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ABsTRACT. Given a natural number n, let w(n) denote the number of distinct prime factors of n, let
Z denote a standard normal variable, and let P, denote the uniform distribution on {1,...,n}. The
Erdés-Kac Theorem states that if N (n) is a uniformly distributed variable on {1,...,n}, then w (N (n))
is asymptotically normally distributed as n — oo with both mean and variance equal to loglogn. The
contribution of this paper is a generalization of the Erdés-Kac Theorem to a larger class of random variables
by considering perturbations of the uniform probability mass 1/n in the following sense. Denote by P, a
probability distribution on {1,...,n} given by Py (i) = 1/n +€; . We provide sufficient conditions on &; ,
so that the number of distinct prime factors of a Py,-distributed random variable is asymptotically normally
distributed, as n — oo, with both mean and variance equal to loglogn. Our main result is applied to
prove that the number of distinct prime factors of a positive integer with the Harmonic(n) distribution
also tends to the normal distribution, as n — oo. In addition, we explore sequences of distributions on
the natural numbers such that w(n) is normally distributed in the limit. In addition, one of our theorems
and its corollaries generalize a result from the literature involving the limit of Zeta (s) distributions as the
parameter s — 1.

1. INTRODUCTION

Given a natural number n, the number of distinct prime factors of n is denoted w (n). The function w may
be written as w(n) = Zmn 1, where the sum is over all prime factors of n. In 1917, Hardy and Ramanujan
(p. 270 of [5]) proved that the number of distinct prime factors of a natural number n is about loglogn. In
particular, they showed that the normal order of w (n) is loglogn; i.e., for every € > 0, the proportion of the
natural numbers for which the inequalities

(I —¢)loglogn <w(n) <(1+¢)loglogn

do not hold tends to 0 as n — co—with a typical error of size v/loglog n. Informally speaking, the Erdés-Kac
Theorem generalizes! the Hardy-Ramanujan Theorem by showing that w (n) is approximately distributed as

loglogn + Z+/loglogn

for large n, where Z denotes a standard normal variable. More precisely, the Erdés-Kac Theorem is the
following result (p. 738 of [4]).

Theorem 1. Let n > 1. Let P, denote the uniform distribution on {1,2,,...,n}, and let Z denote a
standard normal variable. As n — oo,

P, (m <n:w(m)—loglogn < x(loglogn)1/2) —P(Z<ux).

The contribution of this paper is to extend the Erdgs-Kac Theorem to a larger class of random variables
on the set [n] := {1,2,...,n} which also have, asymptotically, loglogn + Z - v/loglogn many distinct prime
factors.

While the Hardy-Ramanujan theorem provides information about the average behavior of the number of prime factors of
a natural number, the Erdés-Kac theorem offers a more detailed probabilistic description of their distribution, by taking into
account not just the average number but also the variability around that average.
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1.1. A Generalization of Erdgs-Kac Theorem for w (-). Define a probability mass function (PMF) P,
on [n] given by

(1) P, (i) = % Feim

Due to the axioms of probability, the terms ¢; ,,,1 <4 < n, satisfy the constraints

(2) Zam:O; neN
i=1

(3) siyne{—l,l—l};neN,lgign.
n n
The motivation for defining P,, in terms of the uniform distribution is due to Durrett’s proof (Theorem
3.4.16 in [3]) of the Erdés-Kac Theorem. Replacing the uniform distribution P, with the distribution P,
in Durrett’s proof naturally yields some constraints that the terms ¢; ,,1 < ¢ < n, must satisfy in order to
conclude that an integer-valued P,-distributed random variable has about loglogn + Z+/loglogn distinct
prime factors. Our main result is the following theorem, where |-] denotes the floor function.

Theorem 2. (Generalized Erddés-Kac Theorem for w) Let Z denote a standard normal variable. Suppose
the following statements are true.

o There exists a constant C € R such that for all n > 1 and for all primes p with p > n'/loglogn,

[n/p]

(4) Z Eipn <
=1
o There exists a constant D € R such that

el

I

(5) Z Elpr-prn = %
1=1
for allmn > 1, for each k, and for all k-tuples (p1,...,pxr) consisting of distinct primes of size at most
nl/ log logn'
e For any prime p,
[n/p]
(6) lim > epn =0.
=1

Let P denote the PMF obtained by imposing the constraints (4 — 6) on the PMF P,, given by P, (i) = %—i—am.
Asn — oo,

Py (m <n:w(m)—loglogn < x(loglogn)1/2) —P(Z<x).
Remark. If ¢; , = 0 for all ¢ < n, then P}, = P,, and Theorem 1 is obtained.

