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NON STABLE RATIONALITY OF PROJECTIVE
APPROXIMATIONS FOR CLASSIFYING SPACES

NOBUAKI YAGITA

ABSTRACT. Let BG be the classifying space of an algebraic group G
over a subfield k of C of complex numbers. We compute a new stable
birational invariant defined by Benoist-Ottem as the difference of two
coniveau filtrations of a smooth projective (Ekedahl) approximation
X of BG x P*°. Then we show (by without and with the unramified
cohomology) in many cases X are not stable rational.

1. INTRODUCTION

Let X be a smooth projective variety over k& C C. The conception
of the rationality is how X is near to some projective space P" over k.
Indeed, X is called rational if X is birational to a projective space P". A
variety X is called stable rational if X x P™ is rational for some m > 0.
A variety X is called retract rational if the rational identity map on X
is factorized rationally through a projective space.

Of course, the existences and properties of non these rationality for X
are widely studied by many authors (see explanations in [Pi]). For exam-
ples, such projective X which are surface bundles of three (or four)folds
are studied detailedly. These examples are computed by often using the
unramified cohomology H, (X;Z/p) which is invariant of (retract) ratio-
nality.

There are another examples (exchanging P by A™); the quasi projec-
tive variety represented by the classifying spaces BG of an affine algebraic
groups G [Me].

In this paper , we study the similar but different invariant DH*(X)
for the projective approximation X = X4 by Ekedahl for the classifying
space BG x P>. Note that stable rationality types of BG x P> and its
projective approximation are completely different in general.
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For example we compare these invariants when G = S0, 11

DH*(BG) is not defined,

H; (BG;Z/2) = Z/2{1},

DH*(Xg)/2 D Z)2{ws, ws, ..., Womy1 },
H* (Xa;Z/2) D Z)2{1,wg, w4, ..., Wy, }.

(The notation A{a,b, ...} means the A-free module generated by a, b, ....)

We compute a new stable birational invariant induced from Benoist-
Otten [Be-Ot] as the difference of the two coniveau filtrations. For a fixed
prime p, define the stable birational invariant

DH*(X;A)/p= N'"H*(X;A)/(p, N'H*(X; A))

for the smooth projective approximation X of BG x P*. Here H*(X; A)
is the Betti (or étale) cohomology and N'H*(X; A) (resp, N'H*(X; A)))
is the coniveau (resp. strong coniveau) filtration defined by the kernel
of the restriction maps to open sets of X (resp. the image of of Gysin
maps). For details see §2 below.

Hence DH*(X; A)/p is written as a sub-quotient module of H*(X; A)/p.

Here an approximation (for degree < N) is the projective (smooth)
variety X = X¢g(N) such that there is a map g : X — BG x P> with

g" H'(BG xP*;A) = H*(X;A) forx<N.

(In this paper, we say X is an approximation for BG when it is that
of BG x P> strictly speaking.) Let us write DH*(X;Z) by DH*(X)
simply as usual.

For example, let G = G,, be the elementary abelian p-group (Z/p)".
Recall the mod(p) cohomology (for p odd)

H*(BG.;Z]p) 2 Z/ply1, ... yn] @ A1, ..., xp)
where |z;] = 1 and Qy(z;) = y; for the Bokstein operation @)y = . (Here
A(a,b, ...) is the exterior algebra generated by a,b, ...).

Theorem 1.1. For any prim p, take G = G, = (Z/p)", n > 2 and
a; = Qo(x179...7;) € H""Y(Xg,). Then we have

DH*(Xg,)/p D Z/p{az,as,...,a,} *<n+1<N.

Hence Xg, is not stable rational. Moreover X¢, and Xg , are not
stable birational equivalent when n # n'.

Next we consider the (connected) case G = SO, the special orthogonal
group (p = 2). Its cohomology is

H*(BSOQm+1; Z/Q) = Z/Q[wg, Ws, ....w2m+1],
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with Qowa,, = wame1 wWhere w; is the Stiefel-Whitney class for the em-
bedding SO,, — O,,. Hence we can identify wy; 1 € H*(BG).

Theorem 1.2. [Ya6] Let X,, = X,(N) be approzimations for BSO,, for
n >3 and 2™ < N. Then we have

DH*(X2m+1)/2 D Z/Q{U)g,wg), ...,w2m+1} fOT all 2m+1 < x < N.

We consider the cases GG is a simply connected simple group. Let G
contain p-torsion. Then we know H*(BG) ® Z, = Z,, and write its
generator by w. Then we have

Lemma 1.3. [Ya6] Let G be a simply connected group such that H*(BG)
has p-torsion. Let X = X(N) be an approzimation for BG for N >
2p+ 3. Then

DHY(X)/p > Z/p{w}.

