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Abstract

In a decision-theoretic framework, minimax lower bound provides the worst-case
performance of estimators relative to a given class of statistical models. For paramet-
ric and semiparametric models, the Héjek—Le Cam local asymptotic minimax (LAM)
theorem provides the optimal and sharp asymptotic lower bound. Despite its relative
generality, this result comes with limitations as it only applies to the estimation of
differentiable functionals under regular statistical models. On the other hand, non-
asymptotic minimax lower bounds, such as those based on the reduction to hypothesis
testing, do not often yield sharp asymptotic constants. Inspired by the recent improve-
ment of the van Trees inequality and related methods in the literature, we provide new
non-asymptotic minimax lower bounds under minimal regularity assumptions, which
imply sharp asymptotic constants. The proposed lower bounds do not require the
differentiability of functionals or regularity of statistical models, extending the effi-
ciency theory to broader situations where standard approaches fail. Additionally, new
lower bounds provide non-asymptotic constants, which can shed light on more refined
fundamental limits of estimation in finite samples. We demonstrate that new lower
bounds recover many classical results, including the LAM theorem and semiparamet-
ric efficiency bounds. We also illustrate the use of the new lower bound by deriving
the local minimax lower bound for estimating the density at a point and directionally
differentiable parameters.

Keywords— van Trees inequality, Hammersley-Chapman—Robbins bound, Local asymptotic
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1 Introduction

1.1 Motivation

In a decision-theoretic framework, the optimality of an estimation procedure is often motivated by
the attainability to minimax lower bound. Specifically, a proposed estimator is considered rate-
optimal when its convergence rate matches the rate of the corresponding minimax lower bound. A
more refined assessment is to examine whether an estimator is asymptotically efficient, meaning the
risk of the estimator coincides with the minimax lower bound including the constant. If this is the
case, the estimation procedure becomes no longer improvable at least asymptotically. Hence, the
construction of precise minimax lower bounds has been a crucial step for evaluating any statistical
procedure.

The optimality of functional estimation has been extensively studied in both parametric and
nonparametric models (Ibragimov and Has’minskii, 1981; Bickel et al., 1993; Lehmann and Casella,
2006). Semiparametric efficiency theory, in particular, is considered a cornerstone for understand-
ing the asymptotic optimality of functional estimation. The convolution theorem and the local
asymptotic minimax theorem are two fundamental results in the development of semiparametric
efficiency (Hajek, 1970, 1972; Le Cam, 1972); however, these theorems only apply to smooth func-
tionals and require certain regularity conditions on the underlying statistical models. As optimal
estimation of non-smooth functionals has gained growing interest, extending the classical efficiency
theory to broader settings is an imminent task.

This manuscript aims to develop general minimax lower bounds under minimal regularity as-
sumptions imposed on functionals, estimators, and underlying statistical models. We consider a
(nonparametric) functional 1) : P +— R, where P is a collection of probability measures containing
the distribution from which the observation is drawn. The unknown data-generating distribution is
denoted by Py, and a local statistical model containing Py, is given by {Py : 0 € Oy C O}, satisfying
0y € Og. Here, the indexing set O is a subset of a metric space equipped with an appropriate
metric. Our primary focus is on the following general minimax risk for an arbitrary parameter set
Oy C ©:

inf sup Ep, |T(X) — o(Pp)| (1)
T peo,
where the infimum is taken over mesurable functions and || - || : R*¥ — R, for R, = [0,00) is

any vector norm. We also denote by Ep, the expectation under Fy. It should be noted that this
framework is not confined to a parametric model, and it can be extended to a nonparametric model
using the standard machinery from semiparametric statistics (Bickel et al., 1993; Van der Vaart,
2002).

Classical local asymptotic results investigate when ©g forms a shrinking ball around 6y whose
radius converges to zero at a suitable rate, depending on the sample size n. For example, the risk
displayed by (1) becomes equivalent to the local asymptotic minimax risk under the root-n rate,



which is given by

liminf liminf inf sup nEp, |T(X) — 1 (Py)|* (2)

€700 nme0 T g gof|<en—1/2

Particularly, the local asymptotic minimax (LAM) theorem (Hé&jek, 1970, 1972; Le Cam, 1972)
states that the lower bound to the above display is given by the variance of the efficient influence
function under fairly demanding regularity conditions. On the other hand, little is known about
the lower bound when these regularity conditions fail to hold.

One immediate limitation of the LAM theorem is its asymptotic nature. To address this limita-
tion, numerous non-asymptotic minimax lower bounds have been proposed in the literature. Many
share the following principle: maximizing the separation of functionals evaluated at two, or more,
“similar” distributions. The similarity of distributions is quantified by different metrics and diver-
gences such as the Hellinger distance, total variation, or the f-divergences, which includes the KL
and the chi-squared divergences. While these non-asymptotic lower bounds may provide correct
rates, they often fall short of recovering the correct constant implied by the LAM theorem. To the
best of our knowledge, existing non-asymptotic lower bounds based on the Hellinger distance or
total variation (LeCam, 1973; Ibragimov and Has'minskii, 1981; Assouad, 1983; Donoho and Liu,
1987; Birgé, 1987) cannot imply the LAM theorem even for regular parametric models. Some chi-
squared-based lower bounds (Gill and Levit, 1995; Gassiat and Stoltz, 2024), on the other hand,
can recover the LAM theorem. Cai and Low (2011) proposed a chi-squared-based lower bound for
non-smooth functionals, resulting in a sharp constant for the problem they studied.

The second limitation of the LAM theorem is that it requires the existence of an efficient influ-
ence function. This excludes two classes of estimation problems: irregular distributions and non-
smooth functionals. Under irregular statistical models (e.g., Uniform|0,6],6 > 0), the chi-squared
divergences are often infinite, implying trivial results from the aforementioned minimax lower
bounds using chi-squared divergences (Gill and Levit, 1995; Cai and Low, 2011; Gassiat and Stoltz,
2024). On the other hand, other metrics such as the Hellinger or total variation distances, do not
suffer from this problem under irregularity. Thus, one of our main motivations is to understand
whether we can obtain lower bounds based on the Hellinger or total variation distances that yield
the LAM theorem for regular parametric models. Regarding non-smooth functionals, there is barely
any analogous statement to the LAM theorem. A few works have extended local asymptotic mini-
maxity in the context of plug-in estimators for directionally differentiable functionals (Fang, 2014)
or specific non-smooth functionals that are non-differentiable transforms of a regular parameter
(Song, 2014a.,b). This manuscript also aims to develop new local asymptotic results that apply to
any, possibly non-smooth, functionals or estimators.

Before proceeding, we would like to acknowledge that general-purpose minimax lower bounds
can only go so far in the sense that their application to specific instances requires additional work.
We present some examples to show how our results can be applied.

Summary of main results. Our main results are summarized as follows. On a conceptual
level, we demonstrate that the general minimax risk for estimating non-smooth functionals is char-
acterized by the interplay between two non-negative terms in the proceeding display:

inf sup Ep, | T(X) — Y(Py)||? > sup [{Term I(¢; (90)}1/2 — {Term II(v, ¢; @0)}1/2]2
T peoy ¢ +

where [t]+ := max(¢,0) and ¢ is any functional that approximates the original functional 1. The
first term, we call it surrogate efficiency, is an efficiency bound for estimating the functional ¢.
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When ¢ provides sufficient structures such as smoothness, this term becomes well-studied in the
literature for both parametric and nonparametric models. The second term, we call it approzimation
bias, quantifies the deviation of the introduced functional ¢ from the original functional . The
overall minimax risk is then obtained by optimizing the choice of ¢. Such an interplay between
surrogate efficiency and approximation bias resembles the classical bias-variance decomposition of
an estimation error. Hence, our result can be seen as the minimax lower bound analog to the
bias-variance trade-off.

We provide two concrete instances of the above idea in our main theorems. First, Theorem 8
shows that the minimax risk admits the following lower bound based on the projection onto the
set ®,., all absolutely continuous functions of 8 € ©g. Let 1 be a real-valued functional of interest
and ¢ € ®,. with almost-everywhere derivative V¢. Our formal result in Section 3.3 holds for any
vector-valued functional 1. Assume that the statistical model {Fy : 6 € ©¢} is regular such that
the Fisher information Z(6) at Py is well-defined (see our definition in (3)). Then, for all “nice”
priors @ on O (see Definition 1) with Fisher information Z(Q), defined in (5), it follows that:

2

USSR

1/2
sup Ep, [T(X) —¢(0)] > [Fég/fb - </® ¥ (0) - ¢(9)\2dQ(9)> ]

_l’_

where

roo= ([, vo0) d@(f)))T (z@+ [ 70 d@w))_l ( 0 Q).

The lower bound holds for any choice of ¢ € ®,. and any “nice” prior @, allowing for further
optimization. Here, the surrogate efficiency is obtained by the van Trees inequality (Gill and Levit,
1995; Gassiat and Stoltz, 2024).

Second, we consider approximating ¢ (¢) with (¢t — h) for h € ©. Such a local perturbation
is well-defined, as long as t,t — h € O, even when the functional ¢ is non-smooth. Then for any
probability measure @ over R%, Theorem 10 states that

sup Ep, [|[T(X) — P ()]
OcRd

B B 2\ 1/2 1/2 2
- (wam vt h)dQH> _</Rd”w(t)_1/’(t_h)”2dQ>

heRd, Q 4H?%(Py, Py) X

where H?(Pg,P},) is the Hellinger distance between two mixture distributions Py and P indexed by
h € R? (see (7)). Informally, P}, is a probability measure “slightly perturbed” from Py by h, which
is a mixture between Py and (). The sharpest minimax lower bound is obtained by maximizing
the difference of functionals 1(P;) — ¢(P;_j,) while minimizing the divergence between probability
measures. This approach conceptually aligns with classical methods for deriving minimax lower
bounds such as the Hellinger modulus of continuity (Donoho and Liu, 1987) or the general reduction
to hypothesis testing. See, for instance, the list of approaches in Chapter 2 of Tsybakov (2008).
The lower bounds given by Theorems 8 and 10 are non-asymptotic and require no additional
assumptions as long as all terms in the expression are well-defined. In particular, both lower bounds
are obtained from the worse Bayes risk, optimized over the choice of a prior (). This manuscript
demonstrates that the introduction of the prior () enables us to recover not only the optimal
rate but also the constant. Hence, these bounds possibly provide non-asymptotic efficiency lower



bounds, which generalize well-known asymptotic results such as the Cramér-Rao and semiparamet-
ric efficiency bounds. Theorem 10 in particular holds under the irregularity exhibited through the
underlying statistical model, which heuristically results in the undefined Fisher information and the
failure of the LAM theorem. We address this irregularity and derive the asymptotic minimax rate
for irregular problems. Our conclusions are consistent with the literature on irregular estimation
(Ibragimov and Has’minskii, 1981; Shemyakin, 2014; Lin et al., 2019) and the asymptotic theory
developed by Héjek and Le Cam (Hajek, 1970, 1972; Le Cam, 1972; Pollard, 2023).

In summary, we focus on the construction of minimax lower bounds that satisfy the following
criteria: (i) they yield the general minimax risk defined in equation (1) for an arbitrary ©g, which
can depend on the sample size or the data-generating distribution; (ii) they require minimal regu-
larity conditions, allowing for the application to non-smooth functionals, irregular estimators and
irregular statistical models; and (iii) they provide a non-asymptotic constant, which converges to
the asymptotically optimal constant for regular problems. To the best of our knowledge, there is
limited work in the minimax theory literature that considers all three requirements simultaneously.

1.2 Literature review

There has been a growing interest in investigating the minimax optimality of non-smooth func-
tional estimation. These problems include the L,-norm estimation in a Gaussian sequence model
(Lepski et al., 1999; Cai and Low, 2011; Collier et al., 2020; Han et al., 2020), the property es-
timation of high-dimensional discrete distributions (Valiant and Valiant, 2011; Jiao et al., 2015;
Wu and Yang, 2019), the hypothesis testing for shape constraints (Juditsky and Nemirovski, 2002),
the estimation of conditional variance of a nonparametric regression function (Shen et al., 2020),
many parameter estimation problems such as the maximum of average potential outcomes (Fang,
2014) and conditional average treatment effect (Kennedy et al., 2022), among others. For many
such problems, minimax optimal rates are not well understood, let alone the optimal constants.

One popular method for deriving minimax lower bounds involves reducing the original estima-
tion problem to a set of carefully designed testing problems. It has been observed that non-smooth
functional estimation often requires the reduction to composite versus composite hypothesis test-
ing, which is known as the fuzzy hypothesis approach (Ibragimov et al., 1987; Lepski et al., 1999;
Nemirovski, 2000; Tsybakov, 2008). This reduction often leads to the study of the divergence met-
rics between two mixture distributions. In view of the Neyman-Pearson Lemma, a uniformly most
powerful test is based on the likelihood ratio, which has a natural connection to the total varia-
tion distance between two hypotheses. Minimax lower bounds can then be obtained in terms of
various metrics, including the Hellinger distance, the chi-squared divergence, the Kullback—Leibler
divergence, and others, by invoking a series of inequalities between metrics such as Le Cam’s and
Pinsker’s inequalities. See, for instance, Section 2.7.4 of Tsybakov (2008). However, it is important
to note that in the process of applying different inequalities between metrics, the precision of the
constant may be lost. As a result, the minimax optimality of non-smooth functional estimation is
often considered in terms of rate, with no specific focus on the constant.

In a slightly different approach, Cai and Low (2011) extends the notion of fuzzy hypotheses
to the constrained risk inequality (Brown and Low, 1996), deriving a precise constant for the L;-
norm estimation under a Gaussian sequence model. In this manuscript, we aim to explore similar
extensions of classical two-point risk lower bounds to mixture distributions in order to obtain a
sharp constant for the minimax lower bounds. Towards this goal, we refer to the well-established
literature on parametric estimation, which has extensively investigated risk lower bounds with
accurate non-asymptotic constants. Although these results are not typically presented as min-
imax risk, they are essential references regardless. Among the commonly used bounds are the



Cramér-Rao bound (Fisher, 1922; Radhakrishna Rao, 1945; Cramér, 1999), which was improved by
Barankin (1949), the higher-order analogue given by Bhattacharyya bound (Bhattacharyya, 1946),
the Hammersley-Chapman-Robbins bounds (Hammersley, 1950; Chapman and Robbins, 1951),
and the Weiss-Weinstein bound (Weiss and Weinstein, 1985). Each of these bounds requires vary-
ing degrees of regularity conditions and is a variant of the others, as unified by Weinstein and Weiss
(1988). They all asymptotically imply the Cramér-Rao bound under different levels of regularity
conditions, and they offer sharper non-asymptotic constants for different settings. Notably, all of
these bounds, including Cai and Low (2011), define the lower bounds in terms of the likelihood
ratio between local models, or some analogous objects. This can be understood as a variant of the
chi-squared divergence between local models, which requires strong regularity assumptions for its
asymptotic behavior. This will be the focus of Section 2.1 of this manuscript.

The lower bound presented here is also closely related to the technique of obtaining a sharp
minimax lower bound by exploring the least-favorable priors of the Bayes risk such as the van Trees
inequality (Van Trees, 1968). Traditionally, the literature on the van Trees inequality (Van Trees,
1968; Gill and Levit, 1995; Jupp, 2010) requires strong regularity assumptions to guarantee the
limiting behavior of the chi-squared divergence. Taking inspiration from the recent development
by Gassiat and Stoltz (2024), we provide extensions of the van Trees inequality for non-smooth
functionals based on the Hellinger distance. The asymptotic behavior of the Hellinger distance
requires far weaker regularity conditions compared to the analogous result under the chi-squared
divergence (Pollard, 2023). This property has gathered a growing interest in the use of the Hellinger
distance as the desirable metric for studying minimax lower bounds (Ibragimov and Has'minskii,
1981; Donoho and Liu, 1987; Chen, 1997; Shemyakin, 2014; Lin et al., 2019; Pollard, 2023). Our
lower bound is consistent with the message of these proponents.

Finally, we discuss connections between the presented lower bounds and the classical result in
functional estimation, namely the modulus of continuity, which was investigated by Donoho and Liu
(1987). As a consequence of the new minimax lower bounds for non-smooth functional estima-
tion, we resolve one of the open problems since Donoho and Liu (1987) to characterize the non-
asymptotic minimax lower bound that implies a precise limiting constant. For linear functional es-
timation, the modulus of continuity has been analyzed with an attempt to establish non-asymptotic
efficiency theory (Mou et al., 2022). Our result can be seen as one of the first steps towards un-
derstanding non-asymptotics for non-smooth functional estimation. The modulus of continuity is
also considered in the context of impossibility results, often known as ll-posedness in economet-
rics literature (Potscher, 2002; Forchini and Hillier, 2005). The presented results generalize their
asymptotic statements to the non-asymptotic context.

Organization. The remaining manuscript is organized as follows: Section 2 provides necessary
backgrounds and defines several existing lower bounds that largely inspired this work. Section 3
presents new minimax lower bounds. Section 4 investigates asymptotic properties of the proposed
lower bounds with particular attention to the preservation of sharp constants. Section 5 presents
the application to several estimation problems in the presence of non-smoothness or irregularity and
Section 6 provides a visual comparison of the new non-asymptotic lower bounds to upper bounds
exhibited by different estimators. Finally, concluding remarks and a discussion of open problems
are provided in Section 7.

Notation. Throughout the manuscript, we adopt the following convention for notation. We
denote by || - || a general vector norm. Given z € R, we write [v]4 = max(z,0). For € R%
|z||2 denotes the Euclidean norm in R?. For a univariate function f from S C R to R, the



supremum norm is defined as ||f|lsc = sup,cg|f(x)]. The open R%-ball centered at yo € R? with
radius § > 0 is denoted as B(yo,6) := {y : ||[yo — y||2 < §}. The unit sphere in R? is denoted by
S = {u € R%: ||luljs = 1}. We let Ep represent the expectation under P, whereas Ey denotes
the expectation under Py. Furthermore, Lo(P) is the set of P-measurable functions that satisfy
the condition

Ly(P) := {f:Xn—)Rk

JIr@IEdre) < oo}.

2 Setup and background

Throughout this section, we consider probability measures defined on a shared measurable space
(X, A) with a o-finite measure v. We assume that any probability measure P we consider is
absolutely continuous with respect to v and has a well-defined density function, denoted by dP =
dP/dv. We omit the specification of the base measure v when it is clear from the context. Suppose
we observe X from an unknown distribution Fy, belonging to a possibly nonparametric model
P. The parametric submodel Pg := {FPy : 0 € ©} C P is defined as a set of probability measures
indexed by a parameter space © C R?, which contains the data-generating distribution Py. Without
loss of generality, we assume that the true parameter corresponds to # = 0 in O.

The local behavior of a path ¢t — P; € Pg as it approaches Fj is often of interest. A local path is
said to be Hellinger differentible at t = 0 (Pollard, 2023) if there exists a measurable vector-valued
function fo : X — R? that is square integrable with respect to the o-finite measure v, and as
||t||2 — 0,

.92
[ [an? - ary” — &) av = o(leip)
The Fisher information matrix of P; at ¢ = 0 is defined as
7(0) =1 [ & av (3)

under the Hellinger differentiability. We also define a slightly stronger but more commonly used
notion of differentiability for parametric paths, called quadratic mean differentiability (QMD). A
local path is differentiable in quadratic mean, or QMD, at ¢t = 0 if there exists a Py-square integrable
vector-valued function gg : X + R? that satisfies, as ||t||s — 0,

2
[ [ar = ar = Lo ar] aw = ofta) ()

The function gg is commonly referred to as the score function of the path at ¢ = 0. When P, is
QMD at t = 0, it implies the Hellinger differentiability with & = % 90 alPO1 /2 (See Theorem 20 of
Pollard (2023)) however the converse is not true. The corresponding Fisher information under the
QMD assumption is given by

Z(0) :== / 90 g9 dPy.

As the Hellinger differentiability is a weaker condition, we only use the QMD assumption when
necessary. Both definitions allow for the Fisher information to exist for distributions with pointwise
non-differentiable densities, which is a crucial aspect of the asymptotic theory developed by Hajek
and Le Cam. For instance, consider the double-exponential density ¢ — 1 exp(—|t — 6]) with a



parameter # € ©. This density function is not differentiable at ¢ = 6, yet its Fisher information
matrix exists.

When © C R? with some base measure u, we define a location family induced by a probability
measure Q on © as {Q(- — h) : h € ©}. If we assume that () has an absolutely continuous
density function ¢ with an almost-everywhere derivative Vg, the corresponding location family is
differentiable in quadratic mean with the Fisher information given by

;
Q) = | Www > 0) dp (5)

See Example 7.8 of Van der Vaart (2000). The Fisher information Z((Q) does not depend on the
location parameter h, making this notation a convenient reference to the Fisher information of the
location families. Finally, we impose the following regularity conditions on ), under which the
priors are called “nice”.

Definition 1 (Nice priors). Given an absolutely continuous mapping ¢ : ©g — RF and a vector
norm ||-|| : R¥ = Ry, a probability measure Q on Oq is “nice” if it satisfies the following conditions:

(1) It has a Lebesgue density q and q is an absolutely continuous function with a positive definite
Fisher information Z(Q),

(2) Both ||| and ||V | is Q-integrable and f®0 tr (Z(t)) dQ < oo, and

(8) It holds that q(0) — 0 as 6 approaches any boundary point of ©¢ with finite norm along some
canonical direction.

We note that this property of priors is defined for each particular functional ¢.

