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Abstract

This research presents a novel method using an adversarial neural network to solve the eigenvalue topology
optimization problems. The study focuses on optimizing the first eigenvalues of second-order elliptic and
fourth-order biharmonic operators subject to geometry constraints. These models are usually solved with
topology optimization algorithms based on sensitivity analysis, in which it is expensive to repeatedly solve the
nonlinear constrained eigenvalue problem with traditional numerical methods such as finite elements or finite
differences. In contrast, our method leverages automatic differentiation within the deep learning framework.
Furthermore, the adversarial neural networks enable different neural networks to train independently, which
improves the training efficiency and achieve satisfactory optimization results. Numerical results are presented
to verify effectiveness of the algorithms for maximizing and minimizing the first eigenvalues.

1 Introduction

As an optimization problem subject to constraints of geometry and physics, shape design aims to find a
shape which optimizes some objective useful in engineering [4, 41]. Shape design for eigenvalue problems has
extensive applications [19] including mechanical vibration [8, 10, 38, 21, 33], acoustics [44], photonic crystal
[11], population dynamics [30], and more.
In physical constrained optimization, traditional methods based on sensitivity analysis need to use mesh-

based numerical discretization methods such as finite element or finite difference either in the optimize-and-
discretize [41] or discretize-and-optimize [4] framework. After discretization, large-scale optimization problems
need to be solved, in which high computational costs are required especially in 3D for sufficiently accurate
mesh resolutions.
The aim of this paper is to seek a shape to maximize or minimize the first, i.e., smallest eigenvalue with deep

learning and without relying on the classical theoretical framework of shape sensitivity analysis. It is well-known
that with the explosion of available data and computational resources, recent advances in machine learning
especially deep learning have produced breakthroughs in different disciplines, including image recognition [26],
cognitive science [28], genomics [1], etc. Researchers began to explore applying neural networks in scientific
computing and engineering problems. The meshless deep neural network of deep learning has made many
contributions in solving partial differential equations, e.g., deep Ritz method [13, 14]. Neural networks have been
applied to solve high-dimensional problems [40]. Physics-informed neural networks (PINNs) [39] integrating
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many physical constraints and establishing continuous-time models and discrete-time models were proposed
to solve forward problems and inverse problems. In [9], an improved version of Calderón’s method using
deep convolution neural networks was developed for electrical impedance tomography. Recently, tensor neural
networks were developed [42] for solving eigenvalue problems.
In addition, to better handle the boundary conditions of physical constraints, a form of automatically satisfy-

ing the boundary condition was proposed [5] by multiplying a boundary signed distance function on the output
of the neural network. For the variational problems which are difficult to find the boundary signed distance
function on irregular domains, [22] proposed an augmented Lagrangian deep learning method. Subsequently,
Hendriks et al. [20] introduced a method for neural networks to automatically satisfy equation constraints,
such as the condition of zero divergence, by simply applying the curl operator to the network’s output. This
highlights that judicious design of neural networks can significantly enhance both training efficiency and out-
comes.
In physical and geometric constraint-governed shape optimization domains, neural networks have also been

naturally employed. Inspired by the use of PINNs for solving inverse problems, Lu et al. [31] introduced a hybrid
Physics-Informed Neural Networks (hPINNs), which represent a network architecture automatically satisfying
boundary conditions and circumventing the difficulties associated with the penalty methods on boundaries.
Furthermore, the density function under a reasonable assumption was constructed and demonstrated the ef-
ficiency of hPINNs for shape optimization in optical holography and Stokes flows. See also the deep learning
toolbox for solving partial differential equations [32].
In the field of topology optimization, the use of deep learning methods has received considerable attention in

recent years. Deng et al. [12] introduced a generative design approach that integrates topology optimization and
generative models in an iterative fashion to explore new design schemes. Oh et al.[34] proposed a deep neural
network-based level set method for topology optimization parameters, integrating deep neural networks into
the traditional level set method to construct an effective structural topology optimization approach. Lei et al.
[27] employed machine learning to directly establish a mapping between optimal structural/topological design
parameters and external loads. Furthermore, Huang et al. [23] introduced a Problem-Independent Machine
Learning (PIML) technique to reduce the computational time associated with finite element analysis. These
studies represent the application of deep learning methods to topology optimization problems from various
angles, highlighting the vast potential of deep learning in the realm of topology optimization.
Recently, Zang et al. [43] proposed a weak adversarial network (WAN) method to solve partial differential

equations by transforming the variational form into an operator norm minimization problem. Then the weak
solution and test function in the weak form are parameterized into the original network and the adversarial
network, respectively. In the training stage, the parameters of the two neural networks are alternately updated.
Moreover, the WAN method was used to solve the inverse problems [2]. For a typical shape and topology
optimization problem, the density function as a variable to be optimized is related to the physical state.
The present paper proposes a deep learning method based on the adversarial neural network for the eigenvalue

optimization problems. Different from the traditional mesh-based discretization method, there is no need in
the present meshless method to solve repeatly the eigenvalue problem for sensitivity analysis such as explicit
gradient computation. It directly used automatic differentiation in machine learning [3]. In addition, the
adversarial neural networks enable different neural networks to be trained independently, which improves the
training efficiency and achieve acceptable optimized results.
The rest of the paper is organized as follows. In Section 2, we introduce topology optimization of second-order

elliptic and fourth-order biharmonic eigenvalues. Section 3 introduces the structure of the neural network and
the training mode, how to handle constraints, and present the loss function of the neural network. Furthermore,
the adversarial neural network algorithm is summarized for eigenvalue optimization problems. In section 4,
numerical examples are presented to validate the effectiveness of the algorithm. Conclusions follow in Section
5.
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2 Model problems

