )
1(

m−n+k
k

)(
n
k

)),
and after simplifying(

m

n

)−1∑
l

f(p(snj )) ≥
(
m

n

)−1∑
l

f

( ∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i )

p(snj )
1(

m−n+k
k

)(
n
k

)).
And this is just: Var

(
{p(snl )}l

)
≥ Var

(
{pkR(snl )}l

)
, the result to be shown.
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We now prove Lemma 7 from the main text:

The variance of the set of interference terms is less than or equal to the variance of the set of ideal
probabilities, that is

Var
(
{p(snl )}l

)
≥ Var

(
{Isnl ,k}l

)
.

Proof. Let µ = punif and f(x) = (x− µ)2. Defining the variance of the ideal n output photon distribution
as

Var
(
{p(snl )}l

)
:=

(
m

n

)−1∑
l

(p(snl )− µ)2,

and the variance of the interference terms for the n− k output photon recycled distribution as

Var
(
{Isnl ,k}l

)
:=

(
m

n

)−1∑
l

(
Isnl ,k − µ

)2
.

These definitions are equivalent to the variance of random variables uniformly distributed over the set of bit
strings {snl } that return ideal n output photon probabilities in the first case, and interference terms from
the n − k output photon recycled distribution in the second case. Recall that the interference terms of a
recycled distribution are defined by the expression

Isnl ,k =
∑

sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1((

m−n+k
k

)
− 1
)(

n
k

) .
As f(x) is concave, by applying Jensen’s inequality it is true that

∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

f(p(snj ))((
m−n+k

k

)
− 1
)(

n
k

) ≥ f( ∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1((

m−n+k
k

)
− 1
)(

n
k

)).
From which it follows(
m

n

)−1∑
l

∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

f(p(snj ))((
m−n+k

k

)
− 1
)(

n
k

)
≥
(
m

n

)−1∑
l

f

( ∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i ),j ̸=l

p(snj )
1((

m−n+k
k

)
− 1
)(

n
k

)),
and after simplifying(

m

n

)−1∑
l

f(p(snj )) ≥
(
m

n

)−1∑
l

f

( ∑
sn−k
i ∈L(snl )

∑
snj ∈G(sn−k

i )

p(snj )
1((

m−n+k
k

)
− 1
)(

n
k

)).
And this is just: Var

(
{p(snl )}l

)
≥ Var

(
{Isnl ,k}l)}l

)
, the result to be shown.

17.6 Proof of Thm. 8

We now prove Thm. 8 from the main text:

The deviation of interference terms around punif for an arbitrary matrix is bounded

Pr
(∣∣Isnl ,k − punif ∣∣ ≥ ϵbias,snl ) ≤ punifpupper

ϵ2bias,snl
+ δ
(

1− punifpupper
ϵ2bias,snl

)
,

where ϵbias,snl is a positive real number, and pupper is an empirically computed upper bound on the largest
probability of the ideal n output photon probability distribution with confidence 1− δ.
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Proof. Let X := Isnl ,k be a random variable defined over the uniform distribution of bit strings snl that
returns interference terms as values. Esnl

(X) denotes the expectation value of random variable X over the
uniform distribution of snl , and let µX := Esnl

(X) = punif , the latter equality comes from lemma 4. Let
Y := p(snl ) be a random variable defined over the uniform distribution of bit strings snl that returns n–photon
output state probabilities as values, and µY := Esnl

(Y ) = punif , where Esnl
(Y ) denotes the expectation value

of random variable Y over the uniform distribution of snl . Using Chebyshev’s inequality we have that

Pr(|X − µX | ≥ ϵbias,snl ) ≤ Var(X)

ϵ2bias,snl

By lemma 7 we have that Var(X) ≤ Var(Y ). Let M := maxsnl (Y ), m := minsnl (Y ). An empirical upper
bound on the largest probability on the largest probability, pupper, may be computed from sample data such
that pupper ≥M . A Hoeffding inequality can be used to bound the statistical error of the empirical estimator

of M , M̃ , so that

|ϵhoeff,M | ≤

√
log
(
2
δ

)
2Nest,M

,

where Nest,M is the number of samples used to compute the estimator M̃ , and 1 − δ is the confidence.

Defining ϵmax
hoeff,M :=

√
log( 2

δ )
2Nest,M

and pupper := M̃ + ϵmax
hoeff,M . Then pupper > M with confidence 1 − δ. The

smallest probability is lower bounded m ≥ 0. We now use the Bhatia-Davis inequality [62]

Var(Y ) ≤ (M − µY )(µY −m) = (M − punif )(punif −m)

the upper and lower bounds on M and m then lead to

(M − punif )(punif −m) ≤ (pupper − punif )(punif ) ≤ pupperpunif .

The confidence that |Isnl ,k − punif | < ϵbias,snl would be 1 − punifpupper

ϵ2
bias,sn

l

, however this must be multiplied by

the independent confidence of the statement pupper > M , which is 1 − δ, to get an overall confidence of

1− punifpupper

ϵ2
bias,sn

l

− δ +
punifpupperδ

ϵ2
bias,sn

l

. This means the Chebyshev inequality becomes

Pr
(∣∣Isnl ,k − punif ∣∣ ≥ ϵbias,snl ) ≤ punifpupper

ϵ2bias,snl
+ δ
(

1− punifpupper
ϵ2bias,snl

)
,

and the result follows.

18 Linear solving

18.1 Performance guarantee inequality for linear solving

Before giving a proof of Thm. 10 we first state and prove two results that we will use. These are upper
bounds for the statistical error and the bias error of the mitigated value respectively, these we state as
lemmas 24 and 25.

Lemma 24. ϵmit,bias ≤ 3
(
m−n+k

k

)
|ϵbias,snl |.

Proof. Without statistical error the mitigated value may be written pmit(s
n
l ) =

∣∣∣(m−n+k
k

)
pR(snl )−

(
m−n+k

k

)N ′
k

Nk
punif

∣∣∣.
Let ϵmit,bias := |pmit(s

n
l ) − p(snl )| and Ak :=

(
m−n+k

k

)
pR(snl ) −

(
m−n+k

k

)N ′
k

Nk
punif , so that ϵmit,bias =

||Ak| − p(snl )|, then pmit(s
n
l ) = |Ak|, and p(snl ) = Ak −

(
m−n+k

k

)N ′
k

Nk
ϵbias,snl (see main text).

Consider the first possible case where Ak < 0, this means that

ϵmit,bias = | −Ak − p(snl )|

= | −Ak −Ak +

(
m− n+ k

k

)
N ′

k

Nk
ϵbias,snl |

≤ 2|Ak|+
(
m− n+ k

k

)
N ′

k

Nk
|ϵbias,snl |,
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by triangle inequality. Since p(snl ) ≥ 0 by definition, then
(
m−n+k

k

)N ′
k

Nk
|ϵbias,snl | = −

(
m−n+k

k

)
ϵbias,snl ≥ −Ak.

Since |Ak| = −Ak, it follows that |Ak| ≤
(
m−n+k

k

)
|N

′
k

Nk
ϵbias,snl |, and therefore that ϵmit,bias ≤ 2|Ak| +(

m−n+k
k

)N ′
k

Nk
|ϵbias,snl | ≤ 3

(
m−n+k

k

)N ′
k

Nk
|ϵbias,snl |.

Now, consider the second possible case where Ak ≥ 0, then |Ak| = Ak, and therefore ϵmit,bias =(
m−n+k

k

)N ′
k

Nk
|ϵbias,snl | ≤ 3

(
m−n+k

k

)N ′
k

Nk
|ϵbias,snl |. This completes the proof.

Lemma 25. |p̃mit(s
n
l )− pmit(s

n
l )| ≤ 3

(
m−n+k

k

)
|ϵhoeff,p̃k

R(snl )
|.

Proof. First, note that the estimator of the mitigated value may be written p̃mit = |Ak + ϵmit,stat|, where

Ak is defined in the proof of Thm. 2, and ϵmit,stat =
(
m−n+k

k

)
p̃R(snl ) −

(
m−n+k

k

)
pR(snl ), and |ϵmit,stat| ≤(

m−n+k
k

)
|ϵhoeff,p̃k

R(snl )
|. And therefore |p̃mit − pmit| = ||Ak + ϵmit,stat| − |Ak||.

