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Abstract. Given a natural number n, let ω (n) denote the number of distinct prime factors of n, let
Z denote a standard normal variable, and let Pn denote the uniform distribution on {1, . . . , n}. The
Erdős-Kac Theorem states that if N (n) is a uniformly distributed variable on {1, . . . , n}, then ω (N (n))
is asymptotically normally distributed as n → ∞ with both mean and variance equal to log logn. The
contribution of this paper is a generalization of the Erdős-Kac Theorem to a larger class of random variables
by considering perturbations of the uniform probability mass 1/n in the following sense. Denote by Pn a
probability distribution on {1, . . . , n} given by Pn (i) = 1/n+ εi,n. We provide sufficient conditions on εi,n
so that the number of distinct prime factors of a Pn-distributed random variable is asymptotically normally
distributed, as n → ∞, with both mean and variance equal to log logn. Our main result is applied to
prove that the number of distinct prime factors of a positive integer with the Harmonic(n) distribution
also tends to the normal distribution, as n → ∞. In addition, we explore sequences of distributions on
the natural numbers such that ω(n) is normally distributed in the limit. In addition, one of our theorems
and its corollaries generalize a result from the literature involving the limit of Zeta (s) distributions as the

parameter s → 1.

1. Introduction

Given a natural number n, the number of distinct prime factors of n is denoted ω (n). The function ω may
be written as ω (n) =

∑

p|n 1, where the sum is over all prime factors of n. In 1917, Hardy and Ramanujan

(p. 270 of [5]) proved that the number of distinct prime factors of a natural number n is about log logn. In
particular, they showed that the normal order of ω (n) is log logn; i.e., for every ε > 0, the proportion of the
natural numbers for which the inequalities

(1− ε) log logn ≤ ω (n) ≤ (1 + ε) log logn

do not hold tends to 0 as n → ∞–with a typical error of size
√
log logn. Informally speaking, the Erdős-Kac

Theorem generalizes1 the Hardy-Ramanujan Theorem by showing that ω (n) is approximately distributed as

log logn+ Z
√

log logn

for large n, where Z denotes a standard normal variable. More precisely, the Erdős-Kac Theorem is the
following result (p. 738 of [4]).

Theorem 1. Let n > 1. Let Pn denote the uniform distribution on {1, 2, , . . . , n}, and let Z denote a
standard normal variable. As n → ∞,

Pn

(

m ≤ n : ω (m)− log logn ≤ x (log logn)
1/2
)

→ P (Z ≤ x) .

The contribution of this paper is to extend the Erdős-Kac Theorem to a larger class of random variables
on the set [n] := {1, 2, . . . , n} which also have, asymptotically, log logn+ Z · √log logn many distinct prime
factors.

1While the Hardy-Ramanujan theorem provides information about the average behavior of the number of prime factors of
a natural number, the Erdős-Kac theorem offers a more detailed probabilistic description of their distribution, by taking into
account not just the average number but also the variability around that average.
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1.1. A Generalization of Erdős-Kac Theorem for ω (·). Define a probability mass function (PMF) Pn

on [n] given by

(1) Pn (i) =
1

n
+ εi,n.

Due to the axioms of probability, the terms εi,n, 1 ≤ i ≤ n, satisfy the constraints

(2)

n
∑

i=1

εi,n = 0; n ∈ N

and

(3) εi,n ∈
[

− 1

n
, 1− 1

n

]

; n ∈ N, 1 ≤ i ≤ n.

The motivation for defining Pn in terms of the uniform distribution is due to Durrett’s proof (Theorem
3.4.16 in [3]) of the Erdős-Kac Theorem. Replacing the uniform distribution Pn with the distribution Pn

in Durrett’s proof naturally yields some constraints that the terms εi,n, 1 ≤ i ≤ n, must satisfy in order to
conclude that an integer-valued Pn-distributed random variable has about log logn + Z

√
log logn distinct

prime factors. Our main result is the following theorem, where ⌊·⌋ denotes the floor function.

Theorem 2. (Generalized Erdős-Kac Theorem for ω) Let Z denote a standard normal variable. Suppose
the following statements are true.

• There exists a constant C ∈ R such that for all n > 1 and for all primes p with p > n1/ log log n,

(4)

⌊n/p⌋
∑

l=1

εlp,n ≤ C

p
.

• There exists a constant D ∈ R such that

(5)

⌊

n
p1···pk

⌋

∑

l=1

εlp1···pk,n ≤ D

n

for all n > 1, for each k, and for all k-tuples (p1, . . . , pk) consisting of distinct primes of size at most
n1/ log logn.

• For any prime p,

(6) lim
n→∞

⌊n/p⌋
∑

l=1

εlp,n = 0.

Let P∗
n denote the PMF obtained by imposing the constraints (4− 6) on the PMF Pn given by Pn (i) =

1
n+εi,n.

As n → ∞,

P
∗
n

(

m ≤ n : ω (m)− log logn ≤ x (log logn)
1/2
)

→ P (Z ≤ x) .

Remark. If εi,n = 0 for all i ≤ n, then P
∗
n = Pn and Theorem 1 is obtained.

1.2. Outline. The proof of Theorem 2 is provided in §2; the proof applies the method of moments and
is motivated by Durrett’s proof of the Erdős-Kac Theorem (Theorem 3.4.16 in [3]). Moreover, in §2, the
constraints (4− 6) are applied to ensure that P

∗
n also satisfies Durrett’s method of moment bounds. In

§§2.1, Theorem 2 is applied to show that the number of distinct prime factors of a random natural number
chosen according to the Harmonic(n) distribution is asymptotically normally distributed with both mean
and variance equal to log logn. In §3, Theorem 2 is used to prove statements about convex combinations of
distributions satisfying constraints (4− 6). In §4, we define conditions that ensure ω(Xj (n)) is asymptotically
normally distributed, with mean and variance both equal to log logn, for a sequence of random variables
(Xj (n))j≥1 as j → ∞ and n → ∞. In §5, Theorem 2 is applied to show that the number of distinct prime

factors of a randomly chosen integer according to any of the following distributions has the same limiting
distribution as the case of a uniform variable:

• Any convex combination of the Harmonic(n) and uniform(n) distributions,
• The Zeta (s) distribution as s → 1,
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• The Logarithmic(s) distribution as s → 1,
• A geometric power series distribution as s → 1,
• A Logarithmic-Zeta(s, α) distribution as (s, α) → (1, 1).