Let Ω ⊂ R2 (d = 2, 3) be an open bounded domain with Lipschitz continuous boundary ∂Ω. Let ρ : Ω → R be
a discontinuous function:

ρ =

{
ρ1 inΩ\D,

ρ2 inD,
(1)

where D ⊂ Ω is an unknown domain and ρ1 and ρ2 (ρ1 ̸= ρ2) are given positive constants. Introduce the
characteristic function of D as

χD =

{
1 inD,

0 inΩ\D.
(2)

Let a constant c ∈ (ρ1|Ω|, ρ2|Ω|) be prescribed (ρ1 < ρ2), where |Ω| denotes the Lebesgue measure of Ω. Define
a set of admissible functions

A =

{
ρ
∣∣∣ρ = ρ1χΩ\D + ρ2χD,

∫
Ω
ρdx = c

}
. (3)

Notice that a mass constraint or equivalently a geometry constraint on D has been imposed in (3). Let L2(Ω)
be the space of square-integrable functions defined on Ω. Denote the Hilbert spaces

H1(Ω) : =

{
v ∈ L2(Ω)

∣∣∣ ∂v
∂xi

∈ L2(Ω), i = 1, · · · , d
}
,

H1
0 (Ω) : =

{
v ∈ H1(Ω) | v = 0 on ∂Ω

}
.

2.1 Second-order elliptic eigenvalue optimization

A natural application in vibrating structure engineering, e.g., acoustics [29, 35, 44], is to design the material
distribution subject to a mass constraint so that the resonant of a drum frequency reaches the maximum or
minimum. See similar applications for the eigenvalue optimization of the composite coefficient problem [8].
Let us introduce the model problem. Given a domain Ω ⊂ Rd (d = 2, 3), let λ1 be the first eigenvalue of the

problem {
−∆u+ αχDu = λu in Ω,

u = 0 on ∂Ω,
(4)

where α > 0. Consider the following eigenvalue optimization problem:

min
ρ∈A

λ1 or max
ρ∈A

λ1, (5)

where c ∈ (0, |Ω|) is prescribed, ρ1 = 0, ρ2 = 1 and thus ρ = χD.
Next, we consider the weak formulation of (4): Find (λ, u) ∈ R+ ×H1

0 (Ω) such that∫
Ω
(∇u · ∇v + αχDuv)dx =

∫
Ω
λuvdx ∀v ∈ H1

0 (Ω).

By Rayleigh quotient, we obtain

λ1 = min
0̸=v∈H1

0 (Ω)

∫
Ω |∇v|2 + αχDv

2 dx∫
Ω v2 dx

. (6)

Thus, the minimization and maximization of the first eigenvalue (5) can be written in the following forms:

min
ρ∈A

min
0̸=v∈H1

0 (Ω)

∫
Ω |∇v|2 + αρv2 dx∫

Ω v2 dx
(7)
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and

max
ρ∈A

min
0̸=v∈H1

0 (Ω)

∫
Ω |∇v|2 + αρv2 dx∫

Ω v2 dx
, (8)

respectively.

2.2 Fourth-order biharmonic eigenvalue optimization

Consider fourth-order biharmonic eigenvalue optimization with applications in control of plate frequencies. The
difference between the two eigenvalue problems is due to different boundary conditions [10, 33]. We try to find
the optimal density distribution in the open bounded domain Ω ⊂ R2. Consider the following two eigenvalue
problems subject to inhomogeneous clamped and inhomogeneous simply supported conditions, respectively as

∆2u = λρu in Ω,

u = 0 on ∂Ω
∂u
∂n = 0 on ∂Ω

(9)

and 
∆2u = λρu in Ω,

u = 0 on ∂Ω

∆u− (1− ν)κ∂u
∂n = 0 on ∂Ω,

(10)

where n denotes the unit outward normal, κ is the mean curvature, ν is the Poisson’s ratio satisfying (−1 ≤ ν ≤ 0.5).
We consider to find the optimal D which makes the first eigenvalue of (9) and (10) reaches a minimum or max-
imum [24, 33]:

min
ρ∈A

λ1 or max
ρ∈A

λ1. (11)

For the fourth-order problems (7) and (8), let us introduce the following Hilbert spaces:

H2(Ω) : =

{
v ∈ H1(Ω)

∣∣∣ ∂v
∂x1

,
∂v

∂x2
∈ H1(Ω)

}
,

H2
0 (Ω) : =

{
v ∈ H2(Ω)

∣∣∣v = 0,
∂v

∂n
= 0 on ∂Ω

}
.

