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Classical electromagnetic radiation from moving point charges is foundational, but the thermal
dynamics responsible for classical acceleration temperature are poorly understood. We investigate
the thermal properties of classical electromagnetic radiation in the context of the correspondence
between accelerated electrons and moving mirrors, focusing on three trajectories with asymptotically
infinite (Davies-Fulling), asymptotically zero (Walker-Davies), and eternally uniform acceleration.
The latter two are argued not to be thermal, while the former is found to emit thermal photons with
a temperature that depends on the electron’s speed. Thermal radiation from the mirror reveals a
zero-jerk condition.
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I. INTRODUCTION

One of the most discussed results in quantum field
theory is the thermal nature of acceleration [1, 2], ren-
dered all the more significant given its close analogy with
black hole radiance [3, 4]. It has long been speculated
that ‘acceleration thermality’ is a pointer to some pro-
found link between gravitation, spacetime symmetries,
holography, and the quantum vacuum so that accelerat-
ing systems might provide a window into quantum grav-
ity. For example, Penrose has used this link to argue for
gravitationally-induced wave function collapse [5]. How-
ever, despite decades of speculation, the nature of such a
link remains obscure.

To revisit the possibility of a deeper connection, we
point out in this paper that the thermal properties of ac-
celeration extend beyond the traditional Unruh and De-
Witt particle detector models [2, 6] to include accelerat-
ing mirrors [7–10] and classical point charges [11–13]. We
also present some remarkable concordances in the pre-
dicted spectra and energy fluxes among physically very
different systems, hinting that a deep principle may be
at work.

Because of the formidable difficulty of directly observ-
ing Hawking radiation, there has been a growing interest
in black hole analogs for ‘table-top’ laboratory testing .
We also note that several recent experiments probe ac-
celerating mirror effects, see e.g., [14–17]. We feel that
broadening the context of the thermal connection with
acceleration opens up new possibilities for such analog
laboratory tests, see e.g., [18–20].

Indeed, Larmor’s classical electromagnetic acceleration
radiation from moving point charges [21] is intimately
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connected to the quantum scalar radiation of the mov-
ing mirror [9, 10, 22]. The first hints of this relationship
between electrons and mirrors were pioneered in 1982
by Unruh-Wald [11] and Ford-Vilenkin [12]. In 1995
Nikishov-Ritus [13] matured the particle correspondence
significantly, laying the groundwork for subsequent re-
search, see e.g., [18, 23–31].

The 1+1d moving mirror model particle creation is
characterized by the beta Bogolubov coefficients βR

pq with

p, q being the in- and out-scalar mode frequencies1, for
an introduction see e.g. [32] and the textbooks [33, 34].
On the other hand, a classical charge e moving in a recti-
linear fashion produces radiation with spectral distribu-
tion dI

dΩ (ω, cos θ) depending on the frequency ω and the
observation angle θ, Ω being the solid angle.

The recipe for converting between the electron and the
mirror is given by a simple relationship between the spec-
tral distribution on the electron side and the Bogolubov
coefficient squared on the mirror side [28, 29]:

dI

dΩ
(ω, cos θ) =

e2ω2

4π
|βR

pq|2,

p+ q = ω , p− q = ω cos θ,

p = ω
1 + cos θ

2
, q = ω

1− cos θ

2
.

(1)

Here, the electron moves in three-dimensional space
along a straight line (say, z-axis) with the same time
dependence z(t) as the mirror on the line. This mapping
allows accelerated electrons to be exploited as bona fide
black hole radiation analogs similar to moving mirrors,
whose history as evaporation analogs [35–39] have been
fruitful; see also [40–44] for some recent works.

This mapping contrasts with the fact that acceleration-
thermality has been primarily studied in the context of
quantum theories, mainly through the uniform acceler-
ation Davies-Unruh effect [1, 2], which has helped de-
velop connections to the classical radiation of Larmor, see
e.g., [45–48]. A classical connection between acceleration
and temperature (classical acceleration temperature, or
‘CAT’), as observed in the Planck electromagnetic ra-
diation spectrum, has largely remained unexplored un-
til recent efforts [28–31, 49]. Classical systems are often
more intuitive than quantum ones, and tractability allows
the analysis of different radiative thermodynamics due to
non-uniform acceleration. For instance, it was recently
established that non-uniformly accelerated charges can
produce electromagnetic radiation with a thermal spec-
trum [30]; see a recent theory paper [28] and experimental
evidence from beta decay [18].

In this work, we present new results on the thermal
properties of classical electromagnetic radiation and its

1 We use the notation p, q to avoid confusing the scalar frequencies
with the 3+1d photon frequency ω. The subscript R refers to
the half-space to the right of the mirror on the line.

connection to the quantum radiation from moving mir-
rors. We focus on three notable examples: the Davies-
Fulling trajectory (infinite asymptotic acceleration), the
Walker-Davies trajectory (zero asymptotic acceleration),
and the eternal-uniform trajectory (constant asymptotic
acceleration). We investigate the radiation from a classi-
cal point charge moving along these trajectories and find
that while the first example exhibits thermality, the sec-
ond and third do not. On the mirror side, this turns out
to be connected to the zero jerk condition (jerk being the
time derivative of the acceleration), as explained below.