Next, we study the retract rationality of Xg for the above groups
G. We consider the Zariski cohomology H3,.(X,H*) where H7 is the
Zariski sheaf induced from the presheaf given by U — H},(U; A) for an
open U C X. It is well known when X is complete and smooth, the
unramified cohomology is written

H’:T’(X7 Z/p) = Hgar(X; H%/p)v

and it is an invariant of the retract rationality of X (Proposition 3.1. 3.4
in [Me]).

By Totaro [Ga-Me-Se|, the above cohomology is also isomorphic to the
cohomological invariant (of G-torsors) i.e.

Hy,,.(BG;Hz,,) = Inv*(G; Z/p).
Let H**(X;Z/p) be the mod(p) motivic cohomology of X so that
H*"(X;Z/p) = Hy(X3Z/p) and H**(X;Z[p) = CH(X)/p.
Let 0 # 7 € H%Y(Spec(k); Z/p). Then 7 defines the map
r L HY (X Zp) = HY (X2 p)
such that the cycle map is written
CH(X)/p = H**(X)/p > H**(X;Z/p) = H*(X;Z/p).

From Orlov-Vishik-Voevodsky [Or-Vi-Vol, ([Te-Ya| for p : odd,) we
have

Lemma 1.4. ([O1-Vi-Vo]) We have the short exact sequence
0 — H"*(X;Z/p)/(1) = Hyo(X;Hyy,) — Ker(r|H (X Z/p)) — 0.
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Here H**(X;Z/p)/(t) = H**(X;Z/p)/(tH** " (X.Z/p))
=~ H*(X;Z/p)/N'H*(X;Z/p).

This cohomology is called stable cohomology, and studied by Bogolomov
[Bo]. [Te-Ya2].
For example, when G = (Z/p)", it is known

Inv*(G;Z/p) = Az, ..., xp).
Theorem 1.5. Let G = (Z/p)" and X = Xg. Then for b; = z;...x;
2, (X3 Z/p) > H* (X 2/p)/(7) D Z/2{1, b3, by, s b}
Hence each X,, and X, are not retract birational equivalent when n # n'.
By Serre [Ga-Me-Se], when G = SOq,,1, it is known
Inv*(G;Z/)2) = 7/2{1, wa, ..., Wop, }.
Theorem 1.6. Let G = SOq,,11 and X = Xg. Then
H; (X;Z/2) D H**(X;2Z/2)/(1) D Z/2{1,w., ..., wop }.
Hence each X,, and X, are not retract rational equivalent when m # m/’.
We also give examples of nonzero elements of Ker(7) in Lemma 1.4.

Theorem 1.7. Let G be a simply connected simple group and X = Xg.
Then there is the element w € HY(X;Z/p) such that
H,, (X3 Z/p) — Ker(r|HY(X;Z/p)) D Z/p{w}.
Hence X is not retract rational.
Remark. It is known BSpin,, for n < 14 are stable rational [Ko|, [Me],
[Re-Sc]. Hence BG = BSpin,, for 7 < n < 14 and its approximation
X = X are different stable rational type.

At the last three sections, we will do quite different arguments from
the preceding sections, for quadrics X over R. Let us write

DH*(X:Z,) = DH}(X;Z,)
where H}(X;Z,) = Lime s H5{(X;Z/p°) =2 Limeo s H** (X Z/p®).
In this paper, the étale cohomology (with the integral coefficients Zs ()
for even degrees) means the motivic cohomology ;

{Hz*’z*(X; Zy) for x = even

HE (X Zs(x)) =
ét ( ) 2(*)) H2*’2*+1(X; Z2) for * = odd.

Here we see the examples that X are not retract rational (HX*(X'; Zy) #
7./2)) while DH?*(X; Zy(*)) = 0. Let X = Q¢ be the anisotropic quadric
of dimension d = 2" —1 (i.e. the norm variety). Then there are elements

he HA(X:Zo(1)) and g € HA(X; Z(0)).
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Theorem 1.8. ([Ya6]) The ring HZ (Q* =Y Zy(x)) is multiplicatively
generated by py and h the hyper plane section.

Theorem 1.9. Let X,, = Q*"~', n > 2 the norm variety. Then
DH*(X,;Zs(x)) = 0,

HY (X0 Zo(x)) D Z/2[pa) /(57 ).
Hence for n # n/, we see that X, and X, are not retract birational
equivalent.