By the Rayleigh theorem, we obtain respectively for

λ1 = min
0̸=v∈H2

0 (Ω)

∫
Ω(∆v)2 dx∫
Ω ρv2 dx

(12)

and

λ1 = min
0̸=v∈H1

0 (Ω)∩H2(Ω)

∫
Ω(∆v)2 dx−

∫
∂Ω(1− ν)κ

(
∂v
∂n

)2
ds∫

Ω ρv2 dx
. (13)

Then, the problem (11) can be written as(
max
ρ∈A

)
min
ρ∈A

min
0 ̸=v∈H2

0 (Ω)

∫
Ω(∆v)2 dx∫
Ω ρv2 dx

(14)

and (
max
ρ∈A

)
min
ρ∈A

min
0̸=v∈H1

0 (Ω)∩H2(Ω)

∫
Ω(∆v)2 dx−

∫
∂Ω(1− ν)κ

(
∂v
∂n

)2
ds∫

Ω ρv2 dx
, (15)

associated with (9) and (10), respectively.
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3 Neural networks

Inspired by biology and neuroscience, artificial neural networks are mathematical models with networks between
input arrays and output results. An artificial neural network imitates the neuronal network of the human brain
to construct artificial neurons and establish the topological connections between them. Such a network can be
regarded as a mathematical mapping. We take the feedforward neural network as an example to introduce the
components of the neural network and their mathematical formulations [16].

3.1 Network structure

3.1.1 Layer structure of fully connected feedforward neural networks

The layer structure is the basic component of the network structure. Each layer is composed of multiple
neurons. In a fully connected feedforward neural network, all neurons in a layer are connected to neurons in
the previous layer. Now we express how two adjacent layers in a fully connected feed-forward neural network
are transmitted. Let the l-th and the (l + 1)-th layers of the neural network contain dl and dl+1 neurons,
respectively. The output of the l-th layer denoted by zl is also the input of the (l+ 1)-th layer. Let W (l+1) be
the (l + 1)-th layer’s weight matrix consisting of weight vectors for all neurons of that layer. Denote by b(l+1)

and ϕl+1 the bias vector and the activation function of the (l + 1)-th layer, respectively. The mathematical
relationship of the output vectors between the two consecutive layers reads:

z(l+1) = ϕl+1

(
W (l+1)z(l) + b(l+1)

)
, (16)

where zl ∈ Rdl , zl+1 ∈ Rdl+1 , W (l+1) ∈ Rdl×dl+1 , and b(l+1) ∈ Rdl+1 .
It is obvious that the relationship of the output vectors of the two adjacent layers can be summarized as

z(l+1) = f
(l+1)
dl,dl+1

(
z(l)

)
,

where f
(l+1)
dl,dl+1

: Rdl → Rdl+1 denotes the layer mapping from the l-th layer with dl neurons)to the l+1-th layer
with dl+1 neurons.

3.1.2 Block structure

Compared with simple hierarchical stacking, ResNet is a convolutional neural network [17] characterized by
block structure and jump connection. For a simple layered stacked feed-forward neural network, the training
gradient will disappear when the number of layers increases to a certain extent. Fortunately, the jump structure
solves this problem well through inserting an identity mapping every several layers such that the gradient is
not close to zero. ResNet type networks can be regarded as a block structure if we combine the identity map
and several layers. Then the whole network can be regarded as multiple learning block-wise connections.
Let us take the jumping hierarchy used in this paper as an example to illustrate the block structure (see Fig.

1). This is a block composed of M feed-forward fully-connected layers: Y1, Y2, · · · , YM and an identity map.
Because the operational dimension of the identity mapping need to be consistent with the output dimension
of the M -th layer, we simply take the number of neurons in all fully connected layers as equal, which means
the number of neuron dl in a layer is degenerated to N . If we define v(i) and v(i+1) as the output of i-th and
(i+ 1)-th blocks, then we can express the relationship between v(i) and v(i+1) :

v(i+1) = f
(M)
N,N ◦ ... ◦ f (2)

N,N ◦ f (1)
N,N

(
v(i)

)
+ v(i), (17)
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Figure 1: Block structure

where f
(m)
N,N (m = 1, 2, · · · ,M) is the layer mapping consisting of N neurons. From it, we can find that the

relationship of the output of two adjacent blocks can be denoted as

v(i+1) = g
(i)
M,N

(
v(i)

)
.

We define g
(i)
M,N as i-th block mapping which consists M layers with N neurons in every layer.

3.1.3 Complete structure

A complete network structure contains input layers, output layers, and hidden layers or hidden blocks (Fig.
2). According to the above introduction, for an input vector x ∈ Rd, it will first transform through the input

Figure 2: Network structure.

layer, so that it is consistent with the input dimension of the first hidden layer, then into the hidden block, and
finally into the output layer, finally getting the output y. In our paper, the network is composed of T block
hidden blocks. Each block contains the M layers and each layer contains N neurons. Then the transmission
process of the whole network is as follows:

v(0) = Win · x,

v(T ) = g
(T )
M,N ◦ . . . ◦ g(1)M,N (v(0)),

y = ϕ
(
Wout · v(T ) + b

)
,

(18)

where Win ∈ Rd×N and Wout ∈ RN×1 are weight matrices of the input layer and output layer, respectively,
and T and N are the number of block structures and the number of neurons in the layer structure, respectively.
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Note that the activation function in the output layer can differ from that in the hidden block. Many functions
with nonlinear properties can be used as an activation function, which is the key to the neural network dealing
with nonlinear problems. Considering the efficiency and stability of neural network training, the activation
function generally needs to be continuously differentiable and its derivative can not be too large or too small.
In this paper, we mainly use tanh function and use square function when specified.