The structure of the paper is as follows. In Sec. II,
we review the Davies-Fulling trajectory and its essential
dynamics, developing an intuition for the power and the
energy emission. We compute the scalar/photon spec-
tra, and specialize to slow speeds. Sec. III is devoted
to the Walker-Davies trajectory, where we perform spec-
tral analysis of the radiation and systematic computa-
tion in analog to Sec. II. In Sec. IV, we compare the
previous spectral results with the proper uniformly ac-
celerated trajectory. Sec. V summarizes the main find-
ings, emphasizing the speed-dependence of the Davies-
Fulling trajectory’s temperature and the Walker-Davies
trajectory particle count. Appendix A and B present
details on the spectral distribution of uniform accelera-
tion and zero-jerk thermality, respectively. We use units
kB = c = µ0 = ϵ0 = 1, where the fine structure con-
stant in terms of electric charge is αfs = e2/4πℏ ≈ 1/137.
For classical/quantum clarity, temperatures derived clas-
sically are expressed in the Stoney scale (no ℏ [50]; see
also [28, 51]). Quantum temperatures are expressed in
the Kelvin scale (ℏ required [52]).

II. DAVIES-FULLING TRAJECTORY

The 1977 Davies-Fulling trajectory [10], ż = − tanh t,
illuminated the thermodynamic duality between black
holes and moving mirrors. The late-time thermal behav-
ior describes the nature of equilibrium black hole evap-
oration [4]. Here, we wish to understand the radiation
emitted from an electron that travels along this particu-
lar globally-defined worldline.

A. Dynamics and total energy

Consider the electron moving along the Davies-Fulling
trajectory [10]

z(t) = − s

κ
ln coshκt, (2)

with an asymptotic approach to constant speed s such
that the system is asymptotically inertial [53]. See Fig-
ure 1 for a spacetime plot (blue line) and Figure 2 for a
conformal diagram of the trajectory class. Here velocity,
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v(t) = ż(t), and rapidity, η = tanh−1 v, are given by,

v(t) = −s tanh(κt), η(t) = − tanh−1[s tanh(κt)].
(3)

Notice that at ultra-relativistic final speeds, the rapidity
becomes linear in time, η(t) ∼ −κt.
Seeing as the Lorentz factor is given by γ = cosh η, one

can compute the rectilinear proper acceleration, α(t) =
γ3z̈(t), straightforwardly

α(t) = − s κ sech2(κt)(
1− s2 tanh2(κt)

)3/2 . (4)

But what we are really after is the ‘peel’ acceleration [39],
P(t) = 2αeη, which is thermodynamically relevant [28–
30, 54, 55]. In the case of the worldline, Eq. (2), the peel
is given by,

P(t) = − 2κs sech2(κt)

(1 + s tanh(κt))2(1− s tanh(κt))
. (5)

In the regime where s → 1 the peel simplifies to P(t) =
−(1 + e−2κt)κ. From this, we see that at late times,
t → ∞, the peel approaches a constant, P(t) → −κ. This
suggests thermal emission will occur in the far future. See
the blue worldline electron trajectory of Figure 1 moving
to the left on the upper-left-hand side of the spacetime
diagram. This is where we expect thermal emission.
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FIG. 1. A spacetime diagram of Eq. (2) (red), demonstrat-
ing qualitative hyperbolic shape and time-reversal symmetry.
Here, the final speed is set to s = 0.66 and κ = 1. The red
trajectory is a parity flipped Eq. (2), added for illustrative
symmetry. Interestingly, the peel acceleration κ goes con-
stant when s → 1 in the upper-left and lower-right quad-
rants. Thermal radiation is more likely when the trajectory
is asymptotically moving to the left, away from the I +

R ob-
server.
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FIG. 2. A Penrose conformal diagram of Eq. (2), demonstrat-
ing asymptotic inertia of α(t) → 0 as t → ±∞ because final
speed is s < 1 resulting in initial and final states approaching
timelike future infinity. From the inside-out, the final speeds
are s = 0.55, 0.65, 0.75, 0.85, 0.95. Here, κ = 1, and trajec-
tories are plotted traveling both left and right for illustrative
symmetry.

