NON STABLE RATIONALITY OF PROJECTIVE APPROXIMATIONS FOR CLASSIFYING SPACES

NOBUAKI YAGITA

Abstract

Let $B G$ be the classifying space of an algebraic group G over a subfield k of \mathbb{C} of complex numbers. We compute a new stable birational invariant defined by Benoist-Ottem as the difference of two coniveau filtrations of a smooth projective (Ekedahl) approximation X of $B G \times \mathbb{P}^{\infty}$. Then we show (by without and with the unramified cohomology) in many cases X are not stable rational.

1. Introduction

Let X be a smooth projective variety over $k \subset \mathbb{C}$. The conception of the rationality is how X is near to some projective space \mathbb{P}^{n} over k. Indeed, X is called rational if X is birational to a projective space \mathbb{P}^{n}. A variety X is called stable rational if $X \times \mathbb{P}^{m}$ is rational for some $m \geq 0$. A variety X is called retract rational if the rational identity map on X is factorized rationally through a projective space.

Of course, the existences and properties of non these rationality for X are widely studied by many authors (see explanations in [Pi]). For examples, such projective X which are surface bundles of three (or four)folds are studied detailedly. These examples are computed by often using the unramified cohomology $H_{u r}^{*}(X ; \mathbb{Z} / p)$ which is invariant of (retract) rationality.

There are another examples (exchanging \mathbb{P}^{n} by \mathbb{A}^{n}); the quasi projective variety represented by the classifying spaces $B G$ of an affine algebraic groups G [Me].

In this paper, we study the similar but different invariant $D H^{*}(X)$ for the projective approximation $X=X_{G}$ by Ekedahl for the classifying space $B G \times \mathbb{P}^{\infty}$. Note that stable rationality types of $B G \times \mathbb{P}^{\infty}$ and its projective approximation are completely different in general.

[^0]For example we compare these invariants when $G=S O_{2 m+1}$

$$
\left\{\begin{array}{l}
D H^{*}(B G) \quad \text { is not defined, } \\
H_{u r}^{*}(B G ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\{1\} \\
D H^{*}\left(X_{G}\right) / 2 \supset \mathbb{Z} / 2\left\{w_{3}, w_{5}, \ldots, w_{2 m+1}\right\} \\
H_{u r}^{*}\left(X_{G} ; \mathbb{Z} / 2\right) \supset \mathbb{Z} / 2\left\{1, w_{2}, w_{4}, \ldots, w_{2 m}\right\} .
\end{array}\right.
$$

(The notation $A\{a, b, \ldots\}$ means the A-free module generated by a, b, \ldots)
We compute a new stable birational invariant induced from BenoistOtten $\overline{\mathrm{Be}-\mathrm{Ot}]}$ as the difference of the two coniveau filtrations. For a fixed prime p, define the stable birational invariant

$$
D H^{*}(X ; A) / p=N^{1} H^{*}(X ; A) /\left(p, \tilde{N}^{1} H^{*}(X ; A)\right)
$$

for the smooth projective approximation X of $B G \times \mathbb{P}^{\infty}$. Here $H^{*}(X ; A)$ is the Betti (or étale) cohomology and $\left.N^{1} H^{*}(X ; A)\left(\operatorname{resp}, \tilde{N}^{1} H^{*}(X ; A)\right)\right)$ is the coniveau (resp. strong coniveau) filtration defined by the kernel of the restriction maps to open sets of X (resp. the image of of Gysin maps). For details see $\S 2$ below.

Hence $D H^{*}(X ; A) / p$ is written as a sub-quotient module of $H^{*}(X ; A) / p$.
Here an approximation (for degree $\leq N$) is the projective (smooth) variety $X=X_{G}(N)$ such that there is a map $g: X \rightarrow B G \times \mathbb{P}^{\infty}$ with

$$
g^{*}: H^{*}\left(B G \times \mathbb{P}^{\infty} ; A\right) \cong H^{*}(X ; A) \quad \text { for } *<N
$$

(In this paper, we say X is an approximation for $B G$ when it is that of $B G \times \mathbb{P}^{\infty}$ strictly speaking.) Let us write $D H^{*}(X ; \mathbb{Z})$ by $D H^{*}(X)$ simply as usual.

For example, let $G=G_{n}$ be the elementary abelian p-group $(\mathbb{Z} / p)^{n}$. Recall the $\bmod (p)$ cohomology (for p odd)

$$
H^{*}\left(B G_{n} ; \mathbb{Z} / p\right) \cong \mathbb{Z} / p\left[y_{1}, \ldots . y_{n}\right] \otimes \Lambda\left(x_{1}, \ldots, x_{n}\right)
$$

where $\left|x_{i}\right|=1$ and $Q_{0}\left(x_{i}\right)=y_{i}$ for the Bokstein operation $Q_{0}=\beta$. (Here $\Lambda(a, b, \ldots)$ is the exterior algebra generated by $a, b, \ldots)$.

Theorem 1.1. For any prim p, take $G=G_{n}=(\mathbb{Z} / p)^{n}, n \geq 2$ and $\alpha_{i}=Q_{0}\left(x_{1} x_{2} \ldots x_{i}\right) \in H^{n+1}\left(X_{G_{n}}\right)$. Then we have

$$
D H^{*}\left(X_{G_{n}}\right) / p \supset \mathbb{Z} / p\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right\} \quad * \leq n+1<N .
$$

Hence $X_{G_{n}}$ is not stable rational. Moreover $X_{G_{n}}$ and $X_{G_{n^{\prime}}}$ are not stable birational equivalent when $n \neq n^{\prime}$.

Next we consider the (connected) case $G=S O_{n}$ the special orthogonal group ($p=2$). Its cohomology is

$$
H^{*}\left(B S O_{2 m+1} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[w_{2}, w_{3}, \ldots . w_{2 m+1}\right]
$$

with $Q_{0} w_{2 m}=w_{2 m+1}$ where w_{i} is the Stiefel-Whitney class for the embedding $S O_{n} \rightarrow O_{n}$. Hence we can identify $w_{2 i+1} \in H^{*}(B G)$.

Theorem 1.2. Ya6 Let $X_{n}=X_{n}(N)$ be approximations for $B S O_{n}$ for $n \geq 3$ and $2^{m+2}<N$. Then we have
$D H^{*}\left(X_{2 m+1}\right) / 2 \supset \mathbb{Z} / 2\left\{w_{3}, w_{5}, \ldots, w_{2 m+1}\right\} \quad$ for all $2 m+1 \leq *<N$.
We consider the cases G is a simply connected simple group. Let G contain p-torsion. Then we know $H^{4}(B G) \otimes \mathbb{Z}_{p} \cong \mathbb{Z}_{p}$, and write its generator by w. Then we have

Lemma 1.3. Ya6 Let G be a simply connected group such that $H^{*}(B G)$ has p-torsion. Let $X=X(N)$ be an approximation for $B G$ for $N \geq$ $2 p+3$. Then

$$
D H^{4}(X) / p \supset \mathbb{Z} / p\{w\} .
$$

Next, we study the retract rationality of X_{G} for the above groups G. We consider the Zariski cohomology $H_{Z a r}^{*}\left(X, \mathcal{H}_{A}^{*}\right)$ where \mathcal{H}_{A}^{*} is the Zariski sheaf induced from the presheaf given by $U \mapsto H_{e t t}^{*}(U ; A)$ for an open $U \subset X$. It is well known when X is complete and smooth, the unramified cohomology is written

$$
H_{u r}^{*}(X ; \mathbb{Z} / p) \cong H_{Z a r}^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right),
$$

and it is an invariant of the retract rationality of X (Proposition 3.1. 3.4 in $[\mathrm{Me}]$).

By Totaro [Ga-Me-Se], the above cohomology is also isomorphic to the cohomological invariant (of G-torsors) i.e.

$$
H_{Z a r}^{0}\left(B G ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right) \cong \operatorname{Inv}^{*}(G ; \mathbb{Z} / p)
$$

Let $H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$ be the $\bmod (p)$ motivic cohomology of X so that

$$
H^{*, *}(X ; \mathbb{Z} / p) \cong H_{e t t}^{*}(X ; \mathbb{Z} / p) \text { and } H^{2 *, *}(X ; \mathbb{Z} / p) \cong C H^{*}(X) / p
$$

Let $0 \neq \tau \in H^{0,1}(\operatorname{Spec}(k) ; \mathbb{Z} / p)$. Then τ defines the map

$$
\tau: H^{*,,^{\prime}}(X ; \mathbb{Z} / p) \rightarrow H^{*, x^{\prime}+1}(X ; \mathbb{Z} / p)
$$

such that the cycle map is written

$$
C H^{*}(X) / p \cong H^{2 *, *}(X) / p \xrightarrow{\times \tau^{*}} H^{2 *, 2 *}(X ; \mathbb{Z} / p) \cong H^{2 *}(X ; \mathbb{Z} / p)
$$

From Orlov-Vishik-Voevodsky [Or-Vi-Vo], ([Te-Ya] for p : odd,) we have

Lemma 1.4. ([Or-Vi-Vo) We have the short exact sequence
$0 \rightarrow H^{*, *}(X ; \mathbb{Z} / p) /(\tau) \rightarrow H_{Z a r}^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right) \rightarrow \operatorname{Ker}\left(\tau \mid H^{*+1, *-1}(X ; \mathbb{Z} / p)\right) \rightarrow 0$.

$$
\text { Here } \quad \begin{gathered}
H^{*, *}(X ; \mathbb{Z} / p) /(\tau)=H^{*, *}(X ; \mathbb{Z} / p) /\left(\tau H^{*, *-1}(X . \mathbb{Z} / p)\right) \\
\cong H^{*}(X ; \mathbb{Z} / p) / N^{1} H^{*}(X ; \mathbb{Z} / p)
\end{gathered}
$$

This cohomology is called stable cohomology, and studied by Bogolomov [Bo]. [Te-Ya2].

For example, when $G=(\mathbb{Z} / p)^{n}$, it is known

$$
\operatorname{Inv}^{*}(G ; \mathbb{Z} / p) \cong \Lambda\left(x_{1}, \ldots, x_{n}\right)
$$

Theorem 1.5. Let $G=(\mathbb{Z} / p)^{n}$ and $X=X_{G}$. Then for $b_{i}=x_{1} \ldots x_{i}$

$$
H_{u r}^{*}(X ; \mathbb{Z} / p) \supset H^{*, *}(X ; \mathbb{Z} / p) /(\tau) \supset \mathbb{Z} / 2\left\{1, b_{2}, b_{3}, \ldots, b_{n}\right\}
$$

Hence each X_{n} and $X_{n^{\prime}}$ are not retract birational equivalent when $n \neq n^{\prime}$.
By Serre [Ga-Me-Se], when $G=S O_{2 m+1}$, it is known

$$
\operatorname{Inv}^{*}(G ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left\{1, w_{2}, \ldots, w_{2 m}\right\}
$$

Theorem 1.6. Let $G=S O_{2 m+1}$ and $X=X_{G}$. Then

$$
H_{u r}^{*}(X ; \mathbb{Z} / 2) \supset H^{*, *}(X ; \mathbb{Z} / 2) /(\tau) \supset \mathbb{Z} / 2\left\{1, w_{2}, \ldots, w_{2 m}\right\}
$$

Hence each X_{m} and $X_{m^{\prime}}$ are not retract rational equivalent when $m \neq m^{\prime}$.
We also give examples of nonzero elements of $\operatorname{Ker}(\tau)$ in Lemma 1.4.
Theorem 1.7. Let G be a simply connected simple group and $X=X_{G}$. Then there is the element $w \in H^{4}(X ; \mathbb{Z} / p)$ such that

$$
H_{u r}^{3}(X ; \mathbb{Z} / p) \rightarrow \operatorname{Ker}\left(\tau \mid H^{4,2}(X ; \mathbb{Z} / p)\right) \supset \mathbb{Z} / p\{w\}
$$

Hence X is not retract rational.
Remark. It is known $B \operatorname{Spin}_{n}$ for $n \leq 14$ are stable rational [Ko], [Me], Re-Sc]. Hence $B G=B \operatorname{Spin}_{n}$ for $7 \leq n \leq 14$ and its approximation $X=X_{G}$ are different stable rational type.

At the last three sections, we will do quite different arguments from the preceding sections, for quadrics X over \mathbb{R}. Let us write

$$
D H^{*}\left(X ; \mathbb{Z}_{p}\right)=D H_{e t t}^{*}\left(X ; \mathbb{Z}_{p}\right)
$$

where $H_{e t t}^{*}\left(X ; \mathbb{Z}_{p}\right)=\operatorname{Lim}_{\infty \leftarrow s} H_{e t t}^{*}\left(X ; \mathbb{Z} / p^{s}\right) \cong \operatorname{Lim}_{\infty \leftarrow s} H^{*, *}\left(X ; \mathbb{Z} / p^{s}\right)$.
In this paper, the étale cohomology (with the integral coefficients $\mathbb{Z}_{2}(*)$ for even degrees) means the motivic cohomology ;

$$
H_{e t}^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right) \cong\left\{\begin{array}{l}
H^{2 *, 2 *}\left(X ; \mathbb{Z}_{2}\right) \quad \text { for } *=\text { even } \\
H^{2 *, 2 *+1}\left(X ; \mathbb{Z}_{2}\right) \quad \text { for } *=\text { odd }
\end{array}\right.
$$

Here we see the examples that X are not retract rational $\left(H_{u r}^{4 *}\left(X ; \mathbb{Z}_{2}\right) \neq\right.$ $\mathbb{Z} / 2)$) while $D H^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right)=0$. Let $X=Q^{d}$ be the anisotropic quadric of dimension $d=2^{n}-1$ (i.e. the norm variety). Then there are elements

$$
h \in H_{e t t}^{2}\left(X ; \mathbb{Z}_{2}(1)\right) \quad \text { and } \quad \bar{\rho}_{4} \in H_{e t t}^{4}\left(X ; \mathbb{Z}_{2}(0)\right)
$$

Theorem 1.8. ([Ya6]) The ring $H_{e t}^{2 *}\left(Q^{2^{n}-1} ; \mathbb{Z}_{2}(*)\right)$ is multiplicatively generated by $\bar{\rho}_{4}$ and h the hyper plane section.

Theorem 1.9. Let $X_{n}=Q^{2^{n}-1}, n \geq 2$ the norm variety. Then

$$
\begin{gathered}
D H^{2 *}\left(X_{n} ; \mathbb{Z}_{2}(*)\right)=0 \\
H_{u r}^{2 *}\left(X_{n} ; \mathbb{Z}_{2}(*)\right) \supset \mathbb{Z} / 2\left[\bar{\rho}_{4}\right] /\left(\bar{\rho}_{4}^{2^{n-1}}\right) .
\end{gathered}
$$

Hence for $n \neq n^{\prime}$, we see that X_{n} and $X_{n^{\prime}}$ are not retract birational equivalent.