2. Proving Theorem 2

Define αn := n1/ log logn.

Lemma 1. As n → ∞




∑

αn<p≤n





1

p
+

⌊n/p⌋
∑

l=1

εlp,n







 / (log log n)
1/2 → 0.

Proof. Given n and any prime p with p > αn, we have

−⌊n/p⌋
n

(3)

≤
⌊n/p⌋
∑

l=1

εlp,n
(4)

≤ C

p
.

Therefore,

(7)
1

p
+

⌊n/p⌋
∑

l=1

εlp,n ∈
[

0,
C + 1

p

]

for all n. Thus,




∑

αn<p≤n





1

p
+

⌊n/p⌋
∑

l=1

εlp,n







 / (log logn)
1/2 → 0

due to (7) along with the fact that Durrett (p.135 of [3]) shows





∑

αn<p≤n

1

p



 / (log logn)
1/2 → 0.

�

The following lemma is proved by Durrett (p. 156 of [3]).

Lemma 2. If ε > 0, then αn ≤ nε for large n and hence

(8)
αr
n

n
→ 0

for all r < ∞.

Proof of Theorem 2. Given a natural number m and a prime p, define δp (m) = 1 if p divides m, and 0
otherwise. Let

gn (m) =
∑

p≤αn

δp (m)

denote the number of distinct prime factors of m of size at most αn, and let En denote expectation with
respect to P

∗
n. Then
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En





∑

αn<p≤n

δp



 =
∑

αn<p≤n

P
∗
n (m : δp (m) = 1)

=
∑

αn<p≤n

⌊n/p⌋
∑

l=1

P
∗
n (m : m = lp)

(1)
=

∑

αn<p≤n

⌊n/p⌋
∑

l=1

(

1

n
+ εlp,n

)

≤
∑

αn<p≤n





1

p
+

⌊n/p⌋
∑

l=1

εlp,n



 ,

so by Lemma 1 it suffices to prove Theorem 2 for gn; i.e., replacing ω (m) with gn (m) in the statement of
Theorem 2 does not affect the limiting distribution.

Consider a sequence (Xp)p≥2 of independent Bernoulli random variables with prime-valued indices such

that P (Xp = 1) = 1/p and P (Xp = 0) = 1− 1/p. Note that

E (δp) =
⌊n/p⌋
n

+

⌊n/p⌋
∑

l=1

εlp,n
(6)→ 1/p

as n → ∞. Let

Sn :=
∑

p≤αn

Xp,

bn := E (Sn) ,

a2n := Var (Sn) .

By Lemma 1, bn and a2n are both log logn+ o
(

(log logn)
1/2
)

, so it suffices to show

P
∗
n (m : gn (m)− bn ≤ xan) → P (Z ≤ x) .

An application of Theorem 3.4.10 of [3] shows

(Sn − bn) /an → Z,

and since |Xp| ≤ 1, it follows from Durrett’s second proof of Theorem 3.4.10 [3] that

E ((Sn − bn) /an)
r → E (Zr)

for all r. Using the notation from that proof (and replacing ij by pj) it follows that

E (Sr
n) =

r
∑

k=1

∑

ri

r!

r1! · · · rk!
1

k!

∑

pj

E
(

Xr1
p1

· · ·Xrk
pk

)

,

where the sum
∑

ri
extends over all k-tuples of positive integers for which r1+ · · ·+rk = r, and

∑

pj
extends

over all k-tuples of distinct primes in [n]. Since Xp ∈ {0, 1}, the summand in
∑

pj
E
(

Xr1
p1

· · ·Xrk
pk

)

is

E (Xp1 · · ·Xpk
) =

1

p1 · · · pk
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by independence of the Xp’s. Moreover,

En (δp1 · · · δpk
) ≤ Pn (m : δp1 (m) = δp2 (m) · · · = δpk

(m) = 1)

=

⌊

n
p1···pk

⌋

∑

l=1

Pn (m : m = lp1 · · · pk)

(1)
=

⌊

n
p1···pk

⌋

∑

l=1

(

1

n
+ εlp1···pk,n

)

=

⌊

n
p1···pk

⌋

n
+

⌊

n
p1···pk

⌋

∑

l=1

εlp1···pk,n

(5)

≤

⌊

n
p1···pk

⌋

n
+

D

n
.

The two terms E (Xp1 · · ·Xpk
) and En (δp1 · · · δpk

) differ by at most

max







1

p1 · · · pk
−

⌊

n
p1···pk

⌋

n
− D

n
,

⌊

n
p1···pk

⌋

n
+

D

n
− 1

p1 · · · pk







≤ max

{

1−D

n
,
D

n

}

.

Therefore, the two rth moments differ by

|E (Sr
n)− En (grn)| ≤

r
∑

k=1

∑

ri

r!

r1! · · · rk!

1

k!

∑

pj

max

{

1−D

n
,
D

n

}

.

≤ max

{

1−D

n
,
D

n

}

·





∑

p≤αn

1





r

≤ max

{

1−D

n
,
D

n

}

· αr
n

(8)
→ 0.

Using binomial expansions and the inequality above, we see that

|E (((Sn − bn) /an)
r)− En (((gn − bn) /an)

r)| = |1/arn| |E ((Sn − bn)
r)− En ((gn − bn)

r)|

≤ |1/arn| ·max

{

1−D

n
,
D

n

} r
∑

k=0

(

r

k

)

αk
nb

r−k
n

= |1/arn| ·max

{

1−D

n
,
D

n

}

(αn + bn)
r
.

