NON STABLE RATIONALITY OF PROJECTIVE APPROXIMATIONS FOR CLASSIFYING SPACES

NOBUAKI YAGITA

ABSTRACT. Let BG be the classifying space of an algebraic group G over a subfield k of \mathbb{C} of complex numbers. We compute a new stable birational invariant defined by Benoist-Ottem as the difference of two coniveau filtrations of a smooth projective (Ekedahl) approximation X of $BG \times \mathbb{P}^{\infty}$. Then we show (by without and with the unramified cohomology) in many cases X are not stable rational.

1. INTRODUCTION

Let X be a smooth projective variety over $k \in \mathbb{C}$. The conception of the rationality is how X is near to some projective space \mathbb{P}^n over k. Indeed, X is called *rational* if X is birational to a projective space \mathbb{P}^n . A variety X is called *stable* rational if $X \times \mathbb{P}^m$ is rational for some $m \ge 0$. A variety X is called *retract* rational if the rational identity map on X is factorized rationally through a projective space.

Of course, the existences and properties of non these rationality for X are widely studied by many authors (see explanations in [Pi]). For examples, such projective X which are surface bundles of three (or four)folds are studied detailedly. These examples are computed by often using the unramified cohomology $H^*_{ur}(X; \mathbb{Z}/p)$ which is invariant of (retract) rationality.

There are another examples (exchanging \mathbb{P}^n by \mathbb{A}^n); the quasi projective variety represented by the classifying spaces BG of an affine algebraic groups G [Me].

In this paper, we study the similar but different invariant $DH^*(X)$ for the projective approximation $X = X_G$ by Ekedahl for the classifying space $BG \times \mathbb{P}^{\infty}$. Note that stable rationality types of $BG \times \mathbb{P}^{\infty}$ and its projective approximation are completely different in general.

²⁰²⁰ Mathematics Subject Classification. 14C15, 14P99, 55N20.

Key words and phrases. birational invariant, coniveau filtrations, unramified cohomology.

For example we compare these invariants when $G = SO_{2m+1}$

$$\begin{cases} DH^*(BG) & is not defined, \\ H^*_{ur}(BG; \mathbb{Z}/2) \cong \mathbb{Z}/2\{1\}, \\ DH^*(X_G)/2 \supset \mathbb{Z}/2\{w_3, w_5, ..., w_{2m+1}\}, \\ H^*_{ur}(X_G; \mathbb{Z}/2) \supset \mathbb{Z}/2\{1, w_2, w_4, ..., w_{2m}\} \end{cases}$$

(The notation $A\{a, b, ...\}$ means the A-free module generated by a, b, ...)

We compute a new stable birational invariant induced from Benoist-Otten [Be-Ot] as the difference of the two coniveau filtrations. For a fixed prime p, define the stable birational invariant

$$DH^*(X; A)/p = N^1 H^*(X; A)/(p, N^1 H^*(X; A))$$

for the smooth projective approximation X of $BG \times \mathbb{P}^{\infty}$. Here $H^*(X; A)$ is the Betti (or étale) cohomology and $N^1H^*(X; A)$ (resp. $\tilde{N}^1H^*(X; A)$)) is the coniveau (resp. *strong* coniveau) filtration defined by the kernel of the restriction maps to open sets of X (resp. the image of of Gysin maps). For details see §2 below.

Hence $DH^*(X; A)/p$ is written as a sub-quotient module of $H^*(X; A)/p$. Here an approximation (for degree $\leq N$) is the projective (smooth) variety $X = X_G(N)$ such that there is a map $g: X \to BG \times \mathbb{P}^{\infty}$ with

$$g^* : H^*(BG \times \mathbb{P}^\infty; A) \cong H^*(X; A) \quad for \ * < N.$$

(In this paper, we say X is an approximation for BG when it is that of $BG \times \mathbb{P}^{\infty}$ strictly speaking.) Let us write $DH^*(X;\mathbb{Z})$ by $DH^*(X)$ simply as usual.

For example, let $G = G_n$ be the elementary abelian *p*-group $(\mathbb{Z}/p)^n$. Recall the mod(p) cohomology (for p odd)

$$H^*(BG_n; \mathbb{Z}/p) \cong \mathbb{Z}/p[y_1, \dots, y_n] \otimes \Lambda(x_1, \dots, x_n)$$

where $|x_i| = 1$ and $Q_0(x_i) = y_i$ for the Bokstein operation $Q_0 = \beta$. (Here $\Lambda(a, b, ...)$ is the exterior algebra generated by a, b, ...).

Theorem 1.1. For any prim p, take $G = G_n = (\mathbb{Z}/p)^n$, $n \ge 2$ and $\alpha_i = Q_0(x_1x_2...x_i) \in H^{n+1}(X_{G_n})$. Then we have

$$DH^*(X_{G_n})/p \supset \mathbb{Z}/p\{\alpha_2, \alpha_3, ..., \alpha_n\} \quad * \le n+1 < N.$$

Hence X_{G_n} is not stable rational. Moreover X_{G_n} and $X_{G_{n'}}$ are not stable birational equivalent when $n \neq n'$.

Next we consider the (connected) case $G = SO_n$ the special orthogonal group (p = 2). Its cohomology is

$$H^*(BSO_{2m+1}; \mathbb{Z}/2) \cong \mathbb{Z}/2[w_2, w_3, \dots, w_{2m+1}],$$

 $\mathbf{2}$

with $Q_0 w_{2m} = w_{2m+1}$ where w_i is the Stiefel-Whitney class for the embedding $SO_n \to O_n$. Hence we can identify $w_{2i+1} \in H^*(BG)$.

Theorem 1.2. [Ya6] Let $X_n = X_n(N)$ be approximations for BSO_n for $n \ge 3$ and $2^{m+2} < N$. Then we have

$$DH^*(X_{2m+1})/2 \supset \mathbb{Z}/2\{w_3, w_5, ..., w_{2m+1}\}$$
 for all $2m+1 \le * < N$.

We consider the cases G is a simply connected simple group. Let G contain p-torsion. Then we know $H^4(BG) \otimes \mathbb{Z}_p \cong \mathbb{Z}_p$, and write its generator by w. Then we have

Lemma 1.3. [Ya6] Let G be a simply connected group such that $H^*(BG)$ has p-torsion. Let X = X(N) be an approximation for BG for $N \ge 2p+3$. Then

$$DH^4(X)/p \supset \mathbb{Z}/p\{w\}.$$

Next, we study the retract rationality of X_G for the above groups G. We consider the Zariski cohomology $H^*_{Zar}(X, \mathcal{H}^{*'}_A)$ where \mathcal{H}^*_A is the Zariski sheaf induced from the presheaf given by $U \mapsto H^*_{\acute{e}t}(U; A)$ for an open $U \subset X$. It is well known when X is complete and smooth, the unramified cohomology is written

$$H^*_{ur}(X; \mathbb{Z}/p) \cong H^0_{Zar}(X; \mathcal{H}^*_{\mathbb{Z}/p}),$$

and it is an invariant of the retract rationality of X (Proposition 3.1. 3.4 in [Me]).

By Totaro [Ga-Me-Se], the above cohomology is also isomorphic to the cohomological invariant (of G-torsors) i.e.

$$H^0_{Zar}(BG; \mathcal{H}^*_{\mathbb{Z}/p}) \cong Inv^*(G; \mathbb{Z}/p).$$

Let $H^{*,*'}(X;\mathbb{Z}/p)$ be the mod(p) motivic cohomology of X so that

$$H^{*,*}(X; \mathbb{Z}/p) \cong H^*_{\acute{e}t}(X; \mathbb{Z}/p) \text{ and } H^{2*,*}(X; \mathbb{Z}/p) \cong CH^*(X)/p.$$

Let $0 \neq \tau \in H^{0,1}(Spec(k); \mathbb{Z}/p)$. Then τ defines the map

$$\tau: H^{*,*'}(X; \mathbb{Z}/p) \to H^{*,*'+1}(X; \mathbb{Z}/p)$$

such that the cycle map is written

$$CH^*(X)/p \cong H^{2*,*}(X)/p \xrightarrow{\times \tau^*} H^{2*,2*}(X; \mathbb{Z}/p) \cong H^{2*}(X; \mathbb{Z}/p).$$

From Orlov-Vishik-Voevodsky [Or-Vi-Vo], ([Te-Ya] for p : odd,) we have

Lemma 1.4. ([Or-Vi-Vo]) We have the short exact sequence $0 \to H^{*,*}(X; \mathbb{Z}/p)/(\tau) \to H^0_{Zar}(X; \mathcal{H}^*_{\mathbb{Z}/p}) \to Ker(\tau | H^{*+1,*-1}(X; \mathbb{Z}/p)) \to 0.$ Here $H^{*,*}(X; \mathbb{Z}/p)/(\tau) = H^{*,*}(X; \mathbb{Z}/p)/(\tau H^{*,*-1}(X, \mathbb{Z}/p))$ $\cong H^*(X; \mathbb{Z}/p)/N^1 H^*(X; \mathbb{Z}/p).$

This cohomology is called *stable* cohomology, and studied by Bogolomov [Bo]. [Te-Ya2].

For example, when $G = (\mathbb{Z}/p)^n$, it is known

 $Inv^*(G; \mathbb{Z}/p) \cong \Lambda(x_1, ..., x_n).$

Theorem 1.5. Let $G = (\mathbb{Z}/p)^n$ and $X = X_G$. Then for $b_i = x_1...x_i$

$$H^*_{ur}(X; \mathbb{Z}/p) \supset H^{*,*}(X; \mathbb{Z}/p)/(\tau) \supset \mathbb{Z}/2\{1, b_2, b_3, ..., b_n\}.$$

Hence each X_n and $X_{n'}$ are not retract birational equivalent when $n \neq n'$.

By Serre [Ga-Me-Se], when $G = SO_{2m+1}$, it is known

 $Inv^*(G; \mathbb{Z}/2) \cong \mathbb{Z}/2\{1, w_2, ..., w_{2m}\}.$

Theorem 1.6. Let $G = SO_{2m+1}$ and $X = X_G$. Then

$$H^*_{ur}(X; \mathbb{Z}/2) \supset H^{*,*}(X; \mathbb{Z}/2)/(\tau) \supset \mathbb{Z}/2\{1, w_2, ..., w_{2m}\}.$$

Hence each X_m and $X_{m'}$ are not retract rational equivalent when $m \neq m'$.

We also give examples of nonzero elements of $Ker(\tau)$ in Lemma 1.4.

Theorem 1.7. Let G be a simply connected simple group and $X = X_G$. Then there is the element $w \in H^4(X; \mathbb{Z}/p)$ such that

$$H^3_{ur}(X;\mathbb{Z}/p) \twoheadrightarrow Ker(\tau | H^{4,2}(X;\mathbb{Z}/p)) \supset \mathbb{Z}/p\{w\}.$$

Hence X is not retract rational.

Remark. It is known $BSpin_n$ for $n \leq 14$ are stable rational [Ko], [Me], [Re-Sc]. Hence $BG = BSpin_n$ for $7 \leq n \leq 14$ and its approximation $X = X_G$ are different stable rational type.

At the last three sections, we will do quite different arguments from the preceding sections, for quadrics X over \mathbb{R} . Let us write

$$DH^*(X;\mathbb{Z}_p) = DH^*_{\acute{e}t}(X;\mathbb{Z}_p)$$

where $H_{\acute{e}t}^*(X;\mathbb{Z}_p) = Lim_{\infty\leftarrow s}H_{\acute{e}t}^*(X;\mathbb{Z}/p^s) \cong Lim_{\infty\leftarrow s}H^{*,*}(X;\mathbb{Z}/p^s).$

In this paper, the étale cohomology (with the integral coefficients $\mathbb{Z}_2(*)$ for even degrees) means the motivic cohomology ;

$$H^{2*}_{\acute{e}t}(X;\mathbb{Z}_2(*)) \cong \begin{cases} H^{2*,2*}(X;\mathbb{Z}_2) & for \ * = even \\ H^{2*,2*+1}(X;\mathbb{Z}_2) & for \ * = odd. \end{cases}$$

Here we see the examples that X are not retract rational $(H_{ur}^{4*}(X; \mathbb{Z}_2) \neq \mathbb{Z}/2))$ while $DH^{2*}(X; \mathbb{Z}_2(*)) = 0$. Let $X = Q^d$ be the anisotropic quadric of dimension $d = 2^n - 1$ (i.e. the norm variety). Then there are elements

$$h \in H^2_{\acute{e}t}(X; \mathbb{Z}_2(1))$$
 and $\bar{\rho}_4 \in H^4_{\acute{e}t}(X; \mathbb{Z}_2(0)).$

Theorem 1.8. ([Ya6]) The ring $H^{2*}_{\acute{e}t}(Q^{2^n-1};\mathbb{Z}_2(*))$ is multiplicatively generated by $\bar{\rho}_4$ and h the hyper plane section.