Remark. If $\bar{\rho}_{4} \in \tilde{N}^{1} H^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right)$, the above theorem was just corollary of the Frobenius reciprocity (Lemma 2.2). But it does not hold (moreover, we see $\left.\bar{\rho}_{4} \notin N^{1} H^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right)\right)$.

2. TWO CONIVEAU FILTRATIONS

Let us recall the coniveau filtration of the cohomology with coefficients in A for $A=\mathbb{Z}, \mathbb{Z}_{p}$, or \mathbb{Z} / p,

$$
N^{c} H^{i}(X ; A)=\sum_{Z \subset X} \operatorname{ker}\left(j^{*}: H^{i}(X ; A) \rightarrow H^{i}(X-Z, A)\right)
$$

where $Z \subset X$ runs through the closed subvarieties of codimension at least c of X, and $j: X-Z \subset X$ is the complementary open immersion.

Similarly, we can define the strong coniveau filtration by

$$
\tilde{N}^{c} H^{i}(X ; A)=\sum_{f: Y \rightarrow X} i m\left(f_{*}: H^{i-2 r}(Y ; A) \rightarrow H^{i}(X, A)\right)
$$

where the sum is over all proper morphism $f: Y \rightarrow X$ from a smooth complex variety Y of $\operatorname{dim}(Y)=\operatorname{dim}(X)-r$ with $r \geq c$, and f_{*} its transfer (Gysin map). It is immediate that $\tilde{N}^{c} H^{*}(X ; A) \subset N^{c} H^{*}(X ; A)$.

It is known that when X is proper, $\tilde{N}^{c} H^{i}(X ; \mathbb{Q})=N^{c} H^{i}(X ; \mathbb{Q})$ by Deligne. However Benoist and Ottem ($[\mathrm{Be}-\mathrm{Ot}])$ recently show that the above two coniveau filtrations are not equal for $A=\mathbb{Z}$.

Let G be an algebraic group such that $H^{*}(B G ; \mathbb{Z})$ has p-torsion for the classifying space $B G$ is defined by Totaro [T0], and Bogomolov [Bo]. Then let us say that an (Ekedahl) approximation for $B G$ (for degree \leq $N)$ is the projective (smooth) variety $X=X_{G}(N)$ such that there is a $\operatorname{map} g: X \rightarrow B G \times \mathbb{P}^{\infty}$ with

$$
g^{*}: H^{*}\left(B G \times \mathbb{P}^{\infty} ; A\right) \cong H^{*}(X ; A) \quad \text { for } *<N
$$

In the paper [Ya6], we try to compute the stable birational invariant of X (Proposition 2.4 in [Be-Ot])

$$
D H^{*}(X ; A)=N^{1} H^{*}(X ; A) /\left(\tilde{N}^{1} H^{*}(X ; A)\right)
$$

for projective approximations X for $B G$ ($[\mathrm{Ek}$, [To, , $\mathrm{Pi}-\mathrm{Ya}]$).
Here we recall the Bloch-Ogus $\mathrm{Bl}-\mathrm{Og}$ spectral sequence such that its E_{2}-term is given by

$$
E(c)_{2}^{c, *-c} \cong H_{Z a r}^{c}\left(X, \mathcal{H}_{A}^{*-c}\right) \Longrightarrow H_{e ̂ t}^{*}(X ; A)
$$

where \mathcal{H}_{A}^{*} is the Zariski sheaf induced from the presheaf given by $U \mapsto$ $H_{e t t}^{*}(U ; A)$ for an open $U \subset X$.

The filtration for this spectral sequence is defined as the coniveau filtration

$$
N^{c} H_{e t t}^{*}(X ; A)=F(c)^{c, *-c}
$$

where the infinite term $E(c)_{\infty}^{c, *-c} \cong F(c)^{c, *-c} / F(c)^{c+1, *-c-1}$.
Here we recall the motivic cohomology $H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$ defined by Voevodsky and Suslin ([Vo1], पo3], (Vo4]) so that

$$
H^{i, i}(X ; \mathbb{Z} / p) \cong H_{e t t}^{i}(X ; \mathbb{Z} / p) \cong H^{i}(X ; \mathbb{Z} / p)
$$

Let us write $H_{e t t}^{*}(X ; \mathbb{Z})$ simply by $H_{e t t}^{*}(X)$ as usual. Note that $H_{e t t}^{*}(X) \not \equiv$ $H^{*}(X)$ in general, while we have the natural map $H_{e t}^{*}(X) \rightarrow H^{*}(X)$.

Let $0 \neq \tau \in H^{0,1}(\operatorname{Spec}(\mathbb{C}) ; \mathbb{Z} / p)$. Then by the multiplying τ, we can define a map $H^{*, *^{\prime}}(X ; \mathbb{Z} / p) \rightarrow H^{*, *^{\prime}+1}(X ; \mathbb{Z} / p)$. By Deligne (foot note (1) in Remark 6.4 in $[\mathrm{Bl}-\mathrm{Og}]$) and Paranjape (Corollary 4.4 in [Pa]), it is proven that there is an isomorphism of the coniveau spectral sequence with the τ-Bockstein spectral sequence $E(\tau)_{r}^{*,^{\prime}}$ (see also [Te-Ya2], [Ya1]).

Lemma 2.1. (Deligne) Let $A=\mathbb{Z} / p$. Then we have the isomorphism of spectral sequence $E(c)_{r}^{c, *-c} \cong E(\tau)_{r-1}^{*, *-c}$ for $r \geq 2$. Hence the filtrations are the same, i.e. $N^{c} H_{e t t}^{*}(X ; \mathbb{Z} / p)=F_{\tau}^{*, *-c}=\operatorname{Im}\left(\times \tau^{c}: H^{*, *-c}(X ; \mathbb{Z} / p)\right)$. Thus we have the isomorphism

$$
H^{*, *}(X ; \mathbb{Z} / p) /(\tau) \cong H^{*}(X ; \mathbb{Z} / p) / N^{1} H^{*}(X ; \mathbb{Z} / p)
$$

We recall here the Frobenius reciprocity law.
Lemma 2.2. (reciprocity law) If $a \in \tilde{N}^{*} H^{2 *}(X ; A)$, then for each $g \in$ $H^{*^{\prime}}(X ; A)$ we have ag $\in \tilde{N}^{*} H^{2 *+*^{\prime}}(X ; A)$.

Proof. Suppose we have $f: Y \rightarrow X$ with $f_{*}\left(a^{\prime}\right)=a$. Then

$$
f_{*}\left(a^{\prime} f^{*}(g)\right)=f_{*}\left(a^{\prime}\right) g=a g
$$

by the Frobenius reciprocity law.
Let G be an algebraic group (over \mathbb{C}) and r be a complex representation $r: G \rightarrow U_{n}$ the unitary group. Then we can define the Chern class in $H^{*}(B G)$ by $c_{i}=r^{*} c_{i}^{U}$. Here the Chern classes c_{i}^{U} in $H^{*}\left(B U_{n}\right) \cong$ $\mathbb{Z}\left[c_{1}^{U}, \ldots, c_{n}^{U}\right]$ ([Qu1]) are defined by using the Gysin map as $c_{n}^{U}=i_{n, *}(1)$ for

$$
i_{n, *}: H^{*}\left(B U_{n}\right) \cong H_{U_{n}}^{*}(p t .) \xrightarrow{i_{n, *}^{*}} H_{U_{n}}^{*+2 i}\left(\mathbb{C}^{\times i}\right) \cong H^{*+2 i}\left(B U_{n}\right)
$$

where $H_{U_{n}}(X)=H^{*}\left(E U_{n} \times_{U_{n}} X\right)$ is the U_{n}-equivaliant cohomology.
Let us write by $C h^{*}(X ; A)$ the Chern subring which is the subring of $H^{*}(X ; A)$ multiplicatively generated by all Chern classes.

Lemma 2.3. We have a quotient map

$$
N^{1} H^{*}(X ; A) /\left(\text { IdealCh }^{*}(X ; A)\right) \rightarrow D H^{*}(X ; A) .
$$

The following lemma is proved by Colliot Thérène and Voisin Co-Vo by using the affirmative answer of the Bloch-Kato conjecture by Voevodsky. (Vo3]. [Vo4)
Lemma 2.4. (Co-V0]) Let X be a smooth complex variety. Then any torsion element in $H^{*}(X)$ is in $N^{1} H^{*}(X)$.

3. THE MAIN LEMMAS

The Milnor operation $Q_{n}\left(\right.$ in $H^{*}(-; \mathbb{Z} / p)$) is defined by $Q_{0}=\beta$ and for $n \geq 1$

$$
Q_{n}=P^{\Delta_{n}} \beta-\beta P^{\Delta_{n}}, \quad \Delta_{n}=\left(0, \ldots, 0,1_{1}^{n}, 0, \ldots\right) .
$$

(For details see [Mi], $\S 3.1$ in [Vo1]) where β is the Bockstein operation and P^{α} for $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ is the fundamental base of the module of finite sums of products of reduced powers. (For example $P^{\Delta_{i}}(y)=y^{p^{i}}$ for $|y|=2$. and Q_{n} is a derivative.)

Lemma 3.1. Let f_{*} be the transfer (Gysin) map (for proper smooth) $f: X \rightarrow Y$. Then $Q_{n} f_{*}(x)=f_{*} Q_{n}(x)$ for $x \in H^{*}(X ; \mathbb{Z} / p)$.

Proof. The above lemma is known (see the proof of Lemma 7.1 in [Ya4]). The transfer f_{*} is expressed as $g^{*} f_{*}^{\prime}$ such that

$$
f_{*}^{\prime}(x)=i^{*}(T h(1) \cdot x), \quad x \in H^{*}(X ; \mathbb{Z} / p)
$$

for some maps g, f^{\prime}, i and the Thom class $T h(1)$. Since $Q_{n}(T h(1))=0$ and Q_{i} is a derivation, we get the lemma.

By Voevodsky Vo1, Vo2, we have the Q_{i} operation also in the motivic cohomology $H^{*, *^{\prime}}(X ; \mathbb{Z} / p)$ with $\operatorname{deg}\left(Q_{i}\right)=\left(2 p^{i}-1, p-1\right)$.

Lemma 3.2. We see that $\operatorname{Im}(c l)^{+} \subset N^{1} H^{2 *}(X ; A)$.
Proof. From Lemma 2.1, we see $H^{* *^{\prime}}(X ; A) \subset N^{*-*^{\prime}} H^{*}(X ; A)$. We have $H^{2 *, *}(X ; A) \cong C H^{*}(X) \otimes A$. Since $2 *>*$ for $* \geq 1$, we see $c l(y) \in$ $N^{1} H^{2 *}(X ; A)$.

Each element $y \in C H^{*}(X) \otimes A$ is represented by closed algebraic set supported Y, while Y may be singular. On the other hand, by Totaro [To, we have the modified cycle map $\bar{c} l$ such that the usual cycle map is

$$
c l: C H^{*}(X) \otimes A \xrightarrow{\bar{c} l} M U^{2 *}(X) \otimes_{M U^{*}} A \xrightarrow{\rho} H^{2 *}(X ; A)
$$

for the complex cobordism theory $M U^{*}(X)$. It is known Qu1 that elements in $M U^{2 *}(X)$ can be represented by proper maps to X from stable almost complex manifolds Y. (The manifold Y is not necessarily a complex manifold.)

The following lemma is well known.
Lemma 3.3. If $x \in \operatorname{Im}(\rho)$ for $\rho: M U^{*}(X) / p \rightarrow H^{*}(X ; \mathbb{Z} / p)$, then we have $Q_{i}(x)=0$ for all $i \geq 0$.

Proof. Recall the connective Morava K-theory $k(i)^{*}(X)$ with $k(i)^{*}=$ $\mathbb{Z} / p\left[v_{i}\right],\left|v_{i}\right|=-2 p^{i}+2$, which has natural maps

$$
\rho: M U^{*}(X) / p \xrightarrow{\rho_{1}} k(i)^{*}(X) \xrightarrow{\rho_{2}} H^{*}(X: \mathbb{Z} / p) .
$$

It is known that there is an exact sequence (Sullivan exact sequence) such that

$$
\ldots \xrightarrow{\rho_{2}} H^{*}(X ; \mathbb{Z} / p) \xrightarrow{\delta} k(i)^{*}(X) \xrightarrow{v_{i}} k(i)^{*}(X) \xrightarrow{\rho_{2}} H^{*}(X: \mathbb{Z} / p) \xrightarrow{\delta} \ldots
$$

with $\rho_{2} \delta=Q_{i}$. Hence $Q_{i} \rho_{2}(x)=\rho_{2} \delta \rho_{2}=0$. which implies $Q_{i} \rho(x)=$ 0 .

The following lemma is the Q_{i}-version of one of results by Benoist and Ottem.

Lemma 3.4. Let $\alpha \in N^{1} H^{s}(X)$ for $s=3$ or 4. If $Q_{i}(\alpha) \neq 0 \in$ $H^{*}(X ; \mathbb{Z} / p)$ for some $i \geq 1$, then

$$
D H^{s}(X) / p \supset \mathbb{Z} / p\{\alpha\}, \quad D H^{s}\left(X ; \mathbb{Z} / p^{t}\right) / p \supset \mathbb{Z} / p\{\alpha\} \quad \text { for } t \geq 2 \text {. }
$$

Proof. Suppose $\alpha \in \tilde{N}^{1} H^{s}(X)$ for $s=3$ or 4, i.e. there is a smooth Y with $f: Y \rightarrow X$ such that the transfer $f_{*}\left(\alpha^{\prime}\right)=\alpha$ for $\alpha^{\prime} \in H^{*}(Y)$.

Then for $s=4$,

$$
\begin{aligned}
& Q_{i}\left(\alpha^{\prime}\right)=\left(P^{\Delta_{i}} \beta-\beta P^{\Delta_{i}}\right)\left(\alpha^{\prime}\right)=\left(-\beta P^{\Delta_{i}}\right)\left(\alpha^{\prime}\right)=-\beta\left(\alpha^{\prime}\right)^{p^{i}} \\
& \quad=-p^{i}\left(\beta \alpha^{\prime}\right)\left(\alpha^{\prime}\right)^{p^{i}-1}=0 \quad \text { (by the Cartan formula) }
\end{aligned}
$$

since $\beta\left(\alpha^{\prime}\right)=0$ and $P^{\Delta_{i}}(y)=y^{p^{i}}$ for $\operatorname{deg}(y)=2$. (For $s=3$, we get also $Q_{i}\left(\alpha^{\prime}\right)=0$ since $P^{\Delta_{i}}(x)=0$ for $\operatorname{deg}(x)=1$.) This contradicts to the commutativity of Q_{i} and f_{*}.