Therefore, since bn ≤ αn, we have

|E (((Sn − bn) /an)
r
)− En (((gn − bn) /an)

r
)| (8)→ 0

for all r as well. Since E (((Sn − bn) /an)
r) → E (Zr) for all r, this completes the proof of Theorem 2. �

The following definition is based on Theorem 2.

Definition 1. We refer to distributions satisfying constraints (4− 6) as E-K distributions.

2.1. The Harmonic Distribution. Now we will apply Theorem 2 to show that the harmonic distribu-
tions are E-K distributions. Given n ∈ N, consider an integer in [n] chosen according to the Harmonic(n)
distribution, whose PMF is given by

Hn (i) :=
1

i
∑n

j=1
1
j

, 1 ≤ i ≤ n.
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If i ∈ [n], then equation (1) implies

εi,n =
1

i
∑n

j=1
1
j

− 1

n
.

Therefore,

⌊n/p⌋
∑

l=1

εlp,n =

⌊n/p⌋
∑

l=1

(

1

lp
∑n

i=1
1
i

− 1

n

)

=

∑⌊n/p⌋
i=1

1
i

p
∑n

l=1
1
i

− ⌊n/p⌋
n

≤ 1

p
− ⌊n/p⌋

n

≤ 1

p
,

so (4) holds with C = 1. Moreover,
⌊

n
p1···pk

⌋

∑

l=1

εlp1···pk,n =

⌊

n
p1···pk

⌋

∑

l=1

(

1

lp1 · · · pk
∑n

i=1
1
i

− 1

n

)

=

∑

⌊

n
p1···pk

⌋

i=1
1
i

p1 · · · pk
∑n

i=1
1
i

−

⌊

n
p1···pk

⌋

n

≤ 1

p1 · · · pk
−
( n

p1···pk
− 1

n

)

= 1/n,

so (5) holds with D = 1. Finally,

lim
n→∞

⌊n/p⌋
∑

l=1

εlp,n = lim
n→∞

(

∑⌊n/p⌋
i=1

1
i

p
∑n

l=1
1
i

− ⌊n/p⌋
n

)

∼ 1

p

log (n/p)

logn
− 1

p

→ 1/p− 1/p

= 0,

so constraint (6) holds. By Theorem 2, this shows that the number of distinct prime factors of an Hn-
distributed random variable is asymptotically normally distributed, as n → ∞, with both mean and variance
equal to log logn.

3. Convex Combinations of E-K Distributions

The following theorem shows that any convex sum of two E-K distributions is also an E-K distribution.

Theorem 3. (Convex Combinations for Erdős-Kac (CLT)) Let n > 1 and 0 ≤ λ ≤ 1 be fixed. Suppose d1,n
and d2,n are two PMFs on [n] satisfying the constraints (4− 6) for all n > 1. Then any PMF of the form

(9) P
∗
n (i) = λd1,n (i) + (1− λ) d2,n (i) , 1 ≤ i ≤ n

also satisfies constraints (4− 6). In particular,

P
∗
n

(

m ≤ n : ω (m)− log logn ≤ x (log logn)
1/2
)

→ P (Z ≤ x)

as n → ∞.
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Proof. Denote

εi,n = d1,n (i)− 1/n,

ε′i,n = d2,n (i)− 1/n,

and

ε̂i,n = P
∗
n (i)− 1/n.

We have

⌊n/p⌋
∑

l=1

ε̂lp,n =

⌊n/p⌋
∑

l=1

(

λd1,n (lp) + (1− λ) d2,n (lp)−
1

n

)

(1)
=

⌊n/p⌋
∑

l=1

(

λ (εlp,n + 1/n) + (1− λ)
(

ε′lp,n + 1/n
)

− 1

n

)

=

⌊n/p⌋
∑

l=1

(

λεlp,n + (1− λ) ε′lp,n
)

= λ

⌊n/p⌋
∑

l=1

εlp,n + (1− λ)

⌊n/p⌋
∑

l=1

ε′lp,n

≤ λC1 + (1− λ)C2

p
,

where the latest inequality is obtained by applying constraint (4) to both d1,n and d2,n; therefore, (4) holds
for the PMF given by (9) with C = λC1 + (1− λ)C2. Similarly,

⌊

n
p1···pk

⌋

∑

l=1

ε̂lp1···pk,n =

⌊

n
p1···pk

⌋

∑

l=1

(

λd1,n (lp1 · · · pk) + (1− λ) d2,n (lp1 · · · pk)−
1

n

)

(1)
=

⌊

n
p1···pk

⌋

∑

l=1

(

λ (εlp1···pk,n + 1/n) + (1− λ)
(

ε′lp1···pk,n
+ 1/n

)

− 1

n

)

=

⌊ n
p1···pk

⌋
∑

l=1

(

λεlp1···pk,n + (1− λ) ε′lp1···pk,n

)

= λ

⌊

n
p1···pk

⌋

∑

l=1

εlp1···pk,n + (1− λ)

⌊

n
p1···pk

⌋

∑

l=1

ε′lp1···pk,n

≤ λD1 + (1− λ)D2

n
,

where the latest inequality is obtained by applying constraint (5) to both d1,n and d2,n; therefore, (5) holds
for the PMF given by (9) with D = λD1 + (1− λ)D2. Furthermore,

lim
n→∞

⌊n/p⌋
∑

l=1

ε̂lp,n = λ lim
n→∞

⌊n/p⌋
∑

l=1

εlp,n + (1− λ) lim
n→∞

⌊n/p⌋
∑

l=1

ε′lp,n

= λ · 0 + (1− λ) · 0
= 0,

where the second equation uses the fact that the distributions d1 and d2 satisfy constraint (6). Therefore,
(6) holds for the PMF given by (9).