Force, power, energy A moving point charge experi-
ences a radiation reaction. The magnitude of the self-
force is

F =
e2α′(τ)

6π
, lim

s→1
F = −e2κ2

12π
sinh 2κt, (6)

where τ is proper time, and the prime indicates a deriva-
tive with respect to the argument. The second expression
is valid for final ultra-relativistic speeds. The total Lar-
mor power radiated by the point charge as it accelerates
is given by,

P =
e2α2

6π
=

e2s2 κ2 sech4(κt)

6π
(
1− s2 tanh2(κt)

)3 . (7)

It is possible to find the total energy via the self-force or
the power:

Eelectron =

∫ ∞

−∞
P dt = −

∫ ∞

−∞
F · v dt. (8)

The result for the total energy emitted by an electron
along the Davies-Fulling trajectory, Eq. (2), is analytic:

Eelectron =
e2κ

24π

[
2γ2

s − 3 +

(
4− 3

γ2
s

)
ηs
s

]
. (9)

Here, the final Lorentz factor is γs = cosh ηs. The fi-
nal speed s is given by the final rapidity s = tanh ηs.
This analytic form of the energy will help us confirm the
consistency of the following spectral analysis, which is
needed to prove thermal radiation.
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B. Electron and mirror spectra

Having discussed the Davies-Fulling trajectory’s time-
dependent properties, let us now turn to the spectrum of
the electron’s radiation and its connection to the mirror
moving on the same trajectory.

a. Bogolubov Spectra for the mirror Treating the
electron as a tiny double-sided moving mirror (e.g.,
[28–30] and references therein), gives the βR

pq spectrum
[10, 53],

βR
pq =

2is(p−q)/κ√pq

2πκ(p− q)
B

(
ig−
2κ

,
ig+
2κ

)
, (10)

where g± = s(p−q)±(p+q). The double-sided spectrum
is defined as |βpq|2 = |βR

pq|2 + |βL
pq|2, and with |βL

pq|2 =

|βR
qp|2 we obtain

|βpq|2 =
4spq sinh

[
πs(p−q)

κ

]
πabκ(p− q)

(
cosh

[
π(p+q)

κ

]
− cosh

[
πs(p−q)

κ

]) .
(11)

Here a = p(1 + s) + q(1 − s), b = p(1 − s) + q(1 + s).
A numerical integration recapitulates the total energy of
the emitted radiation:

Emirror =

∫ ∞

0

∫ ∞

0

ℏp|βpq|2 dp dq. (12)

That is, one can be confident Eq. (11) is consistent with
the Larmor form because Eq. (12) gives the analog ver-
sion of Eq. (9), Emirror/ℏ = Eelectron/e

2.
b. Thermal limit of the mirror’s radiation Interest-

ingly, in the limit of the speed of light, s → 1, the beta
Bogolubov spectrum, Eq. (11), simplifies to (see also [56])

|βpq|2 =
1

πκ(p− q)

[
1

e2πq/κ − 1
− 1

e2πp/κ − 1

]
. (13)

which is the light-speed case [57] (see also [56]) of the
drifting counterpart in [53], first suggested by Davies-
Fulling [10] and studied at late-times, see Birrell-Davies
[33]. Consider that Eq. (13) in the high frequency ap-
proximation, q ≫ p, gives

|βpq|2 =
1

πκq

1

e2πp/κ − 1
. (14)

while the low frequency approximation, q ≪ p, gives

|βpq|2 =
1

πκp

1

e2πq/κ − 1
. (15)

These explicit Planck distributions accurately character-
ize the moving mirror radiation (scalars) with a temper-
ature, T = κ/2π. They also suggest exploring the regime
of high speeds s → 1 for study with respect to photon
radiation from the corresponding electron.

c. Spectral distribution for the electron The trajec-
tory is in Eq. (2). To calculate the spectral distribution
of the electron’s radiation, we will use the formula (see
Eq. (14.70) of [58]):

dI(ω)

dΩ
=

ω2

16π3
sin2 θ |jz(ω, kz)|2 (16)

Here, jz(ω, kz) is the Fourier transform of the current,

jz(ω, kz) = e

∞∫
−∞

dt
dz

dt
e−i(ωt−kzz(t))

=
eω

kz

∞∫
−∞

dt e−i(ωt−kzz(t)) .

(17)

Here kz = |k| cos θ = ω cos θ. The second line can be
obtained by integrating parts or using the charge conser-
vation law in Fourier space. Substituting here the tra-
jectory from Eq. (2) and making a change of variables
e2κt = w, w = x/(1− x), the integral can be brought to
the Euler beta function form with the result

jz(ω, kz) =
eω2i

skz
κ

2κkz
B

(
−i

ω − skz
2κ

, i
ω + skz

2κ

)
(18)

Plugging this into Eq. (16) and computing the absolute
value through gamma functions, we arrive at the spectral
distribution

dI(ω)

dΩ
=

e2s sin2 θ

8π2 cos θ(1− s2 cos2 θ)

× ω

κ

[
1

eπω
1−s cos θ

κ − 1
− 1

eπω
1+s cos θ

κ − 1

] (19)

Plugging the results for the mirror Eq. (10) and the elec-
tron Eq. (19) in the two sides of the electron-mirror cor-
respondence Eq. (1) we have checked that this correspon-
dence indeed works. Computing the total energy emitted
by the electron using Eq. (19) gives Eq. (9).