The case $A=\mathbb{Z} / p^{t}, t \geq 2$ is proved similarly, since for $\alpha^{\prime} \in H^{*}(X ; A)$ we see $\beta \alpha^{\prime}=0 \in H^{*}(X ; \mathbb{Z} / p)$. Thus we have this lemma.

We will extend the above Lemma 3.4 to $s>4$, by using $M U$-theory of Eilenberg-MacLane spaces. Recall that $K=K(\mathbb{Z}, n)$ is the EilenbergMacLane space such that the homotopy group $[X, K] \cong H^{n}(X ; \mathbb{Z})$, i.e., each element $x \in H^{n}(X ; \mathbb{Z})$ is represented by a homotopy map $x: X \rightarrow$ K. Let $\eta_{n} \in H^{n}(K ; \mathbb{Z})$ corresponding the identity map. We know the image $\rho\left(M U^{*}(K)\right) \subset H^{*}(K ; \mathbb{Z}) / p$ by Tamanoi.

Lemma 3.5. (Ta, Ra-Wi-Ya] Let $K=K(\mathbb{Z}, n)$ We have the isomorphism

$$
\rho: M U^{*}(K) \otimes_{M U^{*}} \mathbb{Z} / p \cong \mathbb{Z} / p\left[Q_{i_{1}} \ldots Q_{i_{n-2}} \eta_{n} \mid 0<i_{1}<\ldots<i_{n-2}\right]
$$

where the notation $\mathbb{Z} / p[a, \ldots]$ exactly means $\mathbb{Z} / p[a, \ldots] /\left(a^{2}| | a \mid=\right.$ odd $)$.
The following lemma is an extension of Lemma 3.4 for $s>4$. (Here we use $M U^{*}$-theory, and we assume $H^{*}(-; A)$ is the Betti cohomology.)
Lemma 3.6. Suppose that $H^{*}(X ; A)$ is the Betti cohomology. Let $\alpha \in$ $N^{c} H^{n+2 c}(X), n \geq 2, c \geq 1$. Suppose that there is a sequence $0<i_{1}<$ $\ldots<i_{n-1}$ with

$$
Q_{i_{1}} \ldots Q_{i_{n-1}} \alpha \neq 0 \quad \text { in } H^{*}(X ; \mathbb{Z} / p)
$$

Then $D^{c} H^{*}(X) / p=N^{c} H^{*}(X) /\left(p, \tilde{N}^{c} H^{*}(X)\right) \supset \mathbb{Z} / p\{\alpha\}$.
Proof. Suppose $\alpha \in \tilde{N}^{c} H^{n+2 c}(X)$, i.e. there is a smooth Y of $\operatorname{dim}(Y)=$ $\operatorname{dim}(X)-c$ with $f: Y \rightarrow X$ such that the transfer $f_{*}\left(\alpha^{\prime}\right)=\alpha$ for $\alpha^{\prime} \in H^{n}(Y)$.

Let $r: H^{*}(X) \rightarrow H^{*}(X ; \mathbb{Z} / p)$ be the reduction map. We consider the commutative diagram for $I=\left(i_{1}, \ldots, i_{n-2}\right)$ and $j=i_{n-1}$

$$
\begin{array}{ccc}
\alpha^{\prime} \in H^{n}(Y) & \xrightarrow{f_{*}} & \alpha \in H^{n+2 c}(X) \\
Q_{I} r \downarrow & Q_{I} \downarrow \\
Q_{I}\left(\alpha^{\prime}\right) \in \operatorname{Im}\left(\rho \mid M U^{*}(Y)\right) & \xrightarrow{f_{*}} & H^{*}(X ; \mathbb{Z} / p) \\
Q_{j} \downarrow \\
0=Q_{i_{n-1}} Q_{I}\left(\alpha^{\prime}\right) \in H^{*}(Y ; \mathbb{Z} / p) \xrightarrow{f_{*}} Q_{i_{n-1}} Q_{I}(\alpha) \in H^{*}(X ; \mathbb{Z} / p) .
\end{array}
$$

Identify the map $\alpha^{\prime}: Y \rightarrow K$ with $\alpha^{\prime}=\left(\alpha^{\prime}\right)^{*} \eta_{n}$. We still see from Lemma 3.5,

$$
Q_{I}\left(\alpha^{\prime}\right)=Q_{i_{1} \ldots Q_{i_{n-2}}}\left(\left(\alpha^{\prime}\right)^{*} \eta_{n}\right) \in \operatorname{Im}\left(\rho: M U^{*}(Y) \rightarrow H^{*}(Y ; \mathbb{Z} / p)\right)
$$

From Lemma 3.3, we see

$$
Q_{i_{n-1}} Q_{I}\left(\alpha^{\prime}\right)=Q_{i_{n-1}} Q_{i_{1} \ldots Q_{i_{n-2}}}\left(\alpha^{\prime}\right)=0 \in H^{*}(Y ; \mathbb{Z} / p)
$$

Therefore $Q_{i_{n-1}} Q_{I}(\alpha)$ must be zero by the commutativity of f_{*} and Q_{i}.

4. ABELIAN p-GROUPS

At first, we assume $H^{*}(X)$ is the Betti cohomology so that the main lemma (Lemma 3.6) holds. However we will see the most irrational results hold for each $k \subset \mathbb{C}$.

From the main lemma, we have
Lemma 4.1. Let $\alpha \in N^{1} H^{n+2}(X)$ and $Q_{I}(\alpha) \neq 0 \in H^{*}(X ; \mathbb{Z} / p)$ for some $I=\left(0<i_{1}<\ldots<i_{n-1}\right)$. Let X^{\prime} be a smooth projective variety. Then

$$
D H^{*}\left(X \times X^{\prime}\right) / p \supset \mathbb{Z} / p\{\alpha \otimes 1\}
$$

Hence $X \times X^{\prime}$ is not stable rational,
Proof. The (Betti) cohomology $H^{*}(X ; \mathbb{Z} / p)$ satisfies the Kunneth formula. Hence we have

$$
Q_{I}(\alpha \otimes 1)=Q_{I}(\alpha) \otimes 1 \neq 0 \quad \text { in } \quad \sum_{s=0} H^{*-s}(X ; \mathbb{Z} / p) \otimes H^{s}\left(X^{\prime} ; \mathbb{Z} / p\right)
$$

From the main lemma, we have the lemma.
Let $G_{n}=\mathbb{Z} / p^{n}$. Recall the $\bmod (p)$ cohomology (for p odd)

$$
H^{*}\left(B G_{n} ; \mathbb{Z} / p\right) \cong \mathbb{Z} / p\left[y_{1}, \ldots . y_{n}\right] \otimes \Lambda\left(x_{1}, \ldots, x_{n}\right)
$$

where $\left|x_{i}\right|=1$ and $Q_{0}\left(x_{i}\right)=y_{i}$, (for $p=2, x_{i}^{2}=y_{i}$).
Corollary 4.2. For $n \geq 3$, let $G_{n}=(\mathbb{Z} / p)^{n}$. Then $X_{G_{n}}$ is not stable rational. Moreover $X_{G_{n}}$ and $X_{G_{n^{\prime}}}$ are not stable birational equivalent for $n \neq n^{\prime}$.
Proof. Take $G=G_{3}$ and $\alpha=Q_{0}\left(x_{1} x_{2} x_{3}\right) \in H^{4}\left(X_{G}\right)$. The last statement follows from $1 \otimes \ldots \otimes 1 \otimes \stackrel{s}{\alpha} \otimes 1 \otimes \ldots \otimes 1 \neq 0 \in D H^{*}\left(X_{G_{n}}\right)$.

We can take also another α for the proof of the last statement in the above corollary.
Lemma 4.3. Take $G=G_{n}=(\mathbb{Z} / p)^{n}$ and $\alpha_{i}=Q_{0}\left(x_{1} x_{2} \ldots x_{i}\right) \in H^{n+1}\left(X_{G}\right)$. Then we have

$$
D H^{*}\left(X_{G_{n}}\right) \supset \mathbb{Z} / p\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right\}
$$

Since $\alpha_{n}=0$ in $H^{*}\left(X_{G_{n-1}}\right)$ we also see that X_{n} and X_{n-1} are not stable birational equivalence.

The more detailed expression of $D H^{*}(X) / p$ seems somewhat complicated.

Theorem 4.4. Let $G=(\mathbb{Z} / p)^{n}$. Then we have (for fixed large N)

$$
D H^{s+1}(X) / p \cong \mathbb{Z} / p\left\{Q_{0}\left(x_{i_{1}} \ldots x_{i_{s}}\right) \mid 1 \leq i_{1}<\ldots,<i_{s} \leq n\right\} .
$$

Proof. The integral cohomology (modulo p) is isomorphic to

$$
\begin{gathered}
H^{*}(B G) / p \cong \operatorname{Ker}\left(Q_{0}\right) \\
\cong H\left(H^{*}(B G ; \mathbb{Z} / p) ; Q_{0}\right) \oplus \operatorname{Im}\left(Q_{0}\right)
\end{gathered}
$$

where $H\left(-; Q_{0}\right)=\operatorname{Ker}\left(Q_{0}\right) / \operatorname{Im}\left(Q_{0}\right)$ is the homology with the differential Q_{0}. It is immediate that $H\left(H^{*}(B \mathbb{Z} / p ; \mathbb{Z} / p) ; Q_{0}\right) \cong \mathbb{Z} / p$. By the Künneth formula, we have $H\left(H^{*}\left((B G ; \mathbb{Z} / p) ; Q_{0}\right) \cong(\mathbb{Z} / p)^{n \otimes} \cong \mathbb{Z} / p\right.$. Hence we have

$$
\begin{gathered}
H^{*}(B G) / p \cong \mathbb{Z} / p\{1\} \oplus \operatorname{Im}\left(Q_{0}\right) \\
\cong \oplus_{s} \mathbb{Z} / p\left[y_{1}, \ldots y_{n}\right]\left(1, Q_{0}\left(x_{i_{1}} \ldots x_{i_{s}}\right) \mid 1 \leq i_{1}<\ldots<i_{s} \leq n\right)
\end{gathered}
$$

where the notation $R(a, \ldots, b)$ (resp. $R\{a, \ldots, b\}$) means the R-submodule (resp. the free R-module) generated by a, \ldots, b. Here we note $H^{+}(B G)$ is just p-torsion.

Also note that y_{1}, \ldots, y_{n} are represented by the Chern classes c_{1}. From Lemma 2.3, we see $\operatorname{Ideal}\left(y_{1}, \ldots, y_{n}\right)=0 \in D H^{*}(X)$.

We know $Q_{i}\left(x_{j}\right)=y_{j}^{p^{i}}$ and Q_{j} is a derivation. We have the theorem from Lemma 4.3 and the reciprocity law

$$
Q_{i_{1}} \ldots Q_{i_{s-2}} Q_{0}\left(x_{i_{1}} \ldots x_{i_{s}}\right)=y_{i_{1}}^{p_{1}} \ldots y_{i_{s-2}}^{p_{s-2}} y_{i_{s-1}} x_{i_{s}}+\ldots \neq 0
$$

(Note the $n=\left|\alpha^{\prime}\right|$ in Lemma 4.3 is written by $s-1$ here.)
Corollary 4.5. If $n \neq n^{\prime} \geq 3$, then $X(N)_{n}$ and $X(N)_{n^{\prime}}$ are not stable birational equivalent.

The above corollary also holds when $\operatorname{ch}(k)=0$ and k is an algebraic closed field by the base change theorem.

For each field $k=\bar{k}$, it is known from Voevodsky (for p; odd)

$$
H^{*, *^{\prime}}\left(B G_{n} ; \mathbb{Z} / p\right) \cong \mathbb{Z} / p\left[y_{1}, \ldots . y_{n}, \tau\right] \otimes \Lambda\left(x_{1}, \ldots, x_{n}\right)
$$

where $\operatorname{deg}\left(x_{i}\right)=(1,1)$ and $Q_{0}\left(x_{i}\right)=y_{i}$. Therefor we can identify

$$
Q_{0}\left(x_{1} \ldots x_{m}\right) \in H_{e t t}^{*}\left(B G_{n} ; \mathbb{Z} / p\right) \quad \text { when } \bar{k}=k
$$

Let us write $H_{e t t}^{*}\left(X ; \mathbb{Z}_{p}\right)$ simply by $H_{e t t}^{*}(X)$. Let G be an algebraic group which has an approximation X_{G} such that

$$
H_{e t t}^{*}\left(X_{G} ; \mathbb{Z}_{p}\right) \cong H^{*}\left(B G \times \mathbb{P}^{\infty}\right) \otimes \mathbb{Z}_{p} \quad \text { for } *<N
$$

We consider the maps

$$
\psi: N^{1} H_{e t t}^{*}(X) \subset H_{e t t}^{*}(X) \rightarrow H_{e t t}^{*}(\bar{X}) \rightarrow H_{e t t}^{*}(X(\mathbb{C})) \rightarrow H^{*}(X(\mathbb{C}))
$$

Lemma 4.6. Let $k \subset \mathbb{C}$ (not assumed an algebraic closed field). Let $\alpha \in N^{1} H_{e t}^{*}(X)$ and $Q_{I}(\psi(\alpha)) \neq 0 \in H^{*}(X(\mathbb{C}) ; \mathbb{Z} / p)$. Then

$$
D H_{e ́ t}^{*}\left(X ; \mathbb{Z}_{p}\right) / p \supset \mathbb{Z} / p\{\alpha\} .
$$

Hence X is not stable rational.

Proof. By the assumption, the main lemma implies $D H^{*}(X(\mathbb{C})) \supset \mathbb{Z} / p\{\psi \alpha\}$.
This implies a contradiction if $\mathbb{Z} / p\{\alpha\}=0$ in $D H_{e t t}^{*}(X)$. Similarly, the stable rationality for X imlplies that for $X(\mathbb{C})$, which is a contradiction. (Note here, we do not assume of the stable birational invariance for $D H_{e t}^{*}(X)$.)

For example, Lemma 4.3 holds for all $k \subset \mathbb{C}$.

5. CONNECTIVE GROUPS, $S O_{n}$

Let $S O_{n}$ be the special orthogonal group. Its $\bmod (2)$ cohomology is

$$
H^{*}\left(B S O_{n} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[w_{2}, \ldots, w_{n}\right]
$$

where w_{i} is the Stiefel-Whitney class for $S O_{n} \subset O_{n}$. We know $Q_{0} w_{2 m}=$ $w_{2 m+1}$.

Theorem 5.1. (Ya6) Let $X_{n}=X_{n}(N)$ be approximations for $B S O_{n}$ for $n \geq 3$. Moreover, let $\left|Q_{1} \ldots Q_{2 m-1}\left(w_{2 m+1}\right)\right|<N$. Then we have

$$
D H^{*}\left(X_{2 m+1}\right) \supset \mathbb{Z} / 2\left\{w_{3}, w_{5}, \ldots, w_{2 m+1}\right\} \quad \text { for all } 2 m+1 \leq *<N
$$

Remark. When $G=S O_{3}$, the inclusion in the above theorem is isomorphic. However, when $G=S O_{5}$, we can not see whether $Q_{0}\left(w_{2} w_{4}\right) \in$ $H^{7}(X)$ is zero or not in $D H^{7}(X) / 2$.