�

By Theorem 3 and mathematical induction, we obtain the following.
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Corollary 1. Suppose d1,n, . . . , dk,n are PMFs on [n] satisfying the constraints (4− 6), and suppose (λj)
k
j=1

is a sequence of nonnegative numbers which add to unity. The PMF

P
∗
n (i) =

k
∑

j=1

λjdj,n(i)

also satisfies constraints (4− 6). Therefore,

P
∗
n

(

m ≤ n : ω (m)− log logn ≤ x (log logn)
1/2
)

→ P (Z ≤ x)

as n → ∞.

We now present an alternate proof to the remark under Corollary 3.4 in [1]; their proof uses both the
Tauberian theorems for the harmonic distribution and the uniform distribution simultaneously. We present
a proof based on Theorems 2 and 3 of this paper.

Corollary 2. (Convex Combinations of Harmonic Distribution and Uniform Distribution) Let λ ∈ [0, 1]
and consider the PMF given by

P
∗
n (i) =

λ

ihn
+

1− λ

n
; 1 ≤ i ≤ n,

where hn is the nth harmonic number given by hn :=
∑n

i=1 1/i, then

P
∗
n

(

m ≤ n : ω (m)− log logn ≤ x (log logn)
1/2
)

→ P (Z ≤ x)

as n → ∞.

Proof. As noted in the remark after Theorem 2, the uniform distribution satisfies constraints (4− 6), and
in §§2.1 we showed the harmonic distribution satisfies constraints (4− 6). By Theorem 3, their convex sums
also satisfy constraints (4− 6). �

The following theorem shows that if given the PMF 1/n+ εi,n of a sequence of E-K distributions, under
additional constraints, the PMF 1/n− εi,n is also the PMF of a sequence of E-K distributions.

Theorem 4. (Reflection Theorem) Let Pn satisfy constraints (4) and (6) for all n > 1. In addition, assume
εi,n ∈

[

− 1
n ,

1
n

]

for all i and for all n, and that for all k-tuples of distinct primes p1, . . . , pk, there exists a
constant D ≥ 0 such that

(10) −D

n
≤

⌊ n
p1···pk

⌋
∑

l=1

εlp1···pk,n ≤ D

n
.

If

P
∗
n (i) :=

1

n
− εi,n,

then

P
∗
n

(

m ≤ n : ω (m)− log logn ≤ x (log logn)1/2
)

→ P (Z ≤ x)

as n → ∞.

Proof. Define ε′i,n := −εi,n, so

⌊n/p⌋
∑

l=1

ε′lp,n = −
⌊n/p⌋
∑

l=1

εi,n

(3)

≤ ⌊n/p⌋
n

≤ 1

p
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so constraint (4) holds with C = 1. Similarly,
⌊

n
p1···pk

⌋

∑

l=1

ε′lp1···pk,n = −

⌊

n
p1···pk

⌋

∑

l=1

εlp1···pk,n

(10)

≤ D

n
,

so constraint (5) holds. Moreover,

lim
n→∞

⌊n/p⌋
∑

l=1

ε′lp,n = − lim
n→∞

⌊n/p⌋
∑

l=1

εlp,n

= 0,

where the latest limit is due to the assumption that Pn satisfies constraint (6). �

4. A Central Limit Theorem for E-K Distributions on N

We would like to formalize the notion of asymptotic normality for ω(Xj) in the limit of a sequence of
random variables (Xj)j≥1 on N. Towards that goal we provide the following definition.

Definition 2. Given an infinite sequence of random variables X1, X2, . . . defined on N, let Xj (n) denote
the truncation of Xj on [n]. Define εl,j,n := P (Xj (n) = l)− 1/n. The sequence X1, X2, . . . is said to satisfy
the uniformity along primes property if the following holds. There exists constants C and D such that
for all n there exists a d ≥ 1 such that for all j ≥ d:

• For each prime p > αn
⌊n/p⌋
∑

l=1

εlp,j,n ≤ C

p
.

• For each k ≥ 1 and for all k-tuples (p1, . . . , pk) consisting of distinct primes of size at most αn
⌊

n
p1···pk

⌋

∑

l=1

εlp1···pk,j,n ≤ D

n
.

In addition, for any prime p,

lim
j→∞

lim
n→∞

⌊n/p⌋
∑

l=1

εlp,j,n = 0.

Theorem 5. Assume X1, X2, . . . is an infinite sequence of random variables defined on N satisfying the
uniformity along primes property. Let Pj,n be the probability distribution of Xj (n) on [n]. If (nj)j∈N

is

any sequence in N \ {1} tending to ∞ such that (4 − 5) hold for Xj (nj) for all j ≥ 1, then

Pj,nj

(

m ≤ nj : ω (m)− log lognj ≤ x (log lognj)
1/2
)

→ P (Z ≤ x)

as j → ∞.

Proof. Let’s proceed by contradiction. That is, suppose (nj)j∈N
is any sequence in N\ {1} tending to ∞ and

suppose there exist a sequence (jk)k∈N
, some x0 ∈ R, and some ε0 > 0 such that

∣

∣

∣Pjk,njk

(

m ≤ njk : ω (m)− log log njk ≤ x0 (log lognjk)
1/2
)

− P (Z ≤ x0)
∣

∣

∣ ≥ ε0

for all k ≥ 1. Consider the following PMF on [n] for all n > 1, which satisfies the hypotheses of Theorem 2:

P
∗
n (i) :=

{

1/n if njk 6= n for all k ≥ 1,

Pjk′(n),n (i) if njk′(n)
= n,

where k′ (n) is the smallest integer satisfying njk′(n)
= n. It is clear that P

∗
n is defined for all n > 1 and

satisfies the hypotheses of Theorem 2 due to Definition 2. Let ε = ε0, then there is some d ≥ 1 such that
∣

∣

∣

∣

Pjk′(n),nj
k′(n)

(

m ≤ njk′(n)
: ω (m)− log lognjk′(n)

≤ x0

(

log lognjk′(n)

)1/2
)

− P (Z ≤ x0)

∣

∣

∣

∣

< ε
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if n ≥ d, by Theorem 2. The fact that at least one k′ (n) exists such that njk′(n)
= n when n ≥ d is due

to the fact that njk → ∞ as k → ∞, so there are infinitely many k′ (n) such that njk′(n)
= n when n ≥ d.