Mirror Electron

moves to the left moves down z → −∞
high-freq. q ≫ p blueshift-forward θ → π, q ≈ ω
low-freq. q ≪ p redshift-recede θ → 0, p ≈ ω

TABLE I. Correspondence between mirror and electron prop-
erties in various limits.

d. Thermal limits Let’s look at the redshift-
receding limit θ ∼ 0, see Table I for comparison of the
corresponding limits in the moving mirror and the point
charge problems. At high speeds s → 1, the first term in
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the square brackets in Eq. (19) dominates. We have2

1

sin2 θ

dI(ω)

dΩ
≈ e2s

8π2(1− s2)

ω

κ

1

eπω(1−s)/κ − 1
(20)

This has the form of a 1+1D Planck distribution. The
corresponding temperature is

T =
e2κ

π(1− s)
(Classical; Stoney Scale) (21)

Note that s > 0 in this formula.
In the opposite (“blueshift-forward”) limit θ ∼ π it is

the second term in the square brackets in Eq. (19) that
contributes, and the distribution is again Planck with the
same temperature as in Eq. (21).

e. Discussion: why is it so hot? One may wonder
why the temperature in Eq. (21) is so hot compared to
the results for the mirror. On the mirror side, in the low-
frequency regime q ≪ p, the particle distribution reduces
to a Planck factor Eq. (15). From this, one can conclude
that the temperature of the radiation from this mirror is

Tmirror =
ℏκ
2π

(Quantum; Kelvin Scale) (22)

However, this is a temperature for the frequency q!
The electron-mirror correspondence Eq. (1) tells us

that the frequencies on the two sides are not identical;
rather, they are related via

p =
ω(1 + cos θ)

2
, q =

ω(1− cos θ)

2
(23)

The “low-frequency” regime q ≪ p then corresponds to
the θ ∼ 0, cf. Table I.

With the recipe Eq. (23) the distribution for the mirror
Eq. (15) transforms to the distribution for the electron
Eq. (20) with the correct temperature Eq. (21). The
result is the same for the “high-frequency” mirror p ≫ q.
It is amazing how the meaning of temperature might

change when we pass from a mirror to an electron.

C. Non-relativistic speeds

For a given κ, the electron can be much hotter than
the mirror when s ≈ 1 as seen by Eq. (21). However,
the electron is comparable to the mirror when s ≈ 0
(also in the redshift receding limit). For small speeds,
the electron temperature, from Eq. (19) or Eq. (21) and
mirror temperature, Eq. (22), are respectively,

Tmirror =
Telectron

2
, (Kelvin Scale). (24)

2 At very low frequencies ω ≲ ωIR = κ/(1 + s) the approximation
Eq. (20) does not work; however, in the relativistic limit the cor-
responding characteristic frequency ωIR is negligible compared
to the temperature Eq. (21). The same goes for the blueshift-
forward limit discussed below.

The energy Eq. (9) also simplifies to leading order,

Eelectron =
e2

ℏ
Emirror =

2e2κ

9π
s2, (25)

in the non-relativistic limit, s ≈ 0.

III. WALKER-DAVIES TRAJECTORY

The first asymptotically resting trajectory with ana-
lytically solved Bogolubov coefficients was found in [59]:

t(z) = −z ±A
√

e−2z/B − 1. (26)

The parameters A > B > 0 are related to the max-
imum speed of the motion. Eq. (26) with the − sign
parametrizes the trajectory in the interval t ∈ (−∞, 0],
while Eq. (26) with the + sign gives the trajectory for
t ∈ [0,+∞). Lightcone coordinates with retarded time
U = t − z and advanced time V = t + z, conveniently
expresses the Walker-Davies trajectory, Eq. (26) as

U(V ) = V +B ln
(
V 2/A2 + 1

)
. (27)

In the following, we will solve for the emission properties
of an electron that travels along this worldline.

A. Dynamics and total energy

In terms of the Larmor power, the total energy emitted
by the electron along its worldline is

Ee
tot =

∞∫
−∞

dt P (t) , P (t) =
e2α2(t)

6π
,

α(t) = γ3z̈(t) , γ =
1√

1− v2

(28)

This formula can be adapted for use with a trajectory in
the form t = t(z):

v(z) = ż =

(
dt

dz

)−1

,

Ee
tot =

∞∫
−∞

dz
e2|v(z)|

6π(1− v2(z))3

(
dv(z)

dz

)2

,

(29)

Substituting the Walker-Davies trajectory Eq. (26) and
carefully evaluating the above integral (which is not par-
ticularly straightforward), we arrive at the result

Ee
tot

e2
=

B2

48(A2 −B2)3/2
+

1

24
√
A2 −B2

− 1

24A
. (30)

According to the electron-mirror correspondence, the to-
tal radiated energy for an electron and a mirror are re-
lated as Ee

tot = e2/ℏ · Emirror
tot , where e is the electron’s

charge.
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The first term of Eq. (30) exactly reproduces the en-
ergy on the right side of the mirror computed in [59].
Therefore, the second two terms give the energy on the
left side of the mirror.