Let $G=S O_{5}$. Indeed, we can see the homology by Q_{0} is given

$$
\begin{gathered}
H\left(H^{*}(B G ; \mathbb{Z} / 2) ; Q_{0}\right) \cong \mathbb{Z} / 2\left[c_{2}, c_{4}\right] \quad \text { where } c_{i}=w_{i}^{2} \\
\operatorname{Im}\left(Q_{0}\right) \cong \mathbb{Z} / 2\left[c_{2}, c_{3}, c_{4}, c_{5}\right]\left(Q_{0}\left(w_{2}\right) \cdot Q_{0}\left(w_{4}\right), Q_{0}\left(w_{2} w_{4}\right)\right) .
\end{gathered}
$$

Hence $H^{*}(B G) / 2$ is generated by $1, w_{3}, w_{5} \cdot Q_{0}\left(w_{2} w_{4}\right)$ as a $\mathbb{Z} / 2\left[c_{2}, c_{3}, c_{4}, c_{5}\right]$ module. Hence we have

Lemma 5.2. Let $G=S O_{5}$. There ie a surjection

$$
\mathbb{Z} / 2\left\{w_{3} \cdot w_{5}, Q_{0}\left(w_{2} w_{4}\right)\right\} \rightarrow D H^{*}\left(X_{G}\right) / 2 .
$$

Corollary 5.3. Let $X_{n}=X_{n}(N)$ be approximation for $B S O_{n}$ for $n \geq$ 3. For $m \neq m^{\prime}$, we see that $X_{2 m+1}$ and $X_{2 m^{\prime}+1}$ are not stable rational equivalence.

The above corollary holds for all $k \subset \mathbb{C}$, by the similar arguments done in the last places in the preceding section.

6. SIMPLY CONNECTED SIMPLE GROUPS

We next consider simply connected groups. Let us write by X an approximation for $B G_{2}$ for the exceptional simple group G_{2} of $\operatorname{rank}=2$. The $\bmod (2)$ cohomology is generated by the Stiefel-Whitney classes w_{i} of the real representation $G_{2} \rightarrow S O_{7}$

$$
\begin{aligned}
H^{*}\left(B G_{2} ; \mathbb{Z} / 2\right) & \cong \mathbb{Z} / 2\left[w_{4}, w_{6}, w_{7}\right], \quad P^{1}\left(w_{4}\right)=w_{6}, \quad Q_{0}\left(w_{6}\right)=w_{7} \\
H^{*}\left(B G_{2}\right) & \cong\left(D^{\prime} \oplus D^{\prime} / 2\left[w_{7}\right]^{+}\right) \quad \text { where } \quad D^{\prime}=\mathbb{Z}\left[w_{4}, c_{6}\right]
\end{aligned}
$$

Then we have $Q_{1} w_{4}=w_{7}, Q_{2}\left(w_{7}\right)=w_{7}^{2}=c_{7}$ (the Chern class).
The Chow ring of $B G_{2}$ is also known

$$
C H^{*}\left(B G_{2}\right) \cong\left(D\left\{1,2 w_{4}\right\} \oplus D / 2\left[c_{7}\right]^{+}\right) \quad \text { where } D=\mathbb{Z}\left[c_{4}, c_{6}\right] \quad c_{i}=w_{i}^{2} .
$$

In particular the cycle map $c l: C H^{*}(B G) \rightarrow H^{*}(B G)$ is injective.
It is known Ya6 that $w_{4} \in N^{1} H^{*}(X ; \mathbb{Z} / 2)$ and moreover we can identify $w_{4} \in N^{1} H^{*}(X)$. Since $Q_{1}\left(w_{4}\right)=w_{7} \neq 0$, from Lemma 4.1, we have $D H^{4}(X) \neq 0$. This fact is also written in $\mathrm{Be}-\mathrm{Ot}$. Moreover the isomorphism $H^{*}(B G) /\left(c_{4}, c_{6}, c_{7}\right) \cong \Lambda\left(w_{4}, w_{7}\right)$ implies

Proposition 6.1. ([Ya6]) For X an approximation for $B G_{2}$, we have the surjection

$$
\Lambda\left(w_{4}, w_{7}\right)^{+} \rightarrow D H^{*}(X) / 2 \quad \text { for all } *<N
$$

Remark. We can not see $w_{7}, w_{4} w_{7}=0$ or nonzero in $D H^{*}(X) / 2$.
The cohomology of other simply connected simple groups (with 2torsion) are written for example

$$
\begin{gathered}
H^{*}\left(\text { Sipin }_{7} ; \mathbb{Z} / 2\right) \cong H^{*}\left(B G_{2} ; \mathbb{Z} / 2\right) \otimes \mathbb{Z} / 2\left[w_{8}\right], \\
H^{*}\left(B \text { Spin }_{8} ; \mathbb{Z} / 2\right) \cong H^{*}\left(B G_{2} ; \mathbb{Z} / 2\right) \otimes \mathbb{Z} / 2\left[w_{8}, w_{8}^{\prime}\right], \ldots
\end{gathered}
$$

For the above groups G, there are the map $j: G_{2} \rightarrow G$ and the non zero element $w \in H^{*}(G)$ such that $j^{*} w=w_{4}$.

Proposition 6.2. (Ya6) Let G be a simply connected group such that $H^{*}(B G)$ has p-torsion. Let $X=X(N)$ be an approximation for $B G$ for $N \geq 2 p+3$. Then there is $w \in H^{4}(X)$ such that

$$
D H^{4}(X) / p \supset \mathbb{Z} / p\{w\}
$$

Hence these X are not stable rational.
Proof. It is only need to prove the theorem when G is a simple group having p torsion in $H^{*}(B G)$. Let $p=2$. It is well known that there is an embedding $j: G_{2} \subset G$ such that (see [Pi-Ya, Ya5] for details)

$$
H^{4}(B G) \stackrel{j^{*}}{\cong} H^{4}\left(B G_{2}\right) \cong \mathbb{Z}\left\{w_{4}\right\}
$$

Let $w=\left(j^{*}\right)^{-1} w_{4} \in H^{4}(B G)$. From Lemma 3.1 in Ya5, we see that $2 w$ is represented by Chern classes. Hence $2 w$ is the image from $C H^{*}(X)$, and so $2 w \in N^{1} H^{4}(X)$. This means there is an open set $U \subset X$ such that $2 w=0 \in H^{*}(U)$ that is, w is 2-torsion in $H^{*}(U)$. Hence from Lemma 2.4, we have $w \in N^{1} H^{4}(U)$, and so there is $U^{\prime} \subset U$ such that $w=0 \in H^{4}\left(U^{\prime}\right)$. This implies $w \in N^{1} H^{4}(X)$.

Since $j^{*}\left(Q_{1} x\right)=Q_{1} w_{4}=w_{7}$, we see $Q_{1} w \neq 0$. From the main lemma (Lemma 4.1), we see $D H^{4}(X) \neq 0$ for G.

For the cases $p=3,5$, we consider the exceptional groups F_{4}, E_{8} respectively. Each simply connected simple group G contains F_{4} for $p=3, E_{8}$ for $p=5$. There is $w \in H^{4}(B G)$ such that $p x$ is a Chern class [Ya5], and $\left.Q_{1} w\right) \neq 0 \in H^{*}(B G ; \mathbb{Z} / p)$. In fact, there is embedding $j:(\mathbb{Z} / p)^{3} \subset G$ with $j^{*}(w)=Q_{0}\left(x_{1} x_{2} x_{3}\right)$. Hence we have the theorem.

Corollary 6.3. Let X be an approximation for $B S_{\text {Spin }}^{n}$ with $n \geq 7$ or $B G$ for an exceptional group G. Then X is not stable rational.

7. RETRACT BIRATIONAL AND UNRAMIFIED COHOMOLOGY

Here we note the relations to retract rationally. Recall (in §2) that Bloch-Ogus give a spectral sequence such that its E_{2}-term is given by

$$
E(c)_{2}^{c, *-c} \cong H_{Z a r}^{c}\left(X, \mathcal{H}_{A}^{*-c}\right) \Longrightarrow H_{e t}^{*}(X ; A) .
$$

By Orlov-Vishik-Voevodsky [Or-Vi-Vo], ([Te-Ya2] for $p: o d d$,) we know
Lemma 7.1. ([Or-Vi-Vo], [Vo5]) There is the long exact sequence

$$
\begin{aligned}
H_{Z a r}^{m-n-1}(X ; & \left.\mathcal{H}_{\mathbb{Z} / p}^{n}\right) \rightarrow H^{m, n-1}(X ; \mathbb{Z} / p) \xrightarrow{\times \tau} H^{m, n}(X ; \mathbb{Z} / p) \\
& \rightarrow H_{Z a r}^{m-n}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{n}\right) \rightarrow H^{m+1, n-1}(X ; \mathbb{Z} / p) \xrightarrow{\times \tau} \ldots
\end{aligned}
$$

In particular, when $m=n$, the first $\times \tau$ is injective.
Corollary 7.2. We have the short exact sequence

$$
\begin{aligned}
& 0 \rightarrow H^{*, *}(X ; \mathbb{Z} / p) /(\tau) \rightarrow H_{Z a r}^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right) \\
& \rightarrow \operatorname{Ker}\left(\tau: H^{*+1, *-1}(X ; \mathbb{Z} / p) \rightarrow H^{*+1, *}(X ; \mathbb{Z} / p)\right) \rightarrow 0 .
\end{aligned}
$$

$\left(\right.$ Note $H^{*, *}(X ; \mathbb{Z} / p) /(\tau) \cong H^{*}(X ; \mathbb{Z} / p) /\left(N^{1} H^{*}(X ; \mathbb{Z} / p)\right)$. Hence we also write it as $H^{*}(X ; \mathbb{Z} / p) / N^{1}$. This cohomology is called a stable cohomology and studied well by Bogomolov [Bo], [Te-Ya2]

Remark. The $\mathbb{Z} / 2^{s}$ coffeciants version of Lemma 7.1, Corollary 7.2 also hold.

The unramified cohomology is written by this $H_{Z a r}^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right)$, when X is complete,

$$
H_{u r}^{*}(X ; \mathbb{Z} / p)=H_{u r}^{*}(k(X) ; \mathbb{Z} / p) \cong H_{Z a r}^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right),
$$

and it is an invariant of the retract rationality of X (Lemma 3.1, 3.4 [Me]).

By Totaro [Ga-Me-Se], the cohomological invariant of G is written (while $B G$ is not complete)

$$
\operatorname{Inv}^{*}(G ; \mathbb{Z} / p) \cong H_{Z a r}^{0}\left(B G ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right)
$$

Here we consider the following lemma which shows the relation among $D H^{*}\left(X_{G}\right), I n v^{*}(G)$ and $H_{u r}^{*}\left(X_{G}\right)$.
Lemma 7.3. Assume that $0 \neq x \in H^{m}(B G ; \mathbb{Z} / p) /\left(N^{1}\right)$ and x is dedicated by $A_{m}=(\mathbb{Z} / p)^{m}$ i.e. res ${ }_{/ N}(x) \neq 0$ for the restriction (of stable cohomologies)

$$
\operatorname{res}_{/ N}: H^{*}(B G ; \mathbb{Z} / p) / N^{1} \rightarrow H^{*}\left(B A_{m} ; \mathbb{Z} / p\right) / N^{1} \cong \Lambda\left(x_{1}, \ldots, x_{m}\right)
$$

Then (for projective approximation X for $B G$) we have

$$
\left\{\begin{array}{l}
\operatorname{Inv^{*}}(G ; \mathbb{Z} / p) \supset \mathbb{Z} / p\{x\}, \\
H_{u n}^{*}(X ; \mathbb{Z} / p) \supset \mathbb{Z} / p\{x\}, \\
D H^{*}(X) / p \supset \mathbb{Z} / p\left\{Q_{0}(x)\right\}
\end{array}\right.
$$

Proof. The first formula follows from

$$
\operatorname{Inv}^{*}(G ; \mathbb{Z} / p) \cong H^{0}\left(B G ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right) \supset H^{*}(B G ; \mathbb{Z} / p) / N^{1}
$$

The fact $x \neq 0$ in $\operatorname{Inv}^{*}(G ; \mathbb{Z} / p)$ follows from that x is dedicated.
The second formula comes from $H_{u r}^{*}(X ; \mathbb{Z} / p) \cong H^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right)$ where X is smooth projective.

The last formula follows from the main lemma (Lemma 3.4). Let $Q_{0}(x)=\alpha \in \tilde{N}^{c} H^{n+2 c}(X),(m=n+2 c-1)$, i.e. there is a smooth Y of $\operatorname{dim}(Y)=\operatorname{dim}(X)-c$ with $f: Y \rightarrow X$ such that the transfer $f_{*}\left(\alpha^{\prime}\right)=\alpha$ for $\alpha^{\prime} \in H^{n}(Y)$.