2.1 The local behavior of divergence metrics

This manuscript primarily focuses on two divergence metrics, namely the chi-squared divergence
and the Hellinger distance. Consider two probability measures, Py and P;, defined on a common
measurable space. Further, assume that there exist densities dPy = dPy/dv and dP, = dP;/dv
with respect to a common o-finite measure v. The chi-squared divergence is defined as

2P| Py) = {f(dpl/d 0 1)2 dPy if Py is dominated by F
X" (£1fo) - y 1o
00

otherwise

and the Hellinger distance is defined as
2
H%(Py, Py) = / (dPol/2 - de/z) .

Below, we introduce conditions that imply certain limiting behaviors of these metrics over a para-
metric path as it passes through Py. We first extend the standard notion of absolute continuity of
a univariate function to a multivariate function as follows:

Definition 2 (Multivariate absolute continuity). A function w : R% — R is absolutely continuous
over an open R¥-ball B(0,6) if for all u € S*1, the induced univariate function t — w(f + tu) is
absolutely continuous over 0 < t < 4.



The concept of multivariate absolute continuity has been explored in various real analysis
literature. For instance, Maly (1999) and Hencl (2004) extend the classical d-¢ definition of absolute
continuity by considering the oscillation of the functions over d-dimensional balls. Additionally,
Sremr (2010) presents a similar extension using d-dimensional hyper-cubes. We do not claim that
Definition 2 is the most general definition of multivariate absolutely continuous functions for our
purpose. Definition 2 is introduced solely for our complementary result (Theorem 9), and it is not
a necessary condition for our main results (Theorem 7 or Theorem 10).

We then introduce the following regularity conditions:

(A1) There exists 6 > 0 such that

(a) for v-almost everywhere, the mapping ¢ — dP; is absolutely continuous over an
open Re-ball B([0],0) with the gradient ¢ + u' p;,, for each u € S¥1,

(b) for all u € S, the gradient is continuous such that lim, o qut,u = u' po for
v-almost everywhere, and

(c) forall 0 <t < ¢ and u € S¥1, dPy(z) = 0 implies u" py () = 0, and

. .T

Pty ,uP

/ sup TR g < 0.
0<ty,ta<d dPO

With this regularity condition in place, we obtain the following local expansion of the chi-squared
divergence:

Lemma 1 (Theorem 7.20 of Polyanskiy and Wu (2022)). Assuming that the local path {P; : t € ©}
satisfies (A1) and t — Z(t) is continuous at t = 0, then as ||t||2 — 0,

(Pl Po) = t"Z(0)t + o|[t]|3)-

The regularity condition (A1) is stronger than the Hellinger differentiability. Gassiat and Stoltz
(2024) shows that an analogous (but weaker) condition to (A1) implies the Hellinger differentia-
bility. Furthermore, Example 7.1 of Polyanskiy and Wu (2022) provides a concrete example where
(A1) fails while Hellinger differentiability still holds. The local expansion of the chi-squared diver-
gence can hold under the following weaker conditions:

(A2) There exits 6 > 0 such that

(a) for v-almost everywhere, the mapping ¢ +— dPtl/ % is absolutely continuous over an
open R-ball B([0],0) with the gradient ¢ — u' 4, for each u € S¥1,

(b) for all u € S, the gradient is continuous such that lim, o uT%u = u' 4 for
v-almost everywhere, and

. LT
/ SUP Yty u Vg ,u AV < 00.
0<ty,ta<d

Roughly speaking, assumption (A1) pertains to the smoothness of density functions, whereas
assumption (A2) pertains to a similar smoothness of the square roots of density functions. In fact,
we can demonstrate that (A1) implies (A2) (the proof is provided in Section H of Supplementary
Material). However, the converse is not true. For instance, location families with compact support
fail to satisfy (A1)(c), while they may satisfy (A2) under certain conditions. See Example 7.1 of
Polyanskiy and Wu (2022) for more details. Under (A2), the following result holds:
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Lemma 2 (Theorem 7.21 of Polyanskiy and Wu (2022)). Assuming that the local path {P; : t € ©}

satisfies (A2) and t — Z(t) is continuous at t =0, then as ||t||2 — 0,

1—4A
4\

(P APy + (1= NP) = (1—X)>*t" <I(0) — IT(0)> t+o(|[t]|3) for all X € (0,1)

where ZT(0) := 4 [ 40 7q I(dPy = 0) dv is known as the Fisher defect.

Remark 1 (On the Fisher defect Z1). If the parameter t = 0 is an interior point of the parameter
space O, then 49 = 0 for v-almost all x in {x : dPy(x) = 0}. Consequently, the Fisher defect must be
zero. However, even for a Hellinger differentiable statistical model, it is still possible for the Fisher
defect to be non-zero on the boundary. An illustrative example is the Bernoulli distribution with
parameter p* at p = 0. Example 7.2 of Polyanskiy and Wu (2022) provides a formal derivation,
and Ezxample 18 of Pollard (2023) offers an additional example.

As shown by Lemma 23 in Supplementary Material, the regularity condition (AZ2) implies
the Hellinger differentiability with 4o = & for v-almost everywhere and hence two definitions of
the Fisher information coincide under (A2). In contrast, building directly from the Hellinger
differentiability, we obtain the following result:

Lemma 3. Assuming that the local path {P; : t € O} is Hellinger differentiable and t — Z(t) is
continuous at t = 0, then as ||t||s — 0,

1
H?(Py, Po) = ZtTI(O)t +o(|[t]3).

Slightly generalized statements of Lemmas 1-3 are provided with proofs as Lemmas 19-21 in
Supplementary Material. The main takeaway of this section is as follows: The local behavior of the
Hellinger distance is easily understood under weaker conditions, while an analogous result under
the chi-squared divergence requires more unpleasant regularity conditions. This is one of many
reasons why the asymptotic theory according to Hajek and Le Cam promotes the square roots of
density functions as the primary object to investigate.

2.2 Minimax lower bounds via parametric paths

In this section, we introduce the local asymptotic minimax (LAM) theorem, a fundamental result
in the efficiency theory. We then provide several non-asymptotic minimax lower bounds that
asymptotically imply the best constant in view of the LAM theorem. For clarity and ease of
illustration, we focus on a real-valued function ¢ : © — R where ® C R¢ under parametric models.
Although the result applies to nonparametric models, we defer a detailed discussion to Section 4.2.
We assume that Xi,...,X, € A" are independent and identically distributed (IID) observations
from Py, € {P : 6 € O} and t — P, is Hellinger differentiable at all # € ©. The joint distribution
of n IID observations is denoted by Pg. We now state the LAM theorem.

Theorem 4 (Local asymptotic minimax theorem (Hajek, 1970, 1972; Le Cam, 1972)). Assuming
that the mappings t — ¥ (t) and t — Z(t) are continuously differentiable at t = 6y, then for any
measurable function T : X" — R,

liminf liminf inf ~ sup  nEpp [T(X) —(0)]* > Ve(6o) "Z(0) " Vib(b). (6)

em00 nm=00 T g go|l<en—1/2
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When the risk of an estimator matches the constant provided by the LAM theorem, the esti-
mation becomes no longer improvable asymptotically. This, for instance, suggests the asymptotic
efficiency of maximum likelihood estimators (MLEs) for this specific estimation task. This fea-
ture of the precise constant sets it apart from the minimax theory through the testing reduction,
which typically claims the optimality in terms of the rates alone. It is essential to note that the
first supremum over a neighborhood around g is a crucial feature that cannot be removed. This
supremum over a small neighborhood eliminates any estimator that performs exceptionally well
on a Lebesgue measure-zero set, known as superefficient estimators. Without the supremum, the
LAM theorem only applies to a family of reqular estimators, which is restrictive in the context of
non-smooth functional estimation (Hirano and Porter, 2012). See Section 2.3 of Fang (2014) for
further discussion on the motivation behind the local asymptotic minimax risk.

One of our results is particularly inspired by the Hammersley-Chapman-Robbins (HCR) bound,
initially introduced by Hammersley (1950) and Chapman and Robbins (1951). Although we present
the results within the context of parametric estimation, it is possible to establish analogous results

for nonparametric functionals using the argument to be discussed in Section 4.2. We now present
the HCR bound:

Theorem 5 (HCR bound (Hammersley, 1950; Chapman and Robbins, 1951)). Let 1) : © — R be
a real-valued mapping for © C RY.

. 61) — ¥ (6o)[?
inf  sup By |T(X) — ¢(0))* > (G :
T:unbiased QEI@) 0 | ( ) T;Z)( )| - 00,01 €0 X2 (P91 HPBO)

The HCR bound is an elegant lower bound as it expresses the separation between functions
and the divergence between two underlying probability measures in a concise manner. Assuming
that Py, is a fixed data generating distribution and taking the limit as 61 — 6p, the HCR lower
bound implies the Cramér—Rao bound under the regularity conditions required for Lemma 1. The
regularity conditions can be weakened to the Hellinger differentiability by deriving an analogous
lower bound in terms of the Hellinger distance (see Simons and Woodroofe (1983) and Exercise
VL5 of Polyanskiy and Wu (2022)). However, one major limitation of the HCR bound is that it
only holds for unbiased estimators, which can be overly restrictive when analyzing minimax risks.
In particular, if the function ¢ is non-differentiable, no sequences of unbiased estimators exist
(Hirano and Porter, 2012), indicating that the HCR lower bound cannot be directly applied in our
context.

The van Trees inequality differs from other approaches as it considers the minimax lower bound
in terms of the worst Bayes risk. It achieves a sharp constant by seeking the supremum over all
possible priors, known as the least-favorable prior. Let © C R% and @ be a probability measure
defined on © with a density function d@. Further assuming that @ is “nice”, we state the following:

Theorem 6 (The van Trees inequality (Gassiat and Stoltz, 2024)). Suppose {Py : 0 € ©} for
© C R? is Hellinger differentiable for all © and the mapping 1 is absolutely continuous on ©.
Then for any measurable function T and a “nice” prior distribution Q) (see Definition 1) ,

T -1

it sup B [703) - w0) = ([ Fw@ra00)) (z@+ [ 760)000)) ([ vuio)aa)
0O © (S (S

where Z(Q) is the Fisher information of the location family induced by the prior @ defined in (5).
Theorem 6 is stated under the Hellinger differentiability, and this is due to the recent refinement

by Gassiat and Stoltz (2024). The classical literature on the van Trees inequality (Van Trees, 1968;
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Gill and Levit, 1995; Jupp, 2010) requires stronger regularity conditions to assert the local behav-
ior of the chi-squared divergence, as shown in Lemma 1. The van Trees inequality is particularly
desirable since it does not confine the choice of estimators to unbiased estimators. Furthermore, it
has been shown that by assuming v is continuously differentiable at 8y and selecting a prior distri-
bution @ that concentrates at the true parameter 6 with the rate n=/2, the exact constant for the
LAM theorem can be obtained (Gassiat and Stoltz, 2024). However, the van Trees inequality gives
a trivial lower bound for an irregular statistical model where the Fisher information is undefined.
Our main results, presented below, aim to remove these limitations of the existing results.

3 General minimax lower bounds under weaker regu-
larities

This section provides the main results of this manuscript. Section 3.1 provides a general minimax
lower bound via smooth approximation. Sections 3.2 and 3.3 provide two extensions of the van
Trees inequality that do not require the differentiability of functionals. We first present our results
for parametric models with © = R? for ease of exposition, with an extension to more general
sets © C R? discussed in Section 3.4. These results hold for nonparametric functionals and are
achieved through the standard least-favorable parametric paths argument from semiparametric
statistics, which is postponed to Section 4.2. Proofs of all theorems in this section are provided in
Supplementary Material.

3.1 Lower bound based on the approximating functionals

When the target functional ) does not possess certain properties, such as smoothness, it is often
useful to approximate 1 with an alternative functional ¢ at the expense of the bias introduced by
approximation. This is a common approach for non-smooth functional estimation where the target
functional is first smoothed by, for instance, convolution. We formalize this idea in our first main
result.

Suppose we jointly observe a random sequence of observations X from an unknown distribution
Py, which belongs to a statistical model P := {P, : t € O} defined on a measurable space (X, .A)
with each possessing a density with respect to o-finite measure v. Let 1 : P — R* denote a vector-
valued functional where the estimand of interest is the evaluation of the functional at the population
parameter 1(P,). We state the following as a consequence of the reverse triangle inequality:

Lemma 7. Given a measure space (0,7, ), let ©g C O be any subset of © and let Q = Q(Og) be
a collection of probability measures on ©q equipped with a density function with respect to the base
measure i, denoted as dQ = dQ/du. Let ® be any collection of functionals ® := {¢ : P — RF}.
For any measurable function T : X +— R¥ and vector norm || - || : R¥ — R, it holds that

sup Eg |T(X) = ¢(Pp)|
0€Og

> sup [(/ =700 ol ae) ”w(e)_‘bw)”Qde))lﬂ]

ped, Qe

2

J’_

This result states that the minimax lower bound for any functional estimation can be expressed
as the trade-off between the Bayes risk of estimating ¢ and the approximation error of 1) by ¢. For
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a real-valued functional, the approximation error is expressed as Ly (Q)-norm, hence the functional
¢ needs not to approximate v uniformly.

We present the application of this result by considering the projection of ¥ onto the space of
absolutely continuous functions. The Bayes risk for absolutely continuous functionals can be char-
acterized by the van Trees inequality. We define a collection of probability measures Qf supported
on Oy, satisfying Definition 1. Note that Q' depends on ¢. We then state the following result:

Theorem 8. Suppose {Py : § € O} for any open subset Oy C R is Hellinger differentiable for
all ©g and ¢ : R — RF is an absolutely continuous vector-valued functions on ©q with almost-
everywhere derivative V. Then for any measurable function T : X — R¥, vector norm ||-|| : R*
R, its dual || - ||+, and Q € QF,

2

1/2
inf sup E9|1T<X>—¢<e>|r2z[sup T2 - (/ 16(8) — 6(6)]2dQ(0 >) ]

T peoq [ N

where

Do = < [ vat) dQ>T (I(Q) | 0 d@>_l ( /L Vol d@) |

Theorem 8 is a straightforward application of the multivariate van Trees inequality (Theorem
12 of Gassiat and Stoltz (2024)) in conjunction with Lemma 7. Here, Z(t) is the Fisher information
associated with the data-generating distribution P;. It is well-known that the Fisher information
for an n-fold product measure is given by nZ(t) where Z(t) is the Fisher information associated
with a single observation under P;. Hence, under n IID observations from P, the theorem above
yields the identical lower bound but replaces I'g » with

( [ wat) d@)T <I(Q) wn [ 70) d@>_1 < [ vt d@) |

3.2 Lower bound based on the chi-squared divergence

We now move on to the direct extension of the HCR inequality without the earlier projection
argument. Throughout, we assume that © = R? To establish the extension of the van Trees
inequality, we define two probability measures on a product space (X x ]Rd). Specifically, we let

dPy(x,0) := dPy(z)dQ(f) and dPp(z,0):= dPyip(x)dQ(0 + h). (7)

The measure under the translation Q(# + h) is well-defined for all » € R%. We now provide an
extension of the HCR inequality.

Theorem 9 (Mixture HCR inequality with the chi-squared divergence). For any probability mea-
sure Q on R%, define

£) —u(t —h) dQ®)|’
A _ s and B ::/ t) —(t — h)||* dQ(t).
A,Q,h XQ(]P)hH)\Ph T (1 — /\)PO) »,Q,h " H¢( ) ¢( )H Q( )
Then for any measurable function T : X — RF, vector norm || - || : R¥ + R, and X € [0,1],

2

it sup B0 700~ w(@)° 2 sup [\/1= N2 Ass00 — VABr)

0cRd heRd +
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The above result holds for any choice of Q and A allowing for the derivation of the sharpest
constant by taking supremum over them. The additional parameter \ is introduced to prevent a
trivial constant of zero under the chi-squared divergence. This might happen, for instance, when the
statistical model P exhibits some irregularity. Under additional regularity conditions, the theorem
can be significantly simplified by choosing A = 0. This provides a non-trivial lower bound when
the necessary conditions for Lemma 1 hold.

Corollary 9.1. When A\ =0, Theorem 9 implies that

. o | fpa () = 9t = 1) dQE)||”
o B IR0 =@ = s 2 (Bh[Po) '

(8)

This inequality can be seen as the modification of the classical HCR lower bound from a two-
point risk to mixture distributions P;, and Py. We now provide a heuristic argument that Theorem 9
implies the van Trees inequality as ||h|[a — 0. Assuming the conditions for Lemma 1 hold and for
a suitably selected prior @), the following expansion of the chi-squared divergence can be obtained:

2 2 2 daq;, T 2

CEED) =@ + [ Panl?) G2 =17 (2@ + [ T0aQ) ht ollal)  ©
provided that we can exchange the limit and the integral under the dominated convergence the-
orem. Hence, if 1 is a continuously differentiable function, the inequality (8) and the limit of its
denominator given by (9) together imply the van Trees inequality as ||kl — 0. A similar result
holds for A > 0 as an application of Lemma 2 assuming that the Fisher defect is zero. As dis-
cussed earlier, the local behavior of the chi-squared divergence requires stronger assumptions than
the Hellinger distance. The additional parameter A\ € [0, 1] can be removed under a similar result
based on the Hellinger distance. Before presenting the corresponding result, we provide a short
discussion on the role of .

Remark 2 (The role of the mixing weight \). The mizing weight X\ is introduced to take advan-
tage of Lemma 2, which states the convergence of the chi-squared divergence under the Hellinger
differentiability. It also prevents a trivial lower bound of zero when the denominator of the lower
bound (8) diverge, in other words, Py and Py.j are not absolutely continuous. This happens, for
instance, considering any location family induced by a density function with compact support. By
choosing A > 0, Py is absolutely continuous with respect to (1 — X\)Py + APyyp, and thus, it prevents
the chi-squared divergence from diverging. If the local expansion of the chi-squared divergence is
characterized by (9), we can always take A = 0.

3.3 Lower bound based on the Hellinger distance

This section presents our second main result: the mixture extension of the HCR bound under
the Hellinger distance. This extension is desirable since it does not require additional regularity
conditions, unlike the analogous statement under the chi-squared divergence. Additionally, we
discuss the connections between the presented result and the classical minimax lower bound in
terms of the Hellinger distance by Donoho and Liu (1987), which has been frequently considered
for non-smooth functionals, irregular estimation, or non-asymptotic minimax lower bound. Similar
to Theorem 9, we first introduce the result for © = R? and then discuss more generalized settings
in the proceeding section.
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Theorem 10 (Mixture HCR inequality with the Hellinger distance). For any probability measure
Q on RY, define

bt — h)dQ(t)|?
A ._”fRd d B ::/ t) — Wt — h)|2dQ(t).
¥,Q,h 4H2(]P)(),]P)h) an P,Q,h R W’( ) w( )” Q( )
Then for any measurable function T : X +— R* and vector norm || - || : R¥ s R,

2
inf sup By |T(X) ~$(0)| = swp |/ Ayon —v/Buan -
T gerd heRd +

Theorem 10 can be compared to Lemma 1 of Simons and Woodroofe (1983) which restricts to
unbiased estimators and does not consider priors. Similar to Theorem 9, the sharpest constant
can be achieved by taking the supremum over all prior distributions . Under the Hellinger
differentiability and suitably selected (), the Hellinger distance between two mixture distributions
admits the following expansion:

@0 B) = HHQu.Q) + | HA(Pr ) Q) aQ
1
— " (7@ + [ z014Q) e+ oflnl?)

as ||h||2 — 0. Therefore, assuming v is continuously differentiable, Theorem 10 implies the van
Trees inequality under weaker conditions than Theorem 9.

3.4 The extension from R? to a general parameter space

Thus far, Theorems 9 and 10 are restricted to the case of ©g = © = R?%. These results may still be
useful for deriving a global minimax risk. However, it cannot be applied directly to a local minimax
risk, for instance, when ©¢ C © is a shrinking neighborhood of the parameter space around a
particular value 6y. In this section, Theorems 9 and 10 are extended to the general space Oy C R?
by constricting a diffeomorphism® ¢ : R? — ©g. Although we only provide the illustration using
Theorem 10, an identical argument can be applied to Theorem 9.

Given a functional ¢ : ©g — R¥, we define ¢ : R? — R¥, a composite function (1 o )(t) for
t € R? and also define respectively

dPy(x,t) := dPy (r) dQ(t) and  dPy(x,t) := dPyyp)(x) dQ(t + h),

where Q(-) is a probability measure on R?. The direct application of Theorem 10 leads to the
following corollary:

Corollary 10.1. For any probability measure Q on R? and a diffeomorphism ¢ : R — ©q, define
a composite function ¥ := (¢ o @),

s~ e - my e

A~ —
b 4H2(]P’0,Ph)

and By o= [ 190 =0l = mI?aQ(0),

LA diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one
differentiable manifold to another such that both the function and its inverse are differentiable.
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Then for any measurable function T : X + R* and vector norm || - || : RF s R,

inf sup Eg | T(X) — ¢ (6)]* > sup sup {\/A~ - VB3 }2
96@0 - SD heRd vavh 'IZJ,Q,h +

where the first supremum is over the diffeomorphism ¢ between RY and ©y.