Consider the case where
|Ak + ϵmit,stat| = Ak + ϵmit,stat.

If Ak > 0, then |Ak| = Ak and therefore |p̃mit − pmit| = |ϵmit,stat| ≤
(
m−n+k

k

)
|ϵhoeff,p̃k

R(snl )
|. If Ak < 0, then

Ak = −|Ak|, and furthermore, since Ak + ϵmit,stat ≥ 0, then ϵmit,stat ≥ |Ak|. In this sub-case, we have that

|p̃mit − pmit| = | − 2|Ak| − ϵmit,stat| ≤ 2|Ak|+ |ϵmit,stat| ≤ 3ϵmit,stat ≤ 3
(
m−n+k

k

)
|ϵhoeff |.

Now, consider the case where

|Ak + ϵmit,stat| = −Ak − ϵmit,stat.

If Ak < 0, then −Ak = |Ak|, in this sub-case we have |p̃mit − pmit| = |ϵmit,stat| ≤
(
m−n+k

k

)
ϵhoeff . Now,

if Ak > 0, then −Ak = −|Ak| and furthermore, since −Ak − ϵmit,stat ≥ 0, then −ϵmit,stat ≥ |Ak|. In this

sub-case, |p̃mit − pmit| = | − 2|Ak| − ϵmit,stat| ≤ 3|ϵmit,stat| ≤ 3
(
m−n+k

k

)
|ϵhoeff,p̃k

R(snl )
|.

In all possible cases,

|p̃mit − pmit| ≤ 3

(
m− n+ k

k

)
|ϵhoeff,p̃k

R(snl )
|,

which was the result to be proved.

We now prove Thm. 10 from the main text:

The condition:

O

(√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
+

((
m− n+ k

k

)
− 1

)
O

(
1

poly(m)

)
≤ O

(√ (
m
n

)
(1− η)nNtot

)
, (53)

defines a sampling regime (a range of values of Ntot) where the sum of the worst-case statistical error and
bias error of linear solving recycling mitigation is less than the worst-case statistical error of postselection.

Proof.

pmit(s
n
l ) =

(
m− n+ k

k

)∣∣∣p̃kR(snl )− N ′
k

Nk
punif

∣∣∣.
Using Lemmas 24 and 25 the total error of the mitigated probability, ϵpmit(snl )

:= |p̃mit(s
n
l )− p(snl )|, can be

upper bounded ∣∣∣ϵpmit(snl )

∣∣∣ ≤ 3

(
m− n+ k

k

)(∣∣∣ϵhoeff,pk
R

∣∣∣+
N ′

k

Nk

∣∣ϵbias,snl ∣∣).
This follows from the fact that ϵpmiti ≤ |pmit(s

n
l )− p(snl )|+ |p̃mit(s

n
l )− pmit(s

n
l )|. Now, using the error

ϵbias,snl = O
(

1
poly(m)

)
, which holds with high confidence, and

|ϵhoeff,pk
R
| ≤ O

(
1(

m−n+k
k

)√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
,
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the overall error for linear solving with dependency can be upper bounded

∣∣∣ϵpmit(snl )

∣∣∣ ≤ (m− n+ k

k

)(
O

(
1(

m−n+k
k

)√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
+
N ′

k

Nk
O

(
1

poly(m)

))
.

And so the condition to beat postselection is(
m− n+ k

k

)(
O

(
1(

m−n+k
k

)√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
+
N ′

k

Nk
O

(
1

poly(m)

))
≤ O

(√ (
m
n

)
(1− η)nNtot

)
,

which is rearranged for the result. Where the rightmost part is just the statistical error of postselection.

18.2 Linear solving with dependency

We now consider the case where there is positive correlation of the interference on ideal probabilities within
the recycled probabilities. This effect can be modelled as a linear dependence of interference terms on
respective ideal probabilities. For a given recycled probability, a dependency term dk(snl ) can be used to
express the interference term as a linear function of p(snl ) and punif . Then(

1− dk(snl )
)
punif + dk(snl )p(snl ) = Isnl ,k

defines the value dk(snl ), where k ≤ n − 1. For each interference term, Isnl ,k, there is a corresponding
dependency term, dk(snl ). The dependency term, dk(snl ), encodes the dependence of interference term Isnl ,k
on ideal probability p(snl ) for the recycled probability pkR(snl ). The set of dependency terms is then denoted
{dk(snl )}l.

The original linear solving method involves approximating the interference term as punif , and solving
to find the mitigated probability. Now we propose first extracting an average dependency term from the
distribution, which we will call the average dependency term dk, and then approximating the interference
terms as

(
1 − dk

)
punif + dkp(s

n
l ) and solving as before. The motivation for this variation on the original

protocol is to improve mitigation performance by capturing the enhanced ideal probability signal caused by
this correlation behaviour. In the original solving method, excluding statistical error, the recycled probability
is decomposed as

pR(snl ) =
p(snl )(
m−n+k

k

) +
N ′

k

Nk
(punif + ϵbias,snl ),

where ϵbias,snl is the bias error from approximating Isnl ,k as
N ′

k

Nk
punif . If the interference term Isnl ,k is instead

approximated as
N ′

k

Nk

((
1− dk

)
punif + dkp(s

n
l )
)

, then the expression becomes

pkR(snl ) =
p(snl )(
m−n+k

k

) +
N ′

k

Nk

((
(1− dk)punif + dkp(s

n
l )
)

+ ϵb
)

= p(snl )

(
1(

m−n+k
k

) +
N ′

k

Nk
dk

)
+
N ′

k

Nk

(
(1− dk)punif + ϵb

)
,

where ϵb is the bias error in the interference terms away from the linear model. From the positivity of the
interference terms

ϵb ≥ −
(
(1− dk)punif + dkp(s

n
l )
)
,

where k ≤ n − 1. One factor motivating the inclusion of a dependency term is that positive correlation of
the interference terms with the ideal probabilities means that rather than the signal of the ideal probability

having magnitude 1

(m−n+k
k )

, its magnitude is instead 1

(m−n+k
k )

+
N ′

k

Nk
dk. And this stronger signal may be

used to improve mitigation performance. We now show how to compute the dependency term dk from
the absolute average deviation. Then compute bounds on the bias error and statistical error for the use
of linear dependency in linear solving, which are then used to provide performance guarantees relative to
postselection.
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18.2.1 Computing the average dependency term dk

One consequence of a general correlation of interference terms with ideal probabilities within recycled
probabilities is that Dno dep.

k ≤ Dk. The average dependency term dk is a weighted average of dependency

terms, it can be computed from Dno dep.
k and Dk. We know by definition that

D0 =
1

|S|
∑
snl ∈S

|p(snl )− punif |.

For the moment ignoring statistical error, the dependency factor can be calculated from the average distance
of probabilities from the uniform probability for the n− k–photon recycled distribution

Dk =
1

|S|
∑
snl ∈S

∣∣∣∣∣
(
n
k

)
p(snl )

Nk
+
N ′

k

Nk

(
(1− dk(snl ))punif + dk(snl )p(snl )

)
− punif

∣∣∣∣∣
=

1

|S|
∑
snl ∈S

∣∣∣∣∣
(
n
k

)
p(snl )

Nk
+
N ′

k

Nk
punif −

N ′
k

Nk
dk(snl )punif +

N ′
k

Nk
dk(snl )p(snl )− punif

∣∣∣∣∣
=

1

|S|
∑
snl ∈S

∣∣∣∣∣
((n

k

)
Nk

)(
p(snl )− punif

)
+ dk(snl )

N ′
k

Nk

(
p(snl )− punif

)∣∣∣∣∣
=

1

|S|
∑
snl ∈S

∣∣∣∣∣
((n

k

)
Nk

+ dk(snl )
N ′

k

Nk

)(
p(snl )− punif

)∣∣∣∣∣
The average dependency term, dk, for the recycled distribution is defined by the expression((n

k

)
Nk

+ dk
N ′

k

Nk

)
1

|S|
∑
snl ∈S

∣∣∣∣(p(snl )− punif
)∣∣∣∣ =

1

|S|
∑
snl ∈S

∣∣∣∣∣
((n

k

)
Nk

+ dk
(
p(snl )

)N ′
k

Nk

)(
p(snl )− punif

)∣∣∣∣∣.
This can then be used to rewrite the previous expression in terms of the dependency

Dk =
1

|S|
∑
snl ∈S

∣∣∣∣∣
((n

k

)
Nk

+ dk(snl )
N ′

k

Nk

)(
p(snl )− punif

)∣∣∣∣∣
=

((n
k

)
Nk

+ dk
N ′

k

Nk

)
1

|S|
∑
snl ∈S

∣∣∣∣(p(snl )− punif
)∣∣∣∣

=

(
1 + dk

((
m− n+ k

k

)
− 1

))
1(

m−n+k
k

) 1

|S|
∑
snl ∈S

∣∣∣∣(p(snl )− punif
)∣∣∣∣

=

(
1 + dk

(
m−n+k

k

)
− dk(

m−n+k
k

) )
D0

=

(
1(

m−n+k
k

) + dk

(
m−n+k

k

)
− 1(

m−n+k
k

) )
D0.