Theorem 1.9. Let $X_n = Q^{2^n-1}$, $n \ge 2$ the norm variety. Then

 $DH^{2*}(X_n; \mathbb{Z}_2(*)) = 0,$

$$H_{ur}^{2*}(X_n; \mathbb{Z}_2(*)) \supset \mathbb{Z}/2[\bar{\rho}_4]/(\bar{\rho}_4^{2^{n-1}}).$$

Hence for $n \neq n'$, we see that X_n and $X_{n'}$ are not retract birational equivalent.

Remark. If $\bar{\rho}_4 \in \tilde{N}^1 H^{2*}(X; \mathbb{Z}_2(*))$, the above theorem was just corollary of the Frobenius reciprocity (Lemma 2.2). But it does not hold (moreover, we see $\bar{\rho}_4 \notin N^1 H^{2*}(X; \mathbb{Z}_2(*))$).

2. Two coniveau filtrations

Let us recall the coniveau filtration of the cohomology with coefficients in A for $A = \mathbb{Z}, \mathbb{Z}_p$, or \mathbb{Z}/p ,

$$N^{c}H^{i}(X;A) = \sum_{Z \subset X} \ker(j^{*}: H^{i}(X;A) \to H^{i}(X-Z,A))$$

where $Z \subset X$ runs through the closed subvarieties of codimension at least c of X, and $j: X - Z \subset X$ is the complementary open immersion. Similarly, we can define the *strong* conveau filtration by

$$\tilde{N}^{c}H^{i}(X;A) = \sum_{f:Y \to X} im(f_{*}: H^{i-2r}(Y;A) \to H^{i}(X,A))$$

where the sum is over all proper morphism $f: Y \to X$ from a smooth complex variety Y of dim(Y) = dim(X) - r with $r \ge c$, and f_* its transfer (Gysin map). It is immediate that $\tilde{N}^c H^*(X; A) \subset N^c H^*(X; A)$.

It is known that when X is proper, $\tilde{N}^c H^i(X; \mathbb{Q}) = N^c H^i(X; \mathbb{Q})$ by Deligne. However Benoist and Ottem ([Be-Ot]) recently show that the above two coniveau filtrations are not equal for $A = \mathbb{Z}$.

Let G be an algebraic group such that $H^*(BG; \mathbb{Z})$ has p-torsion for the classifying space BG is defined by Totaro [To], and Bogomolov [Bo]. Then let us say that an (Ekedahl) approximation for BG (for degree $\leq N$) is the projective (smooth) variety $X = X_G(N)$ such that there is a map $g: X \to BG \times \mathbb{P}^{\infty}$ with

$$g^* : H^*(BG \times \mathbb{P}^\infty; A) \cong H^*(X; A) \quad for \ * < N.$$

In the paper [Ya6], we try to compute the stable birational invariant of X (Proposition 2.4 in [Be-Ot])

$$DH^*(X;A) = N^1 H^*(X;A) / (\tilde{N}^1 H^*(X;A))$$

for projective approximations X for BG ([Ek],[To],[Pi-Ya]).

Here we recall the Bloch-Ogus [Bl-Og] spectral sequence such that its E_2 -term is given by

$$E(c)_2^{c,*-c} \cong H^c_{Zar}(X, \mathcal{H}^{*-c}_A) \Longrightarrow H^*_{\acute{e}t}(X; A)$$

where \mathcal{H}_A^* is the Zariski sheaf induced from the presheaf given by $U \mapsto H^*_{\acute{e}t}(U; A)$ for an open $U \subset X$.

The filtration for this spectral sequence is defined as the coniveau filtration

$$N^{c}H^{*}_{\acute{e}t}(X;A) = F(c)^{c,*-c}$$

where the infinite term $E(c)_{\infty}^{c,*-c} \cong F(c)^{c,*-c}/F(c)^{c+1,*-c-1}$.

Here we recall the motivic cohomology $H^{*,*'}(X; \mathbb{Z}/p)$ defined by Voevodsky and Suslin ([Vo1],[Vo3],[Vo4]) so that

$$H^{i,i}(X;\mathbb{Z}/p) \cong H^i_{\acute{e}t}(X;\mathbb{Z}/p) \cong H^i(X;\mathbb{Z}/p).$$

Let us write $H^*_{\acute{e}t}(X;\mathbb{Z})$ simply by $H^*_{\acute{e}t}(X)$ as usual. Note that $H^*_{\acute{e}t}(X) \cong H^*(X)$ in general, while we have the natural map $H^*_{\acute{e}t}(X) \to H^*(X)$.

Let $0 \neq \tau \in H^{0,1}(Spec(\mathbb{C}); \mathbb{Z}/p)$. Then by the multiplying τ , we can define a map $H^{*,*'}(X; \mathbb{Z}/p) \to H^{*,*'+1}(X; \mathbb{Z}/p)$. By Deligne (foot note (1) in Remark 6.4 in [Bl-Og]) and Paranjape (Corollary 4.4 in [Pa]), it is proven that there is an isomorphism of the coniveau spectral sequence with the τ -Bockstein spectral sequence $E(\tau)_r^{*,*'}$ (see also [Te-Ya2], [Ya1]).

Lemma 2.1. (Deligne) Let $A = \mathbb{Z}/p$. Then we have the isomorphism of spectral sequence $E(c)_{r}^{c,*-c} \cong E(\tau)_{r-1}^{*,*-c}$ for $r \ge 2$. Hence the filtrations are the same, i.e. $N^{c}H_{\acute{e}t}^{*}(X;\mathbb{Z}/p) = F_{\tau}^{*,*-c} = Im(\times\tau^{c}: H^{*,*-c}(X;\mathbb{Z}/p))$. Thus we have the isomorphism

$$H^{*,*}(X;\mathbb{Z}/p)/(\tau) \cong H^*(X;\mathbb{Z}/p)/N^1H^*(X;\mathbb{Z}/p).$$

We recall here the Frobenius reciprocity law.

Lemma 2.2. (reciprocity law) If $a \in \tilde{N}^* H^{2*}(X; A)$, then for each $g \in H^{*'}(X; A)$ we have $ag \in \tilde{N}^* H^{2*+*'}(X; A)$.

Proof. Suppose we have $f: Y \to X$ with $f_*(a') = a$. Then

$$f_*(a'f^*(g)) = f_*(a')g = ag$$

by the Frobenius reciprocity law.

Let G be an algebraic group (over \mathbb{C}) and r be a complex representation $r: G \to U_n$ the unitary group. Then we can define the Chern class in $H^*(BG)$ by $c_i = r^*c_i^U$. Here the Chern classes c_i^U in $H^*(BU_n) \cong \mathbb{Z}[c_1^U, ..., c_n^U]$ ([Qu1]) are defined by using the Gysin map as $c_n^U = i_{n,*}(1)$ for

 $\mathbf{6}$

$$i_{n,*}: H^*(BU_n) \cong H^*_{U_n}(pt.) \xrightarrow{i_{n,*}} H^{*+2i}_{U_n}(\mathbb{C}^{\times i}) \cong H^{*+2i}(BU_n)$$

where $H_{U_n}(X) = H^*(EU_n \times_{U_n} X)$ is the U_n -equivaliant cohomology.

Let us write by $Ch^*(X; A)$ the Chern subring which is the subring of $H^*(X; A)$ multiplicatively generated by all Chern classes.

Lemma 2.3. We have a quotient map

 $N^1H^*(X;A)/(IdealCh^*(X;A)) \twoheadrightarrow DH^*(X;A).$

The following lemma is proved by Colliot Thérène and Voisin [Co-Vo] by using the affirmative answer of the Bloch-Kato conjecture by Voevod-sky. ([Vo3]. [Vo4])

Lemma 2.4. ([Co-Vo]) Let X be a smooth complex variety. Then any torsion element in $H^*(X)$ is in $N^1H^*(X)$.

3. THE MAIN LEMMAS

The Milnor operation Q_n (in $H^*(-;\mathbb{Z}/p)$) is defined by $Q_0 = \beta$ and for $n \geq 1$

$$Q_n = P^{\Delta_n}\beta - \beta P^{\Delta_n}, \quad \Delta_n = (0, .., 0, \overset{n}{1}, 0, ...).$$

(For details see [Mi], §3.1 in [Vo1]) where β is the Bockstein operation and P^{α} for $\alpha = (\alpha_1, \alpha_2, ...)$ is the fundamental base of the module of finite sums of products of reduced powers. (For example $P^{\Delta_i}(y) = y^{p^i}$ for |y| = 2. and Q_n is a derivative.)

Lemma 3.1. Let f_* be the transfer (Gysin) map (for proper smooth) $f: X \to Y$. Then $Q_n f_*(x) = f_*Q_n(x)$ for $x \in H^*(X; \mathbb{Z}/p)$.

Proof. The above lemma is known (see the proof of Lemma 7.1 in [Ya4]). The transfer f_* is expressed as $g^*f'_*$ such that

$$f'_*(x) = i^*(Th(1) \cdot x), \quad x \in H^*(X; \mathbb{Z}/p)$$

for some maps g, f', i and the Thom class Th(1). Since $Q_n(Th(1)) = 0$ and Q_i is a derivation, we get the lemma.

By Voevodsky [Vo1], [Vo2], we have the Q_i operation also in the motivic cohomology $H^{*,*'}(X;\mathbb{Z}/p)$ with $deg(Q_i) = (2p^i - 1, p - 1)$.

Lemma 3.2. We see that $Im(cl)^+ \subset N^1 H^{2*}(X; A)$.

Proof. From Lemma 2.1, we see $H^{*,*'}(X;A) \subset N^{*-*'}H^*(X;A)$. We have $H^{2*,*}(X;A) \cong CH^*(X) \otimes A$. Since 2* > * for $* \ge 1$, we see $cl(y) \in N^1H^{2*}(X;A)$.

Each element $y \in CH^*(X) \otimes A$ is represented by closed algebraic set supported Y, while Y may be singular. On the other hand, by Totaro [To], we have the modified cycle map $\bar{c}l$ such that the usual cycle map is

$$cl: CH^*(X) \otimes A \xrightarrow{\bar{c}l} MU^{2*}(X) \otimes_{MU^*} A \xrightarrow{\rho} H^{2*}(X;A)$$

for the complex cobordism theory $MU^*(X)$. It is known [Qu1] that elements in $MU^{2*}(X)$ can be represented by proper maps to X from stable almost complex manifolds Y. (The manifold Y is not necessarily a complex manifold.)

The following lemma is well known.

Lemma 3.3. If $x \in Im(\rho)$ for $\rho : MU^*(X)/p \to H^*(X; \mathbb{Z}/p)$, then we have $Q_i(x) = 0$ for all $i \ge 0$.

Proof. Recall the connective Morava K-theory $k(i)^*(X)$ with $k(i)^* = \mathbb{Z}/p[v_i], |v_i| = -2p^i + 2$, which has natural maps

 $\rho: MU^*(X)/p \xrightarrow{\rho_1} k(i)^*(X) \xrightarrow{\rho_2} H^*(X: \mathbb{Z}/p).$

It is known that there is an exact sequence (Sullivan exact sequence) such that

$$\dots \xrightarrow{\rho_2} H^*(X; \mathbb{Z}/p) \xrightarrow{\delta} k(i)^*(X) \xrightarrow{v_i} k(i)^*(X) \xrightarrow{\rho_2} H^*(X: \mathbb{Z}/p) \xrightarrow{\delta} \dots$$

with $\rho_2 \delta = Q_i$. Hence $Q_i \rho_2(x) = \rho_2 \delta \rho_2 = 0$. which implies $Q_i \rho(x) = 0$.

The following lemma is the Q_i -version of one of results by Benoist and Ottem.

Lemma 3.4. Let $\alpha \in N^1H^s(X)$ for s = 3 or 4. If $Q_i(\alpha) \neq 0 \in H^*(X; \mathbb{Z}/p)$ for some $i \geq 1$, then

$$DH^{s}(X)/p \supset \mathbb{Z}/p\{\alpha\}, \quad DH^{s}(X;\mathbb{Z}/p^{t})/p \supset \mathbb{Z}/p\{\alpha\} \quad for \ t \ge 2.$$

Proof. Suppose $\alpha \in \tilde{N}^1 H^s(X)$ for s = 3 or 4, i.e. there is a smooth Y with $f: Y \to X$ such that the transfer $f_*(\alpha') = \alpha$ for $\alpha' \in H^*(Y)$.

Then for s = 4,

$$Q_{i}(\alpha') = (P^{\Delta_{i}}\beta - \beta P^{\Delta_{i}})(\alpha') = (-\beta P^{\Delta_{i}})(\alpha') = -\beta(\alpha')^{p^{i}}$$
$$= -p^{i}(\beta\alpha')(\alpha')^{p^{i}-1} = 0 \quad (by \ the \ Cartan \ formula)$$

since $\beta(\alpha') = 0$ and $P^{\Delta_i}(y) = y^{p^i}$ for deg(y) = 2. (For s = 3, we get also $Q_i(\alpha') = 0$ since $P^{\Delta_i}(x) = 0$ for deg(x) = 1.) This contradicts to the commutativity of Q_i and f_* .