1.2. Outline. The proof of Theorem 2 is provided in §2; the proof applies the method of moments and
is motivated by Durrett’s proof of the Erdés-Kac Theorem (Theorem 3.4.16 in [3]). Moreover, in §2, the
constraints (4 — 6) are applied to ensure that P also satisfies Durrett’s method of moment bounds. In
§62.1, Theorem 2 is applied to show that the number of distinct prime factors of a random natural number
chosen according to the Harmonic(n) distribution is asymptotically normally distributed with both mean
and variance equal to loglogn. In §3, Theorem 2 is used to prove statements about convex combinations of
distributions satisfying constraints (4 — 6). In §4, we define conditions that ensure w(X; (n)) is asymptotically
normally distributed, with mean and variance both equal to loglogn, for a sequence of random variables
(Xj (n));5, as j — oo and n — oo. In §5, Theorem 2 is applied to show that the number of distinct prime
factors of a randomly chosen integer according to any of the following distributions has the same limiting
distribution as the case of a uniform variable:

e Any convex combination of the Harmonic(n) and uniform(n) distributions,
e The Zeta (s) distribution as s — 1,
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e The Logarithmic(s) distribution as s — 1,
e A geometric power series distribution as s — 1,
e A Logarithmic-Zeta(s, ) distribution as (s,a) — (1,1).

2. PROVING THEOREM 2

Define v, = ni/loglogn

Lemma 1. Asn — oo

Ln/p)
+ Z Elp,n / (loglog n)** = 0.
=1

>

an<p<n

"=

Proof. Given n and any prime p with p > «a,,, we have

[n/p]
(3) (4)
np) ©'% @

=1

SIS

n

Therefore,

[n/p]
C+1
(7) + Z Elp,n € |:07 :|
=1 p

"=

for all n. Thus,

[n/p]
+ Z Elp,n / (loglog n)1/2 =0
=1

>

anp<p<n

K=

due to (7) along with the fact that Durrett (p.135 of [3]) shows

1
Z - /(loglogn)l/2 — 0.
p

an<p<n

The following lemma is proved by Durrett (p. 156 of [3]).

Lemma 2. Ife > 0, then a,, < n® for large n and hence

8 - =0
(8) X

for all r < .

Proof of Theorem 2. Given a natural number m and a prime p, define §, (m) = 1 if p divides m, and 0
otherwise. Let

gn (m) = & (m)

p<a,

denote the number of distinct prime factors of m of size at most «,,, and let E,, denote expectation with
respect to Py . Then
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E, Z 5| = Z Py (m:d,(m)=1)

an<p<n an<p<n
[n/p]

Z Z]P’fl(m:m:lp)

an<p<n I=1

[n/p]

Y3 (5 e

anp<p<n Il=1

>

an,<p<n

—
—

[n/p]

+ § Eip,n | »
=1

IN
bR

so by Lemma 1 it suffices to prove Theorem 2 for g,; i.e., replacing w (m) with g, (m) in the statement of
Theorem 2 does not affect the limiting distribution.

Consider a sequence (Xp)p>2 of independent Bernoulli random variables with prime-valued indices such
that P (X, =1) = 1/p and P(X, = 0) = 1 — 1/p. Note that

[n/p]

E (d,) + Z Elp,n 4; 1/p

as n — o0o. Let

S, = ZXP’

p<an
b, = E(S,),
az = Var(S,).

By Lemma 1, b, and a2 are both loglogn + o ((log log n)l/z), so it suffices to show
B (. gu (m) — by < za,) = P(Z < ).
An application of Theorem 3.4.10 of [3] shows
(Sp —bn) Jan — Z,
and since | X,| < 1, it follows from Durrett’s second proof of Theorem 3.4.10 [3] that
E((Sp —by) Jan)" = E(Z")
for all 7. Using the notation from that proof (and replacing i; by p;) it follows that
D= X% o DR ),

where the sum Zn extends over all k-tuples of positive integers for which ry +- -+ 7, = r, and ij extends
over all k-tuples of distinct primes in [n]. Since X; € {0,1}, the summand in }° E (X Xpr) s

1
pP1-- Pk

E(Xpl ka) =
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by independence of the X,,’s. Moreover,
En (Op, -+ 0p) S Pr(m: 0p, (m) = 6p, (M) -+ = b, (m) = 1)

s
= Z P,(m:m=Ip1---pg)
=1
e
1
RS (5 + al,,l...pk,n)

=1

P1-Pr
= n + E: Elp1---pr,n
=1

n

(%) {pl...ka _,_2,
n n

The two terms E (X, --- X, ) and E,, (8, - - - 0p,,) differ by at most

max — —
P11 Pk n

Therefore, the two rth moments differ by

r! 1 1-D D
Ty T < - @ — .
E(S) — En (g)] < Zr!...m!k!zm&“{ m ’n}

IN
=
o
o]
— =
—
3|
-l
Sl
—
N
—
N————
5

< max

(_82

Using binomial expansions and the inequality above, we see that

e

IE(((Sn = bn) /an)") = En (((gn — bn) Jan)")| = [1/ap| [E((Sn —bn)") = En ((gn — bn)")|
<|1/al| - max { 1 :LD, %} 2 (;) akpr=k
=|1/al| - max { 1 ;D, %} (atp +bp)"

Therefore, since b,, < a;,, we have

r ry; (8)
[E(((Sn = bn) /an)") — En (((gn — bn) /an) )| = 0
for all r as well. Since E (((S,, — by) /an)") — E(Z") for all r, this completes the proof of Theorem 2. [
The following definition is based on Theorem 2.
Definition 1. We refer to distributions satisfying constraints (4 — 6) as E-K distributions.