Thus, Theorem 5 holds by contradiction. �

4.1. Moment Generating Functions and Characteristic Functions.

Definition 3. Let X denote a random variable. The moment generating function (MGF) of X is
defined as MX (t) = E

(

etX
)

, and the characteristic function (CF) of X is defined as φX (t) = E
(

eitX
)

.

We have the following two facts about the MGF and the CF that will be used in the proof of Corollary 3:

• The kth derivative of MX (t) at t = 0 is the kth moment of X .

• Lèvy’s Continuity Theorem: Convergence in distribution, Xn
d→ X , for a sequence of random

variables is equivalent to pointwise convergence, φXn → φX , of the corresponding CFs on all of R.

Corollary 3 and Corollary 4 below allow us to state Theorem 7.1 of [2] in a slightly different way.

Corollary 3. Suppose X1, X2, . . . is an infinite sequence of random variables defined on N that satisfies the
uniformity along primes property. Let (nj)j∈N

be any sequence in N \ {1} tending to ∞ such that (4 -

5) hold for Xj (nj) for all j ≥ 1. Let Pj be the probability distribution of Xj on N, Pj,n be the probability
distribution of Xj (n) on [n], and define µj,n := Ej,n (ω (Xj (n))), then the following is true:

Pj,nj

(

m ≤ nj : ω (m)− µj,nj ≤ x
(

µj,nj

)1/2
)

→ P (Z ≤ x)

as j → ∞. Additionally, if µj < ∞ for all j ≥ 1 and

lim
j→∞

(

µj/ (log lognj)
1/2 − (log lognj)

1/2
)

= 0,

then

Pj

(

m : ω (m)− µj ≤ x (µj)
1/2
)

→ P (Z ≤ x)

as j → ∞, where

µj := Ej (ω (Xj)) = lim
n→∞

µj,n.

We also have the following asymptotic properties:

lim
j→∞

(

µj,nj/ (log lognj)
1/2 − (log lognj)

1/2
)

= 0,

lim
j→∞

(

µ
1/2
j,nj

− (log lognj)
1/2
)

= 0,

and

lim
j→∞

µj,nj

log lognj
= lim

j→∞

µj

log lognj
= 1.

Proof. Let Mj,nj and φj,nj be the MGF and CF of

ω (Xj (nj))− log lognj
√

log lognj

,

and let Mj,µ and φj,µ be the MGF and CF of

ω (Xj (nj))− µj,nj√
µj,nj

.

We have

Mj,nj (t) = e−t(log lognj)
1/2

Mω(Xj(nj))

(

(log lognj)
−1/2

t
)

and

Mj,µ (t) = e
−tµ

1/2
j,njMω(Xj(nj))

(

(

µj,nj

)−1/2
t
)

.
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Let’s compute the mean from the MGF Mj,nj (t):

M ′
j,nj

(0) = − (log lognj)
1/2

e−t(log log nj)
1/2

Mω(Xj(nj))

(

(log lognj)
−1/2

t
)

+ e−t(log lognj)
1/2

M
′

ω(Xj(nj))

(

(log lognj)
−1/2

t
)

(log lognj)
−1/2

∣

∣

∣

t=0

= − (log lognj)
1/2

+ µj,nj (log lognj)
−1/2

→ 0,

where the last limit holds due to the proof of Theorem 2 (we showed the moments all approach the moments
of the normal distribution) which is used in the proof of Theorem 5 above; thus,

(11) lim
j→∞

(

µj,nj/ (log log nj)
1/2 − (log lognj)

1/2
)

= 0

holds. Therefore,

lim
j→∞

µj,nj

log log nj
= 1.

From equation (11) we can conclude

lim
j→∞

(

µ
1/2
j,nj

− (log lognj)
1/2
)

= 0.

This is because,

∣

∣

∣µ
1/2
j,nj

− (log lognj)
1/2
∣

∣

∣ =

∣

∣

∣

∣

∣

µj,nj − (log lognj)

µ
1/2
j,nj

+ (log lognj)
1/2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

µj,nj − log lognj

(log lognj)
1/2

∣

∣

∣

∣

∣

→ 0.

Now we want to show convergence in distribution using the characteristic functions. We use the fact
that the characteristic function φω(Xj(nj)) (t) is continuous at t = 0. According to properties of continuous
functions, we have the ratios

(12)
e
−itµ

1/2
j,nj

e−it(log lognj)
1/2

= e
−it

(

µ
1/2
j,nj

−(log lognj)
1/2

)

→ e0 = 1,

and also

(13)
φω(Xj(nj))

(

(

µj,nj

)−1/2
t
)

φω(Xj(nj))

(

(log lognj)
−1/2

t
) → φω(Xj(nj)) (0)

φω(Xj(nj)) (0)
= 1

as j → ∞. This gives us the required convergence of φj,µ at any t; i.e.,

φj,µ (t) = e
−itµ

1/2
j,njφω(Xj(nj))

(

(

µj,nj

)−1/2
t
)

(12,13)∼ e−it(log lognj)
1/2

φω(Xj(nj))

(

(log lognj)
−1/2

t
)

→ e−t2/2 = φZ (t) .

By Lèvy’s Continuity Theorem,

Pj,nj

(

m ≤ nj : ω (m)− µj,nj ≤ x
(

µj,nj

)1/2
)

→ P (Z ≤ x) .