The case $A = \mathbb{Z}/p^t$, $t \ge 2$ is proved similarly, since for $\alpha' \in H^*(X; A)$ we see $\beta \alpha' = 0 \in H^*(X; \mathbb{Z}/p)$. Thus we have this lemma. We will extend the above Lemma 3.4 to s > 4, by using MU-theory of Eilenberg-MacLane spaces. Recall that $K = K(\mathbb{Z}, n)$ is the Eilenberg-MacLane space such that the homotopy group $[X, K] \cong H^n(X; \mathbb{Z})$, i.e., each element $x \in H^n(X; \mathbb{Z})$ is represented by a homotopy map $x : X \to K$. Let $\eta_n \in H^n(K; \mathbb{Z})$ corresponding the identity map. We know the image $\rho(MU^*(K)) \subset H^*(K; \mathbb{Z})/p$ by Tamanoi.

Lemma 3.5. ([Ta], [Ra-Wi-Ya]) Let $K = K(\mathbb{Z}, n)$ We have the isomorphism

$$\rho: MU^*(K) \otimes_{MU^*} \mathbb{Z}/p \cong \mathbb{Z}/p[Q_{i_1}...Q_{i_{n-2}}\eta_n | 0 < i_1 < ... < i_{n-2}]$$

where the notation $\mathbb{Z}/p[a,...]$ exactly means $\mathbb{Z}/p[a,...]/(a^2||a| = odd)$.

The following lemma is an extension of Lemma 3.4 for s > 4. (Here we use MU^* -theory, and we assume $H^*(-; A)$ is the *Betti* cohomology.)

Lemma 3.6. Suppose that $H^*(X; A)$ is the Betti cohomology. Let $\alpha \in N^c H^{n+2c}(X)$, $n \geq 2$, $c \geq 1$. Suppose that there is a sequence $0 < i_1 < \ldots < i_{n-1}$ with

 $\begin{aligned} Q_{i_1}...Q_{i_{n-1}}\alpha \neq 0 \quad in \ H^*(X;\mathbb{Z}/p). \end{aligned}$ Then $D^cH^*(X)/p = N^cH^*(X)/(p,\tilde{N}^cH^*(X)) \supset \mathbb{Z}/p\{\alpha\}. \end{aligned}$

Proof. Suppose $\alpha \in \tilde{N}^c H^{n+2c}(X)$, i.e. there is a smooth Y of $\dim(Y) = \dim(X) - c$ with $f: Y \to X$ such that the transfer $f_*(\alpha') = \alpha$ for $\alpha' \in H^n(Y)$.

Let $r: H^*(X) \to H^*(X; \mathbb{Z}/p)$ be the reduction map. We consider the commutative diagram for $I = (i_1, ..., i_{n-2})$ and $j = i_{n-1}$

$$\begin{array}{ccc} \alpha' \in H^n(Y) & \stackrel{f_*}{\longrightarrow} & \alpha \in H^{n+2c}(X) \\ Q_{I^r} \downarrow & & Q_{I^r} \downarrow \\ Q_I(\alpha') \in Im(\rho | MU^*(Y)) & \stackrel{f_*}{\longrightarrow} & H^*(X; \mathbb{Z}/p) \\ Q_j \downarrow & & Q_j \downarrow \end{array}$$

 $0 = Q_{i_{n-1}}Q_I(\alpha') \in H^*(Y; \mathbb{Z}/p) \xrightarrow{f_*} Q_{i_{n-1}}Q_I(\alpha) \in H^*(X; \mathbb{Z}/p).$

Identify the map $\alpha' : Y \to K$ with $\alpha' = (\alpha')^* \eta_n$. We still see from Lemma 3.5,

 $Q_I(\alpha') = Q_{i_1} \dots Q_{i_{n-2}}((\alpha')^* \eta_n) \in Im(\rho : MU^*(Y) \to H^*(Y; \mathbb{Z}/p)).$

From Lemma 3.3, we see

$$Q_{i_{n-1}}Q_I(\alpha') = Q_{i_{n-1}}Q_{i_1}...Q_{i_{n-2}}(\alpha') = 0 \in H^*(Y; \mathbb{Z}/p).$$

Therefore $Q_{i_{n-1}}Q_I(\alpha)$ must be zero by the commutativity of f_* and Q_i .

4. Abelian p-groups

At first, we assume $H^*(X)$ is the *Betti* cohomology so that the main lemma (Lemma 3.6) holds. However we will see the most *irrational* results hold for each $k \subset \mathbb{C}$.

From the main lemma, we have

Lemma 4.1. Let $\alpha \in N^1 H^{n+2}(X)$ and $Q_I(\alpha) \neq 0 \in H^*(X; \mathbb{Z}/p)$ for some $I = (0 < i_1 < ... < i_{n-1})$. Let X' be a smooth projective variety. Then

$$DH^*(X \times X')/p \supset \mathbb{Z}/p\{\alpha \otimes 1\}.$$

Hence $X \times X'$ is not stable rational,

Proof. The (Betti) cohomology $H^*(X; \mathbb{Z}/p)$ satisfies the Kunneth formula. Hence we have

$$Q_I(\alpha \otimes 1) = Q_I(\alpha) \otimes 1 \neq 0$$
 in $\sum_{s=0} H^{*-s}(X; \mathbb{Z}/p) \otimes H^s(X'; \mathbb{Z}/p).$

From the main lemma, we have the lemma.

Let
$$G_n = \mathbb{Z}/p^n$$
. Recall the $mod(p)$ cohomology (for p odd)
 $H^*(BG_n; \mathbb{Z}/p) \cong \mathbb{Z}/p[y_1, ..., y_n] \otimes \Lambda(x_1, ..., x_n)$

where $|x_i| = 1$ and $Q_0(x_i) = y_i$, (for $p = 2, x_i^2 = y_i$).

Corollary 4.2. For $n \geq 3$, let $G_n = (\mathbb{Z}/p)^n$. Then X_{G_n} is not stable rational. Moreover X_{G_n} and $X_{G_{n'}}$ are not stable birational equivalent for $n \neq n'$.

Proof. Take $G = G_3$ and $\alpha = Q_0(x_1x_2x_3) \in H^4(X_G)$. The last statement follows from $1 \otimes \ldots \otimes 1 \otimes \overset{s}{\alpha} \otimes 1 \otimes \ldots \otimes 1 \neq 0 \in DH^*(X_{G_n})$.

We can take also another α for the proof of the last statement in the above corollary.

Lemma 4.3. Take $G = G_n = (\mathbb{Z}/p)^n$ and $\alpha_i = Q_0(x_1x_2...x_i) \in H^{n+1}(X_G)$. Then we have

 $DH^*(X_{G_n}) \supset \mathbb{Z}/p\{\alpha_2, \alpha_3, ..., \alpha_n\}.$

Since $\alpha_n = 0$ in $H^*(X_{G_{n-1}})$ we also see that X_n and X_{n-1} are not stable birational equivalence.

The more detailed expression of $DH^*(X)/p$ seems somewhat complicated.

Theorem 4.4. Let $G = (\mathbb{Z}/p)^n$. Then we have (for fixed large N) $DH^{s+1}(X)/p \cong \mathbb{Z}/p\{Q_0(x_{i_1}...x_{i_s})|1 \le i_1 < ..., < i_s \le n\}.$

Proof. The integral cohomology (modulo p) is isomorphic to

$$H^*(BG)/p \cong Ker(Q_0)$$
$$\cong H(H^*(BG; \mathbb{Z}/p); Q_0) \oplus Im(Q_0)$$

where $H(-;Q_0) = Ker(Q_0)/Im(Q_0)$ is the homology with the differential Q_0 . It is immediate that $H(H^*(B\mathbb{Z}/p;\mathbb{Z}/p);Q_0) \cong \mathbb{Z}/p$. By the Künneth formula, we have $H(H^*((BG;\mathbb{Z}/p);Q_0) \cong (\mathbb{Z}/p)^{n\otimes} \cong \mathbb{Z}/p$. Hence we have

$$H^*(BG)/p \cong \mathbb{Z}/p\{1\} \oplus Im(Q_0)$$
$$\cong \oplus_s \mathbb{Z}/p[y_1, \dots, y_n](1, Q_0(x_{i_1}, \dots, x_{i_s})|1 \le i_1 < \dots < i_s \le n)$$

where the notation R(a, ..., b) (resp. $R\{a, ..., b\}$) means the *R*-submodule (resp. the free *R*-module) generated by a, ..., b. Here we note $H^+(BG)$ is just *p*-torsion.

Also note that $y_1, ..., y_n$ are represented by the Chern classes c_1 . From Lemma 2.3, we see $Ideal(y_1, ..., y_n) = 0 \in DH^*(X)$.

We know $Q_i(x_j) = y_j^{p^i}$ and Q_j is a derivation. We have the theorem from Lemma 4.3 and the reciprocity law

$$Q_{i_1}...Q_{i_{s-2}}Q_0(x_{i_1}...x_{i_s}) = y_{i_1}^{p^{i_1}}...y_{i_{s-2}}^{p^{i_{s-2}}}y_{i_{s-1}}x_{i_s} + ... \neq 0.$$

(Note the $n = |\alpha'|$ in Lemma 4.3 is written by s - 1 here.)

Corollary 4.5. If $n \neq n' \geq 3$, then $X(N)_n$ and $X(N)_{n'}$ are not stable birational equivalent.

The above corollary also holds when ch(k) = 0 and k is an algebraic closed field by the base change theorem.

For each field $k = \bar{k}$, it is known from Voevodsky (for p; odd)

$$H^{*,*'}(BG_n;\mathbb{Z}/p)\cong\mathbb{Z}/p[y_1,...,y_n,\tau]\otimes\Lambda(x_1,...,x_n)$$

where $deg(x_i) = (1, 1)$ and $Q_0(x_i) = y_i$. Therefor we can identify

$$Q_0(x_1...x_m) \in H^*_{\acute{e}t}(BG_n; \mathbb{Z}/p)$$
 when $\bar{k} = k$.

Let us write $H^*_{\acute{e}t}(X;\mathbb{Z}_p)$ simply by $H^*_{\acute{e}t}(X)$. Let G be an algebraic group which has an approximation X_G such that

$$H^*_{\acute{e}t}(X_G; \mathbb{Z}_p) \cong H^*(BG \times \mathbb{P}^\infty) \otimes \mathbb{Z}_p \quad for \ * < N$$

We consider the maps

$$\psi : N^1 H^*_{\acute{e}t}(X) \subset H^*_{\acute{e}t}(X) \to H^*_{\acute{e}t}(\bar{X}) \to H^*_{\acute{e}t}(X(\mathbb{C})) \to H^*(X(\mathbb{C})).$$

Lemma 4.6. Let $k \subset \mathbb{C}$ (not assumed an algebraic closed field). Let $\alpha \in N^1 H^*_{\acute{e}t}(X)$ and $Q_I(\psi(\alpha)) \neq 0 \in H^*(X(\mathbb{C}); \mathbb{Z}/p)$. Then

$$DH^*_{\acute{e}t}(X;\mathbb{Z}_p)/p \supset \mathbb{Z}/p\{\alpha\}.$$

Hence X is not stable rational.

Proof. By the assumption, the main lemma implies $DH^*(X(\mathbb{C})) \supset \mathbb{Z}/p\{\psi\alpha\}$.

This implies a contradiction if $\mathbb{Z}/p\{\alpha\} = 0$ in $DH^*_{\acute{e}t}(X)$. Similarly, the stable rationality for X implies that for $X(\mathbb{C})$, which is a contradiction. (Note here, we do *not* assume of the stable birational invariance for $DH^*_{\acute{e}t}(X)$.)

For example, Lemma 4.3 holds for all $k \subset \mathbb{C}$.

5. CONNECTIVE GROUPS, SO_n

Let SO_n be the special orthogonal group. Its mod(2) cohomology is

 $H^*(BSO_n; \mathbb{Z}/2) \cong \mathbb{Z}/2[w_2, ..., w_n]$

where w_i is the Stiefel-Whitney class for $SO_n \subset O_n$. We know $Q_0 w_{2m} = w_{2m+1}$.

Theorem 5.1. ([Ya6]) Let $X_n = X_n(N)$ be approximations for BSO_n for $n \ge 3$. Moreover, let $|Q_{1}...Q_{2m-1}(w_{2m+1})| < N$. Then we have

 $DH^*(X_{2m+1}) \supset \mathbb{Z}/2\{w_3, w_5, ..., w_{2m+1}\} \text{ for all } 2m+1 \leq * < N.$

Remark. When $G = SO_3$, the inclusion in the above theorem is isomorphic. However, when $G = SO_5$, we can not see whether $Q_0(w_2w_4) \in H^7(X)$ is zero or not in $DH^7(X)/2$.