2.1. The Harmonic Distribution. Now we will apply Theorem 2 to show that the harmonic distribu-
tions are E-K distributions. Given n € N, consider an integer in [n] chosen according to the Harmonic(n)
distribution, whose PMF is given by
1
H, (i) = ——,1<i<n.

=
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If i € [n], then equation (1) implies
1 1

Ein = ~n 1 -
1 n
ZZ] 13
Therefore,

[n/p] [n/p] 1 1
Elp,n = T~ T o

=1
P )
- 1

p27:1 1 n
_1 Loyl

P n

1
S )

p

o (4) holds with C = 1. Moreover,
b Ed .
Elpy-pr,n = Z (—lp1 DE ZZ ) % - ﬁ)

=1 =

PR P

pP1-- Pk E?:l %

< 1 _ <P1'”Pk — 1)
TP Dk n

= 1/n,

o (5) holds with D = 1. Finally,

[n/p] L"/PJ 1
lim g Elp,n = lim Z f — /)
n—oo0 n—o0o lezl 7

=1
llog(n/p) 1
p logn P
—1/p—1/p
fr— ()7

so constraint (6) holds. By Theorem 2, this shows that the number of distinct prime factors of an H,-
distributed random variable is asymptotically normally distributed, as n — co, with both mean and variance
equal to loglogn.

3. CoNVEX COMBINATIONS OF E-K DISTRIBUTIONS

The following theorem shows that any convex sum of two E-K distributions is also an E-K distribution.

Theorem 3. (Convex Combinations for Erdds-Kac (CLT)) Let n > 1 and 0 < XA < 1 be fized. Suppose di p,
and dg,, are two PMFs on [n] satisfying the constraints (4 — 6) for all n > 1. Then any PMF of the form

also satisfies constraints (4 — 6). In particular,
Py (m <n:w(m)—loglogn < x(loglogn)l/z) —>P(Z<x)

as n — o00.
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Proof. Denote
€im =d1 (i) —1/n,
Eg,n =dan (i) — 1/n,
and
Ein =P (i) —1/n.
We have
[n/p] [n/p]

Z Elpn = Z <)\d1,n (Ip) + (L = A) d2.n (Ip) — %)
=1

=1
Ln/p]

1
Q) 3 (A (tpn + 1/n) + (1= \) (€] + 1/) — E)
1=1
Ln/p]
= Z (/\Elp,n + (1 - )\) E;PJZ)
1=1
[n/p] [n/p]

= Z eipn + (1 —A) Z Elpm
=1 =1

LG HI-N0
p

where the latest inequality is obtained by applying constraint (4) to both d; ,, and dz ,,; therefore, (4) holds
for the PMF given by (9) with C' = ACy + (1 — A) C5. Similarly,

| 2] | 2] X
> lppn= Y <Ad1,n(lp1-~-pk>+<1—A>d2,n<1p1-~-pk>——)

n
=1 =1

3

QS (Mt + 1)+ (1= 2) Sy g+ 1)~ 1)

()\Elpl---pk,n +(1=X) E;pynpk,n)

n n
Pl Pk P1-Pk

Y it 00 Y

=1 =1
_ADi+ (1)) Dy

n

where the latest inequality is obtained by applying constraint (5) to both d; ,, and da ,; therefore, (5) holds
for the PMF given by (9) with D = AD; + (1 — A\) Dy. Furthermore,

ln/p) ln/p) ln/p)
lim_ > fipn = A lim > epm+ (1) lim > lpm
=1 =1 =1
=X-0+(1—-X)-0
= O7

where the second equation uses the fact that the distributions d; and ds satisfy constraint (6). Therefore,
(6) holds for the PMF given by (9).
O

By Theorem 3 and mathematical induction, we obtain the following.



A GENERALIZATION OF THE ERDOS-KAC THEOREM 8

Corollary 1. Suppose di ..., dkn are PMFs on [n] satisfying the constraints (4 — 6), and suppose ()\j)]?

Jj=1
is a sequence of nonnegative numbers which add to unity. The PMF
k
Py (i) = > Ajdjn(i)
j=1

also satisfies constraints (4 — 6). Therefore,

Py (m <n:w(m)—loglogn < x(loglogn)l/z) —>P(Z<x)
as m — oo.