Remark. If 5, € N'H?*(X; Zy(%)), the above theorem was just corol-
lary of the Frobenius reciprocity (Lemma 2.2). But it does not hold
(moreover , we see py & NTH**(X;Zy(%))).

2. TWO CONIVEAU FILTRATIONS

Let us recall the coniveau filtration of the cohomology with coefficients
in A for A=27Z,7,, or Z/p,

NH'(X;A) =Y ker(j*: H(X; A) » H'(X — Z, A))
zZcxX
where Z C X runs through the closed subvarieties of codimension at
least c of X, and j: X — Z C X is the complementary open immersion.
Similarly, we can define the strong coniveau filtration by

NHY(X;A)= Y im(f.: H(Y; A) —» H'(X, A))
FY X
where the sum is over all proper morphism f : ¥ — X from a smooth
complex variety Y of dim(Y') = dim(X)—r with r > ¢, and f, its transfer
(Gysin map). It is immediate that NCH*(X:; A) € N°H*(X; A).

It is known that when X is proper, N°H'(X;Q) = N°H(X;Q) by
Deligne. However Benoist and Ottem (|[Be-Ot]) recently show that the
above two coniveau filtrations are not equal for A = Z.

Let G be an algebraic group such that H*(BG;Z) has p-torsion for
the classifying space BG is defined by Totaro [To], and Bogomolov [Bo].
Then let us say that an (Ekedahl) approzimation for BG (for degree <
N) is the projective (smooth) variety X = X(N) such that there is a
map g : X — BG x P> with

g" H'(BG xP*;A) = H*(X;A) forx<N.

In the paper [Ya6], we try to compute the stable birational invariant
of X (Proposition 2.4 in [Be-Ot])

DH*(X;A) = N'H*(X; A)/(N*H*(X; A))
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for projective approximations X for BG ([Ek],[To],[Pi-Yal).
Here we recall the Bloch-Ogus [BI-Og] spectral sequence such that its
FEs-term is given by

E(c)y™* = Hy,, (X, M) = H(X; A)

where H? is the Zariski sheaf induced from the presheaf given by U —
H}(U; A) for an open U C X.

The filtration for this spectral sequence is defined as the coniveau fil-
tration

N°H;(X; A) = F(c)>"™*

where the infinite term E(c)%* ¢ = F(c)e*~¢/F(c)etb L,

Here we recall the motivic cohomology H** (X;Z/p) defined by Vo-
evodsky and Suslin ([Vol],[Vo3],[Vod]) so that

H(X;Z[p) = Hy(X; Z/p) = H'(X; Z/p).
Let us write H,(X; Z) simply by H% (X) as usual. Note that H}(X) 2
H*(X) in general, while we have the natural map H},(X) — H*(X).
Let 0 # 7 € H% (Spec(C);Z/p). Then by the multiplying 7, we can
define a map H** (X;7Z/p) — H**+1(X;Z/p). By Deligne ( foot note
(1) in Remark 6.4 in [BI-Og]) and Paranjape (Corollary 4.4 in [Pal), it

is proven that there is an isomorphism of the coniveau spectral sequence
with the 7-Bockstein spectral sequence E(7)** (see also [Te-Ya2], [Yal]).

T

Lemma 2.1. (Deligne) Let A =7/p. Then we have the isomorphism of
spectral sequence E(c)e*~¢ = E(1)7"[°  for r > 2. Hence the filtrations

r—1

are the same, i.e. N°H}(X;Z/p) = F>*=¢ = Im(x71¢: H"*¢(X;Z/p)).
Thus we have the isomorphism

H"*(X;Z/p)/(r) = H*(X;Z/p)/N"H"(X; Z/p).
We recall here the Frobenius reciprocity law.

Lemma 2.2. (7"«90@'[)7’002’@~ law) If a € N*H2*(X;A), then for each g €
H*(X; A) we have ag € N*H>*+¥ (X; A).

Proof. Suppose we have f: Y — X with f.(a’) = a. Then
fld' f(g)) = fuld')g = ag
by the Frobenius reciprocity law. O

Let G be an algebraic group (over C) and r be a complex representation
r : G — U, the unitary group. Then we can define the Chern class
in H*(BG) by ¢; = r*c. Here the Chern classes ¢ in H*(BU,) =
Z|¢Y, ..., Y] (JQul]) are defined by using the Gysin map as ¢ = i, .(1)
for



ina : H*(BU,) = Hj, (pt.) 5 HjP(C*%) = H*%(BU,)
where Hy, (X) = H*(EU, xy, X) is the U,-equivaliant cohomology.
Let us write by Ch*(X; A) the Chern subring which is the subring of
H*(X; A) multiplicatively generated by all Chern classes.