Let $G = SO_5$. Indeed, we can see the homology by Q_0 is given

$$H(H^*(BG; \mathbb{Z}/2); Q_0) \cong \mathbb{Z}/2[c_2, c_4] \quad where \ c_i = w_i^2,$$
$$Im(Q_0) \cong \mathbb{Z}/2[c_2, c_3, c_4, c_5](Q_0(w_2), Q_0(w_4), Q_0(w_2w_4)).$$

Hence $H^*(BG)/2$ is generated by $1, w_3, w_5.Q_0(w_2w_4)$ as a $\mathbb{Z}/2[c_2, c_3, c_4, c_5]$ -module. Hence we have

Lemma 5.2. Let $G = SO_5$. There is a surjection

$$\mathbb{Z}/2\{w_3.w_5, Q_0(w_2w_4)\} \twoheadrightarrow DH^*(X_G)/2.$$

Corollary 5.3. Let $X_n = X_n(N)$ be approximation for BSO_n for $n \ge 3$. For $m \ne m'$, we see that X_{2m+1} and $X_{2m'+1}$ are not stable rational equivalence.

The above corollary holds for all $k \subset \mathbb{C}$, by the similar arguments done in the last places in the preceding section.

6. SIMPLY CONNECTED SIMPLE GROUPS

We next consider simply connected groups. Let us write by X an approximation for BG_2 for the exceptional simple group G_2 of rank = 2. The mod(2) cohomology is generated by the Stiefel-Whitney classes w_i of the real representation $G_2 \rightarrow SO_7$

$$H^*(BG_2; \mathbb{Z}/2) \cong \mathbb{Z}/2[w_4, w_6, w_7], \quad P^1(w_4) = w_6, \ Q_0(w_6) = w_7,$$
$$H^*(BG_2) \cong (D' \oplus D'/2[w_7]^+) \quad where \quad D' = \mathbb{Z}[w_4, c_6].$$

Then we have $Q_1w_4 = w_7, Q_2(w_7) = w_7^2 = c_7$ (the Chern class).

The Chow ring of BG_2 is also known

$$CH^*(BG_2) \cong (D\{1, 2w_4\} \oplus D/2[c_7]^+) \quad where \quad D = \mathbb{Z}[c_4, c_6] \quad c_i = w_i^2.$$

In particular the cycle map $cl: CH^*(BG) \to H^*(BG)$ is injective.

It is known [Ya6] that $w_4 \in N^1 H^*(X; \mathbb{Z}/2)$ and moreover we can identify $w_4 \in N^1 H^*(X)$. Since $Q_1(w_4) = w_7 \neq 0$, from Lemma 4.1, we have $DH^4(X) \neq 0$. This fact is also written in [Be-Ot]. Moreover the isomorphism $H^*(BG)/(c_4, c_6, c_7) \cong \Lambda(w_4, w_7)$ implies

Proposition 6.1. ([Ya6]) For X an approximation for BG_2 , we have the surjection

$$\Lambda(w_4, w_7)^+ \twoheadrightarrow DH^*(X)/2 \quad for \ all \ * < N.$$

Remark. We can not see $w_7, w_4w_7 = 0$ or nonzero in $DH^*(X)/2$.

The cohomology of other simply connected simple groups (with 2-torsion) are written for example

$$H^*(BSpin_7; \mathbb{Z}/2) \cong H^*(BG_2; \mathbb{Z}/2) \otimes \mathbb{Z}/2[w_8],$$

 $H^*(BSpin_8; \mathbb{Z}/2) \cong H^*(BG_2; \mathbb{Z}/2) \otimes \mathbb{Z}/2[w_8, w_8'], \dots$

For the above groups G, there are the map $j: G_2 \to G$ and the non zero element $w \in H^*(G)$ such that $j^*w = w_4$.

Proposition 6.2. ([Ya6]) Let G be a simply connected group such that $H^*(BG)$ has p-torsion. Let X = X(N) be an approximation for BG for $N \ge 2p+3$. Then there is $w \in H^4(X)$ such that

$$DH^4(X)/p \supset \mathbb{Z}/p\{w\}$$

Hence these X are not stable rational.

Proof. It is only need to prove the theorem when G is a simple group having p torsion in $H^*(BG)$. Let p = 2. It is well known that there is an embedding $j: G_2 \subset G$ such that (see [Pi-Ya], [Ya5] for details)

$$H^4(BG) \stackrel{j^*}{\cong} H^4(BG_2) \cong \mathbb{Z}\{w_4\}.$$

Let $w = (j^*)^{-1}w_4 \in H^4(BG)$. From Lemma 3.1 in [Ya5], we see that 2w is represented by Chern classes. Hence 2w is the image from $CH^*(X)$, and so $2w \in N^1H^4(X)$. This means there is an open set $U \subset X$ such that $2w = 0 \in H^*(U)$ that is, w is 2-torsion in $H^*(U)$. Hence from Lemma 2.4, we have $w \in N^1H^4(U)$, and so there is $U' \subset U$ such that $w = 0 \in H^4(U')$. This implies $w \in N^1H^4(X)$.

Since $j^*(Q_1x) = Q_1w_4 = w_7$, we see $Q_1w \neq 0$. From the main lemma (Lemma 4.1), we see $DH^4(X) \neq 0$ for G.

For the cases p = 3, 5, we consider the exceptional groups F_4, E_8 respectively. Each simply connected simple group G contains F_4 for $p = 3, E_8$ for p = 5. There is $w \in H^4(BG)$ such that px is a Chern class [Ya5], and $Q_1w) \neq 0 \in H^*(BG; \mathbb{Z}/p)$. In fact, there is embedding $j : (\mathbb{Z}/p)^3 \subset G$ with $j^*(w) = Q_0(x_1x_2x_3)$. Hence we have the theorem.

Corollary 6.3. Let X be an approximation for $BSpin_n$ with $n \ge 7$ or BG for an exceptional group G. Then X is not stable rational.

7. RETRACT BIRATIONAL AND UNRAMIFIED COHOMOLOGY

Here we note the relations to retract rationally. Recall (in §2) that Bloch-Ogus give a spectral sequence such that its E_2 -term is given by

$$E(c)_2^{c,*-c} \cong H^c_{Zar}(X, \mathcal{H}^{*-c}_A) \Longrightarrow H^*_{\acute{e}t}(X; A).$$

By Orlov-Vishik-Voevodsky [Or-Vi-Vo], ([Te-Ya2] for p: odd,) we know

Lemma 7.1. ([Or-Vi-Vo], [Vo5]) There is the long exact sequence

$$\begin{aligned} H^{m-n-1}_{Zar}(X;\mathcal{H}^n_{\mathbb{Z}/p}) &\to H^{m,n-1}(X;\mathbb{Z}/p) \stackrel{\times\tau}{\to} H^{m,n}(X;\mathbb{Z}/p) \\ &\to H^{m-n}_{Zar}(X;\mathcal{H}^n_{\mathbb{Z}/p}) \to H^{m+1,n-1}(X;\mathbb{Z}/p) \stackrel{\times\tau}{\to} \dots \end{aligned}$$

In particular, when m = n, the first $\times \tau$ is injective.

Corollary 7.2. We have the short exact sequence

$$0 \to H^{*,*}(X; \mathbb{Z}/p)/(\tau) \to H^0_{Zar}(X; \mathcal{H}^*_{\mathbb{Z}/p})$$
$$\to Ker(\tau: H^{*+1,*-1}(X; \mathbb{Z}/p) \to H^{*+1,*}(X; \mathbb{Z}/p)) \to 0.$$

(Note $H^{*,*}(X;\mathbb{Z}/p)/(\tau) \cong H^*(X;\mathbb{Z}/p)/(N^1H^*(X;\mathbb{Z}/p))$). Hence we also write it as $H^*(X;\mathbb{Z}/p)/N^1$. This cohomology is called a stable cohomology and studied well by Bogomolov [Bo], [Te-Ya2]

Remark. The $\mathbb{Z}/2^s$ coffeciants version of Lemma 7.1, Corollary 7.2 also hold.

The unramified cohomology is written by this $H^0_{Zar}(X; \mathcal{H}^*_{\mathbb{Z}/p})$, when X is complete,

$$H^*_{ur}(X;\mathbb{Z}/p) = H^*_{ur}(k(X);\mathbb{Z}/p) \cong H^0_{Zar}(X;\mathcal{H}^*_{\mathbb{Z}/p}),$$

and it is an invariant of the retract rationality of X (Lemma 3.1, 3.4 [Me]).

By Totaro [Ga-Me-Se], the cohomological invariant of G is written (while BG is not complete)

$$Inv^*(G; \mathbb{Z}/p) \cong H^0_{Zar}(BG; \mathcal{H}^*_{\mathbb{Z}/p})$$

Here we consider the following lemma which shows the relation among $DH^*(X_G)$, $Inv^*(G)$ and $H^*_{ur}(X_G)$.

Lemma 7.3. Assume that $0 \neq x \in H^m(BG; \mathbb{Z}/p)/(N^1)$ and x is dedicated by $A_m = (\mathbb{Z}/p)^m$ i.e. $res_{/N}(x) \neq 0$ for the restriction (of stable cohomologies)

$$res_{/N}: H^*(BG; \mathbb{Z}/p)/N^1 \to H^*(BA_m; \mathbb{Z}/p)/N^1 \cong \Lambda(x_1, ..., x_m).$$

Then (for projective approximation X for BG) we have

$$\begin{cases} Inv^*(G; \mathbb{Z}/p) \supset \mathbb{Z}/p\{x\}, \\ H^*_{un}(X; \mathbb{Z}/p) \supset \mathbb{Z}/p\{x\}, \\ DH^*(X)/p \supset \mathbb{Z}/p\{Q_0(x)\}. \end{cases}$$

Proof. The first formula follows from

$$Inv^*(G; \mathbb{Z}/p) \cong H^0(BG; \mathcal{H}^*_{\mathbb{Z}/p}) \supset H^*(BG; \mathbb{Z}/p)/N^1.$$

The fact $x \neq 0$ in $Inv^*(G; \mathbb{Z}/p)$ follows from that x is dedicated.

The second formula comes from $H^*_{ur}(X; \mathbb{Z}/p) \cong H^0(X; \mathcal{H}^*_{\mathbb{Z}/p})$ where X is smooth projective.

The last formula follows from the main lemma (Lemma 3.4). Let $Q_0(x) = \alpha \in \tilde{N}^c H^{n+2c}(X)$, (m = n + 2c - 1), i.e. there is a smooth Y of $\dim(Y) = \dim(X) - c$ with $f: Y \to X$ such that the transfer $f_*(\alpha') = \alpha$ for $\alpha' \in H^n(Y)$.

Identify the map $\alpha': Y \to K$ with $\alpha' = (\alpha')^* \eta_n$. We still see from Lemma 3.5,

$$Q(\alpha') = Q_{i_1} ... Q_{i_{n-2}}((\alpha')^* \eta_n) \in Im(MU^*(Y) \to H^*(Y; \mathbb{Z}/p)).$$

From Lemma 3.4, we see

$$Q_{i_{n-1}}Q(\alpha') = Q_{i_{n-1}}Q_{i_1}...Q_{i_{n-2}}(\alpha') = 0 \in H^*(Y; \mathbb{Z}/p).$$

Therefore $Q_{i_{n-1}}Q(\alpha)$ must be zero by the commutativity of f_* and Q_i . But $Q_{i_1}...Q_{i_{n-1}}Q_0(x) \neq 0$ from the assumption that x is deduced from A_{n+1} . In fact in $H^*(BA_{n+1}; \mathbb{Z}/p)$, we see (without $mod(N^1)$)

$$Q_{i_1}...Q_{i_{n-1}}Q_0(x_1...x_{n+1}) = y_1^{p^{i_1}}...y_{n-1}^{p^{i_{n-1}}}y_nx_{n+1} + ... \neq 0.$$

Now we consider the examples. At first, we consider the case $G = A_n = (\mathbb{Z}/p)^n$. and $X = X_G$. It is known from Garibarldy-Merkurjev-Serre [Ga-Me-Se], Theorem 6.3 in [Te-Ya2] that

$$Inv^*(G; \mathbb{Z}/2) \cong H^{*,*}(BG; \mathbb{Z}/2)/(\tau) \cong \Lambda(x_1, ..., x_n).$$

Since X is (proper) approximation of BG, we have

Theorem 7.4. Let $G = G_n = (\mathbb{Z}/p)^n$ and $X = X_G$. Then $H^{2*}_{ur}(X; \mathbb{Z}/p) \supset H^{2*,2*}(X; \mathbb{Z}/p)/(\tau) \cong \Lambda(x_1, x_2, ..., x_n)$

in Corollary 7.2.

Writing $\alpha_i = Q_0(x_1...x_i)$, we still have (Lemma 4.3)

$$DH^*(X)/p \supset \mathbb{Z}/p\{\alpha_2, \alpha_3, ..., \alpha_n\}$$

Then X_{G_n} and $X_{G_{n'}}$ are not retract rational equivalent if $n \neq n'$.