Suppose additionally that µj < ∞ for all j ≥ 1 and

lim
j→∞

(

µj/ (log lognj)
1/2 − (log lognj)

1/2
)

= 0.

Similarly, let φj,µj be the characteristic function of

ω (Xj)− µj√
µj

.

Then

φj,µj (t) = e−itµ
1/2
j φω(Xj)

(

(µj)
−1/2

t
)

∼ e−it(log lognj)
1/2

φω(Xj(nj))

(

(log lognj)
−1/2

t
)

→ e−t2/2 = φZ (t) ,
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for any t ∈ R. Thus, again we have that

Pj

(

m : ω (m)− µj ≤ x (µj)
1/2
)

→ P (Z ≤ x) ,

by Lèvy’s Continuity Theorem. This completes the proof. �

Remark. We can replace µj in Corollary 3 with any sequence aj that satisfies the limit

lim
j→∞

(

aj/ (log lognj)
1/2 − (log lognj)

1/2
)

= 0,

to get a similar result. This is a generalization of Theorem 7.1 in [2] which states this result for particular
sequences of Zeta (s) distributions as their parameter s → 1. In their result, the mean was

∑

p p
−s, where

the sum is over all prime numbers.

Definition 4. Given an infinite sequence of random variables X1, X2, . . . defined on N, let Xj (n) denote
the truncation of Xj on [n]. If X1, X2, . . . satisfies the uniformity along primes property, and Xj (n) satisfies
(4 - 5) for any n and any j, then we say the sequence satisfies the complete uniformity along primes
property.

The following lemma will be applied in Corollary 4.

Lemma 3. If X1, X2, . . . has the complete uniformity along primes property and µj < ∞ for all j ≥ 1,
then µj → ∞ as j → ∞.

Proof. For any sequence (nj)j∈N
in N \ {1} tending to ∞ we have log log nj ∼ µj,nj ∼ µj as j → ∞. �

Corollary 4. If X1, X2, . . . has the complete uniformity along primes property and µj < ∞ for all
j ≥ 1, then

Pj

(

m : ω (m)− µj ≤ x (µj)
1/2
)

→ P (Z ≤ x)

as j → ∞.

Proof. Define nj := max
{⌊

ee
µj
⌋

, 2
}

so that nj → ∞ by Lemma 3 and the limit

lim
j→∞

(

µj/ (log lognj)
1/2 − (log lognj)

1/2
)

= 0

in Corollary 3 holds. �

4.2. The Zeta Distribution. We show the zeta distribution has the complete uniformity along primes
property as s → 1. Given s > 1, denote by Zs the Zeta (s) distribution so that for any j ∈ N,

Zs (j) =
1

jsζ (s)
,

where

ζ (s) =
∑

j≥1

1

js

denotes the Riemann zeta function. Since Theorem 2 involves distributions defined on [n], restrict the
Zeta (s) distribution to [n] and then normalize by dividing by

∑n
i=1

1
isζ(s) ; i.e., for j ∈ [n],

Zs,n (j) :=

1
jsζ(s)

∑n
i=1

1
isζ(s)

=
1

js
∑n

i=1
1
is

;

and Zs,n is known as the Zipf distribution with parameters n and s. For a Zifp distribution, we have

εi,n
(1)
=

1/is
∑n

j=1 1/j
s
− 1

n
.
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Thus,

⌊n/p⌋
∑

l=1

εlp,n =

∑⌊n/p⌋
l=1 1/ (lp)

s

∑n
l=1 1/l

s
− ⌊n/p⌋

n

=
1

ps

∑⌊n/p⌋
l=1 1/ls
∑n

l=1 1/l
s

− ⌊n/p⌋
n

≤ 1

ps

≤ 1

p
,

so constraint (4) holds with C = 1 for any s. Moreover,
⌊

n
p1···pk

⌋

∑

l=1

εlp1···pk,n =

∑⌊ n
p1···pk

⌋

l=1 1/ (lp1 · · · pk)s
∑n

l=1 1/l
s

−
⌊ n
p1···pk

⌋
n

=
1

(p1 · · · pk)s
∑⌊n/p⌋

l=1 1/ls
∑n

l=1 1/l
s

− 1

p1 · · · pk
+

1

n

≤ 1

(p1 · · · pk)s
− 1

p1 · · · pk
+

1

n

≤ 1

n
,

so constraint (5) holds with D = 1 for any s. Furthermore,

lim
n→∞

⌊n/p⌋
∑

l=1

εlp,n = lim
n→∞

∑⌊n/p⌋
l=1 1/ (lp)

s

∑n
l=1 1/l

s
− 1

p

=
1

ps
− 1

p
s→1→ 0;

therefore, (6) holds as s → 1.

Corollary 5. Let (aj)j∈N
be any sequence of real numbers such that 0 < aj → ∞. If Xj is a sequence of

Zeta (1 + 1/aj)-distributed random variables, then

µj =
∑

p

p−(1+1/aj) < ∞,

lim
j→∞

µj = ∞,

and

Pj

(

m : ω (m)− µj ≤ x (µj)
1/2
)

→ P (Z ≤ x)

as j → ∞.

This latest limit is the statement of Theorem 7.1 in [2].

4.3. Convex Combinations of E-K Distributions on N. We can also take convex combinations of
sequences to form new sequences which satisfy the uniformity along primes property.

Corollary 6. Let λ ∈ [0, 1]. Let X1, X2, . . . and Y1, Y2, . . . be two sequences of random variables on N

that both satisfy the complete uniformity along primes property. Then we can define a new sequence
Z1, Z2, . . . such that each Zj is the convex combination of Xj and Yj. In particular,

PZj (i) := λPXj (i) + (1− λ)PYj (i) ; i ≥ 1, j ≥ 1.