We can parametrize (A,B) in terms of the peel scale
κ and maximum speed of the electron vmax along the
Walker-Davies trajectory. Taking

A =
π

κ
, B =

2πvmax

κ(1 + vmax)
, (31)

the total energy emitted at non-relativistic speeds and
relativistic speeds, respectfully, is

E ≈ κe2

6π
v2max, E ≈ κe2

12
√
2π

γ3
max. (32)

B. Electron and mirror spectra

The beta Bogolubov coefficients for the trajectory
Eq. (26) were computed in [59]:∣∣βR

pq

∣∣2 =
2AB

π2

q

p+ q
sinh(πpB)

×
∣∣K−1/2+ipB [A(p+ q)]

∣∣2 .

(33)

Here, K is the modified Bessel function of the second
kind.

We want to consider an electron in a rectilinear mo-
tion along the same trajectory Eq. (26). Applying the
recipe Eq. (1) we obtain the electron’s radiation spectral
distribution:

dI

dΩ
=

e2ω2AB(1− cos θ)

4π3
sinh(πω(1 + cos θ)B/2)

×
∣∣K−1/2+iω(1+cos θ)B/2 (ωA)

∣∣2 (34)

Integration of this spectral distribution over the angles
and frequencies gives the total energy. We have checked
numerically that the total energy from the spectral distri-
bution Eq. (34) coincides with the explicit result Eq. (30)
from the Larmor power.

C. Non-relativistic speeds

Consider the limit B ≪ A. As is evident from Eq. (31),
this corresponds to the limit when the maximal speed
vmax ≪ 1. In this limit, the Bessel function is well-
approximated by

K−1/2+ipB [A(p+ q)] ≈ K−1/2[A(p+ q)]

=

√
π

2A(p+ q)
e−A(p+q) (35)

In this approximation, the mirror’s betas and the elec-
tron’s spectral distribution have simple forms:∣∣βR

pq

∣∣2 ≈ B

π

q

(p+ q)2
sinh(πpB)e−2A(p+q), (36)

dI

dΩ
≈ e2ωB(1− cos θ)

8π2
sinh(πω(1 + cos θ)B/2)e−2Aω.

(37)
This allows for the analytical computation of various
characteristic quantities. For the mirror, one finds the
particle distribution and the total particle count (to the
leading order in B/A):

NR
p =

∞∫
0

dq |βR
pq|2 ≈ B2p

[
(1 + 2Ap)Γ(0, 2Ap)− e−2Ap

]
,

NR
tot =

∞∫
0

dpNR
p ≈ B2

24A2
=

v2max

6
.

(38)
Here, Γ(x, a) is the incomplete gamma function. For the
electron, one can compute the spectrum and the angular
energy distribution (to the leading order in B/A):

I(ω) =

∫
dΩ

dI

dΩ
≈ e2B2

6
ω2e−2Aω,

E(Ω) =

∞∫
0

dω
dI

dΩ
≈ e2B2

64πA3
sin2 θ.

(39)

Notice that I(ω) has the form of the Wien’s law in 2+1D.
We can ascribe this system the temperature (in the UV
sense)

TWD =
e2

2A
=

e2κ

2π
, (Classical; Stoney Scale) . (40)

However, this assignment is only valid in the non-
relativistic limit and the sense of Wien’s law rather than
Planck’s.
The total radiated energy from the electron is partic-

ularly simple in this approximation:

E =

∞∫
0

dω I(ω) =

∫
dΩE(Ω) ≈ e2B2

24A3
, (41)

and agrees with Eq. (30) to leading order in B ≪ A.

IV. UNIFORM PROPER-ACCELERATION
TRAJECTORY

An uncountable number of papers have been written
on a uniformly accelerated charge. There is some contro-
versy concerning whether or not the radiation from such
a charge is thermal in some sense. In this section, we de-
termine the trajectory’s spectral distribution, and in the
next section, we argue that the radiation’s temperature
is undefined.