We now present an alternate proof to the remark under Corollary 3.4 in [1]; their proof uses both the
Tauberian theorems for the harmonic distribution and the uniform distribution simultaneously. We present
a proof based on Theorems 2 and 3 of this paper.

Corollary 2. (Convexr Combinations of Harmonic Distribution and Uniform Distribution) Let A € [0,1]
and consider the PMF given by
A 1-A
Pri)=—+4+—31<:<
n (7’) lh/n + n ? — 1 — n;
where hy, is the n'" harmonic number given by hy, =1 1/i, then

Py (m <n:w(m)—loglogn < x(loglogn)l/z) —>P(Z<x)
as n — 0o.
Proof. As noted in the remark after Theorem 2, the uniform distribution satisfies constraints (4 — 6), and

in §§2.1 we showed the harmonic distribution satisfies constraints (4 — 6). By Theorem 3, their convex sums
also satisfy constraints (4 — 6). 0

The following theorem shows that if given the PMF 1/n + ¢, ,, of a sequence of E-K distributions, under
additional constraints, the PMF 1/n — ¢, ,, is also the PMF of a sequence of E-K distributions.

Theorem 4. (Reflection Theorem) Let P, satisfy constraints (4) and (6) for all n > 1. In addition, assume
€in € [ 1 1} for all i and for all n, and that for all k-tuples of distinct primes p1,...,pk, there exists a

n’n

constant D > 0 such that
e
(10) _% < ; Elpy-pryn = %
If
PL() = -~ cim,
then
P (m <n:w(m)—loglogn < :E(loglogn)l/2> —P(Z <x)

as n — oo.
Proof. Define ¢} ,, == —¢; , s0

[n/p) [n/p)

Z Elpn = — Z €in

=1 =1

@ n/p]
n

IN
bR
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so constraint (4) holds with C' = 1. Similarly,

Eeg Ewg (

Z Elpyopen = — Z Elpr-prn 1§0) %,
=1 =1
so constraint (5) holds. Moreover,
Ln/p] Ln/p]
Jim, 2 o == i D et
=0,
where the latest limit is due to the assumption that P,, satisfies constraint (6). O

4. A CENTRAL LiMIT THEOREM FOR E-K DISTRIBUTIONS ON N

We would like to formalize the notion of asymptotic normality for w(X;) in the limit of a sequence of

random variables (X;),;, on N. Towards that goal we provide the following definition.

Definition 2. Given an infinite sequence of random variables X1, X, ... defined on N, let X; (n) denote
the truncation of X; on [n]. Define ¢, := P (X; (n) =1) — 1/n. The sequence X1, Xo, ... is said to satisfy
the uniformity along primes property if the following holds. There exists constants C' and D such that
for all n there exists a d > 1 such that for all j > d:

e For each prime p > «,,

lp,jm > -
=1 p
e For each k > 1 and for all k-tuples (p1,...,px) consisting of distinct primes of size at most «a,

el

Z =
Elpq--- i .
P1-Pk,J;M n
=1

In addition, for any prime p,
[n/p]

lim lim E Eip,jn = 0.
Jj—00 n—00 =

Theorem 5. Assume X1, Xa,... is an infinite sequence of random wvariables defined on N satisfying the
uniformity along primes property. Let P;,, be the probability distribution of X; (n) on [n]. If (nj)jeN 18
any sequence in N\ {1} tending to oo such that (4 —5) hold for X; (n;) for all j > 1, then

Pjn, (m <n;:w(m)—loglogn; <z (loglognj)1/2) —-P(Z<x)
as j — 0.

Proof. Let’s proceed by contradiction. That is, suppose (nj)jeN is any sequence in N\ {1} tending to oo and
suppose there exist a sequence (ji),cy, some zo € R, and some gy > 0 such that

Pjins, (m < mj, :w(m)—loglogn,;, <z (loglognjk)lﬂ) —P(Z <x0)| > e
for all k > 1. Consider the following PMF on [n] for all n > 1, which satisfies the hypotheses of Theorem 2:
P (i) = 1/n ' %fnjk #nforall k>1,

Py (1) if My = Mo

where £’ (n) is the smallest integer satisfying n;,, ~= n. It is clear that P}, is defined for all n > 1 and
satisfies the hypotheses of Theorem 2 due to Definition 2. Let € = ¢¢, then there is some d > 1 such that

<e

1/2
]P)jk/(n)v"ik/(n) (m <My ' W (m) —loglog My < T0 (log log njk,(n)) ) —P(Z < x)
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if n > d, by Theorem 2. The fact that at least one k' (n) exists such that My =T when n > d is due
to the fact that nj — oo as k — oo, so there are infinitely many %’ (n) such that nj,, =~ =n when n > d.
Thus, Theorem 5 holds by contradiction. 0

4.1. Moment Generating Functions and Characteristic Functions.

Definition 3. Let X denote a random variable. The moment generating function (MGF) of X is
defined as My (t) = E (¢'*), and the characteristic function (CF) of X is defined as ¢x (t) = E (¢"X).
We have the following two facts about the MGF and the CF that will be used in the proof of Corollary 3:

e The k*" derivative of Mx (t) at t = 0 is the k*" moment of X.

e Leévy’s Continuity Theorem: Convergence in distribution, X, 4 X , for a sequence of random
variables is equivalent to pointwise convergence, ¢x, — ¢x, of the corresponding CFs on all of R.