Then Zj satisfies the complete uniformity along primes property and thus Theorem 5 holds for the
Zj sequence.
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Proof. The proof is similar to that of Theorem 3. �

Corollary 7. Apply Corollary 6 to any convex combination of a finite number of sequences

(X1,1, X1,2, . . .) , . . . , (Xn,1, Xn,2, . . .)

that all satisfy the complete uniformity along primes property. Then the conclusion of Corollary 6 holds
for this convex combination.

Proof. Use induction and Corollary 6. �

5. Illustrative Examples

In this section, we give examples from the class of distributions P∗
n that satisfy the hypotheses (4− 6) and

examples of limits of distributions to which we can apply Theorem 5. It will be shown that the statement
of Theorem 2 holds when P

∗
n is replaced with either the Harmonic(n) distribution or a convex combination

of Harmonic and Uniform Distributions. Then we show that the Zeta (s) and the Logarithmic distribution
satisfy Theorem 5 as their parameters tend towards limits. We introduce a 2-parameter family of distributions
LZ (s, α) which includes the Logarithmic distribution and Zeta distribution as special cases (when α = 1
and s = 1 respectfully). We also look at a geometric power series distribution that converges to the normal
distribution on all truncations as s → 1.

5.1. The Harmonic Distribution. This was proved in §§2.1 above.

5.2. The Zeta Distribution. This was proved in §§4.2 above.

5.3. The Logarithmic Distribution. Given a real number s with 0 < s < 1, a logarithmic distribution
with parameter s is given by

Ls (i) :=
−1

log (1− s)

si

i
; i ∈ N.

Now we will show that the number of distinct prime factors, ω (·), of a truncated log-distributed variable
has the same central limit theorem as the uniform distribution as n → ∞ and s → 1. For i ∈ [n] we have

Ls,n (i) :=

−1
log(1−s)

si

i
∑n

l=1
−1

log(1−s)
sl

l

=
si

i
∑n

l=1
sl

l

,

so

εi,n
(1)
=

si

i
∑n

l=1
sl

l

− 1

n
.

Therefore,

⌊n
p ⌋
∑

l=1

εlp,n =

⌊n
p ⌋
∑

l=1





(s)lp

lp
∑n

l=1
sl

l

− 1

n





≤ 1

p

∑⌊n
p ⌋

l=1
(sp)l

l
∑n

l=1
sl

l

− ⌊n/p⌋
n

≤ 1

p
− ⌊n/p⌋

n

≤ 1

p
,
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so (4) holds with C = 1. Similarly,

⌊

n
p1···pk

⌋

∑

l=1

εlp1···pk,n =

⌊

n
p1···pk

⌋

∑

l=1





(s)lp1···pk

lp1···pk
∑n

l=1
sl

l

− 1

n





≤ 1

p1 · · · pk

∑

⌊

n
p1···pk

⌋

l=1
(sp1···pk )l

l
∑n

l=1
sl

l

− 1

p1 · · · pk
+

1

n

≤ 1

p1 · · · pk
− 1

p1 · · · pk
+

1

n

=
1

n
,

so (5) holds with D = 1. Moreover, we have

⌊n/p⌋
∑

l=1

εlp,n
n→∞→ 1

p

log (1− sp)

log (1− s)
− 1

p

s→1→ 0.

Therefore, (6) holds, so ω (Li,s) is asymptotically distributed as N (log logn, log logn) as n → ∞ and s → 1.
Although Kac’s heuristic for Theorem 1 is based on the asymptotic independence in the uniform case, we

will show that the events {divisible by p} and {divisible by q} are not independent for any value of s. Let
Ap denote the set of all positive integers divisible by p, then

Ls (Ap) =

∞
∑

l=1

−1

log (1− s)

(sp)
l

pl

=
1

p

log (1− sp)

log (1− s)

and

Ls (Ap ∩ Aq) =

∞
∑

l=1

−1

log (1− s)

(spq)
l

pql

=
1

pq

log (1− spq)

log (1− s)
.

It is worth noting that

lim
s→1

Ls (Ap ∩Aq) =
1

pq
= lim

s→1
(Ls (Ap)Ls (Aq)) ,

as s → 1; so independence is only approached in the limit.

5.4. Geometric Power Series Distribution. Let s ∈ (0, 1). Define:

P (i) :=
1− s

s
si; i ∈ N

then this distribution satisfies the hypotheses of Theorem 2 in the limit as s → 1. As s → 1 it seems that
this distribution is converging to the uniform distribution on any truncation, so the result is to be expected.

Truncating on [n] leads to

εi,n
(1)
=

si
∑n

j=1 s
j
− 1

n
,
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therefore
⌊n/p⌋
∑

l=1

εlp,n =

⌊n/p⌋
∑

l=1

(

si
∑n

j=1 s
j
− 1

n

)

=
s− s⌊n/p⌋+1

s− sn+1
− ⌊n/p⌋

n

s→1→ ⌊n/p⌋
n

− ⌊n/p⌋
n

= 0,

so constraints (4− 6) hold with C = D = 1.

5.5. Convex Combination of Harmonic and Uniform. Following Cranston and Mountford in [1], let
λ ∈ [0, 1] and define

Pn(i) :=
λ

ihn
+ (1− λ)

1

n
; i ∈ N

where hn is the nth harmonic number. Then Pn satisfies the hypotheses of Theorem 2. This is proved in
Corollary 2 above using Theorems 2 and 3.

5.6. A Logarithmic-Zeta Distribution. There is a 2-parameter family of power series distributions on
N for (s, α) ∈ R

2 such that 0 < s ≤ 1, α ≥ 1, and s = α = 1 is not allowed; the PMF is given by

LZs,α (i) :=
1

∑∞
j=1

sj

jα

si

iα
; i ∈ N.

Similarly, there is a truncation of LZ given by

LZs,α,n (i) :=
1

∑n
j=1

sj

jα

si

iα
; i ≤ n,

and a description of the εi,n given by

εi,n
(1)
=

1
∑n

j=1
sj

jα

si

iα
− 1

n
.