We provide the intuition behind the role of the diffeomorphism with an example. Suppose, for
instance, the local parameter space ©g is an open R%ball around 6, whose radius shrinks at the
rate n~" for r > 0. For such ©¢, we may consider diffeomorphism ¢ in the form of

p(t) = b0 +n""po(t)

where g : R? +— B([0],1) and B([0],1) is an open unit ball in R?. Without loss of generality, we
assume that ¢o(0) = 0 so ¢(0) = #y. Then ¢ admits the following local expansion:

©(8) — @(0) =n""po(d) = n""Vy(8)0. (10)

Hence as ||d]] — 0, the functional 1)((d)) approaches 1(p(0)) = ¥ (6p) through a nonlinear path
uniquely defined by the diffeomorphism 9. We frequently use this result in the later sections where
we demonstrate the application of Theorems 9 and 10 to recover the constant implied by the LAM
theorem.

Remark 3. Another way to apply Theorems 9 and 10 is to use the fact that the supremum over
0 € ©g can be obtained by considering any two points 0y, 01 € Oy and any smooth path v := vy, 6, :

(—00,00) = Oy such that limy_,— e (1) = 0o, limy_ee v(u) = 61. Let h(u) == h(y(v)) for u € R,
dPo(z,u) = dPy,)(2)dQ(u) and dPp(z,u) = dPyqp)(2)dQ(u + h),
where Q is a probability measure on R. Using this notation, we obtain

1nf sup Eg||T(X) —(0)|?
[AS(Sh}

— inf sup sup sup Er ) |T(X) — oh(u)]?
T 69,6, v ueR

2
| J ((u) — (u — h)) dQ ()| 1/2
= ot 3 ek ( SVl ) = (L1960 - 3u - P aQu)

J’_

As a concrete example, suppose we are interested in finding a lower bound when ©¢ := {0 : p(f —
0o) < &} for some positive homogeneous norm function p(-), then one can take 01 = 6y + dh such
that p(h) < 1 and consider y(u) = 6y + ®(u)dh where ®(-) is the CDF of the standard normal
distribution. This approach of taking a smooth path between two arbitrary points allows for the
application of the results above to non-convex, but continuous, parameter spaces Og.

3.5 Connection to the modulus of continuity

We now discuss the connections between Theorem 10 and existing minimax lower bounds in terms
of the Hellinger distance. Previous works by Donoho and Liu (1987, 1991) provide a geometric
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interpretation of the minimax rate through the modulus of continuity. We define the modulus of
continuity of a real-valued functional ¢ with respect to the Helligner distance as

w(e) ::{ sup [¢(Pp,) — (Py,)| : H*(Py,, Pa,) g&:?}.

01,02€00

This quantity captures the maximum fluctuation of functionals evaluated at sufficiently “similar”
distributions. We momentarily focus on estimating ¢(FPy) based on n IID observations X, ..., X,
drawn from Py. The minimax risk is considered for the supremum over a local model P, := {P :
H?(Py, P) < n~'}, which is a set of distributions concentrated at Py, analogous to the setting of the
LAM theorem. Section 9.4 of Donoho and Liu (1987) proves that, under additional assumptions,
for any n sufficiently large,

1 (wn=1?) ’
inf sup nEp|T(X) —(P)]* > <7) . (11)

T pep, 16 n=1/2

Donoho and Liu (1987) also shows that, under the setting of the LAM theorem (Theorem 4) and
P(Py) = 0, it holds

.1 [wnTY?) ’ 1
w6\ e ) T @ 12)

Hence, the non-asymptotic minimax lower bound given by (11) converges to 1/4 the optimal con-
stant according to the LAM theorem. It may be tempting to multiply the lower bound of (11)
by 4, that is, to consider the sequence 4~ 1{n'/2w(n=1/2)}2. Although this sequence converges to
the correct constant as n — oo, it is an invalid lower bound as there exists an estimator that
violates this inequality, provided in Section 8.4 of Donoho and Liu (1987). Donoho and Liu (1987)
conjectured that a different approach is necessary to develop a sequence of non-asymptotic mini-
max lower bounds that converge to the correct limit. This result is provided by Theorem 10. Our
result is similar to Donoho and Liu (1987) in the sense that both define local models relative to the
Hellinger distance; however, they differ as we consider the mixture of distribution over the Hellinger
ball instead of two distributions. It is also worth noting that an analogous non-asymptotic result
in terms of the two-point modulus of continuity is studied by Chen (1997) without particular focus
on a sharp constant.

The local behavior of the Hellinger distance has been a frequent tool in analyzing irregu-
lar statistical models (Ibragimov and Has'minskii, 1981; Donoho and Liu, 1987; Shemyakin, 2014;
Duchi and Ruan, 2018; Lin et al., 2019). One of the fundamental two-point risk bounds in terms of
the Hellinger distance is provided by Theorem 6.1 of Ibragimov and Has'minskii (1981); however,
the original proof does not provide the optimal constant, leaving room for a simple improvement.
Here, we present a refined two-point risk lower bound with an optimal constant. Although this
improvement still fails to recover the asymptotic constant of the LAM theorem as we later demon-
strate, it may still be of independent interest for its simplicity.

Lemma 11 (Refinement of Theorem 6.1 of Ibragimov and Has’minskii (1981) for real-valued func-
tionals). For any real-valued functional 1 : © — R, a measurable function T and 61,602 € ©, we
have

5 {Bo, [T(X) — 6(00)” + B, IT(X) — (62) "} > [+ H2<feuPeg>

9(61) — 1(02)[*.

_l’_
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This implies that

¥(01) — ¥ (62) .

1— H%Py, P
inf sup By |T(X) — 9(0)]2 > sup (Poy Do)
T 6co 01,02€0 4 i

Lemma 11 can be compared to Lemma 1 of Simons and Woodroofe (1983). It should be noted
that analogous results as Lemma 11 have reported in the literature as the optimal constant for
two-point risk has been explored as early as Donoho and Liu (1987). This result is presented to
underscore the insufficiency of the two-point risk inequality in recovering the asymptotic constant—
a conclusion also reached by Donoho and Liu (1987). Although Lemma 11 is stated for a real-valued
functional, these results can be extended to any vector-valued functional, with the leading constant
naturally dependent on the vector norm || - ||.

Finally, similar objects as the Hellinger modulus of continuity have been considered in the
econometrics literature. When the local asymptotic minimax lower bound, such as the right-
hand term of Theorem 10, is bounded away from zero, the functional estimation is called ill-posed
(Pétscher, 2002; Forchini and Hillier, 2005). This precludes the existence of a (locally) uniformly
consistent estimator of ¢(Fp) in the nonparametric model. Pétscher (2002) and Forchini and Hillier
(2005) define the modulus of continuity in the total variation distance as

w(g) = { sup ‘w(Pﬁ) _w(Pez)’ : TV(P917P92) < E}

01,02€0
where the total variation distance is defined as

TV(P(), Pl) = Sup ’PO(A) - Pl(A)‘,
AeA
with the supremum over all Borel measurable sets A. Theorem 2.1 of Pé6tscher (2002) provides the
sufficient condition under which the following holds:

1
. . . 2 > 1 L 2'
lim ' inf o Ep |T(X) —¢(P)]" 2 lim Zw(e)

where P(e) := {P : TV(Fy, P) < e¢}. Pétscher (2002) and Forchini and Hillier (2005) analyze
concrete problems where the lower bound is bounded away from zero. We note that there is
no significant loss in considering the TV- or Hellinger-moduli as both distances define the same
topology of the space of probability measures. However, our result also differs from Potscher (2002)
and Forchini and Hillier (2005) as we focus on the non-asymptotic results as well as the optimal
constant. When the asymptotic lower bound of Theorem 10 is bounded away from zero, it can be
considered as the measure of ill-posedness. We defer the corresponding analysis to future works.

4 Asymptotic properties

In this section, we examine the asymptotic properties of the general minimax lower bounds, pre-
sented in Section 3. Specifically, we investigate whether these bounds can recover established
asymptotic constants, such as the LAM theorem for both parametric and nonparametric models as
well as the local minimax rates for irregular estimation. These findings further reinforce our gen-
eral understanding that (1) the local behavior of the Hellinger distance is easier to assert than that
of the chi-squared divergence and (2) refined constants may be obtained using the mixture-based
method instead of the two-point risk method.
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The following two subsections are dedicated to recovering the classical LAM theorem for para-
metric and semiparametric models. Interestingly, they can imply a whole spectrum of such results;
in classical LAM results, the neighborhood around a parameter shrinks at an n~1/2 rate while
we can let that neighborhood shrink at an arbitrary rate given the finite sample nature of our
results. This includes the superefficiency phenomenon as well. For example, if the neighborhood is
a singleton, then the lower bound should be zero. See Section 6 for more details.

4.1 Local asymptotic minimax lower bound

We first investigate whether the proposed lower bounds can recover the exact asymptotic constant
provided by the LAM theorem for a parametric model. The setting is identical to the LAM theorem,
that is, X1,..., X, € X are IID observations from Py, € {Pp : § € © C R?} where P, is Hellinger
differentiable at f. Let 1 : © — R be continuously differentiable at 6y and T : X" — R be any
sequence of measurable functions. We can then state the following result:

Proposition 1. Assuming the setting of Theorem 4, the following statements hold:
(i) Theorem 8 implies the LAM theorem,
(ii) if (A2) holds and the Fisher defect is zero at 6y, then Theorem 9 implies the LAM theorem,
(i1i) Theorem 10 implies the LAM theorem, and

(tv) Lemma 11 implies the LAM theorem with its lower bound multiplied by the constant C' ~
0.28953.

We provide proofs for (i)—(iv) in Supplementary Material. In particular, Theorems 8 and 10 do
not require additional conditions to imply the LAM theorem, even though they hold for a broader
class of estimation problems. The LAM theorem remains valid for distributions with non-zero Fisher
defect, which can occur, for instance, when the parameter of interests lies on the boundary (see
Remark 1). Theorem 9 requires additional regularity conditions in order to rule out this scenario
since it leads to possible misbehavior of the chi-squared divergence in its local limit. Although
Proposition 1 (iv) slightly improves the leading constant from 1/4, given by (12), it falls short of
recovering the optimal constant. This result highlights that the minimax lower bound based on two
distributions (i.e., Lemma 11) may not be sufficient to recover the precise asymptotic constant.

4.2 Semiparametric efficiency bound

Although the results thus far may appear to be confined to parametric settings, they can be
extended to nonparametric functionals using the standard argument in semiparametric statistics:
the supremum over the collection of parametric submodels. To begin, we introduce additional
notation. We consider the estimation of nonparametric functional ¢ : P — R, where P is a
collection of probability measures belonging to an infinite-dimensional set. We reduce the study
of nonparametric functionals to their behavior along parametric paths P;. Although a univariate
path suffices for our purpose, all statements in this section can be extended to a multivariate path.

In what follows, we define the notion of the smoothness of infinite-dimensional functionals along
the QMD path, which is defined as (4). We emphasize that the theory remains intact under the
weaker condition of the Hellinger differentiability, and we only use the QMD since many objects in
semiparametric statistics are defined in terms of the score function gg. This allows for consistent use
of terminology without modifying definitions. A functional is called pathwise differentiable given a
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QMD path with the score function gy if there exists a real-valued measurable function ¢y : X — R
such that

V(Py) — (Po) + t/% g0 dPy

=o(t), as t—0. (13)

The definition of pathwise differentiability implies that the local behavior of 1) only depends on
each path through the linear functional of Y. Below, we denote each path by P4 € P for a given
generic score function g to make the dependence explicit. Then, we observe that the minimax risk
of functional estimation in a nonparametric model must be at least larger than the supremum of the
minimax risk along any parametric paths indexed by g. Here, the supremum is taken over the entire
space of g, called the tangent set Tp, of P at Py. A functional is pathwise differentiable relative to
Tp, if equation (13) holds for all g € Tp,. Although the function 1o is not generally unique, there is
a unique projection of ¥y onto the closed linear span of the tangent set. The projected function is
called the efficient influence function and plays an important role in the semiparametric efficiency
theory. We consider the nonparametric model, containing all distributions on the shared measurable
space. The tangent space associated with this model at Py corresponds to the collection of mean-
zero functions in Lo (Fy), i.e., the entire Hilbert space of mean-zero, finite-variance functions. This
is the maximal tangent space and we denote by LJ(FPy). With this terminology in place, we present
the following nonparametric analog of the LAM theorem,

Theorem 12 (Local asymptotic minimax theorem II (Theorem 5.2 of Van der Vaart (2002))). Let
the functional v : P — R be pathwise differentiable at Py relative to the mazimal tangent space
LY(Py) with an efficient influence function 1y. Assuming that the tangent set is a linear closure,
then for any measurable function T' of the n IID observations from P; g4,

sup liminf liminf inf sup  nEpp [T(X) - V(Prg)|* > /wg dPy. (14)

gELY(Po) ¢c—ro0 m—oo T |t|<cn—1/2

The resulting lower bound is often called the semiparametric efficiency bound and it extends
the LAM theorem to nonparametric contexts. We now demonstrate the application of Theorems 8—
10 and Lemma 11 to derive the semiparametric efficiency bound. Before applying Theorem 9 in
particular, we need to introduce an additional condition. Following Example 25.16 of Van der Vaart
(2000), we define smooth and bounded parametric paths as follows:

Citfa(tg(:c))dpo(x) (15)

where Cy := [ k(tg(x)) dPy. We assume that £(0) = &'(0) = 1 and ||| < K and ||&"||« < K for

dPg4(z) =

some constant K. For instance, the function x(t) := 2/(1 + exp(—2t)) satisfies this condition. This
choice of parametric paths allows the score function to be unbounded but the paths are bounded
themselves. Crucially, this path asserts the local behavior of the chi-squared divergence, as in
Lemma 1, uniformly over g € Tp, C LY(Py) (See Lemma 1 of Duchi and Ruan (2021)). We then
state the following result.

Proposition 2. Assuming the identical setting as Theorem 12, the following statements hold:
(i) Theorem 8 implies the semiparametric efficiency bound for any QMD parametric path,

(ii) if each parametric path is defined as (15), then Theorem 9 implies the semiparametric effi-
ciency bound,

(iii) Theorem 10 implies the semiparametric efficiency bound for any QMD parametric path, and
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(iv) Lemma 11 implies the semiparametric efficiency bound for any QMD parametric path, mul-
tiplied by the constant C ~ 0.28953.

We provide proofs for (i)—(iv) in Supplementary Material for completeness although they follow
naturally from Proposition 1. The proof proceeds roughly as follows: We apply the results of
Proposition 1 on each parametric path with a fized score function g, and then take the supremum of
the score function over the linear closure of the tangent set 7p,. The statement (ii) of Proposition 2
shows that the lower bound based on the chi-squared divergence restricts the choice of parametric
paths beyond the Hellinger differentiability. Such restriction can be undesirable for certain cases,
as we discuss in the following remark.

Remark 4 (The implication from restricting parametric paths). When the linear closure of the
tangent set spans the entire Lo(Py), then the choice of parametric path does not impact the lower
bound. Therefore, there is no loss in selecting a specific path such as the one given by (15).
Howewver, if the tangent set is a strict subset of Lo(Py), such as a tangent cone, the constraint on the
path becomes undesirable. In particular, this limitation on paths can have significant implications
for semiparametric inference under shape constraints or parameters on bounded domains. For
instance, Kuchibhotla et al. (2021) considers the projection of arbitrary QMD parametric paths
onto a working statistical model in order to satisfy certain shape constraints. The statement (ii) of
Proposition 2 may not be generally applicable in such cases.

Remark 5 (Non-pathwise differentiable functionals). While we demonstrate the application of the
proposed lower bounds to derive the semiparametric efficiency bound for pathwise differentiable func-
tionals, the main results from Section 3 still hold for general non-pathwise differentiable functionals.
First, by taking ® as a collection of pathwise differentiable functionals, Lemma 7 implies

sup inf sup Eg |T(X) — T/J(PG,Q)P
gETPO T 0cO
2

o e [( [ = |T(X)_¢<pg,g>|2dQ>l/2— ( / ||¢(Pe,g)—¢(P9,g)||2dQ(9)>1/2]

9ETR, 9P, QeQ(O) +

This suggests that the efficiency bound for non-pathwise differentiable functionals can be analyzed by
first placing a prior over the local parametric paths and then deriving the Bayes risk for estimating
¢ at the expense of the approrimation error.

Alternatively, we can apply Theorem 10 to each parametric path and take the supremum over
any generic tangent set Tp, C LY(Py). This implies

sup inf sup By |T(X) — T/J(PG,Q)F

9€Tp, T oeRrd
B o 1/2 1/2
<|fRd<w<IZ}§2(PZbiPED;h5> d@<t>l> _< /R d\wuﬂt,g)—w<Pt_h,g>12dQ<t>) ]

2

> sup sup
g€Tp, heR?

_l’_

where
dPo,g(x,0) == dPy 4(x)dQ(0) and dPp4(x,0) := dPping(x)dQ(0 + h).

In the above non-asymptotic lower bound, the limiting behavior of V(P 4) — 1 (Pi—pq) as h — 0
1 unspecified, allowing 1 to be non-smooth at t.
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4.3 Local minimax rate for irregular estimation

The use of minimax lower bounds based on the Hellinger distance by Theorem 10 is also attractive
in the context of irregular problems. Recently, Lin et al. (2019) has proposed using the Holder
smoothness of the local Hellinger distance, relative to Fy, as the degrees of irregularity for the cor-
responding estimation problem. This proposal is motivated by the classical result in the literature,
namely, Theorem 6.1 of Ibragimov and Has’minskii (1981). This result provides a two-point risk
inequality in terms of the Holder smoothness of the functional and that of the local Hellinger dis-
tance between two distributions in a model. In what follows, we demonstrate that Theorem 10 also
recovers the asymptotic minimax rate given by Theorem 6.1 of Ibragimov and Has'minskii (1981).

Lemma 13 (Theorem 6.1 of Ibragimov and Has’minskii (1981)). Consider the estimation of a real-
valued functional ¥ (0) based on the n IID observations from Py. We define sign(x) := x/||x|| for
r € RY. We assume that there exits a constant 6 > 0 such that for all t,t +h € {0 : |6y — 0| < 5}
and as ||h|| — 0,

H*(Py, Pern) = C1llhl|* + o(|[A]|%), o € (0,2],
w(t+h) —v(t) = Co|[bll” +o(|[n]I%), 5> 0,

where C1 = C yignn) and Ca = Coy gignn)- Futhermore, these constants are assumed uniformly

bounded such that sup, j, C1 s sign(n) < Ci and sup; p, Co ¢ sign(n) < Co for some C1,Cy € (0,00).

Theorem 10 then implies that there exists a constant C, depending on C1,Cs, o, and B, satisfying
lim inf lim inf inf sup n28/e Epp |T(X) — »(0)]* > C > 0.

emo0 nm=e0 T g gy||<en— /e

The proof of this lemma can be found in Supplementary Material. We note that « is defined on
the interval (0,2] with o = 2 corresponding to the standard Hellinger differentiable models where
the Fisher information is well-defined. Hence the most regular setting corresponds to @ = 2 and
B = 1. Although the Hellinger differentiability fails for o < 2, the Hellinger distance can still be
well-defined. For instance, a set of uniform distributions Unif(0, #) indexed by € > 0 corresponds to
a = 1. We refer to Lin et al. (2019) for more examples of irregular models. While Theorem 10 can
account for this type of irregularity, Theorems 8 and 9 yield trivial lower bounds of zero; Theorem 8
fails due to the lack of the Fisher information and Theorem 9 fails as the chi-squared divergence
for an irregular model is often infinite for any n > 1 and ¢ > 0.

5 Applications: Local minimax lower bounds

In this section, we provide several application of the minimax lower bounds for the estimation
problems involving points of non-differentiability.

5.1 Nonparametric density estimation

The first application is nonparametric density estimation under the smoothness assumption.

Example 1 (Nonparametric density estimation). Let Xi,...,X,, € X C R be n IID observations
from the unknown density function fo. The functional of interest is the density value at a pre-
specified point xo € X, that is, Y(f) := f(x0).
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We assume that the true density fj is s-times continuously differentiable at xy. We then analyze
the following class of density functions:

F(s, fo,x0, M) := {f is s-times differentiable at o, satisfying | £ (zo)| < (1 + M)\fo(s) (a;o)]}

for fixed M > 0. Furthermore, we define the following localized set of density functions

x—xzo|<e

U(d;¢) := {f € F(s, fo,xo0, M) : /| |F 8 () — fo(k)(a:)]da: < ¢ for all k € {0,1,...,3}}

for fixed € > 0. The parameter M is introduced in order to prevent the true density fy from lying
on the boundary of the local model U(d;¢). As ¢(f) is nonsmooth functional, we consider the
following approximation via convolution:

T — X0

o) = ok = [ h—lK( ) f(z) da

where K is a kernel function and ~A > 0 is a bandwidth parameter. The collection of approximation
functionals @ is then indexed by the choice of K and the values of A > 0. We consider any kernel
function that satisfies the following conditions:

(A3) A function K is assumed to satisfy the following conditions:

(a) it is uniformly bounded,
(b) it is s-times differentiable with the uniformly bounded sth derivative,
(c) it integrates to one over its support, and

(d) for all integer k where 0 < k < s, f_ll uF K (u) du = 0 and f_ll u K (u)du < oo.
We then define the following class of approximation functionals:
O :={¢(f; K,h): for all h >0 and K, satisfying (A3)}.
We now present the application of Theorem 8 to the estimation of ¥ (f) approximated with ¢(f)
for any ¢ € ®:
Lemma 14. Let 6, := con™" for r € [0,(2s + 1)~1). Then Theorem 8 implies,

liminf inf sup n2/TVE,|T(X) — f(20)]?
minf i s FIT(X) ~ f(ao)

> Slll{p C(S,M, K) f0($0)25/(25+1)|fés)(330)|2/(28+1)

where C(s, M, K) is a constant only depending on s, M and K.