Remark. From (Saltman [Sa]), it is well known that there is a finite group G (e.g. $|G| = p^7, p : odd$) such that

$$0 \neq x_2 \in H^2_{ur}(k(W)^G; \mathbb{Z}/p) \cap H^{2,2}(BG; \mathbb{Z}/p)/(\tau)$$
.

Here G acts freely on a \mathbb{C} -vector space W, and we have

 $H_{ur}(K(W)^G; \mathbb{Z}/p) \cong H_{Zar}(W//G; \mathcal{H}^*_{\mathbb{Z}/p}) \subset H_{Zar}(BG; \mathcal{H}^*_{\mathbb{Z}/p})$

such that $k(W//G) \cong k(W)^G$. Hence $H^*_{un}(k(W)^G; \mathbb{Z}/p) \ncong H^*(k; \mathbb{Z}/p)$. So $k(W)^G$ is not purely transcendent over k. (Hence BG is not retract rational.)

Remark. We do not assume $H^0_{Zar}(X; \mathcal{H}^*_{\mathbb{Z}/p}) \cong H^0_{Zar}(X'; \mathcal{H}^*_{\mathbb{Z}/p})$ for an other approximation X'.

Next we consider the case $G = SO_{2m+1}$ and $X = X_{G_m}$. It is known from Garibarldy-Merkurjev-Serre [Ga-Me-Se], Theorem 6.3 in [Te-Ya] that

$$Inv^*(G; \mathbb{Z}/2) \cong H^{*,*}(BG; \mathbb{Z}/2)/(\tau) \cong \mathbb{Z}/2\{1, w_2, ..., w_{2m}\}.$$

Since X is (proper) approximation of BG, we have

Theorem 7.5. Let $G = SO_{2m+1}$ and $X = X_G$. Then

$$H^{2*}_{ur}(X;\mathbb{Z}/p) \supset H^{2*,2*}(X;\mathbb{Z}/2)/(\tau) \supset \mathbb{Z}/2\{1,w_2,...,w_{2m}\}$$

in Lemma 7.1.

We also have (Theorem 5.2) $DH^*(X)/2 \supset \mathbb{Z}/2\{Q_0(w_2), ..., Q_0(w_{2m})\}$. Hence X_{G_m} and $X_{G_{m'}}$ are not retract rational if $m \neq m'$.

From Theorem 5.2 and the preceding theorem, we have

Corollary 7.6. Let $G'_n = SO_n$ and $X = X_G$. Then X_{G_n} and $X_{G_{n'}}$ are not retract rational if $n \neq n'$.

Proof. By Serre [Ga-Me-Se], we know

$$Unv^*(BSO_{2m}; \mathbb{Z}/2) \cong \mathbb{Z}/2\{1, w_2, ..., w_{2m-2}, u_{2m-1}\}$$

with $|u_{2m-1}| = 2m - 1$. We see X_{2m} and X_{2m+1} are not retract rational since w_{2m+1} is zero in the invariant for BSO_{2m} . We see X_{2m-1} and X_{2m} are not retract rational since u_{2m} is zero in the invariant for BSO_{2m-1} .

Remark. Kordonskii [Ko], Merkurjev (Corollary 5.8 in [Me]), and Reichstein-Scavia show [Re-Sc] that $BSpin_n$ itself is stably rational when $n \leq 14$. These facts imply that the (Ekedahl) approximation X is not stable rationally equivalent to BG. (The author thanks Federico Scavia who pointed out this remark.)

At last of this section, we consider the case $G = PGL_p$ projective general linear group. We have (for example Theorem 1.5,1.7 in [Ka-Ya]) additively

$$H^*(BG; \mathbb{Z}/p) \cong M \oplus N \quad with \quad M \stackrel{add.}{\cong} \mathbb{Z}/p[x_4, x_6, \dots, x_{2p}],$$
$$N = SD \otimes \Lambda(Q_0, Q_1)\{u_2\} \quad with \quad SD = \mathbb{Z}/p[x_{2p+2}, x_{2p^2-2p}]$$

where $x_{2p+2} = Q_1 Q_0 u_2$ and suffix means its degree. The Chow ring is given as

$$CH^*(BG)/p \cong M \oplus SD\{Q_0Q_1(u_2)\}.$$

From Lemma 7.3, we have :

Theorem 7.7. Let p be odd. For an approximation X for $BPGL_p$, we see

$$DH^*(X)/p \supset \mathbb{Z}/p\{Q_0u_2\},$$

$$H^*_{un}(X;\mathbb{Z}/p) \supset \mathbb{Z}/p\{1,u_2\}, \qquad Inv^*(G;\mathbb{Z}/p) \supset \mathbb{Z}/p\{1,u_2\}.$$

In the above case, we do not see here that $DH^*(X)$ for * < N is invariant of BG, (under taking another X' as approximations for G).

8. Retract rational for simply connected G

We will see that simply connected groups G satisfy the similar facts, but such as $Ker(\tau|H^{*+1,*-1}(X;\mathbb{Z}/p)) \neq 0$ in Lemma 7.1. In §6, we see there is $0 \neq w \in H^4(X)$ such that $DH^4(X)/p \supset \mathbb{Z}/p\{w\}$. We will see that this w corresponds a nonzero element in $H^3_{un}(X;\mathbb{Z}/p)$.

Theorem 8.1. ([Ya5]) Let G be a simply connected simple group. Then there is the element (Rost invariant) such that

$$H^3_{ur}(X;\mathbb{Z}/p) \twoheadrightarrow Ker(\tau|H^{4,2}(X;\mathbb{Z}/2)) \supset \mathbb{Z}/p\{w\}.$$

Hence X is not retract rational.

Proof. We consider the following diagram

$$\begin{array}{ccc} H^*_{ur}(BG; \mathbb{Z}/p) & \stackrel{j^*}{\longrightarrow} & H^*_{ur}(X; \mathbb{Z}/p) \\ & (1) \\ \downarrow & (2) \cong \\ Inv^*(G: \mathbb{Z}/p) \cong H^0(BG; \mathcal{H}^*_{\mathbb{Z}/p}) & \stackrel{j^*}{\longrightarrow} & H^0(X; \mathcal{H}^*_{\mathbb{Z}/p}) \twoheadrightarrow Ker(\tau) \end{array}$$

Here $H_{un}^+(BG; \mathbb{Z}/p) = 0$ when BG is retract rational. (The map (1) need not isomorphism.) We see that the map (2) : $H_{ur}^*(X; \mathbb{Z}/p) \cong H^0(X; \mathcal{H}_{\mathbb{Z}/p}^*)$ because X is projective and smooth. Recall Lemma 7.1 that we have the surjection

$$H^0(X; \mathcal{H}^*_{\mathbb{Z}/p}) \twoheadrightarrow Ker(\tau | H^{*+1,*-1}(X : \mathbb{Z}/p)).$$

Hereafter, we consider the case * = 3. We consider the following commutative diagram.

$$pw \in H^{4,4}(BG; \mathbb{Z}/p^2) \xrightarrow{j^*} pw \in H^{4,4}(X; \mathbb{Z}/p^2) \longrightarrow 0 \in H^{4,4}(X; \mathbb{Z}/p)$$

$$\tau' \uparrow \qquad \tau' \uparrow \qquad \tau' \uparrow \qquad \tau \text{ (inj.)} \uparrow$$

$$c'_2 \in H^{4,3}(BG; \mathbb{Z}/p^2) \xrightarrow{j^*} c''_2 \in H^{4,3}(X; \mathbb{Z}/p^2) \longrightarrow 0 \in H^{4,3}(X; \mathbb{Z}/p)$$

$$\tau' \uparrow \qquad \tau' \uparrow \qquad \tau \uparrow$$

$$c'_2 \in H^{4,2}(BG; \mathbb{Z}/p^2) \xrightarrow{j^*} c''_2 \in H^{4,2}(X; \mathbb{Z}/p^2) \xrightarrow{r} c''' \in H^{4,2}(X: \mathbb{Z}/p)$$

From the proof in Proposition 6.2, we see that there is $c'_2 \in H^{4,2}(BG; \mathbb{Z}/p^2)$ so that (for $\tau': H^{*,*'}(X; \mathbb{Z}/p^2) \to H^{*,*'+1}(X; \mathbb{Z}/p^2)$) we have

$$(\tau')^2 c'_2 = pw \in H^{4,4}(BG; \mathbb{Z}/p^2).$$

(In fact pw is represented by a Chern class, but w itself is not in the image of the cycle map.)

Next take $c'' = j^* c'_2 \in H^{4,3}(X; \mathbb{Z}/p^2)$. Since j is a projective approximation, we have

$$H^{4,4}(BG; \mathbb{Z}/p^2) \cong H^{4,4}(X; \mathbb{Z}/p^2).$$

Here $(\tau')^2 c'' = pw$. Hence $c'' \neq 0 \in H^{4,2}(X; \mathbb{Z}/p^2)$.

Let us write by c''' the image of c'' in $H^{4,2}(X;\mathbb{Z}/p)$. We note $c''' \in Ker(\tau)|H^{4,2}(X;\mathbb{Z}/p)$, because $\tau: H^{4,3}(X;\mathbb{Z}/p) \to H^{4,4}(X;\mathbb{Z}/p)$ is injective from [Or-Vi-Vo].

Moreover, c''' is a module generator in $Ker(\tau)$, in fact if c'' = px, then $\tau^2 x = w$ which is not $Ker(\tau)$.

Hence there is $a \in H^3_{ur}(X; \mathbb{Z}/p)$ which corresponds $c''' \in Ker(\tau | H^{4,2}(X; \mathbb{Z}/p))$.

Corollary 8.2. Let G be a simply connected group having p-torsion in $H^*(BG)$, and $X = X_G$ be a projective approximation for BG. Then $H^3_{ur}(X; \mathbb{Z}/p) \neq 0$ and so X is not retract rational.

In the last of this section, we consider the case $G = F_4$, p = 2 the exceptional simple group of rank 4. By [Ga-Me-Se], the cohomology invariant is known

$$Inv^*(G; \mathbb{Z}/2) \cong \mathbb{Z}/2\{1, u_3, f_5\} \quad |u_3| = 3, |f_5| = 5.$$

Since $H^{5,5}(BG; \mathbb{Z}/2) = 0$, we know f_5 corresponds

$$0 \neq x \in Ker(\tau | H^{6,4}(BG; \mathbb{Z}/2)) \twoheadleftarrow H^0(BG; \mathcal{H}^5_{\mathbb{Z}/2}).$$

But we can *not* say here that $0 \neq x \in H^{6,4}(X; \mathbb{Z}/2)$.

Proposition 8.3. If there is an approximation such that $H^{6,4}(BG; \mathbb{Z}/2) \cong H^{6,4}(X; \mathbb{Z}/2)$, then

$$H^*_{ur}(X;\mathbb{Z}/2) \supset \mathbb{Z}/2\{u_3, f_5\}$$

Hence if the assumption is correct. then X_{G_2} and X_{F_4} are not retract rational equivalent.

9. EXTRASPECIAL *p*-GROUPS

We assume at first that p is an odd prime. The extraspecial p-group $E(n) = p_+^{1+2n}$ is the group such that exponent is p, its center is $C \cong \mathbb{Z}/p$ and there is the extension

$$0 \to C \to E(n) \stackrel{\pi}{\to} V_n \to 0$$

with $V = \bigoplus^{2n} \mathbb{Z}/p$. (For details of the cohomology of E(n) see [Te-Ya1].) We can take generators $a_1, ..., a_{2n}, c \in E(n)$ such that $\pi(a_1), ..., \pi(a_{2n})$ (resp. c) make a base of V_n (resp. C) such that commutators are

$$[a_{2i-1}, a_{2i}] = c$$
 and $[a_{2i-1}, a_j] = 1$ if $j \neq 2i$.