3.1.4 Neural network training

The previous subsection shows the process of forward transmission of the network. The neural network can
be thought as a mapping between an input x and an output y. After building the network, initial parameters
require to be set. The Xavier method [15] is used here to initialize the network. For a specific problem
considered to be solved, then a loss function L (Hθ) with the neural network Hθ requires to be constructed.
Therefore, the training of the neural network is equivalent to the following minimization problem:

min
θ

L (Hθ) ,

where θ is the set of layer weight matrices and the biases. We try to find the optimal θ through training the
network by backpropagation, which uses the automatic differential method to obtain the derivative [3]. In the
backpropagation optimization method, in addition to the stochastic gradient descent method, there are many
optimization algorithms, such as adaptive method, momentum method, Newton method, conjugate gradient
method, etc. Here, we use the mainstream method: Adam method [25].

3.2 Loss functions

3.2.1 Objective function

Generally, the loss function needs to consider internal state, boundary and geometry constraints. In this case,
the objective function (6) is equivalent to the first eigenvalue pair of equation (4). Therefor, the loss function
only needs to consider the objective (6), boundary constraint, and geometry constraint.
Firstly, we discrete and approximate the objective based on the equivalence of the objective and (4). Instead

of using traditional numerical methods such as the finite difference or finite element, we use the PINN method
[39] to build neural networks which we mentioned in Section 2.
We build two adversarial neural networks H (x;θu) and H (x;θρ) to approximate u and ρ, respectively, where

x as points in Ω are inputs of the neural networks, θu and θρ are network parameters that will be updated after
initialization. Let û and ρ̂ be continuously differentiable approximations to u and ρ, respectively. Consider û
and ρ̂ as the outputs of the two neural networks:

û (x;θu) = H (x;θu)

ρ̂ (x;θρ) = H (x;θρ) .

The integrals in the objective (6) can be approximated by numerical quadrature with points in Ω. Let{
x(j), j = 1, 2, · · · , Nx

}
be the set of Nx points in Ω. Then the objective of (6) can be approximated as

Lin (θu,θρ) =

∑Nx
j=1 |∇û

(
x(j);θu

)
|2 + αρ̂

(
x(j);θρ

)
û
(
x(j);θu

)∑Nx
j=1 û

2
(
x(j);θu

) .

Now we consider the discretization of the objective for biharmonic eigenvalue optimization. For the objective
(12) of the clamped plate equation, we approximate it as

Lin (θu,θρ) =

∑Nx
j=1 |∆û

(
x(j);θu

)
|2∑N

j=1 ρ̂
(
x(j);θρ

)
û2

(
x(j);θu

) . (19)
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As for simply supported plate equation, notice that its objective (13) has both volume integral and boundary

integral. Introduce Nb points
{
x
(j)
b , j = 1, 2, · · · , Nb

}
on the boundary such that the objective (13) can be

approximated as

Lin (θu,θρ) =

A1
Nx

∑Nx
j=1 |∆û

(
x(j);θu

)
|2 − A2

Nb

∑Nb
j=1(1− ν)κ∂û

∂n

(
x
(j)
b ;θu

)2

S1
Nx

∑Nx
j=1 ρ̂

(
x(j);θρ

)
û2

(
x(j);θu

) , (20)

in which A1 and A2 represent the volume of Ω and the surface measure of ∂Ω, respectively.

3.2.2 Boundary constraint

This section focuses on how to deal with boundary constraints. For neural networks methods in solving partial
differential equations (e.g., [14, 39]), a common method dealing with a boundary constraint is to add a penalty
term in objective, which is feasible to many types of boundary conditions: Dirichlet, Neumann, Robin, etc.
However, the boundary penalty term probably causes difficulties in training neural networks. In order to
satisfy boundary conditions and train the networks easily, we refer to [31], in which for the Dirichlet boundary
condition, we can introduce a boundary function ℓbd such that û directly satisfies the boundary condition
automatically. More specifically, set

û (x;θu) = g(x) + ℓbd(x)H (x;θu) (21)

to make û directly satisfy the Dirichlet boundary condition

u(x) = g(x), x ∈ ∂Ω. (22)

In our problems g(x) = 0 and ℓbd satisfies {
ℓbd(x) = 0, x ∈ ∂Ω,

ℓbd(x) > 0, x ∈ Ω.
(23)

Specifically, if the ∂Ω has a simple geometry structure, an analytical conditional function can be chosen. For
example, we can choose ℓbd = (x− a1)(x− a2)(y− a3)(y− a4) for Ω = [a1, a2]× [a3, a4] with a1, a2, a3, a4 being
constants given (a1 < a2 and a3 < a4).

For more complex domains, one can choose a signed distance function [36] denoted by f : X → R for a larger
domain X ⊃ Ω:

f(x) =

{
d(x, ∂Ω) if x ∈ Ω,

− d(x, ∂Ω) if x ∈ Ωc,
(24)

where the distance function from x to ∂Ω is defined by

d(x, ∂Ω) := inf
y∈∂Ω

d(x,y).

Obviously, the signed distance function satisfies (23) for ℓbd. For example, when Ω =
{
(x, y) : r2in ≤ x2 + y2 ≤

r2out
}
, we can choose ℓbd = min(r2out −x2−y2, x2+y2−r2in), where rin and rout are the inner and outer radiuses,

respectively. Notice that the choice of a boundary function ℓbd is not unique.
It is worth mentioning that in (21), û is no longer the output of the neural network directly, but a continuous

differentiable function (with the neural network as a kernel) automatically satisfying the boundary condition
(22).
Next, we deal with the boundary conditions of the fourth-order plate eigenvalue problems. Taking the

clamped plate support plate equation as an example, we can find similarly as above a boundary condition

8



function ℓu such that û directly meets both the Dirichlet and Neumann boundary conditions. As for H2
0 (Ω) in

this case, we can construct
û (x;θu) = ℓu(x)H (x;θu) , (25)

where ℓu satisfies 
ℓu(x) = 0, x ∈ ∂Ω,
∂
∂nℓu = 0, x ∈ ∂Ω,

ℓu(x) > 0, x ∈ Ω,

with ∂
∂nℓu = n · ∇ℓu. The disadvantage is that it is sometimes not easy to find the boundary condition

function satisfying all above conditions simultaneously. Let us call the above boundary function approach as
Full-satisfied boundary method.