If there is no correlation of interference terms with ideal probabilities then dk = 0, and then

Ddk=0
k =

1(
m−n+k

k

)D0.

Meaning that if there is no dependence the average absolute deviation decays with k proportionally to

1

(m−n+k
k )

. Whereas with dependency the decay is proportional to

(
1+dk(m−n+k

k )−dk

(m−n+k
k )

)
. The average dependency

term may be directly computed from the previous expression as

dk =
1(

m−n+k
k

)
− 1

((m−n+k
k

)
Dk

D0
− 1(

m−n+k
k

)).
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18.3 Bias error bound with average dependency term dk

We now prove Lemma 26, which will be used in the next section.

Lemma 26. The bias error from substituting Isnl ,k with
(
1− dk

)
punif + dkp(s

n
l ) in the recycled probabilities

is upper bounded

Pr

[∣∣Isnl ,k − ((1− dk)punif + dkp(s
n
l )
)∣∣ ≥ 2ϵbias,snl

]
≤ 2punif
ϵ2bias,snl

.

Proof. Rather than bounding Isnl ,k from punif , we would now like to bound deviation of Isnl ,k from
(
1 −

dk
)
punif + dkp(s

n
l ). As it is required that 1 ≥ dk ≥ 0, terms of the form

((
1 − dk

)
punif + dkp(s

n
l )
)

are
bounded

|p(snl )−
(
(1− dk)punif + dkp(s

n
l )
)
| ≥ |

(
(1− dk)punif + dkp(s

n
l )
)
− punif |,

or
|p(snl )−

(
(1− dk)punif + dkp(s

n
l )
)
| ≤ |

(
(1− dk)punif + dkp(s

n
l )
)
− punif |,

with both statements true only with equidistance. The mean of the set {p(snl )}l is punif , and so also the
mean of the set {

(
1 − dk

)
punif + dkp(s

n
l )}l is punif . If dk = 0 then Var({

(
1 − dk

)
punif + dkp(s

n
l )}l) = 0,

while if dk = 1 then Var({
(
1−dk

)
punif +dkp(s

n
l )}l) = Var({p(snl )}l). As dk ≤ 1 the variance of the set {

(
1−

dk
)
punif + dkp(s

n
l )}l is upper bounded by the variance of {p(snl )}l, so Var

(
(1− dk)punif + dkp(s

n
l )
)
≤ punif ,

where we have used the Bhatia-Davis inequality. We can then bound the distance of
(
(1−dk)punif +dkp(s

n
l )
)

from punif using Chebyshev’s inequality so that

Pr

[∣∣((1− dk)punif + dkp(s
n
l )− punif

)∣∣ ≥ ϵbias,snl ] ≤ punif
ϵ2bias,snl

.

And in reverse form this inequality is

Pr

[∣∣((1− dk)punif + dkp(s
n
l )− punif

)∣∣ < ϵbias,snl

]
≥ 1− punif

ϵ2bias,snl
. (54)

The Thm. 5 bound on the bias of the interference term for arbitrary matrices is

Pr

[∣∣Isnl ,k − punif ∣∣ ≥ ϵbias,snl ] ≤ punif
ϵ2bias,snl

.

Which in reverse form is

Pr

[∣∣Isnl ,k − punif ∣∣ < ϵbias,snl

]
≥ 1− punif

ϵ2bias,snl
. (55)

Now, we use triangle inequality to combine the reverse forms of the above two inequalities, so that

|Isnl ,k −
(
(1− dk)punif + dkp(s

n
l ))| ≤ |Isnl ,k − punif |+ | −

(
(1− dk)punif + dkp(s

n
l )) + punif |

≤ 2ϵbias,snl .
(56)

Assuming independence of the inequalities in eqn. 54 and eqn. 55, the the inequality in eqn. 56 holds with
confidence (1 − punif

ϵ2
bias,sn

l

)2. Using a Bernoulli approximation (1 − punif

ϵ2
bias,sn

l

)2 ≈ 1 − 2
punif

ϵ2
bias,sn

l

, and the result

follows.

18.4 Performance guarantee inequality for linear solving with dependency

We now prove Thm. 11 from the main text:

The condition

O

(√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
+ 2

((
m− n+ k

k

)
− 1

)
O

(
1

poly(m)

)
≤ O

(√ (
m
n

)
(1− η)nNtot

)
,

defines a sampling regime where the sum of the worst-case statistical error and bias error of linear solving
with dependency recycling mitigation is less than the worst-case statistical error of postselection.
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Proof. The estimator of the recycled probability may be rewritten in terms of the dependency term dk as

pkR(snl ) =
p(snl )(
m−n+k

k

) +
N ′

k

Nk

((
(1− dk − ϵhoeff,dk

)punif + (dk + ϵhoeff,dk
)p(snl )

)
+ ϵb

)
+ ϵhoeff,pk

R

= p(snl )

(
1(

m−n+k
k

) +
N ′

k

Nk
(dk + ϵhoeff,dk

)

)
+
N ′

k

Nk

(
(1− dk − ϵhoeff,dk

)punif + ϵbias,snl
)

+ ϵhoeff,pk
R
.

Solving to find the mitigated value in the ideal case one obtains

pmit,dep(snl ) =

∣∣∣∣∣pkR(snl ) +
N ′

k

Nk

(
(−1 + dk)punif

)
1

(m−n+k
k )

+
N ′

k

Nk
dk

∣∣∣∣∣.
However, the estimator of the mitigated value including error is

p̃mit,dep(snl ) =
pkR(snl )− N ′

k

Nk

(
(1− (dk + ϵhoeff,dk

))punif + ϵbias,snl
)

+ ϵhoeff,pk
R

1

(m−n+k
k )

+
N ′

k

Nk
(dk + ϵhoeff,dk

)
.

As, by definition, 1 ≥ dk ≥ 0, this means that −dk ≤ ϵhoeff,dk
≤ 1. And the value of ϵhoeff,dk

that maximally
increases the error of the above quotient is then ϵhoeff,dk

= −dk, this substitution removes the dk terms.
From this point we can use Lemma 24 and Lemma 25, with the one difference in the latter that the bias
error ϵbias,snl from Lemma 26 is used instead of ϵbias,snl . And then the total error of the mitigated probability,
ϵpmit,dep(snl )

, can be upper bounded∣∣∣ϵpmit,dep(snl )

∣∣∣ ≤ 3

(
m− n+ k

k

)(∣∣∣ϵhoeff,pk
R

∣∣∣+
N ′

k

Nk

∣∣ϵbias,snl ∣∣).
Now we set ϵbias,snl = O

(
1

poly(m)

)
, so the error is polynomially small with a confidence of 1− poly(m)2

(m
n)

, which

is exponentially close to 1. And we use that

|ϵhoeff,pk
R
| ≤ O

(
1(

m−n+k
k

)√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
.

So that the overall error for linear solving with dependency is upper bounded

∣∣∣ϵpmit,dep(snl )

∣∣∣ ≤ (m− n+ k

k

)(
O

(
1(

m−n+k
k

)√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
+

2N ′
k

Nk
O

(
1

poly(m)

))
.

And so the condition to beat postselection is(
m− n+ k

k

)(
O

(
1(

m−n+k
k

)√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
+
N ′

k

Nk
O

(
1

poly(m)

))
≤ O

(√ (
m
n

)
(1− η)nNtot

)
,

which is rearranged for the result.