We note that E(n) is also the central product of the *n*-copies of E(1)

$$E_n \cong E(1) \cdots E(1) = E(1) \times_{\langle c \rangle} E(1) \dots \times_{\langle c \rangle} E(1).$$

Take cohomologies

$$H^*(BC; \mathbb{Z}/p) \cong \mathbb{Z}/p[u] \otimes \Lambda(z), \quad \beta z = u,$$

 $H^*(BV_n; \mathbb{Z}/p) \cong \mathbb{Z}/p[y_1, \dots, y_{2n}] \otimes \Lambda(x_1, \dots, x_{2n}), \quad \beta x_i = y_i,$

identifying the dual of a_i (resp. c) with x_i (resp. z). That means

$$H^1(E(n); \mathbb{Z}/p) \cong Hom(E(n); \mathbb{Z}/p) \ni x_i : a_j \mapsto \delta_{ij}.$$

The central extension is expressed by

$$f = \sum_{i=1}^{n} x_{2i-1} x_{2i} \in H^2(BV_n; \mathbb{Z}/p).$$

Hence $\pi^* f = 0$ in $H^2(BE(n); \mathbb{Z}/p)$. We consider the Hochshild-Serre spectral sequence

$$E_2^{*,*'} \cong H^*(BV_n; \mathbb{Z}/p) \otimes H^*(BC; \mathbb{Z}/p) \Longrightarrow H^*(BE(n); \mathbb{Z}/p).$$

Hence the first nonzero differential is $d_2(z) = f$ and the next differential is

$$d_3(u) = d_3(Q_0(z)) = Q_0(f) = \sum y_{2i-1} x_{2i} - y_{2i} x_{2i-1}.$$

In particular

$$E_4^{0,*} \cong \mathbb{Z}/p[y_1, ..., y_{2n}] \otimes \Lambda(x_1, ..., x_{2n})/(f, Q_0(f)).$$

Lemma 9.1. We have the inclusion

 $\Lambda(x_1, ..., x_{2n})/(f) \subset H^*(BE(n); \mathbb{Z}/p).$

Proof. We consider similar group E(n)' such that its center is $C \cong \mathbb{Z}/p$ and there is the extension

$$0 \longrightarrow C \stackrel{i}{\longrightarrow} E(n)' \stackrel{\pi}{\longrightarrow} V'_n \longrightarrow 0$$

but $V'_n = \bigoplus^{2n} \mathbb{Z}_p$ such that there is the quotient map $q : E(n)' \to E(n)$. We also consider the spectral sequence

$$E_2^{*,*'} \cong H^*(BV'; \mathbb{Z}/p) \otimes H^*(BC; \mathbb{Z}/p) \Longrightarrow H^*(BE(n)'; \mathbb{Z}/p).$$

Here $H^*(BV'_n; \mathbb{Z}/p) \cong \Lambda(x_1, \dots, x_{2n})$. The first nonzero differential is $d_2(z) = f$ but the second differential is

$$d_3(u) = \sum y_{2i-1}x_{2i} - y_{2i}x_{2i-1} = 0 \in \Lambda(x_1, ..., x_{2n}).$$

Hence $E_4^{*,*'}$ is (multiplicatively) generated by u and x_i (permanent cycles). So $E_4^{*,*'} \cong E_{\infty}^{*,*'}$. Therefore we have

$$H^*(BE(n)'; \mathbb{Z}/p) \cong \mathbb{Z}/p[u] \otimes \Lambda(x_1, ..., x_{2n})/(f).$$

From the map $q^* : H^*(BE(n); \mathbb{Z}/p) \to H^*(BE(n)'; \mathbb{Z}/p)$, we get the result.

However $H^*(BE(n); \mathbb{Z}/p)/(N^1) \cong \Lambda(x_1, ..., x_{2n})/(f)$, in fact, when n = 1, from Theorem 3.3 in [Ya6] we see

Proposition 9.2. We have

$$H^*(BE(1); \mathbb{Z}/p)/(N^1) \cong \mathbb{Z}/p\{1, x_1, x_2, a'_1, a'_2\} \quad deg(a'_i) = 2.$$
$$DH^*(X)/2 \cong \mathbb{Z}/2\{Q_0(a'_1), Q_0(a'_2)\}.$$

Lemma 9.3. Let $n \geq 2$. Then

$$y_i^p y_j - y_i y_j^p \neq 0 \in H^*(BE(n); \mathbb{Z}/p)$$

Proof. By the inclusion $E(2) \subset E(n)$ and induced quotient map

 $H^*(BE(n); \mathbb{Z}/p) \to H^*(BE(2); \mathbb{Z}/p)$

we only need to see

$$y_1^p y_2 - y_1 y_2^p \neq 0 \quad \in H^*(BE(2); \mathbb{Z}/p) \otimes \overline{\mathbb{F}}_p$$

for the algebraic closure $\overline{\mathbb{F}}_p$ of the finite field \mathbb{F}_p .

Let n = 2. Note here

$$Q_i Q_0(f) = y_1^{p^i} y_2 - y_1 y_2^{p^i} + y_3^{p^i} y_4 - y_3 y_4^{p^i}$$

= $y_2 \Pi_{\lambda \in \mathbb{F}_{-i}} (y_1 - \lambda y_2) + y_4 \Pi_{\lambda \in \mathbb{F}_{-i}} (y_3 - \lambda y_4)$

 $= y_2 \prod_{\lambda \in \mathbb{F}_{p^i}} (y_1 - \lambda y_2) + y_4 \prod_{\lambda \in \mathbb{F}_{p^i}} (y_3 - \lambda y_4).$ Hence this formula $Q_i Q_0(f)$ is a sum of multiplies of

 $y_1^p y_2 - y_1 y_2^p = y_2 \prod_{\lambda \in \mathbb{F}_p} (y_1 - \lambda y_2)$ and $y_3^p y_4 - y_3 y_4^p$,

Suppose that $y_1^p y_2 - y_1 y_2^p = 0$. Then by the symmetry of the group. we see $y_3^p y_4 - y_3 y_4^p = 0$. But it is known [Te-Ya1] $(Q_1 Q_0(f), Q_2 Q_0(f))$ is regular in $\mathbb{Z}/p[y_1, y_2, y_3. y_4]$. This is a contradiction.

The more concrete expression of $DH^*(X)/p$ seems somewhat complicated. So we only give it for * = 3.

Proposition 9.4. Let G = E(n), n > 1. Then we have

$$DH^{3}(X)/p \cong \mathbb{Z}/p\{Q_{0}(x_{i}x_{j})|(i,j) \neq (1,2), \ 1 \leq i < j \leq n\}.$$
$$H^{2}_{ur}(X;\mathbb{Z}/p), \ Inv^{2}(G:\mathbb{Z}/p) \supset \mathbb{Z}/p\{x_{i}x_{j}|(i,j) \neq (1,2), \ 1 \leq i < j \leq n\}.$$

Proof. The degree 3 integral cohomology $mod(p) H^3(X)/p$ is generated as a $\mathbb{Z}/p[y_1,...,y_n]$ -module by $Q_0(x_ix_j)$. The proposition follows from the main lemma and

$$Q_1 Q_0(x_i x_j) = y_i^p y_j - y_i y_j^p \neq 0 \quad in \ H^*(X; \mathbb{Z}/p).$$

Bogomolov-Bohning-Pirutka study the kernel of the map

$$K = Ker(q_{N^1}^* : H^*(BV_n; \mathbb{Z}/p)/N^1 \to H^*(BG; \mathbb{Z}/p)/N^1).$$

where $H^*(BV_n; \mathbb{Z}/p)/N^1 \cong \Lambda(x_1, ..., x_{2n})$. Their theorem in [Bo-Bo-Pi] induces

Theorem 9.5. (Theorem 1.3 in [Bo-Bo-Pi]) If $p \ge n$, G is extraspecial group of order p^{1+2n} then $Ker(q^*_{/N^1}) \cong (f)$. Hence

$$H^*_{ur}(X; \mathbb{Z}/p) \supset \Lambda(x_1, ..., x_{2n})/(f)$$

Remark. There is the another group p_{-}^{1+2n} with the degree $2^{n} + 1$. When p = 2, the situation becomes changed. The extraspecial 2-group $D(n) = 2_{+}^{1+2n}$ in the *n*-th central extension of the dihedral group D_{8} of order 8. It has the central extension

$$0 \to \mathbb{Z}/2 \to D(n) \to V_n \to 0$$

with $V_n = \bigoplus^{2n} \mathbb{Z}/2$. Hence $H^*(BV_n; \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, ..., x_{2n}]$. Then using the Hochschild-Serre spectral sequence, Quillen proved [Qu]

$$H^*(BD(n); \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, ..., x_{2n}]/(f, Q_0(f), ..., Q_{n-2}(f)) \otimes \mathbb{Z}[w_{2^n}(\Delta)].$$

Here $w_{2^n}(\Delta)$ is the Stiefel-Whitney class of 2^n -dimensional (spin) representation Δ which restricts nonzero on the center. Moreover Quillen proves the following two theorems (Theorem 5.10-11 in [Qu])

Theorem 9.6. ([Qu]) $H^*(BD(n); \mathbb{Z}/2)$ is detected by the product of cohomology of maximal elementary abeian groups.

Theorem 9.7. ([Qu]) The nonzero Stiefel-Whitney $w_i(\Delta)$ are those of degrees 2^n and $2^n - 2^i$ for $0 \le i < n$.

In fact $w_i(\Delta)$ generates the Dickson algebra in the cohomology of the maximal elementary abelian 2-groups.

Proposition 9.8. When n > 2, there is the surjection

$$\Lambda(x_1, ..., x_{2n})/(f) \to H^*(BD(n); \mathbb{Z}/2)/(N^1).$$

Proof. By the same arguments with p = odd, we see

$$\Lambda = \Lambda(x_1, \dots, x_{2n})/(f) \subset H^*(BD(n); \mathbb{Z}/2).$$

The fact $w_2(\Delta) = 0$ follows from the above third Quillen's theorem. Hence we have $w_{2^n}(\Delta) \in N^1$ from Becher's theorem (Theorem 6.2 in [Te-Ya2]). i.e., w_i is multiplicative generated by w_1 and w_2 . Thus we get the proposition.

However this map (in Proposition 9.8) is not need injective. In fact, in [Bo-Bo-Pi], it is proven that the above map is not injective when $G = D(3) = 2^{1+6}_+$. They also see that the map in the proposition is injective when we restrict the degree * = 2

Theorem 9.9. Let G = D(3) and $X = X_G$. Then we have

$$DH^{3}(X)/2 \cong \mathbb{Z}/p\{Q_{0}(x_{i}x_{j})|(i,j) \neq (1,2), \ 1 \le i < j \le 3\}.$$

 $H^2_{ur}(X;\mathbb{Z}/p), \ Inv^2(G:\mathbb{Z}/p) \supset \mathbb{Z}/p\{x_ix_j|(i,j) \neq (1,2), \ 1 \leq i < j \leq 3\}.$ However, the map in Proposition 9.8 is not injective for some * > 2.

10. The motivic cohomology of quadrics over \mathbb{R} with coefficients $\mathbb{Z}/2$

Let X be a smooth variety over the field \mathbb{R} of real numbers, and we consider the cohomologies of $\mathbb{Z}/2$ coefficients. In this paper the mod(2) étale cohomology means the motivic cohomology of the same first and the second degrees $H^*_{\acute{e}t}(X;\mathbb{Z}/2) \cong H^{*,*}(X:\mathbb{Z}/2)$.

It is well known ([Vo1], [Vo2])

 $H^*_{\acute{e}t}(Spec(\mathbb{C}); \mathbb{Z}/2) \cong \mathbb{Z}/2, \quad H^{*,*'}(Spec(\mathbb{C}); \mathbb{Z}/2) \cong \mathbb{Z}/2[\tau],$

 $H^*_{\acute{e}t}(Spec(\mathbb{R});\mathbb{Z}/2)\cong\mathbb{Z}/2[\rho], \quad H^{*,*'}(Spec(\mathbb{R});\mathbb{Z}/2)\cong\mathbb{Z}/2[\tau,\rho]$ where $0\neq\tau\in H^{0,1}(Spec(\mathbb{R});\mathbb{Z}/2)\cong\mathbb{Z}/2$ and where

$$\rho = -1 \in \mathbb{R}^*/(\mathbb{R}^*)^2 \cong K^M_1(\mathbb{R})/2 \cong H^1_{\acute{e}t}(Spec(\mathbb{R});\mathbb{Z}/2).$$

We recall the cycle map from the Chow ring to the étale cohomology

$$cl/2: CH^*(X)/2 \to H^{2*}_{\acute{e}t}(X; \mathbb{Z}/2).$$

This map is also written as $H^{2*,*}(X;\mathbb{Z}/2) \xrightarrow{\times \tau^*} H^{2*,2*}(X;\mathbb{Z}/2)$.

Let $X = Q^d$ be an anisotropic quadric of dimension $2^n - 1$ (i.e. the norm variety for $(\rho^{n+1} \in K_{n+1}^M(\mathbb{R})/2)$). Then we have the Rost motive $M \subset Q^d$ [Ro]. It is known (the remark page 575 in [Ya2])

$$H^*_{\acute{e}t}(M; \mathbb{Z}/2) \cong \mathbb{Z}/2[\rho]/(\rho^{2^{n+1}-1}) \cong \mathbb{Z}/2\{1, \rho, \rho^2, ..., \rho^{2^{n+1}-2}\}.$$

The Chow ring is also known [Ro]

$$CH^*(M)/2 \cong \mathbb{Z}/2\{1, c_0, c_1, \dots, c_{n-1}\}, \quad cl(c_i) = \rho^{2^{n+1}-2^{i+1}}.$$

The cycle map cl/2 is injective. The elements c_i is also written as

$$c_i = \rho^{2^{n+1}-2^{i+1}} \tau^{-2^n+2^i} \quad in \ CH^*(M)/2 \subset H^{2*}_{\acute{e}t}(M:\mathbb{Z}/2)[\tau^{-1}]$$

The mod(2) motivic cohomology is known (Theorem 5.3 in [Ya2]).