A. Electron and mirror spectra

We start with known results for the uniformly acceler-
ated mirror. The beta Bogolubov coefficients for such a
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mirror are known (see e.g., [10, 33, 60]):

∣∣βR
pq

∣∣2 =
1

π2κ2

∣∣∣∣K1

(
2

κ

√
pq

)∣∣∣∣2 (42)

Using the electron-mirror correspondence Eq. (1) we in-
stantly obtain the spectral distribution for an electron
moving with uniform proper acceleration:

dI

dΩ
=

e2ω2

4π3κ2

∣∣∣K1

(ω
κ
sin θ

)∣∣∣2 (43)

From the known asymptotic behavior of the Bessel func-
tion

Kα(z) ≈

{
Γ(α)
2

(
2
z

)α
, z → 0√

π
2z e

−z , z → ∞
(44)

we can derive asymptotic expressions of the spectral dis-
tribution:

dI

dΩ
(ω, θ) ≈


e2

16π3 sin2 θ
, ω → 0

e2ω

8π2κ sin θ
e−

4ω
κ sin θ , ω → ∞

(45)

Note that a tremendous amount of energy is radiated
forward and backward.

B. Would-be thermality

Let us cast doubt on the thermality of the uniformly
proper accelerated electron. Consider some spectral dis-
tribution of a 1+1 Planck form,

f(ω) = C
ω

e
ω
T − 1

, (46)

where C is some constant (in the sense that it does not
depend on ω). The IR and UV limits are

f(ω) ≈

CT , ω → 0,

Cωe−
ω
T , ω → ∞.

(47)

Comparing Eq. (47) with Eq. (45), we see that the spec-
tral distribution for the uniformly accelerated electron
(45) looks thermal in the IR and UV limits separately,
but these limits are not consistent.

Moreover, if we look at the UV limit only, we get the
temperature

TUV =
e2κ

4 sin θ
(Classical; Stoney Scale) (48)

which becomes infinite in the redshift-receding limit. It
turns out that the temperature for the uniformly accel-
erated electron is undefined. We discuss this in the fol-
lowing section.

C. What is meant by thermality?

Let us compare the discussion of thermal properties of
the Davies-Fulling trajectory in Sec. II and the uniformly
accelerated case in Sec. IV. In both cases, the UV tails
have a form of Wien’s law. Can we say that they are
both thermal?
a. Uniformly accelerated electron is not thermal

The uniformly accelerated electron has infinite total ra-
diated energy. This is related to the fact that, because of
the singular behavior of the spectral distribution dI/ dΩ
at θ ∼ 0, π (cf. Eq. (45)), the spectrum I(ω) diverges.
Therefore, it makes sense only to consider the spectral
distribution dI/ dΩ.
At what angles θ would the spectral distribution be

interesting? Since the electron’s trajectory is unbounded,
we cannot look at this electron from some arbitrary angle
θ. As the electron flies away, at late times, we would
see it at an angle θ ∼ 0. We will eventually see the
electron moving away from us wherever we are in space.
Therefore, we would like to argue that it only makes sense
to consider the spectral distribution dI/ dΩ at θ ∼ 0.
In the above argument, we must be concerned only

with the cumulative spectral distribution, i.e., we are ob-
serving the electron over all of its motion. It would be
different if we only investigated the electron’s radiation
for a finite time.
Since we established the need to look at the spectral

distribution dI/ dΩ only in the redshift-receding limit
θ ∼ 0, we immediately see the problem (as we have al-
ready pointed out). The “temperature” of the uniformly
accelerated electron in Eq. (48)

TUV =
e2κ

4 sin θ
, (Classical; Stoney Scale) (49)

diverges at θ → 0. This means that we cannot define
the temperature for such an electron! Moreover, in the
case of a mirror, the uniform acceleration non-thermality
is consistent with the temporal-spatial observation that
the uniformly accelerated trajectory does not have zero
jerk; see Eq. (B7).
b. Davies-Fulling electron is thermal With the

Davies-Fulling electron, the situation is more straight-
forward. The temperature in the redshift-receding limit,
Eq. (21), is perfectly finite. Therefore, we can legiti-
mately call it thermal.

V. CONCLUSIONS

Our approach was to investigate the thermodynamics
of acceleration radiation for a moving point charge by
exact mapping of canonical solutions associated with the
moving mirror model. We have demonstrated the ana-
lytic utility of the electron-mirror correspondence and its
ability to answer questions on the meaning of acceleration
temperature in classical and quantum physical contexts.
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Having explicitly confirmed the consistency of the
electron-mirror duality, we summarize the main results
of our approach:

• We have found the total energy, Eq. (9) and
Eq. (30), emitted by the Davies-Fulling electron,
Eq. (2), and the Walker-Davies electron, Eq. (26).
These expressions are critical for confirming consis-
tency. They physically reveal that the faster elec-
trons move, the more energy is radiated.

• We have found the spectral distributions of the
Davies-Fulling Eq. (19), Walker-Davies Eq. (34),
and uniform proper acceleration Eq. (43) [and
Appendix Eq. (A6)], electron worldlines. The
Davies-Fulling electron manifests the Planck fac-
tor, Eq. (20).