The proof of this lemma is provided in Section D of Supplementary Material. To the best of
our knowledge, this is a new local asymptotic minimax constant in the context of nonparametric
density estimation. A similar object to the term in the lower bound has appeared in the classical
literature on kernel density estimation (Devroye and Gyorfi, 1985). Let fy be any density on [0, 1]
with continuous sth derivative. Then Theorem 11 (Chapter 4, page 49) of Devroye and Gyorfi
(1985) states that

lminf sup n2%/@sD) Ef [1T - fIP

N0 e H(fo) ([ fr/2)2s/@sH1)( [ | f(&)|p)L/(2s+1) >0
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for any estimator 7" where H(fy) is a set of all densities of the form > 7, m; fo(z + x;), m; is any
probability vector and {z;} is an increasing sequence of real numbers such that x;y; — z; > 1.
Simple algebra also suggests that the kernel density estimator, defined as

~ 1 " XZ'—IEO
f._%;K<7h )

with the following “theoretical” choice of bandwidth

o (B )
nl 1§ (o) |2

attains the matching upper bound including the dependency on fy (Abramson, 1982; Woodroofe,
1970; Hall, 1993; Brown et al., 1997). Such an estimator is often called adaptive in the nonpara-
metric density estimation literature?. A reasonable estimate of h* is obtained by the “plug-in” rule
where fy and fés) in h* are replaced with pilot estimators f(a:o) and f(s) (zo), constructed from a
separate data. The final estimator is defined as

) n X 7 1/(2s+1)
f = ZK <17$0> where  Npjug-in X <¢))|2) .
1

B nhplug—in i hplug—in n|f(3) (;1;0

Assuming these pilot estimators converge in quadratic mean, Brown et al. (1997) states that the
estimator f asymptotically achieves the minimum pointwise risk, i.e., the risk under fixed fy, among
all choice of bandwidth parameters (See equation (2.5) of Brown et al. (1997)). Brown et al. (1997)
however argues that such a pointwise assessment of the nonparametric estimator is often misleading
in view of superefficiency, necessitating the evaluation under “uniform” risk. Our result does not
contradict the message by Brown et al. (1997). The pointwise risk of the estimator is equivalent
to the local minimiax risk over a singleton {fy}, and this roughly corresponds to taking r — oo
in our result. Lemma 14 does not allow the neighborhood U(n™") to shrink too fast, slower than
n~1/(+3) to be precise, which prevents the issue of superefficiency. Hence, the adaptivity to the
unknown fp is not purely an artifact of superefficiency.

The van Trees inequality has been previously applied to analyze minimax lower bounds in
nonparametric problems. See, for instance, Theorem 4 of Anevski and Soulier (2011) and Example
2.3 of Tsybakov (2008). In order to apply the classical van Trees inequality, these approaches
typically reduce the original nonparametric problem to parameter estimation along a parametric
submodel. This differs from our “direct” approach based on Theorem 8. Consequently, existing
results do not account for risk over a shrinking neighborhood around fy, and do not provide the
dependency of the lower bound on fy. Therefore, these results do not fully comply with the classical
notion of local asymptotic minimaxity.

5.2 Simple directionally differentiable functionals

We now present the application of Theorem 10 to the estimation of (Fy) := max(6,0) for
@ € R. This is one of the canonical examples of directionally differentiable functionals. More
complex problems such as interval regression (Fang, 2014) and testing of the shape of regression
(Juditsky and Nemirovski, 2002), can be reduced to this form.

2This notion of adaptivity is completely separate from the adaptation to unknown smoothness s.
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Example 2 (Estimating max(6,0) when 6 = 0). Suppose X1,...,X,, are n IID observations drawn
from Py that belongs to a local model {Py : |0| < 6,0 € R} for fixzed 6 > 0. We assume that this
model is Hellinger differentiable with the Fisher information Z(t) fort € (—=0,0). The functional of
interest is 1 (FPy) = max(0,0).

Then Theorem 8 implies the following non-asymptotic local minimax lower bound:

Lemma 15. Suppose that QF = Qf(—1,1) is a collection of “nice” priors defined on [—1,1] (see
Definition 1) then Theorem 8 implies that

(Ji ateyar)’

inf By |T(X) — (P2 > 16

W B TR0 =0 RIE =2 0 @) n [ Z6ta ) di 1o
2

> sup - (17)

ac[0,1] AT26-2W 2 + nsupjy <5 Z(t)

where q is a density function of Q for any Q € QF, W, := 2/(Y, + 1) and Y, is the inverse of the
following equation:

Y, —sin(—7Yy)/m = |2a — 1].

The first result of Lemma 15, given by (16), is a direct consequence of the van Trees inequality
since the functional ¥(f) = max(6,0) is absolutely continuous. The second result of Lemma 15,
given by (17), investigates the least-favorable prior using variational calculus and optimization
under absolute moment constraints (Ernst, 2017). The corresponding derivation can be found in
Section E of Supplementary Material. Our lower bound involves the inverse of the Kepler equation
from Celestial Mechanics, which does not have a closed-form solution (Kepler, 1609). Hence, our
lower bound relies on a computational method. This technique seems to be less known in the
literature but has been mentioned in the context of non-asymptotic minimax lower bound for
Gaussian mean estimation under bounded constraints (Levit, 2010).

Next, we provide a non-asymptotic lower bound for estimating max(0%,0) for 0 < a < 1 and
f € R based on Theorem 10. This function is also non-smooth at # = 0 and the corresponding
lower bound behaves differently depending on the location of the true parameter.

Example 3 (Estimating max(6%,0) for « > 0). Consider the identical settings as Example 2,
except the functional of interest is now ¥ (Pp) = max(0,6%) for o > 0.

The following lemma provides the application of Theorem 10 to this problem:

Lemma 16. Theorem 10 implies the following non-asymptotic local minimazx lower bounds:

(i) When 6y < 0, it holds that

- B 25 o 62| Eq{bo + 6o (t)}* Ly (t) I{t = [60] /6 < o(t)}|?
B e B lT(X) =) = s = o e B[ () P2 (00 + 000D

(ii)) When 6y > 0, it holds that

inf su — 2> su 52&2’EQ{60 + 60 ()} oy () I{t : po(t) < 0o/}
B oup Ee [T(X) = (Bl = sup = O P o [ah (02 T(00 + 0]

26



(iii) When 6y = 0, it holds that

| s e P07 g o0 (0 11t : go(t) > 0}
it sup Eo [T00) = w(B)1 = o o P B e (012 Z0p0 ()]

The supremums are taken over any probability measure (Q on R and any increasing deffeomorphism
o : R (—1,1) such that ¢o(0) =0 and ||¢f|lec < C for some constant.

Here, the choice of priors no longer needs to satisfy Definition 1. Instead, Lemma 16 posits
certain requirements over the choice of diffeomorphism.

Remark 6 (Minimax rates of convergence under IID observations). From the expressions above, we
can deduce the local minimax rates of convergence. When 6y > 0, the lower bound (ii) of Lemma 16
above implies that

520(1) B O(1)
Z(Q) +nd20(1)  62Z(Q) +nO(1)’

Balancing two terms in the denominator, we choose § = O(n_1/2); the overall rate of convergence is
n~L, or so-called parametric rate, provided 6y > 0. This is reasonable given that 1)(0y) is a smooth
parameter when 0y is bounded away from zero.

Similarly when 6y = 0, the lower bound (iii) of Lemma 16 implies that

5220(1) B O(1)
Z(Q) +nd20(1)  6-20Z(Q) + né?~220(1)

Balancing two terms in the denominator, we choose § = O(n_1/2) again; the overall rate of conver-
gence is now n~ % when 6y = 0, which is strictly slower than the parametric rate when o < 1. We
thus conclude that the minimax rates of convergence for estimating max(6°,0) remain the same as
the rates for 0% discussed in Gill and Levit (1995).

Remark 7 (Local asymptotic minimax constants). Lemma 16 also recovers the precise constants
for the local asymptotic minimaz lower bound. In addition to the setting of Lemma 16, we further
assume that Z(t) is continuous at 0y. Given the observation from Remark 6, we replace ¢ with
en Y2 and analyze their limits. When 6y < 0, there exists n large enough that |6o| > en~1/2,
hence we have

and

lim inf lim inf inf sup nEpp |T(X) - »(Py)> > 0.

em=00 n==00 T 19 _go|<cn—1/2

When 6 > 0, there exists n large enough such that 6y > en=Y2, and thus I{t : po(t) < 6p/(cn~Y?)} =
1 for allt € R. We then have,

a292a—2 ’EQ 4,0/ (t)’2
lim inf liminf inf sup nEpn |T(X) — (Pp)]* > 0 0
c—r00 n—so0 T 10—o|<cn—1/2 Fo ’ ( ) 1/}( 0)‘ Z(0o) EQ{(,D6(7§)}2

where we invoke the dominated convergence theorem in view of the continuity of Z(t) att = 0y and
the uniform boundedness of ¢f,. The supremum of the last quantity involving @ is 1 as shown in the
proof of Proposition 1 (iii) (See Section C of Supplementary Material). Hence the local asymptotic
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minimax constant is azﬁgo‘_21(90)_1. The case with 6y = 0 is more involved. By the analogous
argument,
liminf liminf inf sup n®Epp [T(X) — V(Py)|?
c—o0 n—oo T \6—90|<cn*1/2
i €0 B o) oh(t) I{t > O}
"o I(Q) 4 Z(60) Eq{po (1)}
The liminf may not be achieved by the extreme values of ¢, and it depends on specific choices of

Q and pg. Taking the supremum of this object over the choice of @ and g requires more involved
analysis, which we do not pursue in this manuscript.

5.3 Parameter estimation under an irregular model

The final illustration provides a local asymptotic minimax result where the Hellinger differentiability
fails. This is a quintessential example where the Fisher information is undefined. We demonstrate
that Theorem 10 recovers a correct local minimax rate of convergence as well as local parameter
dependence. We also observe that the simple choice of diffeomorphism fails to recover the correct
constant and may require more delicate analyses.

Example 4 (Estimating 6 from Unif (0, 6y) for 8y > 0). Suppose X1, ..., X,, are n IID observations
from Unif(0, 0y), which belong to a statistical model {Unif(0,0) : 0 < 8}. The functional of interest

is Y(Py) = 0.
Then we state the following result:

Lemma 17. Theorem 10 implies the following local asymptotic minimaz lower bound:

liminf liminf inf ~ sup  Epp n?|T(X) — 6

c—o00 n—oo T |0—60|<en—1

/ /2

02 su |/ (1) dQ(®)] B o)
R ey vy VA CIREL)

for C > 0 where the supremum is over n € R, diffeomorphism ¢q from R to (—1,1) and any prior
distributions Q over R.

2
= CH?
+

The preceding display shows that the local minimax risk for parameter estimation under uniform
distribution behaves as O(62/n?). Without taking into account the constant, this is the correct
known dependency. Theorem 4.9 and Proposition 4.5 of Korostelev and Korosteleva (2011) further
prove that the sharpest constant is 1 based on a similar approach using the Bayes risk with a uniform
prior. This implies that Theorem 7, which is also based on the worst Bayes risk, can recover the
correct constant for irregular problems. However, Theorem 10 does not readily accommodate a
prior with compact support. In what follows, we present a corresponding constant based on a
simple choice of diffeomorphism, which fails to recover the asymptotic constant.

Proposition 3. Consider a sequence of diffeomorphism o(t;n), which is indexed by n > 0. As-
suming that npy(t;n) — C as n — oo for some finite constant, we obtain

liminf liminf inf ~ sup  Epp n?|T(X) — 0> > C*63

c—o0 n—oo T \€—€0|<cn*1

where C* =~ 0.06352.
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The proceeding proposition demonstrates that while lemma 11 enables simpler analysis and a
sharper constant compared to Proposition 3, it still falls short of achieving the theoretically optimal
constant.

Proposition 4. Under the settings as Example 4, Lemma 11 provides the following local asymptotic
minimazx lower bound:

liminf liminf inf ~ sup  Epp n?|T(X) — 0> > C*63

c—o0 n—oo T \€—€0|<cn*1

where C* ~ 0.0558.

6 Visual illustration: Upper bounds attained by plug-
in estimators

In this section, we investigate the precise gaps between the risk of estimators and the non-asymptotic
local minimax lower bounds for fixed § > 0 and n > 1. The results in this section are provided
mostly for illustration purposes, demonstrating how non-asymptotic analysis of estimators beyond
the efficiency bound may look like. Consider the following estimation problem:

sup nlEy |T(X) — max(6,0)[* (18)
|0]<d

where we observe n IID observations X := (Xi,...,X,,) from N(0,1). We define the local model
as {N(0,1) : |8] < d}. We construct lower bounds to (18) using two methods. The first lower
bound (vT) is due to equation (17) of Lemma 15, which is given by

na2

inf sup nEq|T(X) —¥(Py)> > sup

> — : (vT)
T joj<s acl0.1] 4257 2Wo 2 +n

where W, is defined in Lemma 15. The second lower bound (diffeo) is based on the equation
Lemma 16 (iii) when o« = 1. As computing the supremum over ¢g and @ is challenging, we simplify
the problem by focusing on the following choices:

Q€ {N(u,0?): (n,0) ER xRy} and g € {t — 7/2arctan(t/n) : n > 0}, (diffeo)

and optimize the parameters (7, 4, o). In Section G of Supplementary Material, we show that this
reduces to the following simpler optimization:

| o agE[0+ @+ ze) T 1z > —a/e)][
inf sup nEy|T(X) — max(6,0)|* > sup
T 915 &1.6 72072 +4nE [(1 + (& + Z§2)2)_2}

where Z £ N(0,1) and &,& € R x R,

The exact local minimax risk of three estimators is considered: the constant estimator, the plug-
in maximum likelihood estimator (MLE), and the plug-in preliminary-test (pre-test) estimator.
Specifically, the plug-in pre-test estimator is an example of an irregular estimator, which may
exhibit super-efficiency at a Lebesgue measure zero set. We now define the estimator. The constant
estimator returns a predetermined value regardless of the observation, and we consider the case
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where St := §/2. This is the best constant estimator that minimizes the local minimax risk,
which is given by

sup n g S — max(6,0)|* = né? /4.
|0]<d

The remaining two estimators are defined as follows:

. . . S
SPMEM = max(Gyre,0) where Oyip =X, =-» X;, and (19)
n
i=1
. ~ X, If [X,|>C
Sgro—tost = maX(epro-tost,O) where epro—tost — n | n| = ¥n (20)
0 otherwise.

This family of preliminary-test estimators (Sclove et al., 1972) is known to be super-efficient when
0y = 0. For example, we consider the case when C,, = n~'/4, which is equivalent to the Hodges’
estimator. The following proposition provides the exact local minimax risks of two estimators.

Proposition 5. Assuming X1,..., X, are n IID observation from N(0,1) and the plug-in MLE is
defined as (19), the local minimaz risk of this estimator is given by

|21‘1<p5 nEg |SPUETN _ max(6,0))? = OSS%EJ {E [sz (Z > —n1/29)} +nb?P (Z < —n1/29)} .

where Z 2 N(0,1). Similarly for the pre-test estimator defined as (20), the local minimax risk of
this estimator is given by

sup nEg [SPeTt _ max(6,0)?
|0]<é

= oil;pé {E [Z2I <Z > /4 n1/29)} + no*P (Z <n'/t - n1/29>} .
<0<

Figure 1 shows that for any fixed sample size n as § increases, the lower bounds tend to o = 1
and the best among the estimators considered also has risk tending to o2. For any fixed sample size
n and “small” §, the lower bound is close to zero and the best among the estimators considered also
has risk close to zero. This is expected because an estimator that is always zero will have zero risk
at 0p = 0. Finally, Figure 1 also shows an interesting comparison between different lower bounds.
Neither (vT) nor (diffeo) is a clear winner. Figure 2 shows the same phenomena by fixing § and
varying the sample size n.

7 Concluding remarks

This manuscript presents new general minimax lower bound techniques for functional estimation
without requiring the differentiability of functionals or the regularity of statistical models. We focus
on the local minimax lower bounds based on approximation via absolutely continuous functionals
(Theprem 8), the extensions of the HCR bound to the mixture model based on two divergence
metrics, the chi-squared divergence (Theorem 9) and the Hellinger distance (Theorem 10). The
minimax lower bound based on the Hellinger distance is more applicable to irregular estimation
problems and only requires mild regularity conditions. Unlike standard minimax analysis that relies
on testing reduction, this manuscript focuses on preserving a precise asymptotic. The manuscript

30



n supgne Risk(8)

00 25 50 75 10000 25 50 75 10000 25 50 75 100
3 for @ = (8 £3)

Estimator — Constant — Plug-in MLE — Plug-in pretest

Lower bound — diffeo ---- vT

Figure 1: The non-asymptotic local minimax lower bounds and the risk given by different
estimators.

delta=0.5 delta=2 delta=5

n supgoe Risk(8)
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Sample size n

Estimator — Constant — Plug-in MLE — Plug-in pretest

Lower bound — diffeo ---- vT

Figure 2: The non-asymptotic local minimax lower bounds and the risk given by different
estimators.

provides conditions under which the proposed lower bounds recover the well-known local asymptotic
minimax theorem for both parametric (Proposition 1) and semiparametric models (Proposition 2)
as well as local minimax results for irregular models (Lemma 13).

The flexibility of the proposed lower bounds offers many potential applications, especially for
non-smooth functionals or estimation under irregularity. For example, one may consider the min-
imax lower bound for non-pathwise differentiable functionals or the irregularity that arises on the
boundary of projection operations. A similar local asymptotic minimax lower bound was recently
derived in the context of plug-in estimators (Fang, 2014), but there remain many open problems for
general estimators. Finally, the potential application to the minimax lower bound under non-IID
observations would also be of interest.

This manuscript primarily focuses on the extension of the van Trees inequality and the HCR
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bound. However, other Bayes risk lower bounds exist, such as the Ziv-Zakai bound (Ziv and Zakai,
1969; Bell et al., 1997). Recently, Jeong et al. (2023) studied the extension of this bound in the
context of parameter estimation where density does not exist. It would be interesting to explore the
application of Ziv-Zakai bound to non-smooth functionals and its connection to the semiparametric
efficiency theory.

As we discussed in Section 1.2, a precise constant associated with the minimax lower bound
for non-smooth functional estimation was also discovered by Cai and Low (2011) using a slightly
different approach. Their technique is based on the extension of the constrained risk inequality
(Brown and Low, 1996) to two mixture distributions. Their method is also attractive as two mixture
distributions are constructed based on moment-matching priors, enabling various analytic tools
from approximation theory (Wu and Yang, 2020). Our current result only considers a single prior
over a parametric path, and it would be interesting to explore a technique that takes advantage of
such moment-matching priors.

Finally, Levit (2010) also discusses the importance of non-asymptotic constants in the minimax
paradigm. In particular, Levit (2010) observes that different lower bounding methods provide
sharp constants according to small, moderate, or large sample sizes. Although the results in
this manuscript are valid non-asymptotically and converge to the correct constant in the limit,
we did not study the sharpness of the derived constants for different finite sample sizes. While
Levit (2010) focuses on bounded Gaussian mean estimations, our lower bounds can be extended to
non-asymptotic analysis for more complex functional estimation problems, which is an important
direction for future work.
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Supplement A Proof of the lower bound based on the
approximation

We briefly review the setting and notation to which we frequently refer. Suppose we observe a
random vector X from an unknown distribution Py, which belongs to a statistical model P := {P; :
t € O} defined on a measurable space (X, A). Here, A denotes o-algebra on X. Let ¢ : P > R¥
denote the vector-valued function of interest. In other words, the target estimand is described as
the evaluation of the functional at the population parameter ¢(Fp).

A.1 Proof of Lemma 7

Let (©,7) be a measurable space with respect to the base measure v where T is a o-algebra on
©. We denote by Q = Q(O) be a collection of probability measures on © equipped with a density
function with respect to p. We define ® := {¢ : P — R*} to be a collection of arbitrary functionals
that maps from P to R*. For each Q € Q and ¢ € ®, it follows that

(/Ee |IT(X) — qp(pe)Hng>l/2
= </ Eg [|T(X) — ¢(Py) + ¢(Py) — 1(Py)|? dQ> 1/2

> (/Ee I7°(X) —cb(Pe)H?dQ)l/z_ </||¢(Pe> _w(Pg)HQdQ>1/z

by the reverse triangle inequality. When the lower bound is negative, we replace with the trivial
lower bound of zero. As the choice of ¢ was arbitrary, we conclude by taking the supremum over
¢ such that

sup Eg [|T(X) = (Py)|?
9c6

> sup [(/ Eo |T(X) — ¢(Py)]|> dQ>1/2 - </ [ (0) — ¢(9)H2dQ(9)>1/2]

ped, Qe

2

+

A.2 Proof of Theorem 8

Next, we prove Theorem 8 which follows directly by applying the van Trees inequality. We recall
the necessary regularity conditions for the van Trees inequality according to Gassiat and Stoltz
(2024). Finally, ¢(6) — 0 as 6 approaches any boundary point of Oy with finite norm along some
canonical direction. A collection of probability measures Qf supported on 0 satisfies Definition 1.
Note that Qf depends on ¢. We then state the following result:

Proof of Theorem 8. For any absolutely continuous function ¢, we evoke the multivariate van
Trees inequality (Theorem 12 of Gassiat and Stoltz (2024)) under Definition 1 and the Hellinger
differentiability of the statistical model P; for all ¢t € ©y. For any vector norm || - ||, let || - ||« be its
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dual. For any vector u such that |jull. < 1, we have

/ By |T(X) — 6(0)|? dQ > /@ BT (T0X) ~0(R)* dQ (21)
>ul < N Vo(t) dQ)T (I(Q) + /@ O Z(t) dQ> o ( /@ O Vo(t) dQ> u
(22)

by the van Trees inequality (i.e., Theorem 12 of Gassiat and Stoltz (2024)). Combining this result
with Lemma 7, we have

2

ISCH

1/2
sup By |T(X) — (P > [(uTrQ,qbu) P ([ 10w - vrai? ae) ]

J’_

where

Do = < [ vew dQ>T (I(Q) + [ 7 dQ) B ( [ vet) dQ) . (23)

This holds for any ¢ € ®,., Q@ € Qf and u such that [jul|, < 1. O
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Supplement B Proofs of the extensions of the van Trees
inequality

Suppose we observe a sequence X from an unknown distribution Py, which belongs to a statistical
model P := {P, : t € R?} defined on a measurable space (X, A). Let 1) : R? — R* denote the
vector-valued function of interest, and let @ be a prior distribution on R¢ with a density function.
We define two probability measures on a product space (X x RY). Specifically, we let

dPy(x,0) := dPy(z)dQ(f) and dPp(z,0):= dPyip(x)dQ(0 + h).