Identify the map $\alpha^{\prime}: Y \rightarrow K$ with $\alpha^{\prime}=\left(\alpha^{\prime}\right)^{*} \eta_{n}$. We still see from Lemma 3.5,

$$
Q\left(\alpha^{\prime}\right)=Q_{i_{1} \ldots Q_{i_{n-2}}\left(\left(\alpha^{\prime}\right)^{*} \eta_{n}\right) \in \operatorname{Im}\left(M U^{*}(Y) \rightarrow H^{*}(Y ; \mathbb{Z} / p)\right) . . . ~}^{\text {. }}
$$

From Lemma 3.4, we see

$$
Q_{i_{n-1}} Q\left(\alpha^{\prime}\right)=Q_{i_{n-1}} Q_{i_{1} \ldots Q_{i_{n-2}}}\left(\alpha^{\prime}\right)=0 \in H^{*}(Y ; \mathbb{Z} / p) .
$$

Therefore $Q_{i_{n-1}} Q(\alpha)$ must be zero by the commutativity of f_{*} and Q_{i}. But $Q_{i_{1}} \ldots Q_{i_{n-1}} Q_{0}(x) \neq 0$ from the assumption that x is deduced from A_{n+1}. In fact in $H^{*}\left(B A_{n+1} ; \mathbb{Z} / p\right)$, we see (without $\left.\bmod \left(N^{1}\right)\right)$

Now we consider the examples. At first, we consider the case $G=$ $A_{n}=(\mathbb{Z} / p)^{n}$. and $X=X_{G}$. It is known from Garibarldy-MerkurjevSerre [Ga-Me-Se], Theorem 6.3 in [Te-Ya2] that

$$
\operatorname{Inv} v^{*}(G ; \mathbb{Z} / 2) \cong H^{*, *}(B G ; \mathbb{Z} / 2) /(\tau) \cong \Lambda\left(x_{1}, \ldots, x_{n}\right)
$$

Since X is (proper) approximation of $B G$, we have
Theorem 7.4. Let $G=G_{n}=(\mathbb{Z} / p)^{n}$ and $X=X_{G}$. Then

$$
H_{u r}^{2 *}(X ; \mathbb{Z} / p) \supset H^{2 *, 2 *}(X ; \mathbb{Z} / p) /(\tau) \cong \Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

in Corollary 7.2.
Writing $\alpha_{i}=Q_{0}\left(x_{1} \ldots x_{i}\right)$, we still have (Lemma 4.3)

$$
D H^{*}(X) / p \supset \mathbb{Z} / p\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right\}
$$

Then $X_{G_{n}}$ and $X_{G_{n^{\prime}}}$ are not retract rational equivalent if $n \neq n^{\prime}$.
Remark. From (Saltman [Sa]), it is well known that there is a finite group $G\left(\right.$ e.g. $\left.\left.|G|=p^{7}, p: o d d\right)\right)$ such that

$$
0 \neq x_{2} \in H_{u r}^{2}\left(k(W)^{G} ; \mathbb{Z} / p\right) \cap H^{2,2}(B G ; \mathbb{Z} / p) /(\tau)
$$

Here G acts freely on a \mathbb{C}-vector space W, and we have

$$
H_{u r}\left(K(W)^{G} ; \mathbb{Z} / p\right) \cong H_{Z a r}\left(W / / G ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right) \subset H_{Z a r}\left(B G ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right)
$$

such that $k(W / / G) \cong k(W)^{G}$. Hence $H_{u n}^{*}\left(k(W)^{G} ; \mathbb{Z} / p\right) \nsubseteq H^{*}(k ; \mathbb{Z} / p)$. So $k(W)^{G}$ is not purely transcendent over k. (Hence $B G$ is not retract rational.)

Remark. We do not assume $H_{Z a r}^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right) \cong H_{Z a r}^{0}\left(X^{\prime} ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right)$ for an other approximation X^{\prime}.

Next we consider the case $G=S O_{2 m+1}$ and $X=X_{G_{m}}$. It is known from Garibarldy-Merkurjev-Serre [Ga-Me-Se], Theorem 6.3 in [Te-Ya] that

$$
\operatorname{Inv}^{*}(G ; \mathbb{Z} / 2) \cong H^{*, *}(B G ; \mathbb{Z} / 2) /(\tau) \cong \mathbb{Z} / 2\left\{1, w_{2}, \ldots, w_{2 m}\right\}
$$

Since X is (proper) approximation of $B G$, we have
Theorem 7.5. Let $G=S O_{2 m+1}$ and $X=X_{G}$. Then

$$
H_{u r}^{2 *}(X ; \mathbb{Z} / p) \supset H^{2 *, 2 *}(X ; \mathbb{Z} / 2) /(\tau) \supset \mathbb{Z} / 2\left\{1, w_{2}, \ldots, w_{2 m}\right\}
$$

in Lemma 7.1.
We also have (Theorem 5.2) $D H^{*}(X) / 2 \supset \mathbb{Z} / 2\left\{Q_{0}\left(w_{2}\right), \ldots, Q_{0}\left(w_{2 m}\right)\right\}$. Hence $X_{G_{m}}$ and $X_{G_{m^{\prime}}}$ are not retract rational if $m \neq m^{\prime}$.

From Theorem 5.2 and the preceding theorem, we have
Corollary 7.6. Let $G_{n}^{\prime}=S O_{n}$ and $X=X_{G}$. Then $X_{G_{n}}$ and $X_{G_{n^{\prime}}}$ are not retract rational if $n \neq n^{\prime}$.

Proof. By Serre [Ga-Me-Se], we know

$$
\operatorname{Inv}^{*}\left(B S O_{2 m} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left\{1, w_{2}, \ldots, w_{2 m-2}, u_{2 m-1}\right\}
$$

with $\left|u_{2 m-1}\right|=2 m-1$. We see $X_{2 m}$ and $X_{2 m+1}$ are not retract rational since $w_{2 m+1}$ is zero in the invariant for $B S O_{2 m}$. We see $X_{2 m-1}$ and $X_{2 m}$ are not retract rational since $u_{2 m}$ is zero in the invariant for $B S O_{2 m-1}$.

Remark. Kordonskii [Ko], Merkurjev (Corollary 5.8 in [Me]), and Reichstein-Scavia show [Re-Sc] that $B_{S p i n}^{n}$ itself is stably rational when $n \leq 14$. These facts imply that the (Ekedahl) approximation X is not stable rationally equivalent to $B G$. (The author thanks Federico Scavia who pointed out this remark.)

At last of this section, we consider the case $G=P G L_{p}$ projective general linear group. We have (for example Theorem 1.5,1.7 in [Ka-Ya]) additively

$$
\begin{aligned}
& H^{*}(B G ; \mathbb{Z} / p) \cong M \oplus N \quad \text { with } M \stackrel{\text { add. }}{\cong} \mathbb{Z} / p\left[x_{4}, x_{6}, \ldots, x_{2 p}\right], \\
& N=S D \otimes \Lambda\left(Q_{0}, Q_{1}\right)\left\{u_{2}\right\} \quad \text { with } S D=\mathbb{Z} / p\left[x_{2 p+2}, x_{2 p^{2}-2 p}\right]
\end{aligned}
$$

where $x_{2 p+2}=Q_{1} Q_{0} u_{2}$ and suffix means its degree. The Chow ring is given as

$$
C H^{*}(B G) / p \cong M \oplus S D\left\{Q_{0} Q_{1}\left(u_{2}\right)\right\} .
$$

From Lemma 7.3, we have :
Theorem 7.7. Let p be odd. For an approximation X for $B P G L_{p}$, we see

$$
\begin{gathered}
D H^{*}(X) / p \supset \mathbb{Z} / p\left\{Q_{0} u_{2}\right\}, \\
H_{u n}^{*}(X ; \mathbb{Z} / p) \supset \mathbb{Z} / p\left\{1, u_{2}\right\}, \quad \operatorname{Inv}(G ; \mathbb{Z} / p) \supset \mathbb{Z} / p\left\{1, u_{2}\right\} .
\end{gathered}
$$

In the above case, we do not see here that $D H^{*}(X)$ for $*<N$ is invariant of $B G$, (under taking another X^{\prime} as approximations for G).

8. Retract rational for simply connected G

We will see that simply connected groups G satisfy the similar facts, but such as $\operatorname{Ker}\left(\tau \mid H^{*+1, *-1}(X ; \mathbb{Z} / p)\right) \neq 0$ in Lemma 7.1. In $\S 6$, we see there is $0 \neq w \in H^{4}(X)$ such that $D H^{4}(X) / p \supset \mathbb{Z} / p\{w\}$. We will see that this w corresponds a nonzero element in $H_{u n}^{3}(X ; \mathbb{Z} / p)$.

Theorem 8.1. (Ya5) Let G be a simply connected simple group. Then there is the element (Rost invariant) such that

$$
H_{u r}^{3}(X ; \mathbb{Z} / p) \rightarrow \operatorname{Ker}\left(\tau \mid H^{4,2}(X ; \mathbb{Z} / 2)\right) \supset \mathbb{Z} / p\{w\} .
$$

Hence X is not retract rational.

Proof. We consider the following diagram

$$
\begin{array}{cc}
H_{u r}^{*}(B G ; \mathbb{Z} / p) & \stackrel{j^{*}}{(1)} \downarrow \\
\\
\operatorname{Inv}^{*}(G: \mathbb{Z} / p) \cong H^{0}\left(B G ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right) \xrightarrow{H_{u r}^{*}(X ; \mathbb{Z} / p)} \begin{array}{l}
(2) \cong \downarrow
\end{array} \\
H^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right) \rightarrow \operatorname{Ker}(\tau) .
\end{array}
$$

Here $H_{u n}^{+}(B G ; \mathbb{Z} / p)=0$ when $B G$ is retract rational. (The map (1) need not isomorphism.) We see that the map (2) : $H_{u r}^{*}(X ; \mathbb{Z} / p) \cong$ $H^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right)$ because X is projective and smooth. Recall Lemma 7.1 that we have the surjection

$$
H^{0}\left(X ; \mathcal{H}_{\mathbb{Z} / p}^{*}\right) \rightarrow \operatorname{Ker}\left(\tau \mid H^{*+1, *-1}(X: \mathbb{Z} / p)\right)
$$

Hereafter, we consider the case $*=3$. We consider the following commutative diagram.

From the proof in Proposition 6.2, we see that there is $c_{2}^{\prime} \in H^{4,2}\left(B G ; \mathbb{Z} / p^{2}\right)$ so that (for $\left.\tau^{\prime}: H^{*, *^{\prime}}\left(X ; \mathbb{Z} / p^{2}\right) \rightarrow H^{*, *^{\prime}+1}\left(X ; \mathbb{Z} / p^{2}\right)\right)$ we have

$$
\left(\tau^{\prime}\right)^{2} c_{2}^{\prime}=p w \in H^{4,4}\left(B G ; \mathbb{Z} / p^{2}\right)
$$

(In fact $p w$ is represented by a Chern class, but w itself is not in the image of the cycle map.)

Next take $c^{\prime \prime}=j^{*} c_{2}^{\prime} \in H^{4,3}\left(X ; \mathbb{Z} / p^{2}\right)$. Since j is a projective approximation, we have

$$
H^{4,4}\left(B G ; \mathbb{Z} / p^{2}\right) \cong H^{4,4}\left(X ; \mathbb{Z} / p^{2}\right)
$$

Here $\left(\tau^{\prime}\right)^{2} c^{\prime \prime}=p w$. Hence $c^{\prime \prime} \neq 0 \in H^{4,2}\left(X ; \mathbb{Z} / p^{2}\right)$.
Let us write by $c^{\prime \prime \prime}$ the image of $c^{\prime \prime}$ in $H^{4,2}(X ; \mathbb{Z} / p)$. We note $c^{\prime \prime \prime} \in$ $\operatorname{Ker}(\tau) \mid H^{4,2}(X ; \mathbb{Z} / p)$, because $\tau: H^{4,3}(X ; \mathbb{Z} / p) \rightarrow H^{4,4}(X ; \mathbb{Z} / p)$ is injective from [Or-Vi-Vo].

Moreover, $c^{\prime \prime \prime}$ is a module generator in $\operatorname{Ker}(\tau)$, in fact if $c^{\prime \prime}=p x$, then $\tau^{2} x=w$ which is not $\operatorname{Ker}(\tau)$.

Hence there is $a \in H_{u r}^{3}(X ; \mathbb{Z} / p)$ which corresponds $c^{\prime \prime \prime} \in \operatorname{Ker}\left(\tau \mid H^{4,2}(X ; \mathbb{Z} / p)\right.$.

Corollary 8.2. Let G be a simply connected group having p-torsion in $H^{*}(B G)$, and $X=X_{G}$ be a projective approximation for $B G$. Then $H_{u r}^{3}(X ; \mathbb{Z} / p) \neq 0$ and so X is not retract rational.

In the last of this section, we consider the case $G=F_{4}, p=2$ the exceptional simple group of rank 4. By Ga-Me-Se], the cohomology invariant is known

$$
\operatorname{Inv}^{*}(G ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left\{1, u_{3}, f_{5}\right\} \quad\left|u_{3}\right|=3,\left|f_{5}\right|=5
$$

Since $H^{5,5}(B G ; \mathbb{Z} / 2)=0$, we know f_{5} corresponds

$$
0 \neq x \in \operatorname{Ker}\left(\tau \mid H^{6,4}(B G ; \mathbb{Z} / 2)\right) \longleftarrow H^{0}\left(B G ; \mathcal{H}_{\mathbb{Z} / 2}^{5}\right)
$$

But we can not say here that $0 \neq x \in H^{6,4}(X ; \mathbb{Z} / 2)$.
Proposition 8.3. If there is an approximation such that $H^{6,4}(B G ; \mathbb{Z} / 2) \cong$ $H^{6,4}(X ; \mathbb{Z} / 2)$, then

$$
H_{u r}^{*}(X ; \mathbb{Z} / 2) \supset \mathbb{Z} / 2\left\{u_{3}, f_{5}\right\} .
$$

Hence if the assumption is correct. then $X_{G_{2}}$ and $X_{F_{4}}$ are not retract rational equivalent.

9. EXTRASPECIAL p-GROUPS

We assume at first that p is an odd prime. The extraspecial p-group $E(n)=p_{+}^{1+2 n}$ is the group such that exponent is p, its center is $C \cong \mathbb{Z} / p$ and there is the extension

$$
0 \rightarrow C \rightarrow E(n) \xrightarrow{\pi} V_{n} \rightarrow 0
$$

with $V=\oplus^{2 n} \mathbb{Z} / p$. (For details of the cohomology of $E(n)$ see [Te-Ya1].) We can take generators $a_{1}, \ldots, a_{2 n}, c \in E(n)$ such that $\pi\left(a_{1}\right), . ., \pi\left(a_{2 n}\right)$ (resp. c) make a base of V_{n} (resp. C) such that commutators are

$$
\left[a_{2 i-1}, a_{2 i}\right]=c \quad \text { and } \quad\left[a_{2 i-1}, a_{j}\right]=1 \quad \text { if } j \neq 2 i .
$$

We note that $E(n)$ is also the central product of the n-copies of $E(1)$

$$
E_{n} \cong E(1) \cdots E(1)=E(1) \times_{\langle c\rangle} E(1) \ldots \times_{\langle c\rangle} E(1) .
$$

Take cohomologies

$$
\begin{gathered}
H^{*}(B C ; \mathbb{Z} / p) \cong \mathbb{Z} / p[u] \otimes \Lambda(z), \quad \beta z=u \\
H^{*}\left(B V_{n} ; \mathbb{Z} / p\right) \cong \mathbb{Z} / p\left[y_{1}, \ldots, y_{2 n}\right] \otimes \Lambda\left(x_{1}, \ldots x_{2 n}\right), \quad \beta x_{i}=y_{i}
\end{gathered}
$$

identifying the dual of a_{i} (resp.c) with x_{i} (resp. z). That means

$$
H^{1}(E(n) ; \mathbb{Z} / p) \cong \operatorname{Hom}(E(n) ; \mathbb{Z} / p) \ni x_{i}: a_{j} \mapsto \delta_{i j} .
$$

The central extension is expressed by

$$
f=\sum_{i=1}^{n} x_{2 i-1} x_{2 i} \in H^{2}\left(B V_{n} ; \mathbb{Z} / p\right)
$$

Hence $\pi^{*} f=0$ in $H^{2}(B E(n) ; \mathbb{Z} / p)$. We consider the Hochshild-Serre spectral sequence

$$
E_{2}^{*, *^{\prime}} \cong H^{*}\left(B V_{n} ; \mathbb{Z} / p\right) \otimes H^{*}(B C ; \mathbb{Z} / p) \Longrightarrow H^{*}(B E(n) ; \mathbb{Z} / p)
$$