It is clear that a similar type of argument shows that Theorem 2 holds for the truncated logarithmic-zeta
distribution as (s, α) → (1, 1); in particular, we obtain

⌊n/p⌋
∑

l=1

εlp,n ≤ 1

pα
≤ 1

p

and
⌊ n
p1···pk

⌋
∑

l=1

εlp1···pk,n ≤ 1

pα1 · · · pαk
− 1

p1 · · · pk
+

1

n
≤ 1

n
.

Furthermore,

lim
n→∞

⌊n/p⌋
∑

l=1

εlp,n
s→1→ 1

pα
− 1

p

α→1→ 0.

5.7. Passage to the Limit: lim
s→1
α→1

LZs,α. We would like to look at the behavior of ω (X) for X distributed

as LZs,α as (s, α) → (1, 1). The motivation for this comes from the fact that as (s, α) → (1, 1) the truncated
distributions resemble the harmonic distribution which we know behaves similarly to the uniform distribution
on [n] when n → ∞ according to Theorem 2.

In Theorem 5.5 of [2], they provide the moment generating function for ω (Xα) when Xα is a Zeta (α)
distributed random integer with parameter α > 1. They go on to prove that

ω̂ (Xα) =
ω (Xα)−

∑

p p
−α

√

∑

p p
−α

d→ Z
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as α → 1 in Theorem 7.1 of [2] by using this moment generating function. Later, Cranston and Mountford
[1] give a new proof of Theorem 1. The proof uses Theorem 7.1 about zeta distributions to prove Erdős-Kac
in a way that translates over to settings where zeta functions still make sense.

We generalize Peltzer and Cranston’s Theorem 7.1 in [2] in the following way. As (s, α) → (1, 1), we show
that

ω̂ (Xs,α) =
ω (Xs,α)− µs,α√

µs,α

d→ Z,

where µs,α is the mean of ω (Xs,α) when Xs,α is distributed as LZs,α. In fact, we do not need independence,
nor do we need to compute the mean for any particular s, α in order to conclude this (neither do we need to
compute a MGF).

In §4, we proved a stronger statement than the above statement about LZs,α; we proved that in general

ω̂ (Xj) =
ω (Xj)− µj√

µj

d→ Z,

as long as the truncated variables Xj (n) have the complete uniformity along primes property. Here we
assume that µj = E(ω (Xj)) < ∞. When (s, α) → (1, 1), we recover the above statement about LZs,α.

5.8. A Non-Example: Zeroing at a Set of Primes. Fix n ∈ N and let p ≤ n denote a prime. Consider
the PMF defined by

Pn,p (i) =

{

1
#([n]\pN) i 6∈ pN,

0 i ∈ pN.

We have

εi,n =

{

1
#([n]\pN) − 1/n i 6∈ pN,

−1/n i ∈ pN.

Therefore,

lim
n→∞

⌊n/p⌋
∑

l=1

εlp,n = lim
n→∞

−⌊n/p⌋
n

= −1/p

6= 0.

Thus, this PMF does not satisfy constraint (6). We conjecture that the conclusion of Theorem 2 does not
hold for this distribution.

5.9. An Erdős-Kac Theorem for Continuous Variables. Consider a continuous uniform random vari-
able Nn on the interval (0, n]. Then ⌈Nn⌉ is a uniform variable on [n]. Therefore, we have

Corollary 8. Let Z denote a standard normal variable, and let Xn be a continuous random variable on
(0, n]. Define the εi,n according to the following relation: Pn (⌈Xn⌉ = i) = 1

n + εi,n. If the constraints

• There exists a constant C such that for all n > 1 and for all primes p with p > αn,

⌊n/p⌋
∑

l=1

εlp,n ≤ C

p
.

• There exists a constant D such that
⌊

n
p1···pk

⌋

∑

l=1

εlp1···pk,n ≤ D

n

for all n > 1 and, for each k, all k-tuples (p1, . . . , pk) consisting of distinct primes of size at most
αn, and

• For any prime p,

lim
n→∞

⌊n/p⌋
∑

l=1

εlp,n = 0
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all hold, then

Pn

(

t ≤ n : ω (⌈t⌉)− log logn ≤ x (log logn)
1/2
)

→ P (Z ≤ x)

as n → ∞.

6. Conclusion

Theorem 2 generalizes the Erdős-Kac Theorem for ω (·) to distributions other than the uniform distribu-
tion, and this theorem was proved by imposing constraints (4− 6) on a PMF of the form P (i) = 1/n+ εi,n.
We showed that the uniform and harmonic distributions satisfy these constraints; then, we showed that any
convex sum of these PMFs also satisfies the constraints (4 - 6).

The uniformity property provides a natural way to examine asymptotic properties of truncations of vari-
ables with support N. Given an infinite sequence X1, X2, . . . of random variables on N satisfying uniformity
along primes, Theorem 5 showed that for any sequence with nj → ∞ as j → ∞, the distribution of ω (Xj (nj))
is asymptotically normally distributed with mean and variance both equal to log lognj as long as Xj (nj)
satisfies (4 - 6).

The definition of complete uniformity along primes allows us to obtain central limit theorems regardless of
how n → ∞, and allows us to make asymptotic statements involving the mean of ω (Xj). This generalized a
statement from [2] involving the mean of ω (Xs) as s → 1 when Xs is a random Zeta (s)-distributed variable.

Another way to generalize Theorem 2 would be to incorporate it with other generalizations, e.g., [1, 2, 6, 7].
By incorporating Theorem 2 with these, further generalizations can be made in which the original setting is
not [n], the underlying distribution of the random-integer is not uniform, and ω (n) can be replaced with a
more general strongly additive function f (n).

We also showed the complete uniformity property holds, and thus normality in the limit, for Zeta (s)
and a number of similar distributions. It is suspected by the authors, but not known, whether or not the
hypotheses (4− 6) are necessary and sufficient for the conclusion of Theorem 2; we conjecture that is the
case.
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