We may alternatively use another way to handle the boundary constraints. Taking the simply supported
plate problem as an example, since the boundary conditions of the problem are relatively complex, we construct
û to satisfy the Dirichlet boundary condition, while the other boundary condition considered as a constraint is
dealt with a penalty method by adding a boundary loss

Lb (θu) = M
1

Nb

Nb∑
j=1

[
∆û2

(
x
(j)
b ;θu

)2
− (1− ν)κ

∂û

∂n

(
x
(j)
b ;θu

)]2
, (26)

to the total loss function Lsum, where a large penalty parameter M > 0. We call it Half-satisfied boundary
method.

3.2.3 Geometry constraint

Finally, we deal with the geometry constraint with the penalty method. The original constrained optimization
problem is transformed into an unconstrained optimization problem. We first consider numerical quadrature
to approximate the geometry constraint. If there are enough, e.g., Nx, sampling points in domain Ω,

∫
Ω ρ can

be approximated as quadrature. Then, the geometry constraint
∫
Ω ρ = c can be replaced approximately as

h (θρ) = 0, where

h (θρ) =

∑Nx
j=1 ρ̂ (xj ;θρ)

Nx
− c.

If the penalty method is used, then the loss function related to the geometry constraint is as follows:

Lw (θρ) = µh2 (θρ) ,

where a penalty coefficient µ > 0 is introduced. In the general penalty method, µ is a fixed value. To satisfy the
constraint better, the fixed value of µ usually should not be very large. However, a large µ leads to inefficient
training due to suffering very small training rate and thus makes it difficult to reach the global minimizer [6].
One improvement is to allow µ to start from a small initial value and increase during iterations [6]. The loss
function of this variable coefficient penalty method is

Lw (θρ) = µkh
2 (θρ) , (27)

where µk > 0 is a penalty coefficient of the kth iteration and µk+1 = βµk with β > 1.
Another way compared with the variable coefficient penalty method is the augmented Lagrangian method

[7] with
Lw (θρ) = µkh

2 (θρ) + λkh (θρ) , (28)
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where the k-th Lagrange multiplier λk is updated during iterations:

λk = λk−1 + 2µk−1h
(
θk−1
ρ

)
.

In addition, µk grows as
µk+1 = min(βµk, S),

where S is a upper bound for µk. A benefit of augmented Lagrangian is the dynamic adjustment, which allows
µk to reach convergence when µk does not need to go to infinity, avoiding slow training caused by too large
value of µk. In this paper, we try to treat the geometry constraint with both the variable coefficient penalty
method (27) and the augmented Lagrangian method (28).

3.2.4 Total loss function

Now we can write the total loss function Lsum. For a minimization problem, we can use full-satisfied bound-
ary method for exactly boundary condition satisfaction, here the total loss function is

Lsum (θu,θρ) = Lin (θu,θρ) + Lw (θρ) . (29)

If the boundary conditions cannot be directly satisfied, we use half-satisfied boundary method. Then the
total loss Lsum consists of three parts:

Lsum (θu,θρ) = Lin (θu,θρ) + Lw (θρ) + Lb (θu) . (30)

As for maximization problem, since different loss functions can be defined in the inner loop, the adversarial
neural network method successfully represent the objective of (8) in the neural network framework. This is an
advantage that the general simultaneous neural network method does not have. For this objective of maximum-
minimum formulation, when û is fixed in inner loop, to find ρ̂ that maximizes the first eigenvalue and satisfies
the geometry constraint, we only need add a minus sign before Lin in Lsum, i.e.

Lsum (θu,θρ) = −Lin (θu,θρ) + Lw (θρ) (31)

for full-satisfied boundary method and

Lsum (θu,θρ) = −Lin (θu,θρ) + Lw (θρ) + Lb (θu) (32)

for half-satisfied boundary method.

3.3 Optimization training

In last section, we have given the unconstrained loss functions under different methods. Now we summarize
the complete training process in this section.
The first step is to establish two neural networks H (x;θu) and H (x;θρ), which are the block structures

introduced in section 2. Next, we need to select appropriate auxiliary functions to construct û (x;θu) and
ρ̂ (x;θρ), which both contain neural networks as their main body. To treat boundary constraints mentioned
above, we choose an appropriate boundary condition function ℓu attached to H (x;θu). Besides, we can also
make some appropriate deformation based on H (x;θρ) so that ρ̂ can satisfy some initial guess. After that, we
uniformly sample points in Ω in preparation for the discretization. With the sample points, we can calculate
the Lsum and start to train the neural networks. A common procedure is to update θu and θρ simultaneously
by minimizing the loss function Lsum in one iteration. However, this method makes the network parameters of
two different physical variables update with the same step size, which reduces the training efficiency. In this
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paper, we use the adversarial training to improve efficiency. More specifically, the alternating direction method
is used to update θu and θρ.
In one iteration of the inner loop, we first fix θρ, update θu by minimizing the loss function Lk

sum (θu,θρ)
continuously Tu times. Then fix θu and update θρ by minimizing the loss function Lk

sum (θu,θρ) continuously
Tρ times. In an inner loop, µk and λk do not change with respect to k. Let R and K be the numbers of the
inner loop and the outer loop, respectively. The total number of iteration Epoch = K ×R.