19 Extrapolation

19.1 Statistical error for average absolute deviation estimator D̃k

The following lemma upper bounds the statistical error of the empirically computed absolute average
deviation terms {D̃k}Kk=1, and is used in deriving the condition for linear extrapolation to outperform
postselection in the next section.

Lemma 27. The statistical error of the average absolute deviation estimator D̃k is upper bounded

∣∣∣ϵhoeff,D̃k

∣∣∣ ≤ O(( 1(
m−n+k

k

)2(n
k

)
(1− η)n−kηkNtot

)1/4)
. (57)
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Proof. Let X be a random variable defined over the uniform distribution of bit strings snl that returns terms
from the set {p̃kR(snl )}l as values, µ := Esnl

(X) = punif = 1

(m
n)

, with Esnl
(.) denoting the expectation value

of X over the uniform distribution of snl , it is equal to punif . The average absolute deviation estimator,

denoted {D̃k}nk=0, is defined

D̃k :=

(
m

n

)−1 ∑
snl ∈S

∣∣p̃kR(snl )− punif
∣∣ = Dk + ϵhoeff,D̃k

,

where ϵhoeff,D̃k
is the absolute average deviation statistical error. Let M := maxsnl (X) , m := minsnl (X) ,

and note that M ≤ 1 and m ≥ 0. We can apply the Bhatia-Davis inequality [62]

Var({X}) ≤ (M − µ)(µ−m),

with an upper bound of M = 1, a lower bound of m = 0, and the expected value µ = punif , to obtain an
upper bound on the variance of the random variable X so that

Var(X) ≤ (1− punif )(punif )

≤ punif .
(58)

Now, by Jensen’s inequality [69] we know that Esnl
(|X − µ|2) ≥ (Esnl

|X − µ|)2, therefore

Var(X) ≥
((

m

n

)−1 ∑
snl ∈S

∣∣p̃kR(snl )− punif
∣∣)2

,

and as both sides of this inequality are positive and the square root operation is a monotonically increasing
function for positive reals

Var(X)1/2 ≥
(
m

n

)−1 ∑
snl ∈S

∣∣p̃kR(snl )− punif
∣∣.

And using the result from eqn. 58 we have

p
1/2
unif ≥

(
m

n

)−1 ∑
snl ∈S

∣∣p̃kR(snl )− punif
∣∣

≥ Dk + ϵhoeff,D̃k
.

Now because D̃k ≥ 0 then ϵhoeff,D̃k
≥ −Dk ≥ −p1/2unif . Also p

1/2
unif ≥ Dk and p

1/2
unif ≥ Dk + ϵhoeff,D̃k

mean that 2(p
1/2
unif − Dk) ≥ ϵhoeff,D̃k

. And as Dk ≥ 0 this means 2p
1/2
unif ≥ ϵhoeff,D̃k

. Then we have that

2p
1/2
unif ≥ ϵhoeff,D̃k

≥ −p1/2unif which gives

|ϵhoeff,D̃k
| ≤ 2p

1/2
unif . (59)

The absolute error for D̃k can also be upper bounded in terms of the statistical error of the recycled
probabilities

|ϵhoeff,D̃k
| = |D̃k −Dk|

=

∣∣∣∣(mn
)−1( ∑

snl ∈S

∣∣∣pkR(snl ) + ϵhoeff,p̃k
R(snl )

− punif
∣∣∣− ∑

snl ∈S

∣∣pkR(snl )− punif
∣∣)∣∣∣∣

≤
(
m

n

)−1( ∑
snl ∈S

∣∣∣∣∣∣∣pkR(snl ) + ϵhoeff,p̃k
R(snl )

− punif
∣∣∣− ∣∣pkR(snl )− punif

∣∣∣∣∣∣)

≤
(
m

n

)−1 ∑
snl ∈S

∣∣ϵhoeff,p̃k
R(snl )

∣∣.
(60)

Where the inequalities follow by using a triangle, then a reverse triangle inequality. All terms in the
inequalities from eqns. 59 and 60 are positive reals, and so the inequalities may be combined to give

|ϵhoeff,D̃k
|2 ≤ 2p

1/2
unif

(
m

n

)−1 ∑
snl ∈S

∣∣ϵhoeff,p̃k
R(snl )

∣∣.
45



We now define Ehoeff,p̃k
R

as the magnitude of the upper bound for the statistical error |ϵhoeff,p̃k
R(snl )

| which
holds with high confidence from Hoeffdings inequality.

Ehoeff,p̃k
R

:= O

(
1(

m−n+k
k

)√ (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)
.

As |ϵhoeff,p̃k
R(snl )

| ≤ Ehoeff,p̃k
R

we can now write

|ϵhoeff,D̃k
|2 ≤ 2p

1/2
unifEhoeff,p̃k

R
,

and, again using that the square root operation is a monotonically increasing function for positive reals, it
follows that

|ϵhoeff,D̃k
| ≤ (2Ehoeff,p̃k

R
)1/2p

1/4
unif

≤ O
(
E1/2
hoeff,p̃k

R

p
1/4
unif

)
≤ O

((
1(

m−n+k
k

))1/2( (
m
n

)(
n
k

)
(1− η)n−kηkNtot

)1/4(
1(
m
n

))1/4)

≤ O

((
1(

m−n+k
k

)2(n
k

)
(1− η)n−kηkNtot

)1/4)
.

Which was the result to be proved.

19.2 Performance guarantee inequality for extrapolation with linear least squares

Before giving a proof of Thm. 12 we first state and prove two results that we will use. These are an upper
bound for the statistical error for the gradient parameter. And an upper bound on the bias error introduce
by using the average gradient parameter rather than the ideal gradient parameter. These we state as lemmas
28 and 29.

Lemma 28. The average gradient parameter statistical error ϵhoeff,g is upper bounded

∣∣ϵhoeff,g∣∣ ≤ O(( 1

(1− η)nNtot

)1/4
)
. (61)

Proof. First note that using the linear least squares method the average gradient parameter estimator may
be written

g̃avg =
3

2nd + 2
D̃0 −

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

D̃ixi,

and the average gradient parameter without statistical error

gavg =
3

2nd + 2
D0 −

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

Dixi.
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The statistical error for the gradient term is then∣∣ϵhoeff,g∣∣ = |g̃avg − gavg|

=
∣∣ 3

2nd + 2
D̃0 −

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

D̃ixi −
3

2nd + 2
D0 +

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

Dixi
∣∣

=
∣∣ 3

2nd + 2
(D0 + ϵhoeff,D̃0

)− 6

nd(nd + 1)(2nd + 2)

nd∑
i=1

(Di + ϵhoeff,D̃i
)xi −

3

2nd + 2
D0

+
6

nd(nd + 1)(2nd + 2)

nd∑
i=1

Dixi
∣∣

=
∣∣ 3

2nd + 2
ϵhoeff,D̃0

+
6

nd(nd + 1)(2nd + 2)

nd∑
i=1

ϵhoeff,D̃i
xi
∣∣

≤ 3

2nd + 2

∣∣ϵhoeff,D̃0

∣∣+
6

nd(nd + 1)(2nd + 2)

nd∑
i=1

∣∣ϵhoeff,D̃i

∣∣xi
≤ 3

2nd + 2
O

((
1

(1− η)nNtot

)1/4
)

+
6

nd(nd + 1)(2nd + 2)

nd∑
i=1

O

((
1

(1− η)nNtot

)1/4
)
xi

≤ O

((
1

(1− η)nNtot

)1/4
)
.

Where a triangle inequality was used for the fourth line, and that
∣∣ϵhoeff,D̃i

∣∣ ≤ O
((

1
(1−η)nNtot

)1/4)
for

i ∈ {0, . . . , nd} from lemma 27 was used to get the sixth line.