• In Eq. (38), global particle count is proportional to
the square of the maximum speed, N = v2max/6,
for the Walker-Davies trajectory (non-relativistic
regime). This is the only example of analytic
tractability for total particle creation for classical
radiation emitted by a moving point charge for a
globally defined non-periodic worldline.

• We have found the temperature, Eq. (21), of the
radiation emitted by the Davies-Fulling electron.
Interestingly, it is dependent on the final speed of
the electron. The faster it goes, the hotter it glows.

• We have shown that zero jerk results in thermal-
ity. This is the dynamic-thermal explanation for
the temperature of an accelerating moving mir-
ror, Eq. (B17); explicitly shown in the case of the
Davies-Fulling and Carlitz-Willey.

There are several limitations to our approach. In partic-
ular, several specific drawbacks should be pointed out to
avoid misinterpretation or misapplication of its results,
potentially resulting in erroneous conclusions, namely:

1. None of the spectral distributions can be analyti-
cally integrated over their solid angle. This con-
trasts with the infrared acceleration trajectory as-
sociated with beta decay, i.e., [18, 28, 30]. This
frustrates attempts at finding the most general
form of the frequency spectrum I(ω), the particle
spectrum N(ω), or an analytic total particle count
N . Without a known spectrum I(ω), the spectral-
statistics (as explicitly derived from the spectral
distribution in a particular angular regime for the
radiation from a moving point charge) do not nec-
essarily characterize the spin-statistics of the elec-
tromagnetic field, e.g., [49].

2. Since the Planck factor of the Davies-Fulling elec-
tron has only been found in the spectral distribu-
tion dI/ dΩ, we do not have an associated tempera-
ture for the spectrum I(ω) itself. This is arguably a

kind of quasi-thermality [61], consistent with uni-
tarity when s < 1; applicable only in an angular
regime rather than a cumulative global regime.

3. While the approach of examining exact solutions
has shed light on the application and demonstrated
the consistency of the correspondence and the
meaning of temperature across the electron-mirror
contexts, the approach does not shed light on the
physical origin of frequency-angular mapping itself;
some effort in this direction is given in [27].

Despite these limitations, the moving mirror model
and the moving point charge share a functional math-
ematical identity (see Fig. 3 for a concept map) when
their worldlines share dynamic invariance across differ-
ent spatial dimensions. The distinct physical meaning of
temperature within the two systems unveils insight into
the fundamental nature of radiative thermodynamics.

Black Hole

Mirror Electron

Analog ?

Map

FIG. 3. A conceptual map demonstrating the context of the
electron-mirror duality as the lower leg of a thermal-particle-
creation triangle. The mathematical identity map between
the classical/quantum model of the electron and mirror is ex-
act. Since the moving mirror has a half-century history as a
useful analog for black hole radiation, the least developed side
of the triangle is the link between experimentally-challenging
black holes and experimentation-friendly electrons. Our elec-
tron results explicitly demonstrate the duality’s power, pro-
viding tractable means for investigating the classical quantum
aspects of relativistic thermodynamics (a languishing field
with a severe paucity of experimental evidence). Our solu-
tions help to reorient the direction of inquiry and establish
analytic examples that illustrate the ‘linographic’ (physical
content in 3D space is encoded in 1D space) utility of the
electron-mirror duality.
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Appendix A: Spectral distribution for the uniformly
proper accelerated charge

This section will show how to derive the spectral dis-
tribution Eq. (43) from electrodynamics without employ-
ing the electron-mirror duality. To this end, we will use
Eq. (16) and Eq. (17).

Let us start with a simple case κ = 1 (we will recover
κ at the end). The trajectory, in this case, is given by

z(t) = 1−
√

1 + t2 . (A1)

Passing to the retarded time u = t − z(t) brings the
trajectory into the form

t =
u(2 + u)

2(1 + u)
, (A2)

and the Fourier transform of the current Eq. (17) can be
written as an integral over u:

jz(ω, kz) = −e

∞∫
−1

du
u(2 + u)

2(1 + u)2
eiω

u(2+u+u cos θ)
2(1+u) , (A3)

where we substituted kz = ω cos θ. Making a further
change of variables u = U − 1 we can bring the integral
to the form of the modified Bessel function of the second
kind:

jz(ω, kz)

= −e

2
e−iω cos θ

∞∫
0

dU

(
1− 1

U2

)
e

iω(cos θ+1)
2 (U+ cos θ−1

cos θ+1
1
U )

= −e

2
e−iω cos θ

[
2

√
cos θ − 1

cos θ + 1
K−1(ω sin θ)

− 2

√
cos θ + 1

cos θ − 1
K1(ω sin θ)

]
=

2ie

sin θ
e−iω cos θK1(ω sin θ) .