B.1 Proof of Theorem 9

For each \ € [0, 1], we define a mixture distribution as Pﬁ := (1= \)Py+ AP}, with the corresponding
density function given by

dP)(z,0) :== (1 — \)dPy(z, 0) + \dPy(x,0).

Throughout the proof, we denote by Ey the expectation under Py with a fixed parameter 0, by
Ep, the expectation under the joint probability measure P;, and by EPQ the expectation under the

joint mixture probability measure Pﬁ. For any measurable functions ¢ : R? — R*, T': X — R and
h € R?, we have

Be, (T(X) ~0(0) = [[  (T(@) = 0(0) dBua.t
[ @@= dPenie) Qi+ 1)
X xR4
-/ (T(@) = (u = h)) AP, (x) dQ(w)
XX (REI—h)
where R? — h is the set {u — h : u € R%}. In particular, we have R? — h = R?. We then obtain

Er, (T(0) ~0(0) = [ ET(0aQ0) ~ [ i(u—h)dQQ).
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Similarly under the mixture distribution IP’%, we have

Epr (T(X) —4(6))

//Xx]Rd t)) dPp(z,t)

(1- A //Xx]Rd )) dPo(z,t) +A//XXRd )) dPp(z,t)
(1-A //XR )) dPy() dQ(1)
—I-)\//XX(Rd_h) () —¥(u—h)) dP,(z)dQ(u)

— (-3 [ BT+ [ ET(X)dQM) - (-3 [ v Q)
)\

w(u — h) dQ(u)

:/RdET (1—-A /¢ ) dQ(u /wu— ) dQ(u

Therefore, it follows

Bey (T(X) = 9(6) ~ Eny (T0X) —06) = (1= 1) [ vl d@t) — [ vu=myaw).

(24)
Next, we consider the following ratio of the joint probability over X x R? given by
dPp,(z,t) — dP)(z,t)
Duas (@ t) = = p e
It follows from (24) that
Epr Dy (X, 0) (T(X) = (0)) = Ep, (T(X) —9(0)) — Epr (T(X) —9(0))
(-3 [ 0w~ vl ) dQ(u),
Rd
Applying Cauchy-Schwarz inequality to the dual norm of the above display, we obtain
2
(=22 [ (o) =it — 1) au) = [Bn Drax.0) (1) - w0))|
= s [Esy Du(X,00a” (1(X) ~v0)]
<{Bn DLax.0)} sw {Enla" (@) - vO)I}
< {Bgy DA O} {Bey IT(X) —w@)2} . (25)

We now analyze each term in the last expression. First, by the definition of the chi-squared
divergence, we have

Py, (z,t) — dP
Epy D*(X, 0) // <d h(, A — dPy (2, t>> Py (2,t) = X*(Ph[|APy, + (1 — A)Po).
X xRd d]P a: t)
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Next, for the second term of the upper bound in (25), we have

Ep [ T(X) = 9(1)]*

/ /X L IT@ = v )
(1-X // IT(2) — ()] dPu(z) dQ()

o\ / / IT(@) — (O dPrn(z) dQ(t + h)

(1A // IT(@) — (8)|* dPy(z) dQ(t)

A // 1T Bt + B) + (W) dPrpn () dQ(E + 1)
X xRd

g(l—A)/RdEtnT( ) () dQ()
— u 2 u
w0+ D) [ ETeo - vl dQ
—p(u — h)||*dQ(u
FHUD) [ ) - v 1P dQ)
=1+ 1Y) [ 2T - w0l dQ) + A0+ 1/0) [ 6o - vie - mI dQ()
R4 Rd

where we use (a+b)% < (14 L)a?+ (1+1/L)b? for any L > 0, which follows from 2ab < a®L +b?/L.
Putting all intermediate results together, the inequality (25) implies

) S (6(0) — (2 — 1) dQ(0)|)

25) = C(EANE T (1= NBy)
< (1+LA) / E, | T(X) — ¢(6)] dQ(t) + A(1 + 1/L) /R (e =t = w* dQ(t)
— / B, |IT(X) — ()2 dQ(t)
1 [ )2 || fraa ((8) — (¢ — h)) dQ(D)]|”
=1+ L\ X2 (Py|| APy, + (1 — M)Po)

M1/ [ ) - ot - mIP Q)

_l’_

Since the Bayes risk is bounded by minimax risk for any prior distribution ), we have

sup Eq | T(X) — ¢(0)|
R4

> / B, [|T(X) — ¢ (8)2 dQ(2)

2 [ (0) 0t = ) dQ QL+ 1/L) [t

> +L>\ ([PhH Py + (1= MP) —w(t = h)|?dQ(1)

+
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As the introduced parameter L > 0 is arbitrary, we can optimize its choice. First we observe that
the lower bound is in the form

(1—\)? A1+1/L)
1+ L\ [A_ (1—))2 BL‘

where

A= Hf]Rd (¢p(t) —2p(t — h)) dQ(t)HQ
: X2(PL|AP, + (1 — A\)Po)

and B = /R ) — e~ W Q).

When X\ = 0, the above display takes A% regardless of the value of L. The argument for B = 0 is
also similar. Hence we focus on the case with A\, B > 0. First we observe that

(1—\)? 4 A1+ 1/L) L_ \’B [((1—/\)2A 1) 1L: \’B [F_LL

1+ LA (1—N)2 1+ LA A2B A L\ 1+ LA L\
where
L (1-X22*4 1
" AB A

It is thus equivalent to optimize

1 1
mex {7 (T 7))

We later check if the attained maximum is positive otherwise replace the optima with zero. The
optimal value of £* is given by

1++vV1+7T
E*:% when I'> 0.

The corresponding optima is

1 1 r r
'—-—) = |
1+€*< é*) F+1+\/1+F< 1+\/1+F>

r2yi+T
CVIFT(VIrI+1)
(VT (VI 1+ 1)
- (VIF141)°
= (\/F—+1—1>2.

This is non-negative when I' > 0 and thus it is a valid optimum for (1 + ¢)~![I" — 1//]. Plugging
this result into the original expression, we obtain

2
A2B <\/%—%+1—1> :<\/(1—)\){A—)\(A+B)}—\/)\2B>2.

When I' < 0, or equivalently (1 — A\)24 < AB, the lower bound becomes zero. As T' and h only
appear on one side of the inequality, we conclude the claim by taking the infimum over 7" and the
supremum over h € R,

42



B.2 Proof of Theorem 10

Following the analogous derivation leading up to equation (24) given by the proof of Theorem 9
with the special case of A = 0, we obtain

Ep, (T(X) —9(0)) — Ep, (T(X) —(0)) = /Rd (¢p(u) = P(u = h)) dQ(u). (26)

Next, we consider the density ratio of the joint probability over (X x R%) given by

dPh($v t) — d]P)()(l’, t)
d]P)O(:Ev t)

By the application of Cauchy-Schwarz inequality to (26), we obtain

Dy, = (x,t) —

2
= ||Ep, Du(X,0) (T(X) — 9(0))||”

= e (PR ) ) - wee)

( dIPh(X,H)_1>< APy (X, 0
Fo\ '\ aPy (X, 0) dPy(X, 0)
2
< {m»( g +1) T(X)zz)(e)?}Hz(Po,Ph)

2 (Ep, [|T(X) = (O)|* + Ep, IT(X) — »(0)|*) H*(Po, Pp) o
27

(¥ (u) = ¢(u = h)) dQ(u)

Rd

2

~—

+ 1) (T(X) —(0))

where we apply the inequality (a + b)? < 2(a? + b?) in the last step. We now analyze two terms
inside the parenthesis of the above display. Since minimax risk gives an upper bound of Bayes risk,
we have

Ep, | T(X) - v(0)]* = /Rd E¢ |T(X) — ¢(1)[ dQ(#) < sup Eg [|T(X) — 4 (8)||*.

OcRd

For the second term, we have
Ep, |T(X) — ¢(0)]?
= [ B TG0 = w0l Qe+ h)

= [ Been ITCX) = 0l6) = e+ ) + 6 +1) 4@t + 1)
< / By [T(X) =t + 1|2 dQ(t + h)
/ [t + h) — ()| dQ(t + )

+ 2\//11@ Epn |T(X) =4t + h)|* dQ(t + h) \// [t + h) — )| dQ(t + h)

2
=<\//Rdzﬁzt+huT< Ue+ I Qe+ b) + \// It + b) = (2) d@<t+h>)
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where the inequality follows from Cauchy-Schwarz inequality. Therefore (27) implies the following:

e (0(w) — (1)) dQ(w)||”
2H2(P0,1P’h)

< sup By [|T(X) — v (0)|

R
2
<\// By [|T(X) = (t + h)|]* dQ(t + h) + \// 9t + h) — (t)|I? dQ(t+h))

< sup By [|T(X) — ¢(6)|?
OcRd

2
2
- (\/:S@EGHT( 0)[1* + \// [1(¢) —h)l dQ(t)>
2
g2<\/9s€u§dE9HT<X> o)) + \/ / 4(2) —n)|? d@(t))

where the last step used the fact that \/fRd [4(t) — ¥ (t — R)||* dQ(t) > 0. We thus obtain

(27

| fiat (0 (1) = 9(u — h)) dQ(u)||”
2H2(]P’0,]P’h)

2
<2 <\/:;B§Ee IT(X) =9 (0)]1* + \// [(t) h)HZdQ(t)>

— sup Ey | T(X) — ¢(0)]?

fcRd
B 1/2
[HfRd 2H(E§mph) (/ () h>||2dQ<t>> ]

As with the proof of Theorem 9, the function 7" and h only appear on one side of the inequality,
and we conclude the claim by taking the infimum over 7" and the supremum over h € O.

2

+

B.3 Proof of Lemma 11

The main idea is provided by Theorem 6.1 of Ibragimov and Has'minskii (1981). Here, we derive
the improved constant. We focus on the estimation of the real-valued functional ¥ : © — R
for © C RY. An analogous proof can be applied to each specific choice of the vector norm || - ||
(See remark 6.1 of Ibragimov and Has'minskii (1981)). For any real-valued measurable function
T := X — R, two points in the parameter space {0, + h} € ©, and an arbitrary scalar constant
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C', we have
2

[Eg+n T(X) — Ep T(X ‘/ ) (dPyin(z) — dPy(x))

‘ / C) (aPfh(@) — Py * (@) (aPy (@) + apy *(a ))‘2

gzﬂ'u%yhan</iux — Cl2dPyip(x /‘u‘ CFdRﬂ@).
(28)

where the last inequalities follow by Cauchy—Schwarz inequality and (a + b)? < 2(a? + b?). The
first integral on the right-hand side can be written out as

/X|T(fﬂ)— dPpyn(z /|T —Eon T(X) + Egpn T(X) — C dPyip ()

— [ 17@) = B TEOP dPusn(a) + | Basn T(X) - CP
We also have the following standard bias-variance decomposition:
[ 17@) = Egun TGO dPosa@) = Basn [T(X) = (0 + 1) = [ Bgu T(X) = (6 + )L
Putting together, we obtain

[ 17 = appun
= Egyn [T(X) = 9(0 + B)* = | Egyn T(X) — (6 + h)| + | Eg1n T(X) — CJ*.

By repeating the analogous argument for [, |T'(z) — C|?> dPy(x) and plugging them into (28), we
obtain

[Bo i T(X) —Eg T(X)|?
< 2H*(Pyyp, By) (Bo1n |T(X) = (0 + h)|> = [Eoyn T(X) — (0 + h)[?
+ | Epn T(X) = CF + B [T(X) = $(0)]* — [ Eg T(X) — 9 (6) ] + | Ep T(X) = C*).
Since the above inequality holds for an arbitrary scalar constant C, we choose C' to minimize the

upper bound. As the optimal C* is attained by C* = 1/2 (Ey T(X) + Eg,;, T(X)), we can further
simplify the expression as

[Eoir, T(X) — Eg T(X)|” < 2H*(Ppsn, Po) (Bosn |T(X) — (0 + h)|? + Eo |[T(X) — 9(6)[?

2, [Eg T'(X) —Ee+hT(X)’2)
5 .

~[d(6 + h)[* — |d(9)] (29)

where d(t) ;== E; T(X) — 1(t). Hence, the above display immediately implies the following:
(29) = Epup [T(X) — (0 + h)]* +Eo IT(X) — 9(0)
o L= H(Ppyn, Py)
~ 2H?(Pyin, Py)
= Eon[T(X) = 9(0 + h)I* + o [T(X) = 9(0)]"
o 1= H*(Poin, Py)
T 2H*(Bpin, Py)

[Eoe T(X) = Eg T(X)]” +|d(6 + h)|* + |d(6)?

(0 + h) — (0) + d(0 + h) — d(0)> + |d(6 + h)|> + |d(0)|>.

45



The existing proofs by Ibragimov and Has'minskii (1981) and Lin et al. (2019) proceed by splitting
the analysis into two cases: (i) max{|d(6 + h)|,|d(0)|} < 1/4]¥(0 + h) — ¢ (0)| and (ii) |d(0)| >
1/4|4(0 + h) — 1(0)| where the leading constant 1/4 for the boundary was chosen for convenience
by Ibragimov and Has'minskii (1981) as they did not focus on the optimal constant. We instead
optimize this boundary to obtain a sharper constant.

We now define the following function:

n(x,y) = AlB+z —y|* + [z + |yl
with A := (1 — H?(Pyyn, P))/(2H?*(Pyip, Py)) and B := (0 + h) —1)(#). The lower bound can be
written as
Eoyn|T(X) =90 + h)* + Eg|T(X) = »(0)* > n(d(0 + h),d(8)).
This further implies that

Epn|T(X) = 9(0 + )* + Ep|T(X) — ¢(6)* > min n(z,y).

z,yeR
The minimizer of 7 is given by " = —y* = — 42;144]_32 and hence we have,
, 4AB? 8A2 B2 4AB%*(1+2a)  AB?
minn(z,y) = 5 + 5 = — = .
T,y (4A+2) (4A+2) (4A+2) 2A+1

Additionally, we have
Opa) = 2A 42, Opyn=—2A, and Oyn=24+2

and the discriminant is given by (24 + 2)? — 442 = 4(2A + 1). Therefore, the optima is at a
saddle point when A < —1/2. The constant A is defined as (1 — H*(Pyypn, Py))/(2H?*(Pysn, Pp)),
which is monotone decreasing with respect to H?(Ppip, Py) and attains the minimum —1/4 at
H?(Pyyp, Py) = 2. Thus the minimizer of 7 is well-defined for all values of A and thereby all values
of H?(Py,n, Py). Putting it together, the minimum of the function 7 with respect to d(6 + h) and
d(0) is given by

AB® 11— H*(Ppin, Pp)

- B 9
2A4+1  2H*(Pyyn, Pp) (8 +h) = ()] <

)
= LI ben Bo) g 4 m)— o).

When H?(Py,p, Py) > 1, the leading constant becomes negative and we can replace it with a
trivial lower bound of zero. Therefore, we conclude

—1
1 — H?*(Ppsn, Py) 1)
H2(Pyyp, Py)

1 — H?*(Ppsn, Py)
2

&anm—¢w+mﬁ+muwm—wsz[ } B0+ ) — BB
+

Since minimax risk gives an upper bound of the average of risks at arbitrary two points, we have

qup By [T(X) ~ ()P > sup  oan T =00+ WP+ B [T(X) = 0(O)F

te® {0,6+h}cO 2
1— H?*(P, P,
o e e 2
{0.0+h}e0 "

As T and h only appear on one side of the inequality, we conclude the claim by taking the infimum
over T and the supremum over any pair of parameters 6,0 + h € ©. An analogous proof can be
extended to a vector-valued functional with a general vector norm || - ||. We only provide a result
with a real-valued functional since the optimal constant depends on the choice of the norm as it
requires the derivative with respect to the norm.
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Supplement C Proofs of asymptotic properties

This section provides the derivation of results from Section 4.

C.1 Proofs of local asymptotic minimax theorem

In this section, we use Lemma 7, Theorems 9, 10 and Lemma 11 to prove the local asymptotic
minimax theorem. Throughout, we assume that X1,...,X,, is an IID observation from Py, € {F :
0 € O} and each distribution in this model is Hellinger differentiable at 6. Let ¢ : © — R be
continuously differentiable at 6y and T : X" — R be any sequence of measurable functions.

Proof of Proposition 1 (i). Since ® is arbitrary in Lemma 7, we choose
O :={p:0— R : ¢is continuously differentiable at 0y}.

Since ¥ € &, it follows that

2

1/2
sup Eo|T(X) — $(P)P > sup [rgj;—(/ ORCIRE0) ]
0c€Og Pped, Qe i

> ( [ wuin d@)T (I(Q) v z0) d@) _1( [ v d@>.

Section 4 of Gassiat and Stoltz (2024) shows that the van Trees inequality indeed recovers the
optimal asymptotic constant of the LAM theorem. This concludes the claim. O

Proof of Proposition 1 (iii). In this application, the parameter space considered is given by
0 = B(Qo,cn_l/ 2), which is an open R%ball centered at 6y with radius en~Y2. Following the
construction of Section 3.4, a diffeomorphism ¢ — @(t) = 6y 4+ en~Y2pg(t) is defined where g is
itself a diffeomorphism from R? to B([0],1). Tt follows that Vi (t) = cn™Y2Vo(t). We further
assume that ||V¢gl/oo < C' by some universal constant C', which is defined later. Theorem 10 is then
applied to the composite function ¢ +— ¢ (t) := (¢ o ¢)(t), and the following inequality is obtained:

inf sup Epp [T'(X) — TJZ(G)F
OcRd

s (/g 50 upa)”

for any h € R?. Using the mean value theorem and the chain rule, it follows that
B(t) =t —h) = en PVHMp(t) + (1= M)p(t — 1) Vipo(t — Aoh) Th

where A, Ay € [0,1] are constants that can possibly depend on t. Next, under the Hellinger
differentiability and n IID observations from Fy,, it is shown by Lemma 22 in Supplementary
Material that as [|h|l2 — 0,

(30)

_l’_

2 Eo. ) = 17 (2@ +n [ vol)” <(>>w<t>dQ<t>>h+o<uh||%>
" (z@ / Vo) Z(6(0) Tialt) dQ) ) -+ o1
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The results obtained thus far are now used to evaluate the expression (30). Since the inequality
holds for any h € R, it also holds as ||l — 0. We now denote h = ue where u € S! and
¢ —» 0. This yields the following lower bound:

— 2H(]P’ot, I;h (/ v ~hF ot )>1/2] +

. | fona U(t — ue)) dQ(t)| 12

2

sup
heRd

2

.
B Ty Vw(cp(t))TVwo(t)TudQ(t)lz
w5t W (ZQ) + @ foa Vieot) Z( (1) Vipo(t) dQ(D)

By multiplying both sides by n, we have for any u € S,

2| fRd Vi (00) " Vo (t) TudQ(t)|?
(@) + ¢ Ja Vipo(t) T Z(60) Voo (t) dQ(2)) u

~ 19 | Jza V(00) T Voo (t) Tu dQ(t) |2
— liminf lim inf inf sup nkry TX) =¥ O 2 77 (Jra Voo (£) T Z(60) Vipo () dQ(1)) u

where the dominated convergence theorem is invoked during the last steps to exchange the lim-
iting and the integration operations. This follows since p(t) — 6y as n — oo and both
Vi and T are continuous at 6y by assumption. Using u := ||[M~Y2|7'M~1/2? where M :=
Jra Voo (t) T Z(60) Vo (t) dQ(t), it implies that

lim inf inf Epn [T b(0)]2 >
im inf inf sup nEpp [T(X) — w()l_uT(I

n—00 T pcRd

liminf liminf inf sup nEpp [T(X) — V(6)[?

c—o0 n—oo T fcRd
1
> Vip(6) " - { Vo(t) </ Vo(t) Z(6o) Vipo(t )dQ(t)> Vo(t) dQ(t)} -V (6o)-

Since the choice of ¢y was also arbitrary, we may consider

2 1 t

2
#o(t) =~ arctan([[tl/7) ~and Wo(t):HWW'

This choice also satisfies that ||[Vpl|leo < 2(my)~!. Plugging them into the expression, the leading
constant 2(7y)~! will be canceled between the numerator and the denominator. Taking v — 0o,
the gradient of ¢y converges to a constant. Since the gradient of ¢g is uniformly bounded by
construction, it is concluded that

lim inf liminf inf sup nEpp [T(X) — V(O > Vip(B) T - Z(6) " - V(o)

c—o0 n—oo T 9cRd

in view of the dominated convergence theorem. O

Proof of Proposition 1 (ii). Similar to the proof of Proposition 1 (iii), the parameter space
is given by © := B(Go,cn_l/z), an open R%ball centered at §y with radius en=/2. We define a
diffeomorphism t — @(t) = 8y+cn~'/2py(t) where @y is itself a diffeomorphism from R% to B([0], 1).
We further assume that ||Vplleo < C by some universal constant C.
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Theorem 9 is then applied to the composite function ¢ — Q,Z(t) := (1poy)(t), and for any h € R?,
the following inequality is obtained:

inf sup Ep, IT(X) — {E(t)’z

T terd
“ | Jpa () = (t = 1)) dQ()* 1 + 1/L .
= tho 1 +L)\ 2 (]fph”)\]fph Y1 A)]f”o) / [ (1) — h)|7dQ(t) )
(31)

Using the mean value theorem and the chain rule, it follows that
Y(t) =Pt —h) = en PVPNp(t) + (1= M)p(t — 1) Vepo(t — Aah) Th

where A\j, A2 € [0, 1] are constants that can possibly depend on ¢.