Corollary 3 and Corollary 4 below allow us to state Theorem 7.1 of [2] in a slightly different way.
Corollary 3. Suppose X1, Xo,... is an infinite sequence of random variables defined on N that satisfies the
uniformity along primes property. Let (nj)jeN be any sequence in N\ {1} tending to oo such that (4 -

5) hold for X; (n;) for all j > 1. Let P; be the probability distribution of X; on N, P;,, be the probability
distribution of X; (n) on [n], and define p;n =E;, (w(X; (n))), then the following is true:

1/2
Pjn; (m <njiw(m) = i, < (tjin,) / ) —P(Z<x)

as j — oo. Additionally, if p1; < oo for all j > 1 and
lim (uj/ (loglogn;)"/* — (10g10gnj)1/2) =0,
Jj—o0

then
By (m:w(m)—p; <o ()?) 5 B(Z <a)

as j — oo, where

Ky = Ej (w (XJ)) = lim Hijn-

n—oo
We also have the following asymptotic properties:

lim (M,nj/ (loglog ;)" — (1oglognj)1/2) —0,

Jj—o0
lim (,u;/f — (loglognj)l/z) =0,
j—o0 at)
and
im _Mimg lim M
j—oc loglogn;  j—oc loglogn;

Proof. Let Mj,, and ¢; . be the MGF and CF of

w (X (ny)) — loglogn;

y/loglogn,; ’
and let M; , and ¢;, be the MGF and CF of
w (X (n5)) = tjn,
VHimn;

We have
—t(loglogn;)/2 —
Mjn, (t) = e 1818 AL ) ((10g10gnj) 12 t)

and
1/2

M; 7 (t) = eit#j’nj Mw(Xj("j)) ((ij”j)_lﬂ t) ’
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Let’s compute the mean from the MGF Mj ,,; (t):
Ma{,nj (0) = — (loglog nj)1/2 e~ t(loglog nj)l/QMw(xj(nj)) ((1og log nj)fl/Q t)
e torlogny) !y ((loglognj)—1/2 t) (loglogn,)~Y/2 L:o
= — (loglog nj>1/2 + 1, (loglog nj)71/2
— 0,

where the last limit holds due to the proof of Theorem 2 (we showed the moments all approach the moments
of the normal distribution) which is used in the proof of Theorem 5 above; thus,
(11) lim (,ujﬁn]./ (log log nj)1/2 — (loglog nj)1/2) =0
j‘)OO
holds. Therefore,
Hjng
im ——— =
j—oo loglogn;
From equation (11) we can conclude
. 1/2
Jim (Mj,/nj - (loglognj)1/2) =0.

This is because,

Mjn,; — loglogn;
)1/2

tjn,; — (loglogn;)
)1/2

1/2
uj/nj — (loglogn;

)1/2‘ _ <

:“;/712] + (loglogn; (loglogn;

Now we want to show convergence in distribution using the characteristic functions. We use the fact
that the characteristic function ¢y, (x;(n,)) (t) is continuous at ¢ = 0. According to properties of continuous
functions, we have the ratios

7“‘“’;1/712]‘ . 1/2 1/2
(12) 'te(l glogn;)t/? = eﬂt(#j’nji(loglognj) ) — el = 1,
671 O, O, n]
and also
—1/2
(13) PulX,n)) ((“J’*”ﬁ) t) L, Guxm0) (0)

buix,ny ((0glogny) 2 t)  Putxs i (0)
as j — oo. This gives us the required convergence of ¢; , at any ¢; i.e.,
—itpl/? —1/2 )\ (12,13) _; ) 1/2 _
Giu (1) = € 60, (i) 7 8) TR e8P ) ((loglogmy) T2 e)
Se =gy ().
By Lévy’s Continuity Theorem,
1/2
Pjn, (m <njiw(m) = pin, < (Wn,) / ) —P(Z<uz).
Suppose additionally that p; < oo for all 7 > 1 and

lim (Mj/ (loglognj)1/2 - (loglognj)l/Q) =0.