Algorithm 1 demonstrates a general algorithmic framework of pressent adversarial neural network method
for the eigenvalue optimization problem.

Algorithm 1: Adversarial neural network method for topology optimization of eigenvalue problems

Input: Choose the proper loss function Lk
sum (θu,θρ) according to the problem.

Data: K: number of outer loop iterations; R: number of inner loop iterations; Tu: number of inner
iterations for training û; Tρ: number of inner iterations for training ρ̂; ηu: learning rate of û; ηρ:
learning rate of ρ̂.

Data: λ0 = 0, µ0, β, S.
for k = 1 to K do

for i = 1 to R do
for t = 1 to Tu do

Compute the loss function Lk
sum (θu,θρ).

Compute gradient about θu in Lk
sum (θu,θρ), and update θu by Adam method.

end
for t = 1 to Tρ do

Compute the loss function Lk
sum (θu,θρ).

Compute gradient about θρ in Lk
sum (θu,θρ), and update θρ by Adam method.

end

end
µk = min(βµk−1, S).
λk = λk−1 + 2µk−1h (θρ) for augmented Lagrangian method.

end

4 Numerical results

This section shows using adversarial neural network algorithm on (7), (8), (14) and (15). All numerical examples
were computed on the Google Colab platform.

4.1 Second-order problems

Example 1: Consider an annular domain Ω =
{
(x, y) : r2in ≤ x2 + y2 ≤ 1

}
. Let τ = 1/rin (indicating the

ratio of the outer radius to the radius of the inner circle), δ = c/|Ω| (indicating the proportion of the area
constraint to the total area). Set a uniform grid of 50 × 50 in the square [−1, 1]2 and then choose the grid
points in the annular as the sampling points.
The boundary condition function is constructed by ℓu = (1− x2 − y2)(x2 + y2 − r2in). Set

û (x, y;θu) = ℓu(x, y)H (x, y;θu) , (33)

where H (x, y;θu) is the neural network. For function ρ ∈ [0, 1], suitable estimation allows us to make the
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following construction of ρ̂:

ρ̂(x, y) = max (0,min (1,−g(x, y)H (x, y;θρ))) + 1, (34)

with
g(x, y) = min(1−

√
x2 + y2,

√
x2 + y2 − rin).

We apply the augmented Lagrangian method to treat the geometry constraint. Set Algorithm parameters:
Tu = 4, Tρ = 1, R = 50,K = 15, ηu = 10−4, ηρ = 10−3, β = 1.1, µ0 = 10, and S = 1000. Set ρ1 = 0 and ρ2 = 1.
In Fig. 3, blue and yellow regions represent Ω\D and yellow D, respectively. If α or δ is relatively not large,

i.e., (α = 1 or δ = 0.64), an optimized design with radial symmetry is obtained as shown in Fig. 3 (a). But in
a same annular Ω, Figs. 3 (c)-(d) show radial symmetry breaking for final designs when increasing α from 1 to
10 or increasing the target area of D. Compared with Fig. 3 (a), Fig. 3 (b) also has radial symmetry breaks
when reduce the width of the annulus. These observed phenomenons are consistent with that describes in [8].
Fig. 4 shows that the objectives converge.

(a) α = 1, δ = 0.64, τ = 3.5 (b) α = 1, δ = 0.64, τ = 1.2

(c) α = 10, δ = 0.64, τ = 3.5 (d) α = 1, δ = 0.83, τ = 3.5

Figure 3: Optimized designs for elliptic eigenvalue optimization for Example 1.

Example 2: Consider a dumbbell domain Ω = B1(−2, 0)∪ ((−2, 2)× (−0.3, 0.3))∪B1(2, 0), where B1(p) ={
x ∈ R2 : |x− p| < r

}
. We still use the uniform sampling method, establish a regular grid of 60 × 60 in

the rectangle area [-3,3]×[-1,1] which surrounds the dumbbell, and then take the square grid points in the
dumbbell as the sampling point. There is a difference between the two adversarial neural networks H (x, y;θu),
H (x, y;θρ) we established in dumbbells domain with those in annular domain that in output layer, it is no
longer simply linear but is square function. û, ρ̂ are bulit according to (33), (34) respectively, in which ℓu is
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(a) α = 1, δ = 0.64, τ = 3.5 (b) α = 1, δ = 0.64, τ = 1.2

(c) α = 10, δ = 0.64, τ = 3.5 (d) α = 1, δ = 0.83, τ = 3.5

Figure 4: Convergence of loss functions on elliptic eigenvalue optimization for Example 1.

replaced as follows with symbolic distance function and dumbbell features.

ℓu = max(0.3− | y |, ℓd) χ|x|≤2.05 + ℓd χ|x|≥2.05,

ℓd = max
[
1− (x− 2)2 − y2, 1− (x+ 2)2 − y2

]
.

In the problem of dumbbell domain, α = 0.1, δ = 0.3 in 7, we apply varying coefficient penalty method and
obtain optimized shape of D in Fig. 5, which agrees well with that in [8].