We further assume that the prior distribution ) has a continuously differentiable Lebesgue
density. Then under the n IID observations from the Hellinger differentiable distribution with the
Fisher defect being zero, Lemma 21 implies as ||h||s — 0,

W (BallABA + (1 = APy )

dQ? aqQj,
dQ

— T (I(Q) =3 [ Vo) Zp(0) Violt) d@(t)) bt ol [4]2)

= QI + [ PPl AP ey + (L= NPi) o

=h' (I(Q) +(L =22 | Veot) Z(e(t) Vo (t) dQ(t)> h+ o([|][3)-

Rd

The results obtained previously are now used to evaluate the expression (31). Since the in-
equality holds for any h € R?, it also holds as ||h|ls — 0. Here, h is denoted by ue where u € S%*
and € — 0. This yields the following inequality:

(1= 22 | | fra(0(8) — (¢ ))dQ()I2 1+1/L
o { R (Phumﬁ - Y / [(t) — h)?dQ(t )]

+

ot — dQ(t)|?
> sup limsup [‘ fRd (T/J uE)) C%( )’
i S —— 1 LA L 32 (P AP + (1 — )\)]P’())

””L / () wt—us>12dcz<>]
.
(1—A> cn—1|fRdw (0(8) T Vepo (1) Tw dQ(1)2
TIZ(Q) + A0 - N2 Jor Vo) Z(0) Vo (1) Q) u

where the Fatou’s lemma is invoked during the last step to exchange the limiting and the integration
operations. Since the above display holds for any A € [0, 1], we let A — 0, which results in

AnY [ra V(o) T Voo (t) T dQ(t) |2
uT (Z(Q) + ¢ faa Vipo(t)T Z((t)) Voo (1) dQ(H)) u |

The remaining proof is identical to the proof of the second statement of Proposition 1. O

> su
N uES‘Bl 1+ LA

inf sup Ep,_ , |[T(X) — O())? > sup
teRd ueSd—1
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Proof of Proposition 1 (iv). First, we observe that
2
s g |[T(X) - (0)]
180—6]|<cn—1/2

_ 2
=n sup gy s hn-1/2 |T(X) = (00 + hn~'/?)]
<c

>n ”il”lp l <E90 |T(X) - 1/)(90)‘2 + E@g-{-hn*l/z ‘T(X) — ¢(90 + hn_1/2)|2> .
<c

We now apply Lemma 11 to two points in parameter space 6y and 6y + hn~1/2, which implies

Sup g, IT(X) — (0o + hn~?)[?
hl||<c

>n

1— H?*(P" Py
4

12, PR
Oothn 1227 0071 (g 4+ hn =YY — p(00)]> for all ||| < c.
+

For the remaining of the proof, we denote h by un where u is a unit vector and 7 is a positive scalar
such that 0 < n < ¢. We treat n and u as fixed constants as n — oco. First by the mean value
theorem, we have

(0o + unn %) — (00)| = nn~2Vep(0%) Tu

where 6% := Mg + (1 — \)(6 + unn=/?) = 0y — Munn=/? for X € [0,1]. This implies that

nle (B +unn %) — 9 (6o)> = n? <V¢(90)TU>2 +o(1)

as n —» 00, which follows by the continuity of V4! at #y. Next, by the Hellinger differentiability
of Py at 0y, Lemma 20 implies that the Hellinger distance between Py, tunn—1/2 and Py, associated
with one observation converges to

n*u' Z(0o)u

H2(P90+u77n*1/27P90) = 4 + O(n_l)
n
as n —> 00. By the tensorization property of the Hellinger distance and the fact that (1 —

Zn/n)" — exp(—2) as Z, — Z for n — oo, we have

H*(P, vz, Pay)\ 2,T7(0
2( pn n Op+unn—1/2> 4 6o n°u' Z(0g)u
H (Pﬁo-i-unn*l/z’P@o) =2-2 <1 - : g — 2 —2exp <—T>

as n — oo. Putting them together, we obtain

lim inf sup nEg|T(X) - 7/)(9)‘2

n—ro0 |60—0||<cn—1/2

2, T 2
> 1 lexp _M n? (VI/J(@Q)T’U,> forall 0<n<c and ue St
12 8 N

It now remains to optimize the above display for 0 < n < ¢ and u € S% ! as ¢ — oco. Since
u"Z(0p)u is a scalar, we parameterize 1 such that 7 = n(u'Z(6o)u) /2 and so we can optimize over
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7 instead. This gives us that

liminf lim inf sup nEy ‘T(X) — w(H)‘z

c—>00 N—00 160 —6]| <cn—1/2
1 1 ik 2 B
> sup  sup <————exp <—"—>) 7 (Ve(0)Tu) (uTZ(B0)u)
uesd—1 0<f<oe \ 4 2 8/))4

For the leading constant, we obtain

su —— 4+ —exp | —— = (C =~ 0.28953
Oﬁﬁfoo { 1 2% ( g )"

and the optimal u is given by u* := || Z(8y)~"/2||"'Z(6y) /2. Therefore, we conclude that

liminf liminf inf sup nEy |T(X) - 1/)(9)‘2 > CVih(00) " Z(00) V(o)

em00 nm=e0 T g, gl <en—1/2

where C' ~ 0.28953. O

C.2 Proofs of semiparametric efficiency bound

We first define the parametric path to be used for the proof of Proposition 2. Following Example
25.16 of Van der Vaart (2000), we define bounded univariate parametric paths as follows:

1
AP() = onto(o) AP
where Cy := [ k(tg(x)) dPy. We assume that £(0) = £'(0) = 1 and ||| < K and ||| < K for

some constant K. We then use the following result from Duchi and Ruan (2021).

Lemma 18 (Lemma 1 of Duchi and Ruan (2021)). Assuming g € Tp, and dP; is the parametric
path defined as equation (15), then ast — 0,

X2 (PigllPo) = t? /92 dPy + o(t?)
Proof of Proposition 2 (i). By an analogous argument from Proposition 1, we can choose

¢ ={¢:P— R : ¢is pathwise differentiable relative to Tp,}

for the application of Theorem 8. We then apply the van Trees inequality along each parametric
path. Although Gassiat and Stoltz (2024) does not provide an explicit statement for nonparametric
settings, the proof remains analogous. O

Proof of Proposition 2 (ii). For each fixed g € LY(P), consider a parametric path defined
by P; 4. Without loss of generality, we assume that the unknown data-generating distribution
corresponds to Py ,. We then consider the diffeomorphism ¢ +— (t) = cn™ /2y (t) where @g : R
(—=1,1). As the score function g is fixed throughout the proof, we denote the parametric path by
P, and omit the dependency on g.

We apply Theorem 9 (the version with equation (8)) to the univariate functional t > ¥ (P, )
over the joint probability measures defined as

dPo(x,t) := APy (2) dQ(t) and  dPy(w,t) := dP, ., (x) dQ(t + ).
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we then obtain that

2
inf Eoe IT(X) — 0(0)2 o (W(Pet) = ¥ (Pei—ny)) RO
in |9\<Scl1l£1/2 pp [ T(X) —v(0)]" = sup 5

By the pathwise differentiablity of the functional, it follows that

V(Ppr)) — Y (Pp(t—n))
= Y(Fon-172000) = V(Fen-1/20(t-))

= cn_l/z((po(t) - SOO(t - h)) /¢cn1/2<po(t) Jen=1/24(t) chn*1/2<po(t)
+o(en™2(po(t) — po(t — h)))

= Cn_l/ché)(t - )‘h)h/u}cnl/%po(t) Gen=1/2(t) chnfl/Qsoo(t) + O(Cn_l/zh)

for some constant A € [0, 1] possibly depending on t. After multiplying by n both sides and taking
n — oo, we obtain

tmint o [ (0(P,00) — 6P ) Q00
n [ee] R
2
oo . 272
= léniigf c“h /Rgplo(t — Ah) </ /l/}cnfl/Qch(t_h) Gen—1/20(1) chn1/2¢O(t)> dQ(t)| +o(c°h?)

2 2
> ?h? </ 1/}ogdP0> + o(c*h?)
where we use Fatou’s lemma in the last step. Specifically, the tangent space under consideration
corresponds to the entire L(Py) and thus g, 1 /20(t—h) € LY(Py). Since LY(Py) is also a complete
space, it follows that

/ ot — AR dQ(t)
R

Gen—1/204(t) — go € Lg(P(]).

Hence, we can deduce that

/1[}0”1/2§00(t_h) Gen—1/240(1) chnfl/zgoo(t) — /¢0 go dPp

as n —» 0.
Next, we analyze the local behavior of the x2-divergence on the path given by (15). By
Lemma 18 provided above, we obtain

X2 (=120 (1) | Pen=1/200 (1)) = 0~ Hepo(t + 1) — o (1)} /92 AP 17200 ()
= U+ AP [ 6 AP
for some constant A € [0,1]. By the tensorization property of the y?-divergence, we have
P e P 2g0) = {1+ X P2yt P72 | — 1

= [1 + P n oy (t+ Ab) 2R /92 chnl/zeOo(t)} -1

— exp <02{<,06(t + Ah)}2R? /92 dP(]) -1
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as n — oo. Therefore, we conclude that

V(®lIPo) = (QnlQ) + /R Pl 1P) o

= X*(@QullQ) +/R{e><p <C2{90/0(t+)\h)}2h2/92 dPo> - 1} %

as h — 0. Thus we obtain
liminf inf  sup  nEpp |T(X) - »(0)]?

n—eo T |6]<cn—1/2

+ timing M2 (o) = ¢(Poun) dQO°
T om0 X2 (Pn|Po)

h? (f?/)ggdPg) | fi £h(t = M) dQ(E)|* + o(c2h2)
2
(QullQ) + fi {exp (A{h(t + AW)12h2 [ g2 dPy) — 1} G
Since the above inequality holds for any h € R, we take h — 0 to obtain
. 2

(S dogdr) | fueh(t) QI
Q)+ ([ g?dPy) [plwp(t)}?dQ
lim inf lim inf inf Epy |T(X) - ¢(O)* = O%gdPO) i b0 daf
= liminf liminf inf sup nEpn — > .

c—o0 n—oo T 0] <cn—1/2 Fe (fg2 dPo) fR{(pO }2 dQ

As shown in the proof of Proposition 1, it follows that sup,, {Eq ¢ (t)}?/ Eg{¢y(t)}? = 1. Finally,
taking the supremum of the score functions g over LY(P,), we obtain

for all h € R

for all h € R.

liminf inf sup nEpp [T(X) - V(o) > 7

n—oo T |0|<cn—1/2

) <f ¢09dP0
sup liminf liminf inf sup nEpp [T(X)—-9(0)]" >  sup 5 /1/10 dPy
geLY(Po) 7 M7 T jgicen-1/2 N geLY(Po) - JPdR

where the last equality follows by the fact that LY(F) is linear closure and by definition, the
efficient influence function 1 is contained in L(Pp) (See Lemma 2.2 of Van der Vaart (2002))
U

Proof of Proposition 2 (iii). Following the notation and the setting from the previous proof,
we apply Theorem 10 to the univariate functional ¢ + 9(P,(;)) over the joint probability measures

Po(x,t) and Pp(x,t), and we obtain
inf sup  Epp |T(X) —4(6)?

T |0|<cn—1/2

2
| Jo (W(Poy) = ¥(Pp—ny)) dQ(1)] B B ) 12
{ 2H (Po,ph> < | 0Pa) = 0Pa) dQ(t))

for all h € R. As shown in the previous proof, it follows that
liminf n

N—00 /R (T/J(Pgo(t)) - T/J(Pgo(t—h))) dQ(t)‘

2
> *h? </¢ogdpo>

+

2
+ o(c?h?)

/ St — ) dQ(t)
R
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by Fatou’s lemma. Similarly, it also follows that

1/2
lim inf n ( /R (W(Poy) — (Ppuny))’ dQ(t)) = O(c*h?).

n—aoo

Next, we study the local behavior of the Hellinger distance. Since {Py : § € ©} is a QMD family,
the Hellinger distance associated with one observation follows:

H*(P(i1n)s Por))
B 1/2 1/2 2
B / <dPC”’1/2S00(t+h) B dpcn’l/%o(t))

1 _ _
= Zczn ' /{wo(t +h) = o)} 92,1720 1) APen-1/29() T 0(*n {0 (t + h) — o (1)}?)

1, _ 2 _
= ZC2n 1p2 / {(’plo(t + /\h)} ggn,l/gwo(t) dpcn71/24p0(t) + O(C2n 1h2)
and by the tensorization property,

hmme< o(t+h)> g(t))

n—aoo

=liminf {<2—-2(1— H* (P@(tJrh)’ P@(t))
n—aoo 2

{2 9 (1 B 02h2 f {Qoé)(t + )\h)}2 ggnfl/zwo(t) dPCTFl/QsDo(t) + 0(02n1h2)) }

= lim inf
n—oQ

&n

21,2 / 2 2
P (_c 2 Lebit+ M} g dP(J).

Thus we obtain

liminf inf  sup  nEpp [T(X) - »(0)]?

n—eo T |6|<en—1/2

> liminf n| [z (W(Ppwy) — sz(Pi(t—h))) dQ(t)|?
n—>00 AH? (PO Ph)

— O(c*h?) forall heR

) 2h? (le}ggdPo) | bt = AR) dQ(E)]* + o(c2h2) o

4<H2(Qh,Qo)+fR {2_26Xp (_chzf{soo t-gAh} g dPo>} dQ,ledQl/?)

for all h € R. Since the above inequality holds for any A € R, we take h — 0 to obtain

2 <f¢ogdP0)2 |chp6 t dQ|2
Q)+ 2 ([ g2dPy) [pfet()}2dQ

liminf inf sup nEpp IT(X) —¢(0)* > T

n—eo T |6]<cn—1/2

This follows since

27,2 / 2 9
— R

8

— 1@ + 1 ([ am) [ e @@

by a Taylor expansion. The rest of the proof is identical to the first statement of Proposition 2. [
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Proof of Proposition 2 (iv). Similar to the preceding proof, we apply Lemma 11 to the QMD
parametric paths. Without loss of generality, we assume that 6y = 0. Then for fixed g € Tp,, we
invoke Lemma 11 as follows:

sup  nEpy !T(X) — zp(Pg,g)‘2

|0|<cn—1/2
1 2 2
2 n sup o (Bo |7(X) = $(R)|* + B2 [T(X) = 0(Pypmrr2)[)
<c
|~ HXP" . P}
= [ B FO |1y ) —w(R)P forall il <
+

Since 9 is pathwise differentiable, it follows that

n—ao0

2
i 1 [6(75) ~ 6(P)] =12 ( [ dogar)

Also by the QMD assumption of the parametric path, we have

2 1
H2(Phn71/27 Py) = / (dP;i,/Lz—l/z - dP01/2) = Zh2n_1 /92 dPy + o(h*n~")
followed by the tensorization property of the Hellinger distance,

H? (P, 12, P)\"
limianz(P:n,l/Q,PéL) = liminf {2 _9 (1 _ (Phn-1/2, 0)) }
n

n—aoo s 2
2 2 2,,—1 n
= lim inf {2—2(1_h J g7 dPs + o(h*n )) }
e 8n
h? [ g* dP
=2—2exp <—$>.

Putting them together, we obtain

liminf liminf  sup nEy|T(X) — ¢(P9)‘2

c—00 M—00 6] <cen—1/2

11 h? [ g*dR, , 2
> sup [————exp <—M>] h? </1/1()gdP0> .
0<h<oco 4 2 8 I

Similar to the proof of Proposition 1, we let h=h ( f g° dPo)l/ % and optimize over h instead. This
yields that

liminf liminf  sup nEq|T(X) — 1/1(P9)|2 >C </ ¢ogdP0>2/ </g2 dP0>

c—00 N—00 |6]<cn—1/2

where C' ~ 0.28953. Using Lemma 2.2 of Van der Vaart (2002) and taking the supremum over the
linear closure of the tangent set, we conclude that

sup liminf liminf sup nkEy !T(X) - ¢(P6)|2 > C/% dFy

gETPO CcC—00 N——00 |9‘<CTL71/2

where C' ~ 0.28953. O
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C.3 Proof of local minimax rate for irregular estimation

Proof of Lemma 13. To begin, we define a diffeomorphism g : R? + B([0],1) between R? and
an open unit ball in R%. We then construct the following mapping:

o(s) =0+ cn_l/o‘gpo(s) (32)

for all s € R%. The resulting mapping is a valid diffeomorphism between R? and B (6, en1/ ).
Additionally by the differentiablity of ¢g, we have Vi (s) = en™/*Vg(s). It is crucial that ¢y no
longer depends on n or c. Similar to several preceding proofs such as the proof of Proposition 1,
we apply Theorem 10 to the composition function ¢ — () := (1) 0 p)(t) and the statistical models

dPo(x,1) := dPp; (x) dQ(t) and dPp(x,t) == dPj, () dQ(t + h),
which implies

inf sup Ey |T(X) — TJZ(@)F
T peprd

Z[U@(&w—ia—hnd@@1_<éd

2H(]P)07 ]P)h)

2

(8

s nf aaw)"]

J’_

for any h € R Let t, be a point in R? such that ¢, := t — Ak for some A € [0,1] and ¥; :=
fo + cn~/pg(t). Assuming that n is large enough such that ||y — 9¢|| < §/2, then by the Holder-
smoothness assumption of 1, we have

p(t) — Pt — h)
= (0 4+ en~ Y% (t)) — (B0 + en~ Yo (t — h))
= () — V(0 — en”(@o(t) — @olt — h)))
= Ch.9, sign(go(t)—po(t—m) -1 %o (t) — ot — h)||P + o(Pn=P/%||po(t) — wo(t — h)[|?)
= C.g, sign(eo(t)—po(t—m) -1 %[ Vipo (L] + o(Pn =%V oo (t4)h[|?).

By multiplying by n?/® and taking the limit n — oo, we have
liminf n®/®

mint 2| [ (30) - 50 - 1) dQ(o)

> cﬁ /Rd 02,90,sign(goo(t)—<po(t—h)) HV(JOO(t - )‘h)h”ﬁ dQ(t)

by Fatou’s lemma. We also have that

lim inf </
n—=o0 Rd

1/2
= (/Rd 022790751511(<P0(t)—300(t—h)) Vo (t — /\h)h||25 dQ(t)) )

(4

~ 2 1/2
(0=t -n| Q)
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by the dominated convergence theorem, which follows since Vg is continuous and thus bounded
as h — 0. Moving onto the Hellinger distance, by the Holder-smoothness assumption, we have

H? (Py(e4n) Potr))
2
=i <P90+cn*1/asoo(t+h)’ P90+Cn*1/%0(t))
2
=4 (P9t+0”71/a(%00(t+h)—s00 ) Pgt)

= C1 g, sign(go(t+h) oot €T lwo(t + h) — @o(t)[|* + o(c*n ™ o (t + k) — o(t)]|*)
= C1 g, sign(go(t+h) o) €T Voo (t + AR)R||* + o(c*n ™ [Vipo(t + AR)A||),

which then followed by the tensorization property of the Hellinger distance to yield

n

? Oo+cen—1/ 2 pq(t)? P@ en—Y/apg(t—h
liminf H? ( P" P ) =liminf {2—2|1— ( ot po(t)>* o+ ol ))
@(t+h)> L ()

n—->00 ¥ n—->00 2

R e pe IVl + Ah)hua>

2

where the last step follows by a first-order Taylor expansion of (1 — x/n)™ as n — oo. We then
conclude that

H%(Py,Py)
= H*(Qn, Qo) /H2 iy Py Q% Q'

Clor oontonttr o (o €[ Voo (E + AR)A|[
=H2(Qh,Qo)+/ {2_2€Xp (_ 1,00,sign (20 () o (¢ h)2)C Vo )l >} 1QY2 412
R

C1 9, sion [V (t + Ah)h||*
_9 _2/ exp <_ 1,00,sign(po (t)—po (t— h2 || (100( ) H > dQ;L/2 dQ1/2.
R

For the ease of notation, we denote the constants as follows:

C1(t) := Cropsign(po(t+h)—po()  a0d C2(t) := T, sign(go (t)—po(t—h)-
Then, putting these intermediate results together, we have

liminf inf sup n**/*Ey |T(X) — ¥(6)[?

n—00 T pgcRd

[ ¢ [aa Co()||Vipo(t — A)R||? dQ(2)
2 {2 —2 [, exp <—Cl(t)CO‘HV<,DO(t + Ah)hua/z) Q> dQ1/2}1/2

_oF </R C3(1) [V ipo(t — Ah)]|? dQ(t)) : K

where the above display holds for any h € R?. We denote h = hc and let ¢ — oo. This further
simplifies the expression to

57



liminfliminf inf sup n**/*Ey |T(X) — ¥(6)[?

c—o0 n—oo T 9cRd

Jiua Co()[V 00 (0)R])° Q1)
21}_11 mf[ - 7
2{2 =2 fexp (~Ca(8) Vo (D)R]*/2) dQ}

- ([ oiveonr d@(t))lﬂi.