Hence the first nonzero differential is $d_{2}(z)=f$ and the next differential is

$$
d_{3}(u)=d_{3}\left(Q_{0}(z)\right)=Q_{0}(f)=\sum y_{2 i-1} x_{2 i}-y_{2 i} x_{2 i-1} .
$$

In particular

$$
E_{4}^{0, *} \cong \mathbb{Z} / p\left[y_{1}, \ldots, y_{2 n}\right] \otimes \Lambda\left(x_{1}, \ldots x_{2 n}\right) /\left(f, Q_{0}(f)\right)
$$

Lemma 9.1. We have the inclusion

$$
\Lambda\left(x_{1}, \ldots, x_{2 n}\right) /(f) \subset H^{*}(B E(n) ; \mathbb{Z} / p)
$$

Proof. We consider similar group $E(n)^{\prime}$ such that its center is $C \cong \mathbb{Z} / p$ and there is the extension

$$
0 \longrightarrow C \xrightarrow{i} E(n)^{\prime} \xrightarrow{\pi} V_{n}^{\prime} \longrightarrow 0
$$

but $V_{n}^{\prime}=\oplus^{2 n} \mathbb{Z}_{p}$ such that there is the quotient map $q: E(n)^{\prime} \rightarrow E(n)$. We also consider the spectral sequence

$$
E_{2}^{*, *^{\prime}} \cong H^{*}\left(B V^{\prime} ; \mathbb{Z} / p\right) \otimes H^{*}(B C ; \mathbb{Z} / p) \Longrightarrow H^{*}\left(B E(n)^{\prime} ; \mathbb{Z} / p\right)
$$

Here $H^{*}\left(B V_{n}^{\prime} ; \mathbb{Z} / p\right) \cong \Lambda\left(x_{1}, \ldots x_{2 n}\right)$. The first nonzero differential is $d_{2}(z)=f$ but the second differential is

$$
d_{3}(u)=\sum y_{2 i-1} x_{2 i}-y_{2 i} x_{2 i-1}=0 \in \Lambda\left(x_{1}, \ldots, x_{2 n}\right)
$$

Hence $E_{4}^{*, *^{\prime}}$ is (multiplicatively) generated by u and x_{i} (permanent cycles). So $E_{4}^{*, *^{\prime}} \cong E_{\infty}^{*, *^{\prime}}$. Therefore we have

$$
H^{*}\left(B E(n)^{\prime} ; \mathbb{Z} / p\right) \cong \mathbb{Z} / p[u] \otimes \Lambda\left(x_{1}, \ldots, x_{2 n}\right) /(f)
$$

From the map $q^{*}: H^{*}(B E(n) ; \mathbb{Z} / p) \rightarrow H^{*}\left(B E(n)^{\prime} ; \mathbb{Z} / p\right)$, we get the result.

However $H^{*}(B E(n) ; \mathbb{Z} / p) /\left(N^{1}\right) \not \neq \Lambda\left(x_{1}, \ldots, x_{2 n}\right) /(f)$, in fact, when $n=$ 1, from Theorem 3.3 in [Ya6] we see

Proposition 9.2. We have

$$
\begin{gathered}
H^{*}(B E(1) ; \mathbb{Z} / p) /\left(N^{1}\right) \cong \mathbb{Z} / p\left\{1, x_{1}, x_{2}, a_{1}^{\prime}, a_{2}^{\prime}\right\} \quad \operatorname{deg}\left(a_{i}^{\prime}\right)=2 \\
D H^{*}(X) / 2 \cong \mathbb{Z} / 2\left\{Q_{0}\left(a_{1}^{\prime}\right), Q_{0}\left(a_{2}^{\prime}\right)\right\}
\end{gathered}
$$

Lemma 9.3. Let $n \geq 2$. Then

$$
y_{i}^{p} y_{j}-y_{i} y_{j}^{p} \neq 0 \quad \in H^{*}(B E(n) ; \mathbb{Z} / p) .
$$

Proof. By the inclusion $E(2) \subset E(n)$ and induced quotient map

$$
H^{*}(B E(n) ; \mathbb{Z} / p) \rightarrow H^{*}(B E(2) ; \mathbb{Z} / p)
$$

we only need to see

$$
y_{1}^{p} y_{2}-y_{1} y_{2}^{p} \neq 0 \quad \in H^{*}(B E(2) ; \mathbb{Z} / p) \otimes \overline{\mathbb{F}}_{p}
$$

for the algebraic closure $\overline{\mathbb{F}}_{p}$ of the finite field \mathbb{F}_{p}.
Let $n=2$. Note here

$$
\begin{gathered}
Q_{i} Q_{0}(f)=y_{1}^{p^{i}} y_{2}-y_{1} y_{2}^{p^{i}}+y_{3}^{p^{i}} y_{4}-y_{3} y_{4}^{p^{i}} \\
=y_{2} \Pi_{\lambda \in \mathbb{F}_{p^{i}}}\left(y_{1}-\lambda y_{2}\right)+y_{4} \Pi_{\lambda \in \mathbb{F}_{p^{i}}}\left(y_{3}-\lambda y_{4}\right) .
\end{gathered}
$$

Hence this formula $Q_{i} Q_{0}(f)$ is a sum of multiplies of

$$
y_{1}^{p} y_{2}-y_{1} y_{2}^{p}=y_{2} \Pi_{\lambda \in \mathbb{F}_{p}}\left(y_{1}-\lambda y_{2}\right) \quad \text { and } \quad y_{3}^{p} y_{4}-y_{3} y_{4}^{p},
$$

Suppose that $y_{1}^{p} y_{2}-y_{1} y_{2}^{p}=0$. Then by the symmetry of the group. we see $y_{3}^{p} y_{4}-y_{3} y_{4}^{p}=0$. But it is known [Te-Ya1] $\left(Q_{1} Q_{0}(f), Q_{2} Q_{0}(f)\right)$ is regular in $\mathbb{Z} / p\left[y_{1}, y_{2}, y_{3} . y_{4}\right]$. This is a contradiction.

The more concrete expression of $D H^{*}(X) / p$ seems somewhat complicated. So we only give it for $*=3$.
Proposition 9.4. Let $G=E(n), n>1$. Then we have

$$
\begin{gathered}
D H^{3}(X) / p \cong \mathbb{Z} / p\left\{Q_{0}\left(x_{i} x_{j}\right) \mid(i, j) \neq(1,2), 1 \leq i<j \leq n\right\} \\
H_{u r}^{2}(X ; \mathbb{Z} / p), \operatorname{Inv}^{2}(G: \mathbb{Z} / p) \supset \mathbb{Z} / p\left\{x_{i} x_{j} \mid(i, j) \neq(1,2), 1 \leq i<j \leq n\right\}
\end{gathered}
$$

Proof. The degree 3 integral cohomology $\bmod (p) H^{3}(X) / p$ is generated as a $\mathbb{Z} / p\left[y_{1} \ldots, y_{n}\right]$-module by $Q_{0}\left(x_{i} x_{j}\right)$. The proposition follows from the main lemma and

$$
Q_{1} Q_{0}\left(x_{i} x_{j}\right)=y_{i}^{p} y_{j}-y_{i} y_{j}^{p} \neq 0 \quad \text { in } H^{*}(X ; \mathbb{Z} / p)
$$

Bogomolov-Bohning-Pirutka study the kernel of the map

$$
K=\operatorname{Ker}\left(q_{/ N^{1}}^{*}: H^{*}\left(B V_{n} ; \mathbb{Z} / p\right) / N^{1} \rightarrow H^{*}(B G ; \mathbb{Z} / p) / N^{1}\right)
$$

where $H^{*}\left(B V_{n} ; \mathbb{Z} / p\right) / N^{1} \cong \Lambda\left(x_{1}, \ldots, x_{2 n}\right)$. Their theorem in [Bo-Bo-Pi] induces

Theorem 9.5. (Theorem 1.3 in [Bo-Bo-Pi]) If $p \geq n, G$ is extraspecial group of order $p^{1+2 n}$ then $\operatorname{Ker}\left(q_{/ N^{1}}^{*}\right) \cong(f)$. Hence

$$
H_{u r}^{*}(X ; \mathbb{Z} / p) \supset \Lambda\left(x_{1}, \ldots, x_{2 n}\right) /(f)
$$

Remark. There is the another group $p_{-}^{1+2 n}$ with the degree $2^{n}+1$.
When $p=2$, the situation becomes changed. The extraspecial 2-group $D(n)=2_{+}^{1+2 n}$ in the n-th central extension of the dihedral group D_{8} of order 8 . It has the central extension

$$
0 \rightarrow \mathbb{Z} / 2 \rightarrow D(n) \rightarrow V_{n} \rightarrow 0
$$

with $V_{n}=\oplus^{2 n} \mathbb{Z} / 2$. Hence $H^{*}\left(B V_{n} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[x_{1}, \ldots, x_{2 n}\right]$. Then using the Hochschild-Serre spectral sequence, Quillen proved [Qu]
$H^{*}(B D(n) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[x_{1}, \ldots, x_{2 n}\right] /\left(f, Q_{0}(f), \ldots, Q_{n-2}(f)\right) \otimes \mathbb{Z}\left[w_{2^{n}}(\Delta)\right]$.
Here $\left.w_{2^{n}}(\Delta)\right)$ is the Stiefel-Whitney class of 2^{n}-dimensional (spin) representation Δ which restricts nonzero on the center. Moreover Quillen proves the following two theorems (Theorem 5.10-11 in [Qu])

Theorem 9.6. ([Qu]) $H^{*}(B D(n) ; \mathbb{Z} / 2)$ is detected by the product of cohomology of maximal elementary abeian groups.

Theorem 9.7. ([Qu]) The nonzero Stiefel-Whitney $w_{i}(\Delta)$ are those of degrees 2^{n} and $2^{n}-2^{i}$ for $0 \leq i<n$.

In fact $w_{i}(\Delta)$ generates the Dickson algebra in the cohomology of the maximal elementary abelian 2-groups.

Proposition 9.8. When $n>2$, there is the surjection

$$
\Lambda\left(x_{1}, \ldots, x_{2 n}\right) /(f) \rightarrow H^{*}(B D(n) ; \mathbb{Z} / 2) /\left(N^{1}\right)
$$

Proof. By the same arguments with $p=o d d$, we see

$$
\Lambda=\Lambda\left(x_{1}, \ldots, x_{2 n}\right) /(f) \subset H^{*}(B D(n) ; \mathbb{Z} / 2)
$$

The fact $w_{2}(\Delta)=0$ follows from the above third Quillen's theorem. Hence we have $w_{2^{n}}(\Delta) \in N^{1}$ from Becher's theorem (Theorem 6.2 in [Te-Ya2]). i.e., w_{i} is multiplicative generated by w_{1} and w_{2}. Thus we get the proposition.

However this map (in Proposition 9.8) is not need injective. In fact, in $[\mathrm{Bo}-\mathrm{Bo}-\mathrm{Pi}]$, it is proven that the above map is not injective when $G=D(3)=2_{+}^{1+6}$. They also see that the map in the proposition is injective when we restrict the degree $*=2$

Theorem 9.9. Let $G=D(3)$ and $X=X_{G}$. Then we have

$$
D H^{3}(X) / 2 \cong \mathbb{Z} / p\left\{Q_{0}\left(x_{i} x_{j}\right) \mid(i, j) \neq(1,2), 1 \leq i<j \leq 3\right\}
$$

$H_{u r}^{2}(X ; \mathbb{Z} / p), \operatorname{Inv}^{2}(G: \mathbb{Z} / p) \supset \mathbb{Z} / p\left\{x_{i} x_{j} \mid(i, j) \neq(1,2), 1 \leq i<j \leq 3\right\}$.
However, the map in Proposition 9.8 is not injective for some $*>2$.

10. The motivic cohomology of quadrics over \mathbb{R} with

 COEFFICIENTS $\mathbb{Z} / 2$Let X be a smooth variety over the field \mathbb{R} of real numbers, and we consider the cohomologies of $\mathbb{Z} / 2$ coefficients. In this paper the $\bmod (2)$ étale cohomology means the motivic cohomology of the same first and the second degrees $H_{e t}^{*}(X ; \mathbb{Z} / 2) \cong H^{*, *}(X . \mathbb{Z} / 2)$.

It is well known ([Vo1], [Vo2])

$$
\begin{aligned}
& H_{e ́ t}^{*}(\operatorname{Spec}(\mathbb{C}) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2, \quad H^{*, *^{\prime}}(\operatorname{Spec}(\mathbb{C}) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2[\tau] \\
& H_{e t t}^{*}(\operatorname{Spec}(\mathbb{R}) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2[\rho], \quad H^{*, *^{\prime}}(\operatorname{Spec}(\mathbb{R}) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2[\tau, \rho]
\end{aligned}
$$

where $0 \neq \tau \in H^{0,1}(\operatorname{Spec}(\mathbb{R}) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2$ and where

$$
\rho=-1 \in \mathbb{R}^{*} /\left(\mathbb{R}^{*}\right)^{2} \cong K_{1}^{M}(\mathbb{R}) / 2 \cong H_{e ́ t}^{1}(\operatorname{Spec}(\mathbb{R}) ; \mathbb{Z} / 2)
$$

We recall the cycle map from the Chow ring to the étale cohomology

$$
c l / 2: C H^{*}(X) / 2 \rightarrow H_{e ́ t}^{2 *}(X ; \mathbb{Z} / 2) .
$$

This map is also written as $H^{2 *, *}(X ; \mathbb{Z} / 2) \xrightarrow{\times \tau^{*}} H^{2 *, 2 *}(X ; \mathbb{Z} / 2)$.
Let $X=Q^{d}$ be an anisotropic quadric of dimension $2^{n}-1$ (i.e. the norm variety for $\left(\rho^{n+1} \in K_{n+1}^{M}(\mathbb{R}) / 2\right)$). Then we have the Rost motive $M \subset Q^{d}[\mathrm{Ro}]$. It is known (the remark page 575 in [Ya2])

$$
H_{e t t}^{*}(M ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2[\rho] /\left(\rho^{2^{n+1}-1}\right) \cong \mathbb{Z} / 2\left\{1, \rho, \rho^{2}, \ldots, \rho^{2^{n+1}-2}\right\}
$$

The Chow ring is also known [Ro]

$$
C H^{*}(M) / 2 \cong \mathbb{Z} / 2\left\{1, c_{0}, c_{1} \ldots, c_{n-1}\right\}, \quad \operatorname{cl}\left(c_{i}\right)=\rho^{2^{n+1}-2^{i+1}} .
$$

The cycle map $c l / 2$ is injective. The elements c_{i} is also written as

$$
c_{i}=\rho^{2^{n+1}-2^{i+1}} \tau^{-2^{n}+2^{i}} \quad \text { in } C H^{*}(M) / 2 \subset H_{e t}^{2 *}(M: \mathbb{Z} / 2)\left[\tau^{-1}\right]
$$

The $\bmod (2)$ motivic cohomology is known (Theorem 5.3 in [Ya2]).
Theorem 10.1. (Theorem 5.3 in [Ya2]) The cohomology $H^{*, *^{\prime}}\left(M_{n} ; \mathbb{Z} / 2\right)$ is isomorphic to the $\mathbb{Z} / 2[\rho, \tau]$-subalgebra of

$$
\mathbb{Z} / 2\left[\rho, \tau, \tau^{-1}\right] /\left(\rho^{2^{n+1}-1}\right)
$$

generated by $a=\rho^{n+1}$, $a^{\prime}=a \tau^{-1}$, and elements in $\Lambda\left(Q_{0}, \ldots, Q_{n-1}\right)\left\{a^{\prime}\right\}$.
The following lemma is used in the next sections.
Lemma 10.2. We have $Q_{0}\left(\tau^{-1}\right)=\rho \tau^{-2}$. Hence $Q_{0}\left(a^{\prime}\right)=\rho a \tau^{-2}$, while $Q_{0}(a)=0$.
Proof. We see the first equation from

$$
0=Q_{0}(1)=Q_{0}\left(\tau \tau^{-1}\right)=\rho \tau^{-1}+\tau Q_{0}\left(\tau^{-1}\right)
$$

Lemma 10.3. (Lemma 5.13 in Ya2] Let X_{d} be anisotropic quadric of the degree d. Let $h \in H^{2,1}\left(X_{d}\right)$ be the hyper plain section. If $2^{n}-2<d$, then we have a graded ring isomorphism

$$
H^{*, *^{\prime}}\left(X_{d} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2[\rho, \tau, h] \quad \text { when } * \leq n
$$

In particular, $H^{*, *-1}\left(X_{d}: \mathbb{Z} / 2\right)=0 \bmod (\operatorname{Ideal}(h))$ for $* \leq n$.