Figure 5: Optimized shape of D in dumbbell domain for Example 2.

Example 3: For 3D, set α = 10, c = 0.5. Let Ω = (0, 1)3. We establish a regular grid of 40× 40× 40 in the
cube through uniform sampling. The adversarial neural networks here are H (x, y, z;θu) and H (x, y, z;θρ). We
construct boundary condition function ℓu = 64 (xyz(1− x)(1− y)(1− z)) to satisfy boundary condition. Let
û (x, y, z;θu) = ℓu(x, y, z)H (x, y, z;θu) , As to the minimization problem (7), we reasonably guess that ρ = 1
on the boundary, ρ = 0 at the central point. Choose

ρ̂(x, y, z) = max (0,min (1, ℓu(x, y, z)ℓc(x, y, z)H (x, y, z;θρ) + g(x, y, z))) ,
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where

ℓc(x, y, z) = (x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2, g(x, y, z) = 1− ℓ
′
u(x, y, z)

with ℓ
′
u(x, y, z) = 2min(x, 1 − x, y, 1 − y, z, 1 − z). Set Tu = 3, Tρ = 1, R = 15, K = 15, ηu = 10−4, and

ηρ = 5× 10−4. We apply the augmented Lagrangian method for the geometry constraint and choose β = 1.5,
µ0 = 1, and S = 1000. Finally, we obtain the optimized design D and the convergence process of the loss
function as shown in Fig. 6.

Figure 6: Elliptic eigenvalue minimization in 3D: optimized design (left) and convergence history of loss (right)
for Example 3.

As to maximization problem (8), we reasonably set ρ = 0 on the boundary and ρ = 1 at the central point.
We choose

ρ̂(x, y, z) = max (0,min (1, ℓu(x, y, z)ℓc(x, y, z)H (x, y, z;θρ) + g(x, y, z))) ,

where
ℓc(x, y, z) = (x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2, g(x, y, z) = ℓ′u(x, y, z).

The final optimized design and the convergence process of the loss function are shown in Fig. 7.

Figure 7: Elliptic eigenvalue maximization in 3D: optimized design (left) and convergence history of loss (right)
for Example 3.

In Fig. 6, the optimal design of minimization problem is the complementary set of solid sphere. The first
eigenvalue λ1 is optimized to a minimal value of 30.07. To assess the accuracy of the maximization of the first
eigenvalue, we employ the finite element method and utilize Freefem++ software [18] to solve the corresponding
eigenvalue problem within this region. The minimum eigenvalue obtained is 29.94, which is close to the result
of neural network. In Fig. 7, the optimal region D of maximization problem in 3D is the solid sphere in the
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center. We get a maximal eigenvalue of 39.32 which is also close to the result of 39.20 computed by finite
element method. Our model’s results on optimization in 3D behave well as expected.

4.2 Fourth-order problems

4.2.1 Eigenvalue optimization in inhomogeneous clamped plate

For problem (14), choose c = 1.5, ρ1 = 1, and ρ2 = 2. Let Ω be a square, circle and annulus. In particular, as
to clamped plate problem, since it is easy to find boundary condition function satisfying boundary conditions,
we use Full-satisfied boundary method. The neural networks that we build for H (x;θu) and H (x;θρ) have 3
residual blocks. Every block has two fully connected layers and every layer has 80 neurons. All the activation
functions are tanh except that we take linear function in the output layer. Set Tu = 3, Tρ = 1, R = 15,K =
30, ηu = 10−4, ηρ = 10−3, β = 2, µ0 = 1, and S = 1000. In this fourth-order biharmonic eigenvalue optimization
problem, neural network structures and parameters are the same while the constructions of û and ρ̂ vary from
the shape of Ω and the optimization target. We minimizing (resp. maximizing) the eigenvalue for Examples
4-6 (resp. Example 7).

Example 4: Consider Ω = (0, 1) × (0, 1) and choose ℓu = 256[x(x − 1)y(y − 1)]2 to satisfy boundary
conditions. As to ρ̂, we reasonably guess that ρ = 1 on the boundary and ρ = 2 at the central point. Similar
to the second-order problem, we construct

ρ̂(x, y) = max (1,min (2, ℓu(x, y)ℓc(x, y)H (x, y;θρ) + g(x, y))) , (35)

where
ℓc(x, y) = (x− 0.5)2 + (y − 0.5)2, g(x, y) = ℓu(x, y) + 1.

After training, the optimal region (figure 8) is a circle in the center while the blue region represents the
density of 1 and the yellow region represents the density of 2. When Ω is a square domain, our method has
been converged within 300 epochs and gets the minimal eigenvalue of 677.3 while the result obtained by the
rearrangement algorithm [10] is 652.2, having a 3.8% difference. Each epoch takes 1.5 seconds.

Figure 8: Eigenvalue minimization of the inhomogeneous clamped plate for Example 4: optimized design (left)
and convergence history of loss (right).

Example 5: Consider Ω is a unit disk domain: Ω =
{
(x, y) : x2 + y2 ≤ 1

}
, we choose ℓu =

(
1− x2 − y2

)2
to satisfy boundary conditions and then construct û by (25). As to ρ̂, we reasonably guess that ρ = 1 on the
boundary, ρ = 2 at the central point and we construct

ρ̂(x, y) = max (1,min (2, ℓu(x, y)ℓc(x, y)H (x, y;θρ) + g(x, y))) , (36)
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where
ℓc(x, y) = x2 + y2, g(x, y) = ℓu(x, y) + 1.