We claim that there exists the choice of ¢y and @ to make the lower bound strictly greater
than zero. Since the above inequality holds for any ¢o and h € R? we consider the class of
diffeomorphism such that

IVgohl| — v as [[A] — co.

Denoting h = ue for u € S*!, this can be obtained, for instance, by

—1
2 aeddl g LRl t
wo(t) —arctan < 5 and  Vo(t) - + 9 T

For any choice of v > 0, the image of ¢ is B([0],1) and ||Vypoh| — 7 as ||h|| — oco. Since
Cot sign(h) < C; and Co ¢ sign(h) < Cy uniformly, we obtain

2
~ 8 C’ _
lim inf lim inf inf sup n?%/® Ky |T(X) — (0> > 7" [ Ca(t) d@ 75 ~BC,
c—00 n—=00 T pepd 9 {2 _ 2exp (_Cl’}’a/2)}

Choosing v = (26/C1)"/® for small § > 0, the lower bound becomes

- 2
_ (o5 /7 128/ J Ca(t) dQ =
(26/C) [2 {2 —2exp (—5)}1/2 02] . ’

2

(20/C )P/ [ Cy(t) dQ
2{2 — 2exp (—6)}/?

—(26/C1)P/*C,

+

The final display is strictly greater than zero when ¢ is small enough as long as the prior is selected
to ensure f Cg ) d@ > 0, which can be a point mass at ¢ that attains Cg( ) = Ch.
O
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Supplement D Nonparametric density estimation

Let Xi,...,X, be drawn IID from the unknown density fp. In this section, we develop a local
asymptotic minimax lower bound for the density at X = x(, which is a non-differentiable functional.
We consider the approximation functional via convolution such that

Tr — X

D)= fa) and o) = [nw (S50 flo)ds

where K is a function, satisfying (A3), and h > 0 is a bandwidth parameter. We assume that fj
is s-times continuously differentiable at zy. We consider the following set of density functions:

F(s,xg, M) := {f is s-times differentiable at zq, satisfying |f©) (z0)| < (1 + M)|fés) (:n0)|}

Furthermore, we define the following localized set of density functions

U(d;e) :== {fe]—"(s,xo,M) : /

r—x0|<e

175 (z) — fék)(x)\ de <o forall ke {0,1,... ,s}} .

Proof of Lemma 14. Throughout the proof, ¢ and M are considered fixed. With the choice of
a kernel function, satisfying (A3), the approximation functional ¢ is absolutely continuous with
respect to f and thus Theorem 8 applies. It then implies for any approximating functional ¢,

\/ | Jo ¢'(f) dQ|?
Q) + JoZ(f)d

2

0 | — ¢HL2<Q)] : (33)

+

inf sup By |T(X) = o(f)P > sup
T reU(6) Q

where the probability measure () is placed over the collection of f, which we formalize by con-
structing a differentiable parametric submodel. Since our result holds for any choice of ¢, and thus
for any h > 0, the lower bound still holds by restricting ourselves to the choice of h € (0, A 1).
Similarly, the lower bound is agnostic to the choice of K. Thus we focus on the K whose support
is contained in [—1,1]. Throughout this section, we denote by € a fixed constant that may vary
line by line.

D.1 Local parameter space

For any function g € Lg( fo), that is, a mean-zero and finite variance under the density fq, we define
a differentiable parametric path of densities as

filx) = (1 +tg(x)) folx)

for all z € X and t > 0. As Theorem 8 holds for any choice of differentiable paths, we consider the
choice of g = ® such that

Pp:=x— h 'K <$ _hx0> - /h_lK <3: _h:E0> fo(z) dz.

It is straightforward to verify @y is a valid score function. In fact, ®¢ is an efficient influence
function of the functional Ef[¢] relative to the maximal tangent space. We then consider the

particular choice of paths given by f;(z) := (1 + t®y(x)) fo(x).
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First, we ensure the choice of parameter that permits ft to belong to the class of interest for
all t. The score function ®¢ is bounded uniformly as

e ok (252 [ (2

Since K is uniformly bounded, it follows that

< 207 K | oo

o0

“””°> folz) da

1+ t®g(z) > 1 —t]|Pglloc > 1 —2th Y| K||oo.

Therefore the induced path generates a nonnegative function (that integrates to one) so long
as t < h/(2||K||e). Next, we examine the smoothness of the induced path. Since <I>((]k) (x) =

=+ KE) (2 — 20)/h), it follows
s s ds—k (k)
E t|—®
k=0 <k‘> (dzzzs—k 0<x0)> o~ w0)

(5) ~ (s b (e (k)
< <:co>|+k§j:0(,€) (e KO 01) 148 o)

(s)
<178 o)l +1 {”"T(f’”fow + ,%}

17 (x0)| < 15 (o)] +

for some constant € > 0. We then define

1—he
Cy o= (—
[K)(0)] fo(xo)

and for all ¢ € [0, Cp/h*t1], the density on the path satisfies |f}s)(x0)| <(1+ M)|fés)(x0)|. Next,

we observe that for any f;
V4
t KO (152 )| o
Z< >h€ ko /x—:co|<a fo ( :

[ -
|lx—z0|<e 0
1
<th ™ sup |fo(z)l / |K®) ()| du + ¢h= D
-1

|lz—z0|<h

) MIf$ (o),

where the last step follows since h < (1 A g). All densities on the parametric path hence belong to
U(d;¢) so long as
t< Oh = 0h*A where
SUP|z—zg|<h |f0 |f 1|K(s )|du+¢h

-1
A= sup |fo(z |/ u)| du + Ch .
|x—x0|<h

It remains to analyze the lower bound given by (33) over the parametric submodel {f; : t € O}
where

Qg := {t 0<t< (5hsA VAN CMhs+1)} .

This suggests that we need to analyze two regimes, 6 < h and h < 6. For instance, the usual global
minimax lower bound over F corresponds to taking § as a fixed constant.
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D.2 Approximation bias

Let B := (§h*A A Cprh*t1). Based on the earlier derivation, we consider a prior Q supported on
[0,B]. Such a prior can be constructed from the following dilation:

Q(t) == %QO <t _%3%2/2> where Qo (t) := cos?(nt/2)I(|t| < 1).

The choice of the cosine density is motivated by the fact that this density minimizes Fisher in-
formation among density with support over [~1,1] (Uhrmann-Klingen, 1995). The corresponding
Fisher information is Z(Qo) = m2. First, for any f; over t € ©g, we have

1/2
I - élia@ </ () — G702 dQt ))

: </ fie _/h_lK (x :UO) fi(w)da i dQ(t)>1/2
(/ '/ gco+uh 7© (5)(322 4_— 714;1' _g)sl e 2 dQ(t)) 1/2
</ ‘/ |Zh_|s1l /%Mh 1£27(€)] dé du 2 dQ(t)>1/2

Furthermore, it follows that

zo+uh ro+uh s
/ |fts)(f)| d§ = / fés)(g) + (Z) (#K(S—If)(@ _ $0)/h)> ék)(é)
o o k=0

</ @1 de 4 / o

0 zo

dg

t

e K€ = w0) /) fo(€) + €h™*

dg

xo+uh
< [ s+ g KOO oo + o + e dg

0

<fuh| sup |70 >r+f; sup_[foa)] [ IKQ)+ enldc

|z—z0|<h |z—20|<h

The lower order terms cancel by the fact that fukK(u) du =0 for all k € {1,2,...,s —1}. Also
by the definition of 9B, it follows B/h® = (0A A Cprh) < Cprh. This leads to

(/ '/ ‘W 1, / :Oﬂh\fts)(s)rdsduz d@(t)) "

s—1 u
/ 1K<u>’“"‘ (ruh\ sup_ ||+ Carh s o) [ \K<S><<>+¢hrd<) du

(s —1)! lz—ao|<h le—ao|<h

b (u)]ul®
a1 & K9(¢)d h
I e N R MO SRS

<

< h®
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Thus, we conclude that
[ = 0llL,@) < B

where B := (34)

and this term no longer depends on Q.

D.3 Surrogate efficiency

We now turn to the numerator and the denominator from the first term of (33). First, by the
choice of our differentiable paths, the derivative with respect to ¢ is given by ®g(z) fo(x). This does
not depend on ¢ as we constructed a linear path. Hence the numerator of (33) is given by

\//KK%WZ) 2=¢‘/%K

This result also comes directly from the fact that the approximation functional ¢ is pathwise
differentiable with its efficient influence function given by ®3. We can further write out this term

/%K <$ —hﬂ?0> Po(z)fo(z) dx 2/%K2 <ZE 3:0> fo(z) dz — (/ h'K <$ a:0> fo(z) di’?>2

— ! /_11 K2(w) fo(zo + uh) du — (/_11 K (u) fo(zo + uh) du>2.

2

f”°> Po(2) folx) da

We introduce the notation

= /_11 K*(u) fo(wo + uh) du — h </_11K(u)f0(330 + uh) du>2 ; (35)

and the numerator can be denoted by A~'V;. We now move onto the denominator. First, the
Fisher information of the dilation @ is simply given by

2
T(Q) = gy where Bi= (h°ANCyh). (36)

The Fisher information associated with ﬁ under the n IID observations is given by

d n 2
/(@ft (xl""’:”")) (e, o) d(@, .. an)

[z, ... zp)

_ / <ft’(aj1)ft(ajg, . ,an) + ...+ ﬁ’(:pn)ﬁ(ml, e
iz, ... zp)

/(Z ft/Ej) ft (1, zp)d(T1, ... xp)

:n/<ft§3> ft dx+2/ft i da:,/ft xj)dx;

i#j

2
73311—1)) }';n(xh. . 7[];‘n) d(a:l, - ,xn)
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Since the choice of our path implies ﬁ = ®y(z) fo(x), which integrates to zero, the Fisher informa-
tion for our path for each t € Qg is given by

[ BWR@ [ B
70 = | e = T
The denominator of (33) is thus given by

7(Q) + / I(F) dQ(t)

/0<t<‘3/ 1- t<I> d 4Q()

(96)
%2 +"/ / =1 %/2+t%/2)<1>0( 7y 42 dQo(h)-

As it follows that

/ 5() fo(x) da
(1—-(B /2‘”’3/2)@0( )
h™ K2 (u) fo(wo + uh)

=) (B2 AT R + )~ — K@) folwo + wh) du})
1 B VK2 () fo (0 + uh)
= /1 1—(B/2 +1tB/2)K (u) fo(xo + uh)) i,
we conclude
_ 72
7(Q) +n /@ T(7)dQ(t) < ‘o + nh'Vs
where
G K(u) fo(o + uh)
Vi [ G e R e iy Q0 37

D.4 Optimization

Putting together all intermediate results (34), (35), (36), and (37) together and plugging them into
(33), we obtain
2

inf sup By |T(X) - v(f) >
JeU(9)

2472 + nh=1V,

— 2
\/ h 2Vl _ ,/hszz}
B
+
Now we consider two cases.

When B = C),h*t!.  1In this case, the lower bound becomes

2
‘}2
C Vh B

;4211_234%2 + nhVs

_l’_

B V12h2s B
CfAT2 4+ nh2sH1V, .

h?s 2 20242 2
_ _ s+1
T O 1l [V VP - BG4 e 17)

h2sB2

2

_l’_
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Recall that our lower bound holds for any h, we choose an optimal choice of h for the term outside
of the bracket. The optimal choice here is given by

1
b 8801\_4271'2 et
nVs ’

and the corresponding lower bound is

25/ (25+1) 1 1\ 251 2
2 > —2,_2\ 3541 _ -1
n%ffzg%)lﬁl FIT(X) — fzo)]” > A58 (Cyf%) <—nV2> [Vl BC 7/ (4+ 83)}+

Rg2s/(25+1) 9 _ s 1 232% 2
_ ~ 5501 2s+1 - \V — B 4
St (1 i

The above inequality holds for any n > 1. To derive a simpler asymptotic constant, we multiply
both sides on the inequality by n2%/(25t1) and consider the limit as n —» oco. First, we recall from
the definition B8 — 0 as n — oo and thus

Vi Va —» / K2(u) dufo(zo) CM%(%) e

(
uS M u)| du
B — |3 \'/ || <1+ f|K (0(”)’ >‘
Therefore, we have

liminf 1nf sup p2s/(2s+1) Ef |T(X) - flxo)?

4s
(s) Tt 2s/(25+1)
> O(s) follro /D £ (a2 2+ (W) (f K*wa)

[MfK2 u) du JW‘/ \urs <1+Mf_11|K<S><u>|du>

[K)(0 [K)(0)]

.

= O(s, M, K) fo()?*/ 31 |fo ()| >/ 2s+D)

where C(s) is a constant only depending on s and

8528/(25+1)

_4s
e ‘K(s) (O)’ 2s5+1 ) 28/(2S+1)
mﬂ' 2s+1 (T </K (U) du>

M [ K*(u) |u|8 Mf_l | K (u)| du
[— V(4 + 8s) '/ <1+ |1K(s)(0)|

IK()(0

C(s,M,K) :=

2
] +
Crucially, the expression above does not depend on fy. Finally, we can take B = Cp/h*t! when
AS/Chr > h, meaning that

1
2\ 2st1 1
5= Cu < 8sm > -

A \C3V,
This is certainly the case when § = ¢on™" for any r < ﬁ When r = Tﬂ—l and ¢y >
2\ 2551 . . . . .
% ( c§28ﬂv2> > the above bound remains valid. We consider the alternative regime of B next.
M
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When B = Ah®) This is the case when A§/Cy; < h. In this case, we consider the choice
h | A§/Cps. Then the corresponding lower bound is

inf sup Ey IT(X) —¥(f)?

T reu)
i 2
> V12 A /h2sB2
|\ A2h=25(h/§)2472 + nhVs .
i 2
2 —r 2s
- . V2 (Acon="/Chr) — /(BeonT/Cr B2
Cy AT 4+ n(Acon=" /Chr)?5 Vs n
2
_ 1 Vi (Acon="/Car)* — \/711_7’(AC()n_T’/C'M)%B2
nt-r Crfam2/(n1=r) + ((Aco/Cun ) (Acon = /Chr) %) Va +

T

Multiplying both sides of the expression by n!~" and taking the limit as n — oo, we conclude

that

liminf inf sup n'"E;|T(X) —¢(f)]*> >0
hmintiph swp P 1TX) =9 (f)]

since the second term in the square bracket is divergent as n'™" — co. We can take B = Ah®§

when A§/Chpr < h, which is the case 6 = ¢on™" for any r > ﬁ When r = ﬁ and ¢y <

1
Cy 8sm2 | 2s+1
A (6]\% , We have

liminf ipf sup /G E; [T(X) ()P 20,
S

and thus the lower bound does not contradict for » = 1/(2s 4+ 1) regardless of the constant cy.
Hence our derivation leads to a trivial lower bound when r > 1/(2s + 1). O
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Supplement E Optimization under absolute moment
constraints

In this section, we aim to derive a concrete constant for the lower bound given by (16) in the main
text. Suppose n IID observation is drawn from Py, which belongs to the local model {Fy : |0| < §}
for any 6 > 0. The functional of interest is ¥(f) = max(0, ), which is non-smooth at § = 0. We
apply Theorem 8 and obtain the lower bound

d 2
inf su _ 25 i <f—5 I(t > 0)q(t) dt)
nf ol Eo [T'(X) —¢(0)]" = Jnf 20 o T i

where Q@ = Q(—4,0) is the set of “nice” probability measures on (—d,0) that satisfies Definition 1.
We further define the density function ¢ as the dilation of the probability density v such that
q(t) := 06~'w(t/6) for 6 > 0. The density v is defined on [—1, 1]. Then by simple change of variables
with u = t/0, we obtain

1

/ " 1t > 0)g(t) dt = / "t > 0)6-1u(t/5) di = / I(u > 0)v(u) du,

= —0 -1

1

/ T (a(t) di — / T8 (t/6) di / T (Su(u) du

-5 -5 -1

and 0?Z(Q) = Z(v). Plugging them in, we obtain

L fu>0 J 2
inf sup Eg|T(X)—(0)>> in (f—l (u 1 v (u) u>
T g|<s veV(-1,1) 6—2Z(v) +nf_11(5u),/(u) du

This proves the inequality in the main text.

We now provide a concrete lower bound given by (17). To make progress, we bound the
denominator with the largest Fisher information Z(t) over the local model |t| < 6. When {P; : t €
O} is a location model, the Fisher information is a constant for all ¢ € ©. We then have that

1 2 1 2
(f_l I(u > 0)v(u) du) N (f_l I(u > 0)v(u) du)
VGVI?—M) 02Z(v) + nf_llI(éu)V(u) du VGVI?—M) 02Z(v) + nf_ll{supte[_&(ﬂ Z(t)}v(u)du
= sup inf o’ (38)

aef01] Z(w) 072Z(v) + supse[_s,5 nZ(t)

where the infimum minimizes the Fisher information of the density v under the constraint that
I ! v(t) dt = a. In other words, we need to solve the following problem:

0
1 ! 2
t
ot [ 10)
v ) v(t)
The last constraint is introduced so v satisfies Definition 1 required for the van Trees inequality.

Theorem 2.1 of Ernst (2017) implies that the minimum Fisher information under the constraint
satisfies

1
dt i.e., v is absolutely continuous, / v(t)dt =a,and lim v(t) = 0.
0 t

—+45

—20 (t) —?(t) = BiI{—1 <t <0} + BoI{0 < t < 1}.
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where n(t) = v/(t)/v(t) and B, By are constants. The general solution of this first-order non-
homogeneous ordinary differential equation is given by

, V/Bj tan @(Cl—t) where —1 <2 <0
n(t) =v'(t)/v(t) = VB

VBatan (Y52 (ca —t)) where 0 <z <1

for constants ¢q, cy. The general solution v is then given by

C} cos? @(t—cl) where —1 <z <0

v(t) =
Cy cos? @(t —¢c)) where 0 <z <1,

for constants C,Cy. In other words, combining two squared cosine functions gives the minimum
Fisher information prior . We note that a squared cosine function minimizes the Fisher information
over distributions supported on [—1,1] (Uhrmann-Klingen, 1995). In our setting, the density v can
have support over a smaller interval.

To simplify the derivation, we focus on a case when C = Cy = Cy, B = B; = Bs, and
¢ = ¢1 = c¢y. In other words, we consider a location—scale family of squared cosine densities whose
support is contained in [—1, 1] such that supp(v) C [—1,1]. Although we investigated other cases,
this simplification still resulted in the best constant. We denote the left-end of the support as
s— < 0 and the right-end as s; > 0. The width of the support is defined as (s4+ — s_). First, by
the assumption that the density vanishes towards the boundary, we have

C cos? <@(s+ - c)) = 0= VB(s; —¢) =m and

C cos? (g(s_ — c)) =0= VB(s_ —¢) = —m.

Putting together, we have vB(s; —s_) = 27 and ¢ = (s — 5_)/2. Next, by the constraint of
fol v(t) dt = a, we have

C’/Os+ cos® (?(:ﬂ - c)) dt = % - % sin(—c¢VB) = a, and (39)

0 S_
C’/s cos? <g(aj - c)) dt = —CT + % sin(—evVB) =1 —a. (40)

Putting together, we have C' = 2/(s; — s_). Finally, we derive the Fisher information for this
parametric family. First, for each ¢ € [s_, s4],

, Cos VB —¢) ) sin VB —cC
0)% B BC? 2( 2B(t )) 2 ( 2B(t )> — BCsin? <g(t —C)> .

v(t) C cos? <Q(t - c))
This implies that
+
5 VB BC 472
I(v) = 5 BC'sin < 5 (t—c)| dt 5 (s4 —s-) G s (41)



Hence, the Fisher information only depends on the width of the support. It thus remains to
characterize the width of a squared cosine prior under the constraint fol v(t)dt = a. Plugging in
the reduced expressions into (39) and (40), we obtain

. o S++87
sin < L )

C C
. sin(—eVB) =a = SR =a, and
2 2vB Sy — 8- o
. Sp+s_
Cs_ C S_ Sin (_Ws+—s,>
5 +2\/§8m( C\/_) a S+_s_+ o a
Putting together, we obtain
(Y B
Ya—w = 2a — 1 where Y, = ﬂ (42)
0 S4 —S—

This expression is known as the Kepler equation and there is no closed-form solution for the inverse
problem (Kepler, 1609). We thus provide a computational method to estimate the smallest Fisher
information given Y, for each a € [0,1]. Once Y}, is estimated from a, it follows that

S+ +s_
T Y, = (1-Y,)sy = —(1+Yy)s_.
S+ — S_
This concludes that
2 2
Sy —S_ = S_.