J—o0
Similarly, let ¢; ., be the characteristic function of
w(Xj) — 1

vV
Then

—17 1/2 - —it(loglogn;)1/? —
Gy (1) = 75 b,y ()12 ) e 01050 g ) ((loglogmy) T2t

e 2= g, (t),
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for any t € R. Thus, again we have that
Pi (miw(m) = <w(uy)'?) > P(Z <),
by Lévy’s Continuity Theorem. This completes the proof. O

Remark. We can replace p; in Corollary 3 with any sequence a; that satisfies the limit
lim (a;/ (loglogn;)'/*  (loglog n,)"/*) = 0,
Jj—o0

to get a similar result. This is a generalization of Theorem 7.1 in [2] which states this result for particular
sequences of Zeta (s) distributions as their parameter s — 1. In their result, the mean was Ep p~?°, where
the sum is over all prime numbers.

Definition 4. Given an infinite sequence of random variables X1, X, ... defined on N, let X (n) denote
the truncation of X; on [n]. If X7, X, ... satisfies the uniformity along primes property, and X, (n) satisfies
(4 - 5) for any n and any j, then we say the sequence satisfies the complete uniformity along primes
property.

The following lemma will be applied in Corollary 4.

Lemma 3. If X1, Xo,... has the complete uniformity along primes property and p1; < oo for all j > 1,
then p; — 0o as j — oo.

Proof. For any sequence (nj)jeN in N'\ {1} tending to oo we have loglogn; ~ i, ~ p;j as j — 0. O

Corollary 4. If X1, Xs,... has the complete uniformity along primes property and p; < oo for all
7 >1, then

By (m:w(m) =y < )?) > P(Z <a)
as j — oQ.

Proof. Define n; := max { Lee“jj ,2} so that n; — oo by Lemma 3 and the limit
lim (uj/ (loglogn;)'/? — (loglog nj)l/z) =0
J—o0
in Corollary 3 holds. O

4.2. The Zeta Distribution. We show the zeta distribution has the complete uniformity along primes
property as s — 1. Given s > 1, denote by Z, the Zeta (s) distribution so that for any j € N,

1
Zs(j) == )
W= 5w
where
1
)= =
=17
denotes the Riemann zeta function. Since Theorem 2 involves distributions defined on [n], restrict the
Zeta (s) distribution to [n] and then normalize by dividing by Y., ﬁ, ie., for j € [n],
1
Zon () = 3°¢(s)
s,n = n 1
Zi:l ¢ (s)
1

= - n 1;
J i

and Zs,, is known as the Zipf distribution with parameters n and s. For a Zifp distribution, we have
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Thus,

D ENVIE n

iyt n/p)
p® 27:1 1/1s n

) S apy n/p)
Y etpn = -
=1

IA
%] =

IN
"=

3

so constraint (4) holds with C' =1 for any s. Moreover,
[mﬁka el 1/ s ||
Z Elpy-p _ Zl:l /(pl"'pk) _ tpipe
10 Pk,N n s
— Yo 171 n

IR WD V50 VAN S |
(prepe)” D1/l prcepe
1 1 1
S 5 + -
(p1---pr) pr--Pk N
1
S —
n
so constraint (5) holds with D =1 for any s. Furthermore,
Ln/p] Ln/p] s
1/ 1
lim Z Elp,n = lim —Zl:ln /Ip) - -
n—o00 P n—o00 Zl:l 1/[5 p
_1 .1
PP
s:;l 07

therefore, (6) holds as s — 1.

Corollary 5. Let (aj)jeN be any sequence of real numbers such that 0 < a; — co. If X; is a sequence of
Zeta (1 + 1/a;)-distributed random variables, then

=y p T4 < oo,

P
lim p; = oo,
and
By (m:w(m) =y <o ()?) 5 P(Z <)
as j — Q.

This latest limit is the statement of Theorem 7.1 in [2].

4.3. Convex Combinations of E-K Distributions on N. We can also take convex combinations of
sequences to form new sequences which satisfy the uniformity along primes property.

Corollary 6. Let A € [0,1]. Let X1,Xs,... and Y1,Ys,... be two sequences of random wvariables on N
that both satisfy the complete uniformity along primes property. Then we can define a new sequence
21,23, ... such that each Z; is the convex combination of X; and Y;. In particular,

]P)Zj (Z) = )\]P)Xj (Z) + (1 — /\)Pyj (’L),’L >1,7>1.

Then Z; satisfies the complete uniformity along primes property and thus Theorem & holds for the
Z; sequence.
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Proof. The proof is similar to that of Theorem 3. O

Corollary 7. Apply Corollary 6 to any convex combination of a finite number of sequences
(X115, X1,2,-0) 50 (Xn1, Xnp2, - 00)

that all satisfy the complete uniformity along primes property. Then the conclusion of Corollary 6 holds
for this convex combination.