11. The cohomology of quadrics with coefficients in \mathbb{Z}_{2}

In this section we consider integral coefficients case. In this paper, the 2-adic integral \mathbb{Z}_{2} cohomology means the inverse limit

$$
H_{e t t}^{*}\left(M ; \mathbb{Z}_{2}\right)=\operatorname{Lim}_{\infty \leftarrow s} H^{*, *}\left(M ; \mathbb{Z} / 2^{s}\right)
$$

of motivic cohomologies.
We recall here the Lichtenberg cohomology [Vo1,2] such that

$$
H_{L}^{*, *^{\prime}}(X ; \mathbb{Z}) \cong H^{*, *^{\prime}}(X ; \mathbb{Z}) \quad \text { for } * \leq *^{\prime}+1
$$

(The right side is the motivic cohomology.) By the five lemma, we see (for $1 / s \in k$)

$$
H_{L}^{*, *^{\prime}}(X ; \mathbb{Z} / s) \cong H^{*, *^{\prime}}(X ; \mathbb{Z} / s) \quad \text { for } \quad * \leq *^{\prime}
$$

Moreover we have $H_{L}^{2 *, *^{\prime}}(X ; \mathbb{Z} / s) \cong H_{e t t}^{2 *}\left(X ; \mu_{s}^{*^{*} \otimes}\right)$.
In this paper we consider the cycle maps to this Lichitenberg (or motivic) cohomology in stead of the étale cohomology itself. The cycle map is written

$$
c l: C H^{*}(X) \otimes \mathbb{Z}_{2} \cong H^{2 *, *}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H_{L}^{2 *, *}\left(X ; \mathbb{Z}_{2}\right) \cong H_{e t}^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right)
$$

where $\mathbb{Z}(*)$ is the Galois module, when $k=\mathbb{R}$, it acts as $(-1)^{*}$. Here we can write

$$
H_{e t}^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right)=\oplus_{m \geq 0}\left(H_{e t}^{4 m} X ; \mathbb{Z}_{2}\right) \oplus H_{\hat{e t}}^{4 m+2}\left(X ; \mathbb{Z}_{2}(1)\right)
$$

Note that it is the (graded) ring.
Let $k=\mathbb{R}$. Moreover let $*=$ even. Then the right hand side cohomology is written

$$
\begin{gathered}
H_{e t}^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right) \cong H_{e ́ t}^{2 *}\left(X ; \mathbb{Z}_{2}(\text { even })\right) \cong H_{e t t}^{2 *}\left(X ; \mathbb{Z}_{2}(2 *)\right) \\
\cong H_{L}^{2 *, 2 *}\left(X ; \mathbb{Z}_{2}\right) \cong H^{2 *, 2 *}\left(X ; \mathbb{Z}_{2}\right)
\end{gathered}
$$

Similarly, when $*=o d d$, we see $H_{e ́ t}^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right) \cong H^{2 *, 2 *+1}\left(X ; \mathbb{Z}_{2}\right)$.
Thus in this paper, the cycle map means ;
$c l: C H^{*}(X) \otimes \mathbb{Z}_{2} \rightarrow H_{e t t}^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right) \cong\left\{\begin{array}{l}H^{2 *, 2 *}\left(X ; \mathbb{Z}_{2}\right) \quad \text { for } *=\text { even } \\ H^{2 *, 2 *+1}\left(X ; \mathbb{Z}_{2}\right) \quad \text { for } *=\text { odd } .\end{array}\right.$.
We say that $x \in H_{e t}^{2 *}(X ; \mathbb{Z}(*)$ is non-algebraic if $x \neq 0 \bmod (\operatorname{Im}(c l))$.

The short exact sequence $0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \rightarrow 0$ induces the long exact sequence of motivic cohomology
$\ldots \rightarrow H^{*-1, *}(M ; \mathbb{Z} / 2) \xrightarrow{\delta} H^{*, *}(M ; \mathbb{Z}) \xrightarrow{2} H^{*, *}(M ; \mathbb{Z}) \xrightarrow{r} H^{*, *}(M ; \mathbb{Z} / 2) \rightarrow \ldots$
By Voevodsky [Vo1], [Vo2]), it is known $\beta(\tau)=\rho$ for the Bockstein operation β. Let us write $\delta\left(\tau \rho^{i-1}\right)=\bar{\rho}_{i} \in H^{*, *}(M ; \mathbb{Z})$ so that $r\left(\bar{\rho}_{i}\right)=$ $\beta\left(\tau \rho^{i-1}\right)=\rho^{i}$ since $r \delta=\beta$. Moteover $\bar{\rho}_{i}$ is 2 -torsion from the above exact sequence.

Hence for all $1 \leq c \leq 2^{n+1}-2$, we see $H^{c, c}(M ; \mathbb{Z}) \neq 0$. The same fact holds each $H_{\text {ett }}^{c}\left(M ; \mathbb{Z} / 2^{s}\right)$ and so $H_{\text {ét }}^{c}\left(M ; \mathbb{Z}_{2}\right)$.
Lemma 11.1. Let $N=2^{n+1}-2$. Then

$$
\mathbb{Z}_{2}\left\{1, \operatorname{cl}\left(c_{0}\right)\right\} \oplus \mathbb{Z} / 2\left\{\bar{\rho}_{1}, \ldots, \bar{\rho}_{N}\right\} \subset H_{e ́ t}^{*}\left(M ; \mathbb{Z}_{2}\right) \oplus H_{e t t}^{*}\left(M ; \mathbb{Z}_{2}(1)\right)
$$

The element $\bar{\rho}_{c}$ with $c=0 \bmod (4)$ and $c \neq 2^{n+1}-2^{i+1}$ is a non-algebraic element (i.e., not in the image of the cycle map).

Remark. When $c=2 \bmod (4)$, the element $\bar{\rho}_{c} \in H^{c}\left(M ; \mathbb{Z}_{2}\right)$ but not in $H^{c}\left(M ; \mathbb{Z}_{2}(1)\right)$. So we identify here $\bar{\rho}_{c}$ is not in $H_{e t t}^{2 *}\left(M ; \mathbb{Z}_{2}(*)\right)$.

Writing $\pi=c l\left(c_{0}\right)$, we have the following theorem.
Theorem 11.2. ([Ya 7$]$) Let $M_{n} \subset Q^{2^{n}-1}$ be the Rost motive of the norm variety. Then there are element $\pi \in H_{e \text { ét }}^{2^{n+1}-2}\left(M_{n} ; \mathbb{Z}_{2}(1)\right)$ and $\bar{\rho}_{4 m} \in$ $H_{\text {et }}^{4 m}\left(M_{n} ; \mathbb{Z}_{2}(0)\right)$ such that

$$
\begin{gathered}
H_{\hat{e t t}}^{2 *}\left(M_{n} ; \mathbb{Z}_{2}(*)\right) \cong \mathbb{Z}_{2}\{1, \pi\} \oplus \mathbb{Z} / 2\left\{\bar{\rho}_{4}, \bar{\rho}_{8}, \ldots, \bar{\rho}_{2^{n+1}-4}\right\} \\
\cong \mathbb{Z}_{2}\{1, \pi\} \oplus \mathbb{Z} / 2\left[\bar{\rho}_{4}\right]^{+} /\left(\bar{\rho}_{4}^{2^{n-1}}\right) .
\end{gathered}
$$

The image of the cycle map is given

$$
C H^{*}\left(M_{n}\right) \otimes \mathbb{Z}_{2} \cong \mathbb{Z}_{2}\{1, \pi\} \oplus \mathbb{Z} / 2\left\{\bar{\rho}_{2^{n+1}-2^{n}}, \bar{\rho}_{2^{n+1}-2^{n-1}}, \ldots, \bar{\rho}_{2^{n+1}-4}\right\}
$$

12. NORM VARIETIES

Let $X=Q^{2^{n}-1}$ be the norm variety, and M_{n} be its Rost motive. We have the decomposition of motives ([R0], $\S 6 \mathrm{in}[\mathrm{Ya} 1]$)

$$
M\left(Q^{2^{n}-1}\right) \cong M_{n} \oplus M_{n-1} \otimes M\left(\tilde{\mathbb{P}}^{2^{n-1}-1}\right)
$$

where $M\left(\tilde{\mathbb{P}}^{s}\right) \cong \mathbb{T} \oplus \ldots \oplus \mathbb{T}^{s \otimes}$.
Hence we have the additive structure from Theorem 11.2 in the preceding section. More strongly, we can prove
Theorem 12.1. Ya6 We have a ring isomorphism

$$
H_{\hat{e} t}^{2 *}\left(Q^{2^{n}-1} ; \mathbb{Z}_{2}(*)\right) \cong \mathbb{Z}_{2}\left[h, \bar{\rho}_{4}\right] /\left(h^{2^{n}}, 2 \bar{\rho}_{4}, h \bar{\rho}_{4}^{2^{n-2}}, \bar{\rho}_{4} h^{2^{n-1}}, \bar{\rho}_{4}^{2^{n-1}}\right)
$$

Here $h \in H^{2}\left(Q^{2^{n}-1} ; \mathbb{Z}_{2}(1)\right)$ is the hyper plain section, and we can take $\pi=h^{2^{n}-1}$. (The ring is generated by only two elements.)

We give only an outline of the proof for Q^{7} here, for ease of arguments.
Lemma 12.2. We have a ring isomorphism

$$
\begin{aligned}
H_{e t}^{2 *}\left(Q^{7} ; \mathbb{Z}_{2}(*)\right) & \cong \mathbb{Z}_{2}[h] /\left(h^{8}\right) \oplus \mathbb{Z} / 2[h] /\left(h^{4}\right)\left\{\bar{\rho}_{4}\right\} \otimes \mathbb{Z} / 2\left\{\bar{\rho}_{4}^{2}, \bar{\rho}_{4}^{3}\right\} \\
& \cong \mathbb{Z}_{2}\left[h, \bar{\rho}_{4}\right] /\left(h^{8}, 2 \bar{\rho}_{4}, h^{4} \bar{\rho}_{4}, h \bar{\rho}_{4}^{2}, \bar{\rho}_{4}^{4}\right)
\end{aligned}
$$

where $h^{7}=c_{0}=\pi, c_{1}=\bar{\rho}_{4}^{3}, c_{2}=\bar{\rho}_{4}^{2}$ and $c_{1}^{\prime} h=h \bar{\rho}_{4}$. Hence we have

$$
H_{e t t}^{2 *}\left(Q^{7} ; \mathbb{Z}_{2}(*)\right) /(\operatorname{Im}(c l)) \cong \mathbb{Z} / 2\left\{\bar{\rho}_{4}\right\} .
$$

Proof. From the decomposition of the motive, we see (additively)

$$
H_{e t}^{2 *}\left(Q^{7} ; \mathbb{Z}_{2}(*)\right) \cong H^{2 *}\left(M_{3} ; \mathbb{Z}_{2}(*)\right) \oplus H^{2 *}\left(M_{2} ; \mathbb{Z}_{2}(*)\right) \otimes \mathbb{Z}_{2}\left\{h, h^{2}, h^{3}\right\}
$$

Hence it can be written additively (with $\left|c_{0}\right|=14,\left|c_{1}\right|=12,\left|c_{2}\right|=8$, $\left.\left|c_{0}^{\prime}\right|=6,\left|c_{1}^{\prime}\right|=4\right)$

$$
\left(\mathbb{Z}_{2}\left\{1, c_{0}\right\} \oplus \mathbb{Z} / 2\left\{\bar{\rho}_{4}, c_{1}, c_{2}\right\}\right) \oplus\left(\mathbb{Z}_{2}\left\{1, c_{0}^{\prime}\right\} \oplus \mathbb{Z} / 2\left\{c_{1}^{\prime}\right\}\right) \otimes \mathbb{Z}_{2}\left\{h, h^{2}, h^{3}\right\} .
$$

It is well known $($ for $\bar{X}=X(\mathbb{C})$)

$$
H^{*}\left(\bar{X} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}[h, y] /\left(h^{8}, 2 y=h^{4}, y^{2}\right)
$$

Hence, from the restriction map, the ring $H^{*}\left(X ; \mathbb{Z}_{2}\right) \supset Z_{2}[h] /\left(h^{8}\right)$.
First note

$$
\mathbb{Z}_{2}\left\{c_{0}^{\prime} h, c_{0}^{\prime} h^{2}, c_{0}^{\prime} h^{3}\right\} \cong \mathbb{Z}_{2}\left\{h^{4}, h^{5}, h^{6}\right\}
$$

Thus we have

$$
\mathbb{Z}_{2}\left\{1, h, \ldots, h^{7}\right\} \cong \mathbb{Z}_{2}\left\{1, h, h^{2}, h^{3}, h c_{0}^{\prime}, h^{2} c_{0}^{\prime}, h^{3} c_{0}^{\prime}, c_{0}\right\}
$$

So we have the above $H^{2 *}\left(Q^{7} ; \mathbb{Z}_{2}(*)\right)$ is isomorphic to

$$
\mathbb{Z}_{2}[h] /\left(h^{8}\right) \oplus \mathbb{Z} / 2\left\{\bar{\rho}_{4}, c_{2}, c_{1}\right\} \oplus \mathbb{Z}_{2}\left\{c_{1}^{\prime} h, c_{1}^{\prime} h^{2}, c_{1}^{\prime} h^{3}\right\}
$$

Taking $c_{2}=\bar{\rho}_{4}^{2}, c_{1}=\bar{\rho}_{4}^{3}, h c_{1}^{\prime}=h \bar{\rho}_{4}$, we have the result.
We want to see the following theorem.
Theorem 12.3. Let $X_{n}=Q^{2^{n}-1}, n \geq 2$ the norm variety. Then

$$
\begin{gathered}
D H^{2 *}\left(X_{n} ; \mathbb{Z}_{2}(*)\right)=0 \\
H_{u r}^{2 *}\left(X_{n} ; \mathbb{Z}_{2}(*)\right) \supset \mathbb{Z} / 2\left[\bar{\rho}_{4}\right] /\left(\bar{\rho}_{4}^{2^{n-1}}\right) .
\end{gathered}
$$

Hence for $n \neq n^{\prime}$, we see that X_{n} and $X_{n^{\prime}}$ are not retract rationally equivaliant.