Theorem 10.1. (Theorem 5.3 in [Ya2]) The cohomology $H^{*,*'}(M_n; \mathbb{Z}/2)$ is isomorphic to the $\mathbb{Z}/2[\rho, \tau]$ -subalgebra of

$$\mathbb{Z}/2[\rho,\tau,\tau^{-1}]/(\rho^{2^{n+1}-1})$$

generated by $a = \rho^{n+1}$, $a' = a\tau^{-1}$, and elements in $\Lambda(Q_0, ..., Q_{n-1})\{a'\}$.

The following lemma is used in the next sections.

Lemma 10.2. We have $Q_0(\tau^{-1}) = \rho \tau^{-2}$. Hence $Q_0(a') = \rho a \tau^{-2}$, while $Q_0(a) = 0$.

Proof. We see the first equation from

$$0 = Q_0(1) = Q_0(\tau\tau^{-1}) = \rho\tau^{-1} + \tau Q_0(\tau^{-1}).$$

Lemma 10.3. (Lemma 5.13 in [Ya2]) Let X_d be anisotropic quadric of the degree d. Let $h \in H^{2,1}(X_d)$ be the hyper plain section. If $2^n - 2 < d$, then we have a graded ring isomorphism

 $H^{*,*'}(X_d; \mathbb{Z}/2) \cong \mathbb{Z}/2[\rho, \tau, h] \quad when \quad * \le n.$

In particular, $H^{*,*-1}(X_d: \mathbb{Z}/2) = 0 \mod(Ideal(h))$ for $* \leq n$.

11. The cohomology of quadrics with coefficients in \mathbb{Z}_2

In this section we consider integral coefficients case. In this paper, the 2-adic integral \mathbb{Z}_2 cohomology means the inverse limit

$$H^*_{\acute{e}t}(M;\mathbb{Z}_2) = Lim_{\infty \leftarrow s}H^{*,*}(M;\mathbb{Z}/2^s)$$

of motivic cohomologies.

We recall here the Lichtenberg cohomology [Vo1,2] such that

$$H_L^{*,*'}(X;\mathbb{Z}) \cong H^{*,*'}(X;\mathbb{Z}) \quad for \ * \le *' + 1.$$

(The right side is the motivic cohomology.) By the five lemma, we see (for $1/s \in k$)

$$H_L^{*,*'}(X;\mathbb{Z}/s) \cong H^{*,*'}(X;\mathbb{Z}/s) \quad for \ * \le *'.$$

Moreover we have $H_L^{2^{*,*'}}(X; \mathbb{Z}/s) \cong H_{\acute{e}t}^{2^{*}}(X; \mu_s^{*'\otimes}).$

In this paper we consider the cycle maps to this Lichitenberg (or motivic) cohomology in stead of the étale cohomology itself. The cycle map is written

$$cl: CH^*(X) \otimes \mathbb{Z}_2 \cong H^{2*,*}(X; \mathbb{Z}_2) \to H^{2*,*}_L(X; \mathbb{Z}_2) \cong H^{2*}_{\acute{e}t}(X; \mathbb{Z}_2(*))$$

where $\mathbb{Z}(*)$ is the Galois module, when $k = \mathbb{R}$, it acts as $(-1)^*$. Here we can write

$$H_{\acute{e}t}^{2*}(X;\mathbb{Z}_{2}(*)) = \bigoplus_{m\geq 0} (H_{\acute{e}t}^{4m}X;\mathbb{Z}_{2}) \oplus H_{\acute{e}t}^{4m+2}(X;\mathbb{Z}_{2}(1)).$$

Note that it is the (graded) ring.

Let $k = \mathbb{R}$. Moreover let * = even. Then the right hand side cohomology is written

$$H^{2*}_{\acute{e}t}(X; \mathbb{Z}_2(*)) \cong H^{2*}_{\acute{e}t}(X; \mathbb{Z}_2(even)) \cong H^{2*}_{\acute{e}t}(X; \mathbb{Z}_2(2*))$$
$$\cong H^{2*,2*}_L(X; \mathbb{Z}_2) \cong H^{2*,2*}(X; \mathbb{Z}_2).$$

Similarly, when * = odd, we see $H^{2*}_{\acute{e}t}(X; \mathbb{Z}_2(*)) \cong H^{2*,2*+1}(X; \mathbb{Z}_2).$

Thus in this paper, the cycle map means ;

$$cl: CH^{*}(X) \otimes \mathbb{Z}_{2} \to H^{2*}_{\acute{e}t}(X; \mathbb{Z}_{2}(*)) \cong \begin{cases} H^{2*,2*}(X; \mathbb{Z}_{2}) & for \ * = even \\ H^{2*,2*+1}(X; \mathbb{Z}_{2}) & for \ * = odd. \end{cases}$$

We say that $x \in H^{2*}_{\acute{e}t}(X; \mathbb{Z}(*) \text{ is non-algebraic if } x \neq 0 \mod(Im(cl)).$

The short exact sequence $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$ induces the long exact sequence of motivic cohomology

... $\to H^{*-1,*}(M; \mathbb{Z}/2) \xrightarrow{\delta} H^{*,*}(M; \mathbb{Z}) \xrightarrow{2} H^{*,*}(M; \mathbb{Z}) \xrightarrow{r} H^{*,*}(M; \mathbb{Z}/2) \to ...$ By Voevodsky [Vo1], [Vo2]), it is known $\beta(\tau) = \rho$ for the Bockstein operation β . Let us write $\delta(\tau \rho^{i-1}) = \bar{\rho}_i \in H^{*,*}(M; \mathbb{Z})$ so that $r(\bar{\rho}_i) = \beta(\tau \rho^{i-1}) = \rho^i$ since $r\delta = \beta$. Moteover $\bar{\rho}_i$ is 2-torsion from the above exact sequence.

Hence for all $1 \leq c \leq 2^{n+1} - 2$, we see $H^{c,c}(M; \mathbb{Z}) \neq 0$. The same fact holds each $H^c_{\acute{e}t}(M; \mathbb{Z}/2^s)$ and so $H^c_{\acute{e}t}(M; \mathbb{Z}_2)$.

Lemma 11.1. Let $N = 2^{n+1} - 2$. Then

$$\mathbb{Z}_{2}\{1, cl(c_{0})\} \oplus \mathbb{Z}/2\{\bar{\rho}_{1}, ..., \bar{\rho}_{N}\} \subset H^{*}_{\acute{e}t}(M; \mathbb{Z}_{2}) \oplus H^{*}_{\acute{e}t}(M; \mathbb{Z}_{2}(1)).$$

The element $\bar{\rho}_c$ with $c = 0 \mod(4)$ and $c \neq 2^{n+1} - 2^{i+1}$ is a non-algebraic element (i.e., not in the image of the cycle map).

Remark. When $c = 2 \mod(4)$, the element $\bar{\rho}_c \in H^c(M; \mathbb{Z}_2)$ but not in $H^c(M; \mathbb{Z}_2(1))$. So we identify here $\bar{\rho}_c$ is not in $H^{2*}_{\acute{e}t}(M; \mathbb{Z}_2(*))$.

Writing $\pi = cl(c_0)$, we have the following theorem.

Theorem 11.2. ([Ya7]) Let $M_n \subset Q^{2^{n-1}}$ be the Rost motive of the norm variety. Then there are element $\pi \in H^{2^{n+1}-2}_{\acute{e}t}(M_n; \mathbb{Z}_2(1))$ and $\bar{\rho}_{4m} \in H^{4m}_{\acute{e}t}(M_n; \mathbb{Z}_2(0))$ such that

$$H_{\acute{e}t}^{2*}(M_n; \mathbb{Z}_2(*)) \cong \mathbb{Z}_2\{1, \pi\} \oplus \mathbb{Z}/2\{\bar{\rho}_4, \bar{\rho}_8, ..., \bar{\rho}_{2^{n+1}-4}\}$$
$$\cong \mathbb{Z}_2\{1, \pi\} \oplus \mathbb{Z}/2[\bar{\rho}_4]^+/(\bar{\rho}_4^{2^{n-1}}).$$

The image of the cycle map is given

$$CH^*(M_n) \otimes \mathbb{Z}_2 \cong \mathbb{Z}_2\{1,\pi\} \oplus \mathbb{Z}/2\{\bar{\rho}_{2^{n+1}-2^n}, \bar{\rho}_{2^{n+1}-2^{n-1}}, ..., \bar{\rho}_{2^{n+1}-4}\}.$$

12. NORM VARIETIES

Let $X = Q^{2^{n-1}}$ be the norm variety, and M_n be its Rost motive. We have the decomposition of motives ([Ro], §6 in[Ya1])

$$M(Q^{2^n-1}) \cong M_n \oplus M_{n-1} \otimes M(\tilde{\mathbb{P}}^{2^{n-1}-1})$$

where $M(\tilde{\mathbb{P}}^s) \cong \mathbb{T} \oplus ... \oplus \mathbb{T}^{s\otimes}$.

Hence we have the additive structure from Theorem 11.2 in the preceding section. More strongly, we can prove

Theorem 12.1. [Ya6] We have a ring isomorphism

$$H^{2*}_{\acute{e}t}(Q^{2^n-1};\mathbb{Z}_2(*)) \cong \mathbb{Z}_2[h,\bar{\rho}_4]/(h^{2^n},2\bar{\rho}_4,h\bar{\rho}_4^{2^{n-2}},\bar{\rho}_4h^{2^{n-1}},\bar{\rho}_4^{2^{n-1}}).$$

Here $h \in H^2(Q^{2^n-1}; \mathbb{Z}_2(1))$ is the hyper plain section, and we can take $\pi = h^{2^n-1}$. (The ring is generated by only two elements.)

We give only an outline of the proof for Q^7 here, for ease of arguments.

Lemma 12.2. We have a ring isomorphism

$$\begin{aligned} H^{2*}_{\acute{e}t}(Q^7;\mathbb{Z}_2(*)) &\cong \mathbb{Z}_2[h]/(h^8) \oplus \mathbb{Z}/2[h]/(h^4)\{\bar{\rho}_4\} \otimes \mathbb{Z}/2\{\bar{\rho}_4^2,\bar{\rho}_4^3\} \\ &\cong \mathbb{Z}_2[h,\bar{\rho}_4]/(h^8,2\bar{\rho}_4,h^4\bar{\rho}_4,h\bar{\rho}_4^2,\bar{\rho}_4^4) \\ where \ h^7 = c_0 = \pi, \ c_1 = \bar{\rho}_4^3, \ c_2 = \bar{\rho}_4^2 \ and \ c_1'h = h\bar{\rho}_4. \ Hence \ we \ have \end{aligned}$$

$$H^{2*}_{\acute{e}t}(Q^7; \mathbb{Z}_2(*))/(Im(cl)) \cong \mathbb{Z}/2\{\bar{\rho}_4\}$$

Proof. From the decomposition of the motive, we see (additively)

$$H^{2*}_{\acute{e}t}(Q^7; \mathbb{Z}_2(*)) \cong H^{2*}(M_3; \mathbb{Z}_2(*)) \oplus H^{2*}(M_2; \mathbb{Z}_2(*)) \otimes \mathbb{Z}_2\{h, h^2, h^3\}.$$

Hence it can be written additively (with $|c_0| = 14$, $|c_1| = 12$, $|c_2| = 8$, $|c'_0| = 6$, $|c'_1| = 4$)

$$(\mathbb{Z}_2\{1, c_0\} \oplus \mathbb{Z}/2\{\bar{\rho}_4, c_1, c_2\}) \oplus (\mathbb{Z}_2\{1, c_0'\} \oplus \mathbb{Z}/2\{c_1'\}) \otimes \mathbb{Z}_2\{h, h^2, h^3\}.$$

It is well known (for $\overline{X} = X(\mathbb{C})$)

$$H^*(\bar{X};\mathbb{Z}_2) \cong \mathbb{Z}_2[h,y]/(h^8, 2y = h^4, y^2).$$

Hence, from the restriction map, the ring $H^*(X; \mathbb{Z}_2) \supset Z_2[h]/(h^8)$.

First note

$$\mathbb{Z}_2\{c'_0h, c'_0h^2, c'_0h^3\} \cong \mathbb{Z}_2\{h^4, h^5, h^6\}.$$

Thus we have

$$\mathbb{Z}_2\{1, h, \dots, h^7\} \cong \mathbb{Z}_2\{1, h, h^2, h^3, hc'_0, h^2c'_0, h^3c'_0, c_0\}.$$

So we have the above $H^{2*}(Q^7; \mathbb{Z}_2(*))$ is isomorphic to

$$\mathbb{Z}_2[h]/(h^8)\oplus \mathbb{Z}/2\{ar{
ho}_4,c_2,c_1\}\oplus \mathbb{Z}_2\{c_1'h,c_1'h^2,c_1'h^3\}.$$

Taking $c_2 = \bar{\rho}_4^2$, $c_1 = \bar{\rho}_4^3$, $hc_1' = h\bar{\rho}_4$, we have the result.