Proof. Use induction and Corollary 6. O

5. ILLUSTRATIVE EXAMPLES

In this section, we give examples from the class of distributions P¥ that satisfy the hypotheses (4 — 6) and
examples of limits of distributions to which we can apply Theorem 5. It will be shown that the statement
of Theorem 2 holds when P is replaced with either the Harmonic(n) distribution or a convex combination
of Harmonic and Uniform Distributions. Then we show that the Zeta (s) and the Logarithmic distribution
satisfy Theorem 5 as their parameters tend towards limits. We introduce a 2-parameter family of distributions
LZ (s,«) which includes the Logarithmic distribution and Zeta distribution as special cases (when a = 1
and s = 1 respectfully). We also look at a geometric power series distribution that converges to the normal
distribution on all truncations as s — 1.

5.1. The Harmonic Distribution. This was proved in §§2.1 above.
5.2. The Zeta Distribution. This was proved in §§4.2 above.

5.3. The Logarithmic Distribution. Given a real number s with 0 < s < 1, a logarithmic distribution
with parameter s is given by

-1 st
Ly(1) = —————; i€eN.
s () log(1—s5) 4
Now we will show that the number of distinct prime factors, w (-), of a truncated log-distributed variable
has the same central limit theorem as the uniform distribution as n — oo and s — 1. For i € [n] we have

%i st
. Tog(1—s) 4 ¥
Lgp (i) = Znog il v 7= nz o
=1 log(1—s) 1 =11
SO
v ¥ 1
Ei,n = n 3 - —.
=17 "
Therefore,
3 Llfowr
€l = Ip —
p,n n i
=1 =1 =1 Sl "
2] @)
P Sl _ Ln/p]

IN

IN

IN
RI=-WI= Q=
S
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o (4) holds with C' = 1. Similarly,

LmﬁPkJ LmﬁPkJ (s)!P1 Pk
Z . _ lpipn_ L
P1Pk,1 n 1
=1 =1 Zl:l ST n
1 lell. .ka (sP17PE)! 1
= 7
< — + =
p1-c Dk SIS pLopE M
1 1 1
< — + —
Pi--"Pk P1-"Pk N
1
=

so (5) holds with D = 1. Moreover, we have

Ln/z] nosg 1 log (1 — sP)
Z €ty -

1
plog(l—s) p

1
300.

Therefore, (6) holds, so w (L; s) is asymptotically distributed as A (loglogn,loglogn) as n — oo and s — 1.

Although Kac’s heuristic for Theorem 1 is based on the asymptotic independence in the uniform case, we
will show that the events {divisible by p} and {divisible by ¢} are not independent for any value of s. Let
A, denote the set of all positive integers divisible by p, then

-1 (s?)
Ls(Ap) =
(4p) ;bg(l—s) pl
_ llog(1—s7)
~ plog(l—s)
and
Spq)l

+(Ap N4y Z1og 1—5

_ 1 log(1—sP)
pq log(1—s)

) pql

It is worth noting that

. 1
213}1/5 (ApNAg) = g ilg% (Ls (Ap) Ls (Ag))

as s — 1; so independence is only approached in the limit.

5.4. Geometric Power Series Distribution. Let s € (0,1). Define:

1—s

P(i) = sy 1eN

S

then this distribution satisfies the hypotheses of Theorem 2 in the limit as s — 1. As s — 1 it seems that
this distribution is converging to the uniform distribution on any truncation, so the result is to be expected.
Truncating on [n] leads to

Ein = n )
J
E j=1 S n
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therefore

[n/p] [n/p] 5 1
Elpn = —-=n ;=
z; ’ z; (Za‘—l 5 ”)

s —sl/plH1 | n/p

s—sntl g
wp Lnla) _ L)

so constraints (4 — 6) hold with C' =D = 1.

5.5. Convex Combination of Harmonic and Uniform. Following Cranston and Mountford in [1], let
A € [0, 1] and define

A 1
P,(i)=—=—+(1—-X)—; ieN
()= =+ (1= N d
where h,, is the n'® harmonic number. Then P, satisfies the hypotheses of Theorem 2. This is proved in

Corollary 2 above using Theorems 2 and 3.

5.6. A Logarithmic-Zeta Distribution. There is a 2-parameter family of power series distributions on
N for (s,a) € R? such that 0 < s <1, @ > 1, and s = a = 1 is not allowed; the PMF is given by

1 st

LZs (1) = ———; 1 €N.
)= s
Similarly, there is a truncation of LZ given by
. 1 st
LZon (i) = = o i< n,
Ej:l 7~ !
and a description of the ¢;, given by
1) 1 sto1
Ein = — - —
o E?Zl JS_i i n

It is clear that a similar type of argument shows that Theorem 2 holds for the truncated logarithmic-zeta
distribution as (s, ) — (1,1); in particular, we obtain

ln/p]

< 1 < 1
Elpjn > — S —
= P p
and
el
= o1 1 N 1_1
€l n < — - < —.
e TR Tl prepe m T on
Furthermore,
[n/p] L1 1 .
s— a—
nll_)ngoz(elpn%——g 0

5.7. Passage to the Limit: 1imlLZsya. We would like to look at the behavior of w (X) for X distributed
S—r

a—1
as LZs o as (s,a) — (1,1). The motivation for this comes from the fact that as (s, ) — (1,1) the truncated

distributions resemble the harmonic distribution which we know behaves similarly to the uniform distribution
on [n] when n — oo according to Theorem 2.