Remark. When $n=1$, we see $X_{1} \cong \mathbb{P}^{1}$ that is, X_{1} stable birational.
Corollary 12.4. The second and the last formulas in the above theorem, hold when k is a real number field.

Proof. Recall that the norm variety $X_{n}=X_{n}(k)$ is defined naturaly.
Let $r_{1} \geq 1$ be real embedding number. Then we have the restriction

$$
r: H_{e t}^{*}(\operatorname{Spec}(k) ; \mathbb{Z} / 2) \rightarrow \oplus^{r_{1}} H_{e t}^{*}(\operatorname{Spec}(\mathbb{R}) ; \mathbb{Z} / 2)
$$

such that r is surjective for $* \geq 1$ and isomorphic for $* \geq 3$, Hence we can define $\rho(k) \in H_{e t}^{1}(\operatorname{Spec}(k) ; \mathbb{Z} / 2)$ so that $r(\rho(k))=\rho$. Similarly we can define $\bar{\rho}_{4}(k)$ in $H_{u n}^{*}\left(X ; \mathbb{Z}_{2}\right)$. It is nonzero since so for $k=\mathbb{R}$.

Since the hyper plain section h is represented by a first Chern class and $\pi=c_{0}=h^{2^{n}-1}$. By Frobenius reciprocity, we only check elements

$$
\bar{\rho}_{4}^{i} \notin N^{1} H^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right)
$$

for the first equality in theorem. Then $\operatorname{Ideal}(h) \in N^{1}$ and

$$
H_{u r}^{4 *}(X ; \mathbb{Z} / 2) \supset H^{4 *}(X: \mathbb{Z} / 2) / N^{1} \supset \mathbb{Z} / 2\left[\bar{\rho}_{4}\right] /\left(\bar{\rho}_{4}^{2^{n-1}}\right)
$$

implies the second formula.
Since $H^{2 *}\left(M_{n} ; \mathbb{Z}_{2}(*)\right)$ is a direct summand of $H^{2 *}\left(X ; \mathbb{Z}_{2}(*)\right)$ and $\bar{\rho}_{4}$ is defined in $H^{2 *}\left(M_{n} ; \mathbb{Z}_{2}(*)\right)$, we only need to see the following Lemma 12.5, (by using Lemma 10.1-10.3) for the proof of the above theorem.

Lemma 12.5. We have $\bar{p}_{4}^{i} \notin N^{1} H^{*}\left(M_{n} ; \mathbb{Z}_{2}(*)\right)$ for $i \geq 1$.
Proof. Consider the following diagram

Suppose $\bar{\rho}_{s} \in N^{1} H^{*, *}\left(X ; \mathbb{Z}_{2}\right)$, which means that there is $x \in H^{*, *-1}(X$: $\left.\mathbb{Z}_{2}\right)$ such that $\tau^{\prime} x=\bar{\rho}_{s}$. We consider the reduction maps r to the cohomology of $\mathbb{Z} / 2$ cefficients. Then $\tau r(x)=\rho^{s}$. and $Q_{0}(r(x))$ must be zero (since x is in the integral coefficients \mathbb{Z}_{2}). We will prove this does not happen.

Recall $a=\rho^{n+1}$ and $a^{\prime}=a \tau^{-1}$ in $H^{*, *-1}\left(M_{n} ; \mathbb{Z} / 2\right)$.
The case $* \leq n ;$ The cohomology $H^{*, *^{\prime}}\left(M_{n} ; \mathbb{Z} / 2\right)=0 \bmod (\operatorname{Ideal}(h))$ for $*>*^{\prime}$ from Lemma 10.3. Hence there is no non zero element $\tau^{-1} \rho^{*} \in$ $H^{* * *-1}\left(M_{n} ; \mathbb{Z} / 2\right) \bmod \left(\operatorname{Ideal}(h)\left(\right.\right.$ where $\left.h \in \tilde{N}^{1}\right)$.

The case $*=n+1$; Then there is a^{\prime} such that $\tau a^{\prime}=a$. But this element a^{\prime} is not in the integral $H^{*, *-1}\left(M_{a} ; \mathbb{Z}_{2}\right)$, because

$$
Q_{0}\left(a^{\prime}\right)=Q_{0}\left(\rho^{n+1} \tau^{-1}\right)=\rho^{n+2} \tau^{-2}
$$

which is nonzero in $H^{*, *^{\prime}}\left(M_{n} ; \mathbb{Z} / 2\right)$, and so $a \notin N^{1} H^{*, *}\left(M_{n} ; \mathbb{Z}_{2}\right)$.

The case $*>n+1$. Let us write $b^{\prime}=Q_{0}\left(a^{\prime}\right)=\rho^{n+2} \tau^{-2}$. Next consider the element $b=\tau b^{\prime}$. Then we note

$$
\tau b=\tau^{2} b^{\prime}=\tau^{2} \rho^{n+2} \tau^{-2}=a \rho=\rho^{n+2}
$$

That is $b=\rho^{n+2} \tau^{-1}$ and $b=\tau Q_{0}\left(a^{\prime}\right)$. Hence from Theorem 10.1, we see $b \in H^{*, *^{\prime}}\left(M_{n} ; \mathbb{Z} / 2\right)$.

Since $Q_{0}\left(b^{\prime}\right)=Q_{0} Q_{0}\left(a^{\prime}\right)=0$, we can compute

$$
Q_{0}(b)=Q_{0}\left(\tau b^{\prime}\right)=\rho b^{\prime}+\tau Q_{0}\left(b^{\prime}\right)=\rho b^{\prime}
$$

is nonzero in $H^{*, *^{\prime}}(X ; \mathbb{Z} / 2)$ and hence b is not in the integral $H^{*, *^{\prime}}\left(X ; \mathbb{Z}_{2}\right)$. Therefore $\rho^{n+2} \notin N^{1} H^{*}\left(X ; \mathbb{Z}_{2}\right)$.

Similarly we can show for $j>n+2$, the element ρ^{j} is not in $N^{1} H^{*}\left(X ; \mathbb{Z}_{2}\right)$.

The elements a, \ldots, b^{\prime} are written in $\mathbb{Z} / 2\left[\rho, \tau, \tau^{-1}\right] /\left(\rho^{2^{n}-1}\right)$ as follows. (Recall Theorem 10.1 and Lemma 10.2.)

$$
\begin{aligned}
& \rho^{n+2} \in H^{n+2, n+2} \\
& \tau \uparrow \\
& a=\rho^{n+1} \in H^{n+1, n+1} \quad b=\rho^{n+2} \tau^{-1} \quad \xrightarrow{Q_{0}} \rho^{n+3} \tau^{-2} \\
& \tau \uparrow \quad \tau \uparrow \\
& \rho^{n} \in H^{n . n} \quad a^{\prime}=\rho^{n+1} \tau^{-1} \quad \xrightarrow{Q_{0}} \quad b^{\prime}=\rho^{n+2} \tau^{-2} \quad \xrightarrow{Q_{0}} \quad 0 \\
& \tau \uparrow \\
& 0=H^{n, n-1}
\end{aligned}
$$

References

[Be] O. Benoist, Steenrod operations and algebraic classes. arXiv:220 9.03685. [math.AG]
[Be-Ot] O. Benoist and J. Ottem. Two coniveau filtrations. Duke Math J. 170 (2021) 2719-2715.
[Bl-Og] S. Bloch and A. Ogus. Gersten's conjecture and the homology of schemes. Ann.Scient.Éc.Norm.Sup. 7 (1974) 181-202.
[Bo] F.Bogomolov. The Brauer group of quotient spaces by linear group actions. Math. USSR Izvestiya 30 (1988) 455-485.
[Bo-Bo-Pi] F. Bogomolov, C. Bohning and A. Pirutka. On stable cohomology of central extensions of elementary abelian groups, In: Ahmadinezhad, H. and Kasprzyk, A. and Mori, S., (eds.) London Mathematical Society. Lecture Note Series. Cambridge University Press (2021).
[Co-Vo] J.L. Colliot Thérène and C. Voisin. Cohomologie non ramifieet conjecture de Hodge entíere. Duke Math. J. 161 (2012), 735-801.
[Ek] T.Ekedahl. Approximating classifying spaces by smooth projective varieties preprint 44 (2009) arXiv:0905.1538.
[Ga-Me-Se] S.Garibaldi, A.Merkurjev and J.P.Serre. Cohomological invariants in Galois cohomology. University lect. series vol(28) AMS (2003).
[Ka-Ya] M.Kameko and N.Yagita. The Brown-Peterson cohomology of the classifying spaces of the projective unitary groups $P U(p)$ and exceptional Lie group Trans. of A.M.S. $\mathbf{3 6 0}$ (2008), 2265-2284.
[Ko] E. Kordonskii. Stable rationality of the group Spin So $_{10}$. Russian Math. Soc. 360 (2000) 178-179.
[Me] A. Merkurjev. Rationaly problem for classifying spaces of Spinor groups. Proc. Skeklov Inst. Math. 307 (2019) 115-124.
[Mi] J. Milnor. The Steenrod algebra and its dual. Ann. Math. 67 (1958) 150-171.
[Mi-To] M. Mimura and H. Toda, Topology of Lie groups I and II, Translations of Math. Monographs, Amer. Math. Soc, 91, 1991
[Or-Vi-Vo] D.Orlov, A.Vishik and V.Voevodsky. An exact sequence for Milnor's Ktheory with applications to quadric forms. Ann. of Math. 165 (2007) 1-13.
[Sc-Su] F. Scavia, F. Suzuki, Non-injectivity of the cycle class map in continuous ℓ-adic cohomology. arXiv:2208.06713. [Math.AG]
[Pa] K. Paranjape. Some spectral sequences for filtered complexes and applications. J. Algebra 186 (1996) 793-806.
[Pi] A. Pirutka. Varieties that are not stable retract, zero cycles and unramified cohomology. in Algebraic Geometry (Salt Lake City, UT, 2015), Proc. Sympos. Pure Math., 97, 459-484. Amer. Math. Soc., Providence, RI, 2018.
[Pi-Ya] A. Pirutka and N. Yagita. Note on the counterexamples for the integral Tate conjecture over finite fields. Doc. Math. (2015) Extra vol. : Alexander S. Merkurjev's sixties birthday. 501-511.
[Qu1] D.Quillen. Elementary proofs of some results of the cobordism theory using Steenrod operations. Advances in Math. 7 (1971), 29-56.
[Qu2] D.Quillen. The mod 2 cohomology rings of extra-special 2-groups and the spinor groups. Math. Ann. 194 (1971), 197-212.
[Ra-Wi-Ya] D. Ravenel, S. Wilson and N.Yagita. Brown-Peterson cohomology from Morava K-theory. K-theory. 15 (1998), 147-199.
[Re-Sc] Z. Reichstein and F. Scavia. The Noether problem for spinor groups of small rank. J. Algebra 48 (2020), 134-152.
[Ro] M.Rost, Some new results on Chowgroups of quadrics, preprint (1990).
[Sc-Su] F. Scavia, F. Suzuki, Non-injectivity of the cycle class map in continuous ℓ-adic cohomology. arXiv:2208.06713. [Math.AG]
[Ta] M. Tamanoi. The image of the BP-Thom map for Eilenberg-MacLane spaces. Trans. of AMS. 249 (1997), 1209-1237.
[Te-Ya1] M. Tezuka and N.Yagita. The varieties of the mod p cohomology rings of extraspecial p-groups for an odd prime p. Math. Proc. Cambridge Phil. Soc. 94 (1983) 449-459.
[Te-Ya2] M.Tezuka and N.Yagita. The image of the map from group cohomology to Galois cohomology. Trans. of AMS. 363 (2011), 4475-4503.
[To] B. Totaro. The Chow ring of classifying spaces. Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997:University of Washington,Seattle) 67 (1999), 248-281.
[Vo1] V. Voevodsky. The Milnor conjecture. www.math.uiuc.edu/K-theory/0170 (1996).
[Vo2] V.Voevodsky. Reduced power operations in motivic cohomology. Publ.Math. IHES 98 (2003),1-57.
[Vo3] V. Voevodsky. Motivic cohomology with $\mathbb{Z} / 2$ coefficient. Publ. Math. IHES 98 (2003), 59-104.
[Vo4] V.Voevodsky. On motivic cohomology with \mathbb{Z} / l-coefficients. Ann. Math. 174 (2011) 401-438.
[Ya1] N. Yagita. Chow rings of excellent quadrics. J. Pure and Appl. Algebra 212 (2008), 2440-2449.
[Ya2] N. Yagita, Motivic cohomology of quadrics and the coniveau spectral sequence. J. K-theory 6 (2010) 547-589.
[Ya4] N. Yagita. Algebraic BP-theory and norm varieties. Hokkaido Math. J. 41 (2012), 275-316.
[Ya5] N. Yagita. Chern classes and the Rost cohomological invariant. Kodai Math. J. 36 (2013), 174-178.
[Ya6] N. Yagita. Coniveau filtrations and Milnor operations Q_{n}. Math. Proc. Cambridge Phil. Soc. 175 (2023) 521-538.
[Ya7] N. Yagita. Étal cohomologies of quadrics over \mathbb{R}. Arxiv.2106.0761 (math AT).
[N. Yagita] Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan

Email address: nobuaki.yagita.math@vc.ibaraki.ac.jp,

[^0]: 2020 Mathematics Subject Classification. 14C15, 14P99, 55N20.
 Key words and phrases. birational invariant, coniveau filtrations, unramified cohomology.