Y, r1°t T 1y,

As the minimum Fisher information is achieved by maximizing the width (see Equation 41), we
take sy =1 when a > 0.5 or s_ = —1 when a < 0.5. Denoting by W, the width of the support of
v that minimizes the Fisher information for each a € [0, 1], we conclude that

1
inf {I(V) : / v(t)dt = a} =47 /W2 where W, =
0

2/(Y,+1) whena>05
2/(1-Y,) whena<05

We also note that (42) is an odd function and the expression for W, is an even function. Hence,
we can modify them to

sin (—7Yy)

Y, — =|2a — 1| and W, =2/(Y,+1).

Finally, plugging this expression back into the van Trees inequality given by (38), we conclude

a2

inf sup Eg |T(X) —(0)]*> > sup — .
T |oj<s IT(X) =)l ac(0,1] 4m2072 W2 4+ nsupe_s5 Z(t)

We note that a = 0.5 corresponds to the minimum Fisher information prior while this may
not necessarily maximize the minimax lower bound due to the second term in the denominator.
Figure 3 provides a visual representation of the squared cosine priors and the minimum Fisher
information.
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Figure 3: Visual representation of the minimum Fisher information priors in the location-
scale family of squared cosine densities. The left panel displays an example of the minimum
Fisher information prior when a = 0.75. The shaded area corresponds to the constraint
fol v(t) dt, which is 0.75 in this case. The center panel displays the relationship between
the constraint a (or the shaded area in the left panel) and the width of the support of the
minimum Fisher information priors. The dot in the plot corresponds to the density with
a = 0.75 displayed in the left panel. The right panel displays the relationship between
the moment constraint a and the minimum Fisher information. The dot on the plot again
corresponds to the density with a = 0.75 displayed in the left panel. The minimum Fisher
information is achieved by setting a = 0.5; however, this is not necessarily the least-favorable
prior for minimax lower bounds.
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Supplement F Additional derivations related to exam-
ples

In this section, we provide the remaining derivation for Examples 3 and 4 from the main text.

F.1 Example 3

Proof of Lemma 16. Suppose X1, ..., X, is drawn from Py, that belongs to a local model {Py :
0] < 4,6 € R} for fixed § > 0. We assume that this model is Hellinger differentiable with the
Fisher information Z(t) for t € (—9,9). Let ¥(FPy) = max(0,60%) for 0 < a < 1.

For fixed § > 0, we consider the diffeomorphism for the local univariate parameter set {6 :
|0 — 0] < &} defined as p(t) := Oy + dpo(t) where ¢o : R — (—1,1). As Theorem 10 holds for
any choice of diffeomorphism, we further assume that ¢o(0) = 0, ||¢}|lcc < C for some constant,
and ¢ is an increasing function. The derivative of this mapping is ¢'(t) = d¢( (). We now apply
Theorem 10 to the composite function (¢ o ) := t — max(0, *(t)),

ir%f sup By |T(X) — p((0))[?
|0—00| <5

2
. | [ ((0(8)) — (ot — 12
> timsup [ e (Po,]P’h> ( / (1)) — lplt — b)) d@(t)) ]

J’_

By Lemma 22 in Supplementary Material, we have

H2(Bo, By) = ( @+ [ (40 n190+5900())d62(t)>+0(h2)-

We now analyze the behavior of ¥(¢(t)) — ¢¥(¢(t — h)) as |h] — 0 for different values of 6y. As
the functional v is directionally differentiable, we need to consider h — 0 from left and right.

Case 1 0y < 0: When h — 0 from right, or h | 0, we have I{t: 0y + dpo(t — h) >0} = I{t:
0o + dpo(t) > 0} by the monotonicity of ¢y. We also observe that

0o+ dpp(t —h) >0 <= 6y > —dpp(t — h) <~ ’90‘/(5 < po(t — h).
We then have

Y(p(t)) — (ot —h)) = P(p()I{t : |6o]/d < @o(t)} — (p(t — h))I{t:|0o|/0 < @o(t —h)}
= {p®)* =@t —h)*} I{t : |00]/6 < @o(t —h)}
+ () I{t : po(t —h) <100]/0 < @o(t)}.

We denote by A1, Ao constants 0 < A\j, Ay < 1, possibly depening on ¢. By the mean value theorem,

P(t)* — ot —h)* = a{(1 = M)p(t) + At — h)}* ' (t — Aah)h
= daffo + 0{(1 — M)po(t) + Aot — B)H 1 oh(t — Azh)h.

Therefore, as h | 0, we have

p(t)* — ot — h)* = daf{bo + oo ()} (t)h + o(h),
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which follows by the continuity of ¢y and ¢f. Similarly as h | 0, we have
() I{t - o(t — h) < 100|/6 < wo(t)} = @(t)*I{t : o(t) — hep(ts) < 100]/3 < po(t)}
= ()" I{t : —he(ts) < 160] /6 < 0}

for some t, € [t — h,t]. For any fixed 6y, po and 0, this term is zero for h small enough. Putting
together, we conclude that, as h | 0,

Y(p(t) — (ot — h)) = dafbo + o (t)}* o ()R I{t - [60] /8 < o(t)} + o(h).
We repeat the analysis for h — 0 from left, or A 1 0. The analysis is identical except now we have
I{t : 6y + Spo(t) > 0} = I{t : 6o + do(t — h) > 0}. All results remain the same for h 1 0 as well.
Finally, by plugging each term into the lower bound given by Theorem 10 and taking the limit
in view of the dominated convergence theorem, we conclude that

inf  sup Eq|T(X) — (p(8))

T 19—0|<s
> limsup |fR (¢((10(t)) - wf(fp(i— h))) dQ(t)| o </ ’w((p(t)) o 1/1(4,0(?5 _ h))‘2 dQ(t)) 1/2]
h—0 2H <IP’0,IP’h> R

+
_8%a?| Jp {00 + dpo(t) 12 () I{t 1 [60]/0 < po(t)} dQ(H)]?
Z(Q) + 62 Jpleo(t)}2 nZ(0o + dipo(t)) dQ(2)
As the upper bound does not involve @, ¢, we take the supremum over them. When |0y| > ¢, the

indicator in the numerator evaluates zero for all values of ¢t € R. The local minimax lower bound
becomes zero in such cases.

Case 2 6y > 0: Similar to the case with 6y < 0, we consider h — 0 from two directions.
The results are analogous thus we only provide the argument for A | 0. When h | 0, we have
I{t : 6y — dpo(t) > 0} = I{t : 6y — dpo(t — h) > 0}. We then have
U(p(t) — (et —h)) = {p(t)* — @t = h)*} I{t : o(t) < bo/0}
— @t = h)*I{t : po(t — h) < b0/6 < ¢o(t)}.

By the analogous argument from 6y < 0, we can show that as h |} 0,
D(p(t) = (ot = h)) = 6a{fo + 5o ()} (VR I{t : @o(t) < 60/6} + o(h).
In view of the dominated convergence theorem, we conclude that

| B s 8202 fy {0 + S0 (1)} (t) I{t - po(t) < 0o/8} dQ(1)?
it o Ee D) = leO)l = = o 8 [ (e @12 nZ(ly + oDV dQ()

Case 3 0y = 0: The analysis is also similar to the previous two cases. After the analogous
derivation, we arrive at

_— ) s 5202 [ {60 + Sp0(t)}"Lah(t) I{t : po(t) < 00/5} Q1)
B oue BelTX) =) 2 == 75 [ {ah(0)2 nZ(f + sw0(0)) dQ(0)

By plugging in 6y = 0, we obtain that

inf su . 2 o 0% Jeleo )} o () I{t = po(t) > 0} dQ(t)]?
Tf |9_901i)<5 EG ‘T(X) 7/}(90(9))’ 2 I(Q) + 52 fR{QDIO(t)}Q nI(5(p0(t)) dQ(t)
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F.2 Example 4

Suppose X1,..., X, is an IID observation from Py,, which belongs to a model {Unif(0,6) : 0 <
6}. The local parameter set we consider is given by © = (g — cn™1, 60y + cn™'), we define the
diffeomorephism in the form of ¢(t) := 6y + en~tpo(t) where ¢y : R ~ (—1,1) is invertible
and differentiable increasing function. Based on the analogous application of Theorem 10 as in
Example 3, we obtain, for any h € R,

ir%f \e—ejipcnfl Epp [T(X) — > = ir%f igﬂ}; Ep:;(t) IT(X) — o(t))?
2
0= =00 (] iy o o)
2H (@g,ﬁg) R X

(43)
For each ¢, we assume that n is a large enough constant such that fg — en™! > 0. By the mean
value theorom, we have

p(t) = p(t = h) = en™ (2o(t) — @o(t — h)) = en™ hepg(t + Ah)

for some A € [0,1]. The derivation thus focuses primarily on the Hellinger distance between
Unif (0, ¢(t)) and Unif(0, p(t + h)). First, the Hellinger distance associated with one observation is
given by

B 12 pl/2 o ©(t)
2 2/dP¢(t) dPso(t-i-h) =2 2(p1/2(t)g01/2(t+h)
_9_ 2¢P1/2(t) + 2t + h) — o2 (t + h)
@/2(t + h)
e Pt +h) = o 2(1)
@Y2(t + h)
_ {ue) + (1= M)t + )}t + Ash)h
©1/2(t + h)
eyt 4 Aah)h
=T by +o(1/n).

Furthermore, by the tensorization property of the Hellinger distance, we have

H? (P, P "
liminf H2< " ,P;‘(t)> = liminf {2_2 (1 _ ( e(t) <p(t+h))) }

n—>00 e(t+h) n—->00 2

cpp(t + A2h)h
26, .

=2—2exp <—
The last step follows by (1 —x/n)" — exp(—x) as n —» co. Therefore we have
liminf A2 (Bj, F}) = lim inf { Q0. Q)+ [ 1 (Planys Ply) Q2 (¢4 h) dQ1/2(t)}

=22 / exp <——C¢6(’52;0Ah)h> dQV?(t + h) dQV/(t).
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Putting together, we have
liminf inf  sup  n? Epp [T(X) — 6>

=0 T |g_gy|<cn~1

[ ch|[ (¢p(t +Ah)) dQ(t)]
2 (2 —2 [ exp (-%f“h) dQY/2(t + h) dQl/?(t)) i

—an( [ehie+amp? d@(t))mr .

+

>

Since the above inequality holds for any h, we denote by h = (6y/c)n and it still holds for any 7.
Under this parameterization, we have

liminf inf ~ sup  n? Epp |T(X) — 6

n—00 T |g_gy|<cn—1

> [ Oon || (#6(t + A(Bo/c)m) dQ(1)]
Lo (22 fexp (~ ALY 4@+ (00 /e Qi)

1/212
~ton [ttt + X0/ a00) |
for any n. Now, taking ¢ — oo, we have

liminf liminf inf  sup  n? Epp [T(X) — 6>

c—o0 n—oo T |0—00|<cn—1

+

2

/ 2
sup 62 n| [ o) dQ(t)] B Y 1 ]
R L (2 -2 [ exp (—ph(t)n/2) dQ(1))"? ! (/{%(t)} Q<t)>

This concludes the claim. The lower bound obtained by the preceding result can be simplified to
the following analytic form.

+

Proof of Proposition 3. Consider the following sequence of diffeomorephisms indexed by 7 such
that

ngo(tin) — C
as 7 —> oo. This is satisfied, for instance, by 2/mwarctan(¢/n). Then the lower bound can be
simplified as

su n| [ b(t) dQ(t)] . . 1/2]2
ren.d [2(2—2fexp(—w6(t)n/2) 1) o(fsor o) )

2

> sup ¢ — —C| ~0.0635"
¢ [2(2—2exp(—C/2))Y .
by optimizing for C. O

Proof of Proposition 4. We now apply Lemma 11 to derive the optimal constant for the lower

bound. Consider two points in parameter space 6y and 6y + hn~', and Lemma 11 implies
[1 — H2(Pg;+hn71/2,ng) 2

liminf sup n? Egy+nn-1/2 | T(X) — ¥(60 + hn_1/2)|2 > liminf 4

n—aoo |h‘<C n—aoo

+
(44)
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for all |h| < c. An analogous derivation to Example 3 will yield

h
.. 2
liminf H ( gfﬁhn,l,ng) =2—2exp (—%>

n——aoo

for n IID observations from two uniform distributions. Putting together, it follows that

1 1 h
liminf liminf su 2K _ (X)) — (6 hn—1/2)% > 4z - B2
im inf limi |:\<poo Ko hn-1/2 ‘ (X) —(0g + hn )‘ ‘21|1<pc 1 + 5 exp 50,

1 1

> sup 493 [———i— —exp(—n)] 7]2
In|<oco 42 +

~ 0.0558 62

where we parameterize h = 2nfy and optimize for n to obtain the result.
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Supplement G Derivation of the risk of estimators

In this section, we provide exact upper bounds and lower bounds for the truncated Gaussian mean
estimation. To recall, we consider the following estimation problem:

sup nEg |T(X) — max(6,0)|?
|0]<d

where we observe n > 1 IID observations X := Xy,..., X, from N(0,1). We define a local model
as {N(0,1) : 0] < 3} for 6 > 0.

G.1 Lower bound under Gaussian prior and arctan diffeomor-
phism
In Example 3 (iii) with o = 1, we have derived that

| o BB I{t: polt) > 0}
i sup nEo [T =B = S0 ) 52 g (o (012 20000 (1)

The Fisher information of distributions in our local model is given by Z(0) = n for all [#] < ¢
under n IID observations. To simplify the derivation, we further restrict the choice of priors and
diffeomorphism to be

Qe {N(u,0?) :(n,0) € R xR} and pg € {t — m/2arctan(t/n) : n > 0}.
We define & := p/n and & := o/n. Since @j(t) = 2(7n) "1 (1 + (¢/n)?)~!, we have

2
Boleb®)? = [ s (17 —yam opl- (0~ P /(20%)

- 7T24772 / (1 T <§11+u§2)2>2¢(“) d”

where ¢ is a density function of a standard normal distribution. Similarly,

2
| Eq ¢ (t)I(¢o(t) ‘/ - <1 e > . 1% exp(—(t — p)?/(202)I(t > 0) dt
4 1 1 2
= (1 + (u/n+ ua/n)2> V2m exp(—u/ D+ uo > 0) du
4 1 2
e (1 + (&1 + u§2)2> 16+ ubz > 0)g () du

Using the fact that Z(Q) = o2, the lower bound becomes

2
W B b1t > 0 4 (f (14 (& +u&)?) " I(u > —& /&) p(u) du(

(1/0?) + 8?nEq{py(t)}* 72072 4 dn [ (14 (61 4 u&2)?) " ¢(u) du
g B[+ (@ +20P) " 12> /0|
7262 + AnE [(1 + (6 + Z6)2)” ]

where Z £ N(0,1). We conclude the claim by optimizing over (£1,&2) € R x Ry for given § > 0
and n > 1.
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G.2 Exact upper bounds
In this section, we provide the exact local risks of the following plug-in estimators, defined as
. . ~ 1
Sglug—m = (OyLe) where Oypg = X, =~ ZXZ', and
n
i=1
X, If [X,|>n"1*

re-test .__ n 0 .
SE = 1/} (epre—test ) where Hpre—test = X
0 otherwise.

Proof of Proposition 5. First, we consider the plug-in MLE. By splitting the risk into two cases,
we have

sup nEq ]Sﬁlug'in — max(6, 0)\2 =max<{ sup nlkEy ]Sﬁlug'in — 9\2, sup nkEy \S};l“g'i“\Q .
|0] <6 0<0<6 —6<60<0

For the first case, we have

sup nEg|SPlusin _ g2

0<6<d
= Oil;pg n {Eg“yn - 9|2I(Yn >0)] + E9[92I(7n < 0)]}
<0<
= sup. {E(;Hnl/Z(Yn —O)RI(YA(X, — 0) > —n'720)] + nb2 Eg[I(n/2(X,, — 0) < —n1/29)]} .

Since Z := n'/?(X,, — 0) 4 N(0,1), we conclude

n

sup nEg|SPUE 912 = sup {E@[sz(z > —n!/20)] + no?Ey[I(Z < —n1/29)]} .
0<6<6 0<6<6

Next, we claim that

sup nlEy \S};lug'inF < sup [y ]Sﬁlug'in — 9\2, (45)
—5<6<0 0<0<6

that is, the risk is always greater when 6 > 0 than 6§ < 0. Following an analogous argument from
0 > 0, we obtain

sup nEg|SPUEn2 = gup nEg[YiI(Yn > 0)]
—§<0<0 —5<6<0

= sup E[(Z+n'?0)%1(Z > —n'/?0)]
—6<60<0

where Z £ N (0,1). Denoting by 7 = n'/26 and by ¢ the density function of a standard Gaussian
distribution, it follows, for any n < 0,

o [e.e]

B(Z+ )22 ) = |
-n

(2 +m)26(2) dz < /

-n

(z4+n)%p(z+n)dz = /OOO 2¢(2)dz.

The middle inequality follows since the density ¢(z) is non-increasing on 0 < z and thus ¢(z) <
é(z +n) for any n < 0. The last quantity is equivalent to E[Z2I(Z > 0)] hence the risk of the
estimator for any n < 0 is upper bounded by the case when n = 0, or equivalently when 6 = 0.
Therefore, equation (45) is implied as desired. This concludes the claim.
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For the pre-test estimator, the derivation is almost analogous except that we have

sup nEg|SPtt _ g2 = sup n {Egﬂyn —0PI(X, > n YY) + Ey[0?1(X, < n_1/4)]}
0<0<6 0<0<6

= sup {Eg[zh(z > /4 — n1/29)] + b2 Ee[I(Z < n/* — n1/29)]} .
0<0<0

The remaining derivation is omitted. U
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Supplement H Supporting lemmas on divergence met-
rics

In this section, we provide the supporting lemmas related to the local behaviors of the chi-squared
divergence and the Hellinger distance. We provide the derivation for completeness and to unify
terminology between Pollard (2023) and Polyanskiy and Wu (2022). Throughout this section, we
use the following notation consistently; Let ¢ : R — © be a continuously differentiable mapping
and [|[Vy|loc < C for some universal constant. Unless specified otherwise, we denote the mixture
probability measures by

P (w,t) := dPy (x)dQ(t) and  dPj(z,t) := dP,,, (x) dQ(t + ),

where P,)n is an n-fold product measure of P, Q(-) is a probability measure on R? with a
bounded and absolutely continuous density function ¢ with respect to the base measure on ©.
We recall the regularity condition defined in Section 2:

Definition 3 (Multivariate absolute continuity). A function w : R% — R is absolutely continuous
over an open R%-ball B(6,6) if for all directions u € S*1, the induced univariate function t
w(0 + tu) is absolutely continuous over |t| < 4.

The following regularity conditions are placed:

(A1) There exits § > 0 such that
(a) for v-almost everywhere, the mapping t — dP; is absolutely continuous over an
open Re-ball B([0], ) with the gradient ¢ + u' p;,, for each u,

(b) for all u € S%1 the gradient is continuous such that lim;_ uT/')m = u' pg for
v-almost everywhere, and

(c) forall 0 < |t| < 6 and u € S1, dPy(x) = 0 implies u ' py () = 0, and

. .T

pt17upt27u

sup ——2% <0
0<tita<s A1

(A2) There exits § > 0 such that
(a) for v-almost everywhere, the mapping ¢ +— dPtl/ % is absolutely continuous over an

open Re-ball B([0],) with the gradient ¢ + u ', for each u,

(b) for all u € S91. the gradient is continuous such that lim;_ g uT"yM = uT"yo for
v-almost everywhere, and

. T
/ Sup - Vi, uVinu < 0.
0<t1,t2<d

Proof of (A1) = (A2). Given a small positive scalar n > 0, we define dP,,, := dP; + 7. The
resulting object is no longer a probability density since it does not integrate to one. Since dF;, is

bounded away from zero, the gradient of dPtl,,é2 exists and is given by % { pru/(dP; + 77)1/ 2}. It now
follows for any 0 < b < § that

dPtl/z(Ub) _ d‘Ptl/2(O) — /b M dt = /b M[(dpt > 0) dt.
” Y 0 2P+ Jo 2(dP + )1/
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The second equality follows by (A1)(c) as dPy(z) = 0 implies u' ;. (z) = 0, which justifies to
insert the indicator I(dP; > 0) inside the integral. Assuming for a moment that we can invoke the
dominated convergence theorem, it follows that

b, T
U pPtu

1/2 1/2 b u'
tim LR}/ (ub) — dP}(0)} = /0 lim PP, > 0)d = / I(dP, > 0) dt.

n—0 n—02(dP; + n) o 2dp?

Hence, we conclude (A2)(a) with

. pru
St = — 15 1(dP, > 0). (46)
2dP,

It thus remains to check the condition for the dominated convergence theorem. This follows since
we have that

/b MI(CZP > 0) dt</b MI(dP > 0)| dt
o |2(dP +m)2 = Jo 12(ap) 2
.. 1/2
1 oul prupl u
< | = — =" J(dP, t .
_<2/0 Ll (P > 0)d

The last term is finite by (A1)(c) and hence the dominated convergence theorem holds. The second
statement (A2)(b) follows directly from (46), (A1)(b) and (A1)(c). O

Lemma 19. Assuming that the collection of paths h v~ P 1p) satisfies (A1),

X2 (Poteinys Potry) = B V() T Z(0(t))Vo(t)h"