Lemma 29. With confidence 1 − O ∗ (m−n), the bias error ϵbias,g from substituting the ideal gradient
parameter, gideal, for the average gradient parameter, gavg, is upper bounded∣∣ϵbias,g∣∣ ≤ O( 1

poly(m)

)
. (62)

Proof. Linear least squares with the stated model function gives the optimal average gradient parameter as

gavg =
3

2nd + 2
D0 −

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

Dixi,

and the ideal gradient parameter as

gideal =
3

2nd + 2
|p(snl )− punif | −

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

|pRi (snl )− punif |xi.
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The magnitude of the gradient bias error is then∣∣ϵbias,g∣∣ =
∣∣gideal − gavg∣∣

=
∣∣∣ 3

2nd + 2
|p(snl )− punif | −

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

|piR(snl )− punif |xi

− 3

2nd + 2
D0 +

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

Dixi

∣∣∣
≤ 3

2nd + 2

∣∣|p(snl )− punif | −D0

∣∣+
6

nd(nd + 1)(2nd + 2)

∣∣ nd∑
i=1

(
− |piR(snl )− punif |xi +Dixi

)∣∣
≤ 3

2nd + 2

∣∣|p(snl )− punif | −D0

∣∣+
6

nd(nd + 1)(2nd + 2)

nd∑
i=1

∣∣|piR(snl )− punif |xi −Dixi
∣∣

≤ 3

2nd + 2

∣∣|p(snl )− punif | −D0

∣∣+
6

nd(nd + 1)(2nd + 2)

nd∑
i=1

xi
∣∣|piR(snl )− punif | −Di

∣∣
≤ 3

2nd + 2

∣∣|p(snl )− punif | −
(
m

n

)−1 ∑
snl ∈S

|p(snl )− punif |
∣∣

+
6

nd(nd + 1)(2nd + 2)

nd∑
i=1

xi
∣∣|piR(snl )− punif | −

(
m

n

)−1 ∑
snl ∈S

∣∣piR(snl )− punif
∣∣∣∣

≤ 3

2nd + 2

∣∣∣p(snl )− punif −
(
m

n

)−1 ∑
snl ∈S

(p(snl )− punif )
∣∣∣

+
6

nd(nd + 1)(2nd + 2)

nd∑
i=1

xi
∣∣piR(snl )− punif −

(
m

n

)−1 ∑
snl ∈S

(piR(snl )− punif )
∣∣

≤ 3

2nd + 2

∣∣∣p(snl )−
(
m

n

)−1 ∑
snl ∈S

p(snl )
∣∣∣

+
6

nd(nd + 1)(2nd + 2)

nd∑
i=1

xi
∣∣piR(snl )−

(
m

n

)−1 ∑
snl ∈S

piR(snl )
∣∣.

Where a triangle inequality was used to get line three and line four, and reverse triangle inequalities were
used to get line seven. Now from Thm. 8 we have that

Pr
(∣∣p(snl )−

(
m

n

)−1 ∑
snl ∈S

p(snl )
∣∣ ≤ ϵbias,snl ) ≥ 1− punif

ϵ2bias,snl
.

Setting ϵbias,snl = O
(

1
poly(m)

)
, the error is then polynomially small with a confidence of 1 − poly(m)2

(m
n)

. Now

by lemma 6 Var
(
{p(snl )}l

)
≥ Var

(
{pkR(snl )}l

)
, which allows the derivation of the same Chebyshev bound for

the
∣∣pkR(snl )−

(
m
n

)−1∑
snl ∈S p

k
R(snl )

∣∣ terms with k ∈ {1, . . . , nd}, so that

Pr
(∣∣pkR(snl )−

(
m

n

)−1 ∑
snl ∈S

pkR(snl )
∣∣ ≤ ϵbias,snl ) ≥ 1− punif

ϵ2bias,snl
.
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Therefore with confidence
(
1− punif

ϵ2
bias,sn

l

)nd ≈ 1− nd punif

ϵ2
bias,sn

l

, using a Bernoulli approximation, we have that

3

2nd + 2

∣∣∣p0 − (m
n

)−1 ∑
snl ∈S

p(snl )
∣∣∣+

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

xi
∣∣piR − (mn

)−1 ∑
snl ∈S

piR(snl )
∣∣

≤ 3

2nd + 2
O
( 1

poly(m)

)
+

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

xiO
( 1

poly(m)

)
≤ O

( 1

poly(m)

)
.

The upper bound on the gradient bias error is then∣∣ϵbias,g∣∣ ≤ O( 1

poly(m)

)
,

with confidence 1− nd punif

ϵ2
bias,sn

l

.

We now prove Thm. 12 from the main text:

The condition:

nd + 1

2

(
O

((
1

(1− η)nNtot

)1/4)
+O

( 1

poly(m)

))
+O

(
n

m− n+ 1

√ (
m
n

)
n(1− η)n−1ηNtot

)
≤ O

(√ (
m
n

)
(1− η)nNtot

)
.

defines a sampling regime where the sum of the worst-case statistical error and bias error of linear extrapolation
recycling mitigation using the least squares method is less than the worst-case statistical error of postselection.

Proof. The linear extrapolation method consists of two iterations of linear least squares. The first iteration
calculates an average gradient parameter, gavg, this is parameter then used to generate the mitigated outputs
in the second iteration of least squares. There are nd ∈ {nd ∈ Z+|nd < n} data points used in both iterations
of least squares. The data set {k, D̃k}nd

k=1 is used to compute the gradient parameter gavg. Where nd ≤ n

and D̃k is the estimated absolute average deviation for the n−k–photon recycled distribution from statistics
where k photons were lost. We will initially use the notation that {xi, yi}nd

i=1 := {k, D̃k}nd

k=1, this will be
redefined in the second iteration of least squares. In the first iteration of least squares this data set is used
to find the average gradient parameter estimator, g̃avg, and the linear model function used is

f(xi, gavg) = −g̃avgxi + D̃0.

For which the residuals are of the form

ri = yi − (−g̃avgxi + D̃0),

The sum of the squared residuals is a function of αsn , and may be written

S(g̃avg) =

nd∑
i=1

r2i

=

nd∑
i=1

(yi − (−g̃avgxi + D̃0))2

The optimal solution may be found by taking the derivative of S with respect to g̃avg

0 =
dS

dg̃avg
= 2

nd∑
i=1

(yi − (−g̃avgxi + D̃0))(xi),

and then solving

nd∑
i=1

g̃avgx
2
i =

nd∑
i=1

D̃0xi −
nd∑
i=1

yixi.
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Simplifying and substituting D̃i terms, this gives the optimal average gradient parameter as

g̃avg =
3

2nd + 2
D̃0 −

6

nd(nd + 1)(2nd + 2)

nd∑
i=1

D̃ixi.

Using lemma 28, the statistical error of the average gradient parameter estimator, ϵhoeff,g, can be upper
bounded ∣∣ϵhoeff,g∣∣ ≤ |g̃avg − gavg|

≤ O

((
1

(1− η)nNtot

)1/4
)
.

The average gradient parameter estimator, g̃avg, is used in a second iteration of least squares to generate the
mitigated outputs. The data set used to generate the mitigated output for each snl is defined as {xi, yi}nd

i=1 :=
{k, |p̃kR(snl )− punif |}nd

k=1. Each output string is assigned an individual model function of the form

fsnl (xi, αsnl
) = sgn(punif − y1)g̃avgxi + αsnl

.

We will assume the sign is negative (sgn(punif − y1) = −1) so that the model function is

fsnl (xi, αsnl
) = −g̃avgxi + αsnl

,

noting that the analysis is identical for the case of positive sign. The optimal prefactor variable αsnl
to fit

the model function to the data set is computed using the residuals

ri = yi − (−g̃avgxi + αsnl
),

The sum of the squared residuals is a function of αsnl
, and may be written

S(αsnl
) =

nd∑
i=1

r2i

=

nd∑
i=1

(yi − (−g̃avgxi + αsnl
))2

The value of αsnl
that minimises S may be found by taking the derivative of S with respect to αsnl

, and
solving

0 =
dS

dαsnl

= −2

nd∑
i=1

(yi − (−gavgxi + αsnl
))

Which gives the optimal value as

αsnl
=
nd + 1

2
g̃avg +

1

nd

nd∑
i=1

yi. (63)

And substituting in the data values this is then

αsnl
=
nd + 1

2
g̃avg +

1

nd

nd∑
k=1

|p̃kR(snl )− punif |. (64)

Now g̃avg can be decomposed into an ideal gradient parameter, gideal, an average gradient parameter
statistical error, ϵhoeff,g, and a bias error from substituting the ideal gradient parameter for the average
gradient parameter, ϵbias,g. And the recycled probability estimators p̃kR(snl ) can be decomposed into recycled
probabilities, pkR(snl ), and their associated statistical errors, ϵhoeff,p̃k

R(snl )
. So that

αsnl
=
nd + 1

2

(
gideal + ϵhoeff,g + ϵbias,g

)
+

1

nd

nd∑
i=1

|pkR(snl ) + ϵhoeff,p̃k
R(snl )

− punif |. (65)
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While the ideal prefactor variable can be stated as

αideal,snl
=
nd + 1

2
gideal +

1

nd

nd∑
i=1

|pkR(snl )− punif |. (66)

And the magnitude of the error for the mitigated output is then

|ϵα| = |αsnl
− αideal,snl

|

≤ nd + 1

2
(|ϵhoeff,g|+ |ϵbias,g|) + |ϵhoeff,p̃1

R(snl )
|

≤ nd + 1

2

(
O

((
1

(1− η)nNtot

)1/4)
+O

( 1

poly(m)

))
+O

(
n

m− n+ 1

√ (
m
n

)
n(1− η)n−1ηNtot

)
.