In Theorem 5.5 of [2], they provide the moment generating function for w (X,) when X, is a Zeta (a)
distributed random integer with parameter a > 1. They go on to prove that

& (X)) = w(on) - pr_a i 7

\/ 2P
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as o — 1 in Theorem 7.1 of [2] by using this moment generating function. Later, Cranston and Mountford
[1] give a new proof of Theorem 1. The proof uses Theorem 7.1 about zeta distributions to prove Erdés-Kac
in a way that translates over to settings where zeta functions still make sense.

We generalize Peltzer and Cranston’s Theorem 7.1 in [2] in the following way. As (s,a) — (1,1), we show
that
w (Xs,a) — HUs,a i Z,

Vs

where i, is the mean of w (X5 o) when X ,, is distributed as LZ, . In fact, we do not need independence,
nor do we need to compute the mean for any particular s, « in order to conclude this (neither do we need to
compute a MGF).

In §4, we proved a stronger statement than the above statement about LZ; ,; we proved that in general

W (Xsa) =

)

X. _ .
o(x,) = &) 1 4,
v i
as long as the truncated variables X; (n) have the complete uniformity along primes property. Here we
assume that p; = E(w (X)) < co. When (s,a) — (1,1), we recover the above statement about LZj .

5.8. A Non-Example: Zeroing at a Set of Primes. Fix n € N and let p < n denote a prime. Consider
the PMF defined by

1 N
P, (i)_{#an]\pN) 1€ pN,

0 i € pN.
We have
1 )
Ein = W_l/n ngNu
1 —1/n i € pN.
Therefore,
ln/p)
i — iy L/P]
i Z iy = lim —L"E
=-1/p
# 0.

Thus, this PMF does not satisfy constraint (6). We conjecture that the conclusion of Theorem 2 does not
hold for this distribution.

5.9. An Erdsés-Kac Theorem for Continuous Variables. Consider a continuous uniform random vari-
able N,, on the interval (0,n]. Then [N,] is a uniform variable on [n]. Therefore, we have

Corollary 8. Let Z denote a standard normal variable, and let X, be a continuous random variable on
(0,n]. Define the €., according to the following relation: P, ([X,] =1i) = * +&;,. If the constraints

o There exists a constant C' such that for allm > 1 and for all primes p with p > «,

lpn >~ —_-
=1 p

o There exists a constant D such that

. ,
Z Elpy--prn = o
=1
for all n > 1 and, for each k, all k-tuples (p1,...,pr) consisting of distinct primes of size at most
Qp, and
e For any prime p,
[n/p]

lim E Eipn =0
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all hold, then
P, (t <n:w([t]) —loglogn < x(loglogn)l/z) —>P(Z<x)

as n — o00.

6. CONCLUSION

Theorem 2 generalizes the Erd6s-Kac Theorem for w () to distributions other than the uniform distribu-
tion, and this theorem was proved by imposing constraints (4 — 6) on a PMF of the form P (i) = 1/n+ ¢, .
We showed that the uniform and harmonic distributions satisfy these constraints; then, we showed that any
convex sum of these PMFs also satisfies the constraints (4 - 6).

The uniformity property provides a natural way to examine asymptotic properties of truncations of vari-
ables with support N. Given an infinite sequence X1, Xs, ... of random variables on N satisfying uniformity
along primes, Theorem 5 showed that for any sequence with n; — oo as j — oo, the distribution of w (X; (n;))
is asymptotically normally distributed with mean and variance both equal to loglogn; as long as X; (n;)
satisfies (4 - 6).

The definition of complete uniformity along primes allows us to obtain central limit theorems regardless of
how n — oo, and allows us to make asymptotic statements involving the mean of w (X;). This generalized a
statement from [2] involving the mean of w (X;) as s — 1 when X is a random Zeta (s)-distributed variable.

Another way to generalize Theorem 2 would be to incorporate it with other generalizations, e.g., [1, 2, 6, 7].
By incorporating Theorem 2 with these, further generalizations can be made in which the original setting is
not [n], the underlying distribution of the random-integer is not uniform, and w (n) can be replaced with a
more general strongly additive function f (n).

We also showed the complete uniformity property holds, and thus normality in the limit, for Zeta (s)
and a number of similar distributions. It is suspected by the authors, but not known, whether or not the
hypotheses (4 — 6) are necessary and sufficient for the conclusion of Theorem 2; we conjecture that is the
case.
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