We want to see the following theorem. 10.2 $V = O^{2^n-1} = 2 V^n$

Theorem 12.3. Let $X_n = Q^{2^n-1}$, $n \ge 2$ the norm variety. Then $DH^{2*}(X_n; \mathbb{Z}_2(*)) = 0.$

$$H_{ur}^{2*}(X_n; \mathbb{Z}_2(*)) \supset \mathbb{Z}/2[\bar{\rho}_4]/(\bar{\rho}_4^{2^{n-1}}).$$

Hence for $n \neq n'$, we see that X_n and $X_{n'}$ are not retract rationally equivalent.

Remark. When n = 1, we see $X_1 \cong \mathbb{P}^1$ that is, X_1 stable birational.

Corollary 12.4. The second and the last formulas in the above theorem, hold when k is a real number field.

Proof. Recall that the norm variety $X_n = X_n(k)$ is defined naturaly. Let $r_1 \ge 1$ be real embedding number. Then we have the restriction

$$r: H^*_{et}(Spec(k); \mathbb{Z}/2) \to \oplus^{r_1} H^*_{et}(Spec(\mathbb{R}); \mathbb{Z}/2)$$

such that r is surjective for $* \geq 1$ and isomorphic for $* \geq 3$, Hence we can define $\rho(k) \in H^1_{et}(Spec(k); \mathbb{Z}/2)$ so that $r(\rho(k)) = \rho$. Similarly we can define $\bar{\rho}_4(k)$ in $H^*_{un}(X; \mathbb{Z}_2)$. It is nonzero since so for $k = \mathbb{R}$.

Since the hyper plain section h is represented by a first Chern class and $\pi = c_0 = h^{2^n-1}$. By Frobenius reciprocity, we only check elements

 $\bar{\rho}_4^i \notin N^1 H^{2*}(X; \mathbb{Z}_2(*))$

for the first equality in theorem. Then $Ideal(h) \in N^1$ and

$$H^{4*}_{ur}(X;\mathbb{Z}/2) \supset H^{4*}(X:\mathbb{Z}/2)/N^1 \supset \mathbb{Z}/2[\bar{\rho}_4]/(\bar{\rho}_4^{2^{n-1}})$$

implies the second formula.

Since $H^{2*}(M_n; \mathbb{Z}_2(*))$ is a direct summand of $H^{2*}(X; \mathbb{Z}_2(*))$ and $\bar{\rho}_4$ is defined in $H^{2*}(M_n; \mathbb{Z}_2(*))$, we only need to see the following Lemma 12.5, (by using Lemma 10.1-10.3) for the proof of the above theorem.

Lemma 12.5. We have $\bar{p}_4^i \notin N^1 H^*(M_n; \mathbb{Z}_2(*))$ for $i \ge 1$.

Proof. Consider the following diagram

$$\bar{\rho}_s \in H^{*,*}(X; \mathbb{Z}_2) \xrightarrow{r} \rho^s \in H^{*,*}(X: \mathbb{Z}/2)$$

$$\tau^{\prime} \uparrow \qquad \tau^{\uparrow}$$

$$x \in H^{*,*-1}(X: \mathbb{Z}_2) \xrightarrow{r} H^{*,*-1}(X; \mathbb{Z}/2) \xrightarrow{Q_0}$$

Suppose $\bar{\rho}_s \in N^1 H^{*,*}(X; \mathbb{Z}_2)$, which means that there is $x \in H^{*,*-1}(X: \mathbb{Z}_2)$ such that $\tau' x = \bar{\rho}_s$. We consider the reduction maps r to the cohomology of $\mathbb{Z}/2$ cefficients. Then $\tau r(x) = \rho^s$. and $Q_0(r(x))$ must be zero (since x is in the integral coefficients \mathbb{Z}_2). We will prove this does not happen.

Recall $a = \rho^{n+1}$ and $a' = a\tau^{-1}$ in $H^{**-1}(M_n; \mathbb{Z}/2)$.

The case $* \leq n$; The cohomology $H^{*,*'}(M_n; \mathbb{Z}/2) = 0 \mod(Ideal(h))$ for * > *' from Lemma 10.3. Hence there is no non zero element $\tau^{-1}\rho^* \in H^{*,*-1}(M_n; \mathbb{Z}/2) \mod(Ideal(h))$ (where $h \in \tilde{N}^1$).

The case * = n + 1; Then there is a' such that $\tau a' = a$. But this element a' is not in the integral $H^{*,*-1}(M_a;\mathbb{Z}_2)$, because

$$Q_0(a') = Q_0(\rho^{n+1}\tau^{-1}) = \rho^{n+2}\tau^{-2}$$

which is nonzero in $H^{*,*'}(M_n; \mathbb{Z}/2)$, and so $a \notin N^1 H^{*,*}(M_n; \mathbb{Z}_2)$.

The case * > n+1. Let us write $b' = Q_0(a') = \rho^{n+2}\tau^{-2}$. Next consider the element $b = \tau b'$. Then we note

$$\tau b = \tau^2 b' = \tau^2 \rho^{n+2} \tau^{-2} = a\rho = \rho^{n+2}.$$

That is $b = \rho^{n+2}\tau^{-1}$ and $b = \tau Q_0(a')$. Hence from Theorem 10.1, we see $b \in H^{*,*'}(M_n; \mathbb{Z}/2)$.

Since $Q_0(b') = Q_0Q_0(a') = 0$, we can compute

$$Q_0(b) = Q_0(\tau b') = \rho b' + \tau Q_0(b') = \rho b'$$

is nonzero in $H^{*,*'}(X; \mathbb{Z}/2)$ and hence b is not in the integral $H^{*,*'}(X; \mathbb{Z}_2)$. Therefore $\rho^{n+2} \notin N^1 H^*(X; \mathbb{Z}_2)$.

Similarly we can show for j > n+2, the element ρ^j is not in $N^1H^*(X; \mathbb{Z}_2)$.

The elements a, ..., b' are written in $\mathbb{Z}/2[\rho, \tau, \tau^{-1}]/(\rho^{2^n-1})$ as follows. (Recall Theorem 10.1 and Lemma 10.2.)

$$\begin{split} \rho^{n+2} \in H^{n+2,n+2} \\ & \tau \uparrow \\ a &= \rho^{n+1} \in H^{n+1,n+1} \\ & \tau \uparrow \\ & \tau \uparrow \\ \rho^n \in H^{n,n} \\ \tau \uparrow \\ a' &= \rho^{n+1} \tau^{-1} \\ & -Q_0 \\ & \tau \uparrow \\ 0 &= H^{n,n-1} \end{split}$$

References

- [Be] O. Benoist, Steenrod operations and algebraic classes. arXiv:220 9.03685. [math.AG]
- [Be-Ot] O. Benoist and J. Ottem. Two coniveau filtrations. *Duke Math J.* **170** (2021) 2719-2715.
- [Bl-Og] S. Bloch and A. Ogus. Gersten's conjecture and the homology of schemes. Ann.Scient.Éc.Norm.Sup. 7 (1974) 181-202.
- [Bo] F.Bogomolov. The Brauer group of quotient spaces by linear group actions. Math. USSR Izvestiya **30** (1988) 455-485.
- [Bo-Bo-Pi] F. Bogomolov, C. Bohning and A. Pirutka. On stable cohomology of central extensions of elementary abelian groups, In: Ahmadinezhad, H. and Kasprzyk, A. and Mori, S., (eds.) London Mathematical Society. Lecture Note Series. Cambridge University Press (2021).
- [Co-Vo] J.L. Colliot Thérène and C. Voisin. Cohomologie non ramifieet conjecture de Hodge entiére. Duke Math. J. 161 (2012), 735-801.

- [Ek] T.Ekedahl. Approximating classifying spaces by smooth projective varieties *preprint* **44** (2009) arXiv:0905.1538.
- [Ga-Me-Se] S.Garibaldi, A.Merkurjev and J.P.Serre. Cohomological invariants in Galois cohomology. University lect. series vol(28) AMS (2003).
- [Ka-Ya] M.Kameko and N.Yagita. The Brown-Peterson cohomology of the classifying spaces of the projective unitary groups PU(p) and exceptional Lie group *Trans. of A.M.S.* **360** (2008), 2265-2284.
- [Ko] E. Kordonskii. Stable rationality of the group $Spin_{10}$. Russian Math. Soc. **360** (2000) 178-179.
- [Me] A. Merkurjev. Rationaly problem for classifying spaces of Spinor groups. Proc. Skeklov Inst. Math. **307** (2019) 115-124.
- [Mi] J. Milnor. The Steenrod algebra and its dual. Ann. Math. 67 (1958) 150-171.
- [Mi-To] M. Mimura and H. Toda, Topology of Lie groups I and II, Translations of Math. Monographs, Amer. Math. Soc, 91, 1991
- [Or-Vi-Vo] D.Orlov, A.Vishik and V.Voevodsky. An exact sequence for Milnor's Ktheory with applications to quadric forms. Ann. of Math. 165 (2007) 1-13.
- [Sc-Su] F. Scavia, F. Suzuki, Non-injectivity of the cycle class map in continuous *l*-adic cohomology. arXiv:2208.06713. [Math.AG]
- [Pa] K. Paranjape. Some spectral sequences for filtered complexes and applications. J. Algebra 186 (1996) 793-806.
- [Pi] A. Pirutka. Varieties that are not stable retract, zero cycles and unramified cohomology. in Algebraic Geometry (Salt Lake City, UT, 2015), Proc. Sympos. Pure Math., 97, 459-484. Amer. Math. Soc., Providence, RI, 2018.
- [Pi-Ya] A. Pirutka and N. Yagita. Note on the counterexamples for the integral Tate conjecture over finite fields. *Doc. Math.* (2015) Extra vol. : Alexander S. Merkurjev's sixties birthday. 501-511.
- [Qu1] D.Quillen. Elementary proofs of some results of the cobordism theory using Steenrod operations. *Advances in Math.* **7** (1971), 29-56.
- [Qu2] D.Quillen. The mod 2 cohomology rings of extra-special 2-groups and the spinor groups. Math. Ann. 194 (1971), 197-212.
- [Ra-Wi-Ya] D. Ravenel, S. Wilson and N.Yagita. Brown-Peterson cohomology from Morava K-theory. K-theory. 15 (1998), 147-199.
- [Re-Sc] Z. Reichstein and F. Scavia. The Noether problem for spinor groups of small rank. J. Algebra 48 (2020), 134-152.
- [Ro] M.Rost, Some new results on Chowgroups of quadrics, preprint (1990).
- [Sc-Su] F. Scavia, F. Suzuki, Non-injectivity of the cycle class map in continuous *l*-adic cohomology. arXiv:2208.06713. [Math.AG]
- [Ta] M. Tamanoi. The image of the BP-Thom map for Eilenberg-MacLane spaces. Trans. of AMS. 249 (1997), 1209-1237.
- [Te-Ya1] M. Tezuka and N.Yagita. The varieties of the mod p cohomology rings of extraspecial p-groups for an odd prime p. Math. Proc. Cambridge Phil. Soc. 94 (1983) 449-459.
- [Te-Ya2] M.Tezuka and N.Yagita. The image of the map from group cohomology to Galois cohomology. Trans. of AMS. 363 (2011), 4475-4503.
- [To] B. Totaro. The Chow ring of classifying spaces. Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997:University of Washington, Seattle) 67 (1999), 248-281.

- [Vo1] V. Voevodsky. The Milnor conjecture. www.math.uiuc.edu/K-theory/0170 (1996).
- [Vo2] V.Voevodsky. Reduced power operations in motivic cohomology. Publ.Math. IHES 98 (2003),1-57.
- [Vo3] V. Voevodsky. Motivic cohomology with Z/2 coefficient. Publ. Math. IHES 98 (2003), 59-104.
- [Vo4] V.Voevodsky. On motivic cohomology with \mathbb{Z}/l -coefficients. Ann. Math. 174 (2011) 401-438.
- [Ya1] N. Yagita. Chow rings of excellent quadrics. J. Pure and Appl. Algebra 212 (2008), 2440-2449.
- [Ya2] N. Yagita, Motivic cohomology of quadrics and the coniveau spectral sequence. J. K-theory 6 (2010) 547-589.
- [Ya4] N. Yagita. Algebraic BP-theory and norm varieties. Hokkaido Math. J. 41 (2012), 275-316.
- [Ya5] N. Yagita. Chern classes and the Rost cohomological invariant. Kodai Math. J. 36 (2013), 174-178.
- [Ya6] N. Yagita. Coniveau filtrations and Milnor operations Q_n . Math. Proc. Cambridge Phil. Soc. **175** (2023) 521-538.
- [Ya7] N. Yagita. Étal cohomologies of quadrics over ℝ. Arxiv.2106.0761 (math AT).

[N. Yagita] Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan

Email address: nobuaki.yagita.math@vc.ibaraki.ac.jp,