(67)

Where to get the second line a triangle inequality and that in the high loss regime |ϵhoeff,p̃1
R(snl )

| ≥ 1
nd

∑nd

i=1 |ϵhoeff,p̃k
R(snl )

|
were used, and lemmas 28, 29 and 22 were used to get the fourth line. And so the condition to beat
postselection is

nd + 1

2

(
O

((
1

(1− η)nNtot

)1/4)
+O

( 1

poly(m)

))
+O

(
n

m− n+ 1

√ (
m
n

)
n(1− η)n−1ηNtot

)
≤ O

(√ (
m
n

)
(1− η)nNtot

)
.

20 Breaking the exponential barrier

20.1 Proof of Thm. 9

We now prove Thm. 9 from the main text:

For the class of unitary matrices U with submatrices A such that pmax := maxsnl (p(snl ) = |Per(A)|2, and
where these matrices A satisfy

hA
∞

∥A∥2
≪ 1, the bias error ϵbias,snl is bounded

ϵbias,snl ≤≈ O(e−0.000002n).

Proof. Let pmax = maxsnl (p(snl )), where maxsnl
(.) denotes the maximum over the n–photon probability

distribution. It is immediate to see that the interference term satisfies Isnl ,k ≤ pmax. Furthermore, pmax =

|Per(A)|2, where A := (aij)i,j∈{1,...,n} is a submatrix of the linear optical unitary U [25]. Note that ∥A∥2 ≤
∥U∥2 ≤ 1, where ∥.∥2 denotes the spectral norm [70]. Let hA∞ := 1

n

∑
i=1,...,n ∥Ai∥∞, where Ai is the ith

row of A, and ∥Ai∥∞ := maxj(|aij |). Let ∥A∥2 ≤ T . Using Thm. 2 in [28], we have that

|Per(A)| ≤ 2Tne
−0.000001(1− hA

∞
∥A∥2

)2n
.

Since ∥A∥2 ≤ 1, we immediately have

|Per(A)| ≤ 2e
−0.000001(1− hA

∞
∥A∥2

)2n
.

For classes of matrices where
hA
∞

∥A∥2
≪ 1, we have that

|Per(A)| ≤ 2e−0.000001n,

and therefore that
pmax ≤ 4e−0.000002n.

Now, we have that −punif ≤ Isnl ,k − punif ≤ pmax − punif , and therefore the bias error is given by

ϵ1 = |Isnl ,k − punif | ≤ max{|pmax − punif |, punif}.

In the case where |pmax − punif | < punif , then we have an exponentially small bias error ϵbias,snl ≤ punif ≤
1

(m
n)
≈ 1

mn ≈ e−O(nlog(n)), when m ≈ n5.1 which is the boson sampling regime. Now, when |pmax − punif | >
punif , we can use the bound for pmax we obtained, and show that

ϵbias,snl ≤ |pmax − punif | ≤≈ |4−0.000002n − e−O(nlog(n))| ≈ O(e−0.000002n).
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21 Richardson extrapolation methods for photon loss mitigation

In this section, we prove Thm. 13 as well as provide similar evidence (that the methods present no advantage
over postselection) for different methods of performing extrapolation with increasing rates of photon loss.

First method of extrapolation at various noise rates

Let m be the number of modes of a linear optical circuit which can implement any m×m unitary. Into this
circuit we input n photons in the first n modes. The notation |n1, . . . , nm⟩ denotes a state with ni photons
in the ith mode, where i ∈ {1, . . . ,m}. η ∈]0, 1[ is the probability to lose a photon in any given mode, and
is the same for all modes. We want to compute a specific marginal probability p(n1...nl|n) with l ≤ m, and∑

i=1,...,l ni = c, with c ≤ n. The |n indicates that we are computing the ideal marginal probability, when
no photon is lost. Let p(n1 . . . nl ∩ j) be the probability of observing the output (n1, . . . , nl) and detecting j
photons in all m modes, with j ∈ {c, . . . , n}. When postselecting on no photons being lost, we are computing

p(n1 . . . nl ∩ n) = (1− η)np(n1 . . . nl|n).

However, if we compute p(n1 . . . nl) without caring about whether no photon is lost, we end up computing

pη(n1...nl) =
∑

i=0,...,n−c

(1− η)n−iηip(n1 . . . nl|n− i). (68)

Extrapolation techniques consist of estimating pη(n1 . . . nl) for different values of η, then deducing from
these an estimate of p(n1 . . . nl|n). One example of how this can be done is the Richardson extrapolation
technique, at the heart of the zero noise extrapolation (ZNE) approach. Rather interestingly, we will show
that these techniques offer no advantage over post-selection in terms of estimating p(n1 . . . nl|n). Let αi :=
p(n1 . . . nl|n− i), we can then write

pη(n1 . . . nl) :=
∑

i=0,...,n−c

(1− η)n−iηiαi. (69)

A natural way to estimate α0 through extrapolation would be to compute an estimate p̃η(n1 . . . nl) of
pη(n1 . . . nl) for n − c + 1 values ηi of η, with i ∈ {0, . . . , n − c}, and (by convention) ηi+1 > ηi. We will
deal with additive error estimates, that is, p̃η(n1 . . . nl) = pη(n1 . . . nl) + ϵ, with |ϵ| ≤ ϵmax, and ϵmax ∈ [0, 1]
is the additive error estimate. Note that an ϵmax additive error estimate p̃η(n1 . . . nl) can be obtained with
high probability from O( 1

ϵ2max
) runs of the boson sampling device, by Hoeffding’s inequality [26].

Performing the above mentioned extrapolation strategy, we obtain the following set of equations, written
in matrix form, to be solved for obtaining an estimate of α0

(1− η0)n η0(1− η0)n−1 . . . ηn−c
0 (1− η0)k

. . . . . .

. . . . . .
(1− ηn−c)

n ηn−c(1− ηn−c)
n−1 . . . ηn−c

n−c(1− ηn−c)
c




α̃0

.

.
α̃n−c

 =


pη0(n1 . . . nl)

.

.
pηn−c

(n1 . . . nl)

+


ϵ0
.
.

ϵn−c

 ,

(70)

with |ϵi| ≤ ϵmax, and α̃i is an estimate of αi obtained from using the estimates p̃ηi
(n1 . . . nl) = pηi

(n1 . . . nl)+
ϵi Let,

L :=


(1− η0)n η0(1− η0)n−1 . . . ηn−c

0 (1− η0)c

. . . . . .

. . . . . .
(1− ηn−c)

n ηn−c(1− ηn−c)
n−1 . . . ηn−c

n−c(1− ηn−k)c

 .

We can rewrite L as
L = DW, (71)

with

D =


(1− η0)n 0 0 . . . 0

0 (1− η1)n 0 . . . 0
. . . .
. . . .
0 0 0 . . . (1− ηn−c)

n

 (72)
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a diagonal matrix, and

W =


1 η0

1−η0
. . . ( η0

1−η0
)n−c

1 η1

1−η1
. . . ( η1

1−η1
)n−c

. . . .