(A4)
Here we have used Eq. (8.432.7) and Eq. (8.486.10) from
the book of Gradshteyn and Ryzhik (7th ed., 2007).
Finally, using Eq. (16) we arrive at the spectral distri-

bution:

dI

dΩ
=

e2ω2

4π3
|K1 (ω sin θ)|2 , κ = 1 . (A5)

The acceleration parameter κ can be easily restored by
dimensional analysis, and we arrive at

dI

dΩ
=

e2ω2

4π3κ2

∣∣∣K1

(ω
κ
sin θ

)∣∣∣2 . (A6)

This coincides with the result Eq. (43) obtained from the
electron-mirror duality.

Appendix B: Zero jerk and thermality

In this section, we will demonstrate the non-intuitive
relativistic result that zero jerk, J = 0, does not re-
sult in a constant proper acceleration but instead gives
a proper acceleration which has an inverse proper time
dependence, α(τ) = τ−1. This inverse dependence has
been derived in the literature [57], and it belongs to the
worldline of Carlitz-Willey, associated with eternal ther-
mal radiation from a moving mirror [62] or, if you will, an
analog eternally evaporating black hole with temperature
T = κ/2π.
First, we recall the spacetime vector, Xµ = (t, x), and

its velocity, acceleration and jerk:

V µ = Ẋµ, Aµ = Ẍµ, Jµ =
...
X

µ
, (B1)

where the dot implies a derivative with respect to proper
time, τ . These quantities can be written in terms of the
Lorentz factor γ = (1−v2)−1/2, and the celerity w = γv:

V µ = (γ,w), Aµ = (γ̇, ẇ), Jµ = (γ̈, ẅ), (B2)

where the usual coordinate lab time velocity is v = dx/dt.
Using the rapidity η and the proper acceleration α, we
write γ = cosh η, w = sinh η, and η̇ = α, obtaining

Aµ = (γ̇, ẇ) = (η̇ sinh η, η̇ cosh η) = α(w, γ). (B3)

The jerk vector is also easily found,

Jµ = (γ̈, ẅ), (B4)

= (η̇2 cosh η + η̈ sinh η, η̇2 sinh η + η̈ cosh η), (B5)

= (γα2 + wα̇,wα2 + γα̇). (B6)

Therefore, using γ2 − w2 = 1, the jerk modulus is

J2 = JνJ
ν = α4 − α̇2. (B7)

The Lorentz invariant J is called the proper jerk, in a
similar way one calls the Lorentz invariant α the proper
acceleration. In summary, the results are:

V µ = (γ,w), Aµ = α(w, γ), (B8)

Jµ = (γα2 + wα̇,wα2 + γα̇), (B9)

and the corresponding Lorentz invariants

VµV
µ = 1, AµA

µ = −α2, JνJ
ν = α4 − α̇2. (B10)
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Note that VµA
µ = 0, and VµJ

µ = α2. It is straightfor-
ward to verify that

Jµ =
α̇

α
Aµ + α2V µ. (B11)

We can now examine the simplest case of motion when
the jerk is absent.

Let us look at the proper acceleration when the proper
jerk is zero. Writing a vanishing modulus jerk with two
roots gives:

J2 = (α2 + α̇)(α2 − α̇) = 0, (B12)

where we can choose an accelerated motion

α2 + α̇ = 0. (B13)

This has the proper time-dependent solution,

|α(τ)| = 1

τ
. (B14)

Again, recall the proper jerk has been set to zero in
Eq. (B12). Therefore, Eq. (B14) is the proper acceler-
ation without proper jerk.

This is non-intuitive because the proper jerk for uni-
form proper acceleration is not zero. Consider α0 as a
non-zero constant for eternal proper uniform accelera-
tion. Using Eq. (B12), J2 = α4 − α̇2 ̸= 0, one obtains
non-zero constant proper jerk, J0 = ±α2

0.

The eternal thermal Carlitz-Willey trajectory [62], has
proper acceleration given by Eq. (B14), α(τ) = τ−1 [57].
It is well-known to have a constant peel acceleration,
P = 2αeη = κ [39]. Here P is the peel, and κ is the
acceleration parameter (a constant) associated with the
temperature of the radiation T = κ/2π. The s = 1
Davies-Fulling mirror, Eq. (2), α = −κγ also has a con-
stant peel at late coordinate times near τ0 = π/2κ be-
cause the proper acceleration scales as α = 1/(τ − τ0)
[57].
Because thermal moving mirrors have constant peel ac-

celeration (or ∼ 1/τ proper acceleration), it is worthwhile
to consider the proper time derivative of the peel:

P = 2αeη, Ṗ = 2eηα2 + 2eηα̇. (B15)

If Ṗ = 0, then in agreement with Eq. (B13),

Ṗ = α2 + α̇ = 0. (B16)

Thus, one can see clearly that zero jerk is responsible for
the temperature of the moving mirror:

J = 0 → T =
ℏκ
2π

. (B17)

This directly connects motion and thermal radiation in
the moving mirror model. No such connection has been
found for thermal radiation emitted by a moving point
charge.
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