After training, it is clear that our method has a good performance(figure 9), the optimal region D is highly
consistent with the shape optimized by the rearrangement algorithm [10] and the minimal has converged to
52.3 within 50 epochs, which is close to 52.9 obtained by the rearrangement algorithm [10].

Figure 9: Eigenvalue minimization of the inhomogeneous clamped plate for Example 5: optimized design (left)
and convergence history of loss (right).

Example 6: Consider an annulus Ω =
{
(x, y) : 0.42 ≤ x2 + y2 ≤ 1

}
and choose

ℓu =
(
1− x2 − y2

)2 (
x2 − y2 − 0.16

)2
.

We also guess that ρ = 1 on the boundary and ρ = 2 at the central to construct

ρ̂(x, y) = max (1,min (2, ℓu(x, y)H (x, y;θρ))) + 1,

The first eigenvalue is optimized to the minimal of 1998 which differs the result of 1946 optimized by the
rearrangement algorithm [10] by 2.6%. Fig. 10 shows convergence of loss and the optimized design agrees well
with that in [10].

Figure 10: Eigenvalue minimization of the inhomogeneous clamped plate for Example 6: optimized design
(left) and convergence history of loss (right).

Example 7: Consider Ω is a unit disk domain: Ω =
{
(x, y) : x2 + y2 ≤ 1

}
, we construct û the same as that

in the minimization problem. As to ρ̂, contrary to the situation in minimization problem, we reasonably guess
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that ρ = 2 on the boundary, ρ = 1 at the central point and we construct it as follows,

ρ̂(x, y) = max (1,min (2, ℓu(x, y)ℓc(x, y)H (x, y;θρ) + g(x, y))) , (37)

where
ℓc(x, y) = x2 + y2, g(x, y) = ℓc(x, y) + 1.

The maximized eigenvalue 101.8 obtained agrees well with that (a maximum of 101.7) in [37] and the shape
optimized is similar to that in [37] (see Fig. 11 for design and history of loss).

Figure 11: Eigenvalue maximization of the inhomogeneous clamped plate for Example 7: optimized design
(left) and convergence history of loss (right).

4.2.2 Eigenvalue optimization in inhomogeneous simply supported plate

In the simply supported plate problem (15), we set ν = 0.3, c = 1.5, ρ1 = 1, and ρ2 = 2. Considering that
the boundary condition is relatively complex, we apply the half-satisfied boundary method (30) and (32). The
structure of H (x;θu) and H (x;θρ) are the same as that in clamped plate problem. We minimizing (resp.
maximizing) the eigenvalue for Examples 8-9 (resp. Example 10).
The total loss function Lsum is (30) and Lw in the (30) is that of the augmented lagrangian method while

Lin is given in (30)
Example 8: Consider a square Ω = (0, 1) × (0, 1). We choose ℓu = 16x(1 − x)y(1 − y). Then construct û

and ρ̂ according to (25) and (35) respectively. In addition, κ = 0 on the square boundary.

Figure 12: Eigenvalue minimization of the inhomogeneous simply supported plate problem, optimal region D
when Ω is a square (left) for Example 8 and a unit disk (right) for Example 9.
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Example 9: Consider a disk Ω =
{
(x, y) : x2 + y2 ≤ 1

}
and choose ℓu = 1− x2 − y2. Then construct û and

ρ̂ according to (25) and (36) respectively. Set κ = 1 on the boundary In Lin and take A1 = 1 and A2 = 2.

Figure 13: Convergence history of loss for biharmonic eigenvalue minimization of the inhomogeneous simply
supported plate: square for Example 8 (left) and disk for Example 9 (right).

It can be seen from figure 12 and figure 13 that the adversarial neural network method under the half-satisfied
boundary method has good performance on both square and unit disk regions since the shape of the optimal
density distribution under the two regions is consistent with that in the rearrangement algorithm [10]. With
our method, the first eigenvalue in the square domain is minimized to 202.04, the first eigenvalue in the unit
disk domain is minimized to 12.83, while the result of the rearrangement algorithm is 201.60 and 12.84. so,
our algorithm is still efficient and accurate.
Example 10: Consider a unit disk Ω =

{
(x, y) : x2 + y2 ≤ 1

}
and choose ℓu = 1− x2 − y2. Then construct

û and ρ̂ according to (25) and (37) respectively. The total loss function Lsum is (32) and loss Lw in (32) is that
of the augmented Lagrangian method while Lin is (20). After training, the first eigenvalue of λ1 was finally
optimized to a maximum of 22.3 and the optimal density distribution map is shown in Fig. 14.

Figure 14: Eigenvalue maximization of the inhomogeneous simply supported plate for Example 10: optimized
design (left) and convergence history of loss (right).

5 Conclusions

We have proposed an adversarial neural network topology optimization method based on deep learning to
optimize second-order elliptic and fourth-order plate eigenvalues. The present algorithm does not need to
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solve eigenvalue problems repeatly, while it achieves the same optimized objective as the traditional sensitivity
analysis-based methods which typically use partial differential equation solvers such as finite elements. More-
over, shape and topological changes can happen during training neural networks. Numerical examples are given
for minimizing and maximizing the first eigenvalues in typical domains to show effectiveness and efficiency of
the algorithm. In future, the adversarial neural network topology optimization method will be studied to solve
more shape and topology optimization problems.
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