. . . .
1 ηn−c

1−ηn−c
. . . ( ηn−c

1−ηn−c
)n−c

 (73)

a Vandermonde matrix [65]. Multiplying both sides of eqn. 70 by L−1 and invoking standard matrix
multiplication rules, we obtain

α̃0 =
∑

i=0,n−c

L−1
1i pηi

(n1 . . . nl) +
∑

i=0,...,n−c

L−1
1i ϵi, (74)

where L−1
1i is the element of the first row and ith column of L−1. Note that, by construction of our

method, ηi ̸= ηi+1, then D is invertible, and so is W [65], thus L−1 always exists. Furthermore, α0 =∑
i=0,n−k L

−1
1i pηi

(n1 . . . nl), since exactly computing the probabilities pηi
(n1 . . . nl) will lead to an exact

computation of α0. Therefore, the error associated to our extrapolation technique is given by

Eextrap := |
∑

i=0,...,n−k

L−1
1i ϵi|. (75)

Note that the overall sample complexity of the extrapolation protocol is O(n−c+1
ϵ2max

). For post-selection, an

ϵmax additive error estimate p̃η(n1 . . . nl ∩ n) requires O( 1
ϵ2max

) samples, and can be performed for η = η0,

that is without artificially increasing loss. From eqn. 68, we see that post-selection induces an error of

Epost := | ϵ√
(1− η0)n

| ≤ ϵmax√
(1− η0)n

, (76)

with |ϵ| ≤ ϵmax.
In the remainder of this section, we will compute an upper bound for Eextrap, and show that this upper

bound is greater than the corresponding upper bound for Epost shown in eqn. 76. This gives strong evidence
that the error induced by extrapolation is higher than that of postselection for a comparable number of
samples, and therefore that extrapolation offers no advantage over postselection. Although the upper bound
argument we show gives strong evidence that extrapolation techniques are not advantageous when compared
to postselection, we will provide further evidence that this is the case. In particular, for a random distribution
of errors {ϵi} with |ϵi| ≤ ϵmax, we numerically show that the condition

Eextrap >
ϵmax

(1− η0)n
(77)

is never violated after some value of n, confirming our analytical results. We start by the analytical upper
bound argument. By a triangle inequality,

Eextrap ≤ ||L−1||∞ϵmax,

with ||L−1||∞ := maxi
∑

j |L
−1
ij |. Also,

||L−1||∞ ≤ ||D−1||∞||W−1||∞.

From the definition of ||.||∞, we can directly show

||D−1||∞ =
1

(1− ηn−c)n
.

For ||W−1||∞, we can use an upper bound on the norm of Vandermonde matrices shown in [65]

||W−1||∞ ≤ maxi
∏

j ̸=i=0,...,n−c

1 + ηi

1−ηi

| ηi

1−ηi
− ηj

1−ηj
|
.

Thus,

||L−1||∞ ≤
1

(1− ηn−c)n
maxi

∏
j ̸=i=0,...,n−c

1 + ηi

1−ηi

| ηi

1−ηi
− ηj

1−ηj
|
.

53



and

Eextrap ≤ ϵmax
1

(1− ηn−c)n
maxi

∏
j ̸=i=0,...,n−c

1 + ηi

1−ηi

| ηi

1−ηi
− ηj

1−ηj
|
.

We will now show that the upper bound on Eextrap is greater than that of Epost. This is quantified through
the following theorem .

Theorem 30. For η0, . . . , ηn−c with ηi+1 > ηi and η0 ≥ 0, ηn−c < 1 the following holds

1

(1− ηn−c)n
maxi

∏
j ̸=i=0,...,n−c

1 + ηi

1−ηi

| ηi

1−ηi
− ηj

1−ηj
|
≥ 1

(1− η0)n
. (78)

Proof. First, note that η
1−η is a monotonically increasing function of η, thus ηi

1−ηi
< ηi+1

1−ηi+1
. This allows us

to lower bound maxi
∏

j ̸=i=0,...,n−k

1+
ηi

1−ηi

| ηi
1−ηi

−
ηj

1−ηj
|

as

maxi
∏

j ̸=i=0,...,n−c

1 + ηi

1−ηi

| ηi

1−ηi
− ηj

1−ηj
|
≥

(1 + η0

1−η0
)n−c

( ηn−c

1−ηn−c
− η0

1−η0
)n−c

.

Our strategy is to show that the following holds

1

(1− ηn−c)n

(1 + η0

1−η0
)n−c

( ηn−c

1−ηn−c
− η0

1−η0
)n−c

≥ 1

(1− η0)n
(79)

eqn. 79 being true implies that eqn. 78 is also true, and thus is sufficient for proving Thm. 30. eqn. 79 can
be rewritten as

(1− η0)n

(1− ηn−c)n
(1− η0)n−c

( ηn−c

1−ηn−c
− η0

1−η0
)n−c

≥ 1. (80)

rewriting the left hand side of the above eqn.

(1− η0)n

(1− ηn−c)n

(1 + η0

1−η0
)n−c

( ηn−c

1−ηn−c
− η0

1−η0
)n−c

=
(1− η0)c

(1− ηn−c)c
( (1− η0)(1 + η0

1−η0
)

(1− ηn−c)(
ηn−c

1−ηn−c
− η0

1−η0
)

)n−c
,

and observing that
(1− η0)(1 + η0

1−η0
)

(1− ηn−c)(
ηn−c

1−ηn−c
− η0

1−η0
)

=
1− η0

ηn−c − η0
,

and plugging this into eqn. (80) we obtain

(1− η0)c

(1− ηn−c)c
(

1− η0
ηn−c − η0

)n−c ≥ 1. (81)

Now, 1− η0 ≥ 1− ηn−c and 1− η0 ≥ ηn−c − η0 since η0 < ηn−c < 1. This implies that eqn. 81 is true, and
thus eqn. s 80 and 79 hold, and therefore Thm. 30 is proved.

We also numerically compute the number of violations of the inequality Eextrap ≥ ϵmax

(1−η0)n
and plot these

in Figure 7. We took ϵmax = 0.01, η0 = 0.01, ηn−c = 0.95, and ηi for 1 < i < n − c equally spaced. We
varied the value of n − c between 3 and 14, with c = ceil(n/3) and ceil(.) is the ceiling function. For each
value of n− c we performed 3000 runs, where at each run we took n− c+ 1 values of {ϵi} chosen uniformly
randomly from [−ϵmax, ϵmax]. As can be observed in Figure 7, the number of violations approaches zero
with increasing n, confirming that extrapolation performs worse than post-selection after some value of n.
A similar behaviour is observed for different values of ϵmax, η0 and ηn−c.
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Figure 7: Number of violations of |Eextrap| ≥ ϵmax

(1−η0)n
plotted versus n− c (see main text).

Second method of extrapolation at various noise rates

Another possible extrapolation technique can be performed by considering eqn. (68) where the (1− ηi)n−i

terms are expanded in order to obtain

pη(n1 . . . nl) =
∑

i=0,...,n

βiη
i. (82)

Where β0 = α0, and βis are linear combinations of the αis defined previously. The extrapolation procedure
proceeds in a similar manner to that described above, but now we compute pη(n1 . . . nl) for n+ 1 values of
loss ηn > ηn−1 · · · > η0 to solve for the coefficients {βi}, with the matrix L in this case given by

L =


1 η0 . . . ηn0
1 η1 . . . ηn1
. . . .
. . . .
1 ηn . . . ηnn

 . (83)

L is a Vandermonde matrix, and we can directly use the result of [65] to upper bound ||L−1||∞ as

||L−1||∞ ≤ maxi
∏

j ̸=i=0,...,n

1 + ηi
|ηi − ηj |

.

Therefore,

Eextrap ≤ ϵmaxmaxi
∏

j ̸=i=0,...,n

1 + ηi
|ηi − ηj |

We will now prove that the upper bound on Eextrap is larger than that of Epost for this method of
extrapolation, giving strong evidence that this technique offers no advantage over post-selection. This
amounts to proving the following.

Theorem 31. For η0, . . . , ηn with ηi+1 > ηi and η0 ≥ 0, ηn < 1 the following holds

maxi
∏

j ̸=i=0,...,n

1 + ηi
|ηi − ηj |

≥ 1

(1− η0)n
. (84)
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Proof. We note that

maxi
∏

j ̸=i=0,...,n

1 + ηi
|ηi − ηj |

≥ (1 + η0)n

(ηn − η0)n
,

and that (1+η0)
n

(ηn−η0)n
≥ 1

(1−η0)n
since 1

ηn−η0
> 1

1−η0
and 1 + η0 > 1. This completes the proof.

For this technique as well we numerically compute the number of violations of Eextrap >
ϵmax

(1−η0)n
and

plot these in Figure 8. We took ϵmax = 0.01, η0 = 0.01, ηn = 0.95, and ηi for 0 < i < n equally spaced. We
varied the value of n between 3 and 16. For each value of n we performed 3000 runs, where at each run we
took n+1 values of {ϵi} chosen uniformly randomly from [−ϵmax, ϵmax]. As can be observed in Figure 8, the
number of violations approaches zero with increasing n, confirming that this extrapolation performs worse
than post-selection after some value of n. A similar behaviour is observed for different values of ϵmax, η0 and
ηn.

Figure 8: Number of violations of |Eextrap| ≥ ϵmax

(1−η0)n
plotted versus n (see main text).

Proof of Thm. 13

We now prove Thm. 13 from the main text:

For all n ≥ n0, with n0 a positive integer, M(Eextrap) ≥ ϵmax√
(1−η)n

.

A third extrapolation technique which can be used is the Richardson extrapolation technique, at the
heart of the zero noise extrapolation method for mitigating qubit errors, which has gained widespread use
and is at the heart of ZNE [32]. This method uses the expansion of eqn. (82) with ηi = ciη, for i ∈ {0, . . . , n}
with η ∈ [0, 1], c0 = 1, and ci are positive reals satisfying ci+1 > ci. The Richardson extrapolation method
consists of computing an estimate p̃(n1 . . . nl|n) of p(n1 . . . nl|n) as follows

p̃(n1 . . . nl|n) =
∑

i=0...n

γip̃ηi
(n1 . . . nl),

where, γi := (−1)n
∏

j ̸=i
cj

ci−cj
. It can be shown that [13]

∑
i=0,...,n γi = 1 and

∑
j=0,...,n γic

j
i = 0 for

j = 1, . . . , n. Furthermore, it can also be shown that p(n1 . . . nl|n) =
∑

i=0,...n γipηi(n1 . . . nl). Thus, the
error associated with this technique is given by

Eextrap := |
∑

j=0,...n

γiϵi|.
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In the remainder of this paragraph, we will show that γi−1 = L−1
1i for i ∈ {1, . . . , n + 1} where L is the

Vandermonde matrix of eqn. (83) with ηi = ciη. This means that the results of the previous section follow
through, and therefore that Richardson extrapolation offers no advantage over post-selection.

Let B :=


β0
β1
.
.
.
βn

 , and P =


pη0(n1 . . . nl)
pη1(n1 . . . nl)

.

.

.
pηn

(n1 . . . nl)

 . In the case of a perfect computation of the probabilities

pηi(n1 . . . nl) (i.e ϵi = 0), the extrapolation technique based on the matrix L of eqn. (83) amounts to
computing β0 from the following system of eqn. s

B = L−1P.

Invoking standard multiplication rules for the above equation, one obtains

p(n1 . . . nl) = β0 =
∑

i=1,...n+1

L−1
1i pηi−1(n1 . . . nl).

Plugging the expansion pηj (n1 . . . nl) =
∑

i=0,...n βiη
j
i and ηi = ciη into the above equation, one obtains

β0 =
∑

i=1,...n+1

L−1
1i β0 +

∑
j=1...,n

∑
i=1...n+1

L−1
1i c

j
i−1βjη

j .

By a direct identification of the left hand side of the above equation with its right hand side, we find that∑
i=1...n+1 L

−1
1i = 1, and

∑
i=1,...,n+1 L

−1
1i c

j
i−1 = 0 for j ∈ {1 . . . n}. These sets of equations are exactly those

defining the coefficients γi (as seen previously) and allowing to uniquely determine them, thus we can make
the identification L−1

1i = γi−1 for i ∈ {1, . . . , n} and our result is demonstrated.

22 Lyapunov bound

22.1 Proof of Thm. 17

We now prove Thm. 17 from the main text:

For all r > 2, n≫ 1, and for the independent, identically distributed random variables Yi defined in eqn.
(50), we have that

N
E(|Y |r)

σr
N

≥ O
( β(r)n

N
r
2−1

)
, (85)

where β(r) > 1 is a positive real number dependent on r.

Proof. Fix an r > 2. We begin by evaluating σr
N .

σ2
N = (E(S2

N )) = E((
∑

i=1,...,N

Yi)
2) =

∑
i=1,...,N

E(Y 2
i ) + 2

∑
i=1,...,N

∑
j>i

E(YiYj).

The Y ′
i s are independent identically distributed, and E(Yi) = 0 by construction, therefore E(YiYj) =

E(Yi)E(Yj) = 0, ∀i ̸= j, and
∑

i=1,...,N E(Y 2
i ) = NE(Y 2) = NE(X− n!

mn )2 = N
(
E(X2)−2E(X) n!

mn +( n!
mn )2

)
.

Now, E(X2) = (n!)2(n+1)
m2n and E(X) = n!

mn [61]. Thus

σ2
N = N(

n(n!)2

m2n
),

and then

σr
N = (N(

n(n!)2

m2n
))

r
2 .

We will now compute a lower bound E(|Y |r). First, we will use a triangle inequality,

E(|Y |r) ≥ |E(Y r)|.
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We now focus on computing |E(Y r)|. Let µ := n!
mn

E(Y r) = E(X − µ)r =
∑

i=0,...,r

(
r

i

)
E(Xi)µr−i(−1)r−i =

∑
i=0,...,r

(
r

i

)
E(|Per(G)|2i)µr−i(−1)r−i

mni
.

Plugging conjecture 16 into E(Y r), we obtain

E(Y r) =
∑

i=0,...,r

(
r

i

)
O( (n!)2i(i!)2n

(ni)! )( n!
mn )r−i(−1)r−i

mni
=

1

mnr

∑
i=0,...,r

(−1)r−iO(

(
r
i

)
(n!)r+i(i!)2n

(ni)!
).

Since n≫ 1, we can use a Stirling approximation for i > 0

(n!)r+i

(ni)!
≈

(n
e )nr+ni(

√
2πn)r+i

(ni
e )ni
√

2πni
=

(
1

i

)ni(
n

e

)nr
(2πn)

i+r
2

√
2πni

.

Plugging this into E(Y r), we get

E(Y r) =
(n
e )nr

mnr

(
(−1)rO(1)(2πn)

r
2 +

∑
i=1,...,r

(−1)r−iO

((
r

i

)
(i!)2n

1

ini
(2πn)

i+r
2

√
2πni

))
.

For any i ≤ r, (2πn)
i+r
2√

2πni
= O(nr), we can simplify the above to

E(Y r) =
O(nr)(n

e )nr

mnr

(
(−1)rO(1) +

∑
i=1,...,r

(−1)r−iO

((
r

i

)
(i!)2n

1

ini

))
.

Now, we will look at |(−1)rO(1)+
∑

i=1,...,r(−1)r−iO(
(
r
i

)
(i!)2n 1

ini ))| = |(−1)rO(1)+
∑

i=1,...,r(−1)r−iO(
(
r
i

)
( (i!)

2
i

i )ni)|.

α(i) := (i!)
2
i

i is a monotonically increasing function of i for i > 2, this can be directly verified using Stirling’s

approximation for large i, since (i!)
2
i

i ≈ O(i2)
i = O(i). For small i, we verified this by numerical simulation.

Furthermore, α(i) ≥ 1 for i ≥ 1. Therefore |(−1)rO(1) +
∑

i=1,...,r(−1)r−iO(
(
r
i

)
( (i!)

2
i

i )ni)| = O((α(r))nr) =

O(β(r)n), where β(r) := α(r)r = (r!)2

rr . Note that β(r) > 1 for r > 2. Therefore

|E(Y r)| =
O(nr(n

e )nrβ(r)n)

mnr
.

Replacing n! ≈ (n
e )n
√

2πn in σr
N , then performing straightforward simplifications, we obtain

N |E(Y r)|
σr
N

= O

(
β(r)n

N
r
2−1

)
.

Noting, as previously mentioned, that NE(|Y |r)
σr
N

≥ N |E(Y r)|
σr
N

completes the proof.
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