Lemma 2.3. We have a quotient map
N'H*(X; A)/(IdealCh*(X; A)) — DH*(X; A).

The following lemma is proved by Colliot Thérene and Voisin [Co-Vo|
by using the affirmative answer of the Bloch-Kato conjecture by Voevod-
sky. ([Vo3]. [Vod])

Lemma 2.4. ([Co-Vo|) Let X be a smooth complex variety. Then any
torsion element in H*(X) is in N*H*(X).

3. THE MAIN LEMMAS

The Milnor operation @, (in H*(—;Z/p)) is defined by Qy = § and
forn>1

Qn — PAnﬁ _ ﬁPAn’ An — (0’ .,’O’?,O, )

(For details see [Mil, §3.1 in [Vol]) where g is the Bockstein operation
and P* for a« = (o, qq,...) is the fundamental base of the module of
finite sums of products of reduced powers. (For example P2i(y) = y?'
for |y| = 2. and @, is a derivative.)

Lemma 3.1. Let f, be the transfer (Gysin) map (for proper smooth)
f: X =Y. Then Q,f.(x) = fQu(x) forx € H(X;Z/p).

Proof. The above lemma is known (see the proof of Lemma 7.1 in [Yad]).
The transfer f, is expressed as g* f. such that

fulz) =(Th(1) - x), =€ H"(X;Z/p)

for some maps g, f’, 7 and the Thom class Th(1). Since @, (Th(1)) =0
and @); is a derivation, we get the lemma. O

By Voevodsky [Vol], [Vo2], we have the @); operation also in the mo-
tivic cohomology H** (X;Z/p) with deg(Q;) = (2p° — 1,p — 1).
Lemma 3.2. We see that Im(cl)t C N'H*(X; A).

Proof. From Lemma 2.1, we see H**(X; A) C N*™* H*(X; A). We have

H2*7*(X;A) >~ CH*(X) ® A. Since 2% > * for « > 1, we see cl(y) €
NH>(X; A). D
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Each element y € CH*(X) ® A is represented by closed algebraic set
supported Y, while Y may be singular. On the other hand, by Totaro
[To], we have the modified cycle map &l such that the usual cycle map is

o : CH (X)® A MU (X) @yy- AL H*(X; A)

for the complex cobordism theory MU*(X). It is known [Qul] that
elements in MU?*(X) can be represented by proper maps to X from
stable almost complex manifolds Y. (The manifold Y is not necessarily
a complex manifold.)

The following lemma is well known.

Lemma 3.3. If v € Im(p) for p: MU*(X)/p — H*(X;Z/p), then we
have Q;(z) =0 for all i > 0.

Proof. Recall the connective Morava K-theory k(i)*(X) with k(i)* =
Z/plvi], |vi| = —2p® + 2, which has natural maps

p: MU*(X)/p 2 k(i) (X) B H (X : Z/p).

It is known that there is an exact sequence (Sullivan exact sequence)
such that

LB HNXZ)p) D kE)N(X) S k() (X) B HN(X 1 Z)p) > ..

with pod = @;. Hence Q;pa(x) = p20ps = 0. which implies Q;p(x) =
0. ]

The following lemma is the ();-version of one of results by Benoist and
Ottem.

Lemma 3.4. Let a« € N'H*(X) for s = 3 or 4. If Qi(a) # 0 €
H*(X;Z/p) for some i > 1, then

DH*(X)/p D Z/p{a}, DH*(X;Z/p")/p D Z/p{la} fort>2.

Proof. Suppose a € Nle(X) for s = 3 or 4, i.e. there is a smooth Y
with f: Y — X such that the transfer f.(a’) = a for o/ € H*(Y).
Then for s =4,

Qa) = (P> = BP) (@) = (<6P>)(a) = —H(a’)"
= —p' () (V' =0 (by the Cartan formula)
since (a’) = 0 and P2i(y) = y?' for deg(y) = 2. (For s = 3, we get also
Qi(a/) = 0 since P2i(z) = 0 for deg(x) = 1.) This contradicts to the
commutativity of (); and f,.
The case A = Z/p', t > 2 is proved similarly, since for o/ € H*(X; A)
we see Jo/ =0 € H*(X;Z/p). Thus we have this lemma. O

i
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We will extend the above Lemma 3.4 to s > 4, by using MU-theory
of Eilenberg-MacLane spaces. Recall that K = K(Z,n) is the Eilenberg-
MacLane space such that the homotopy group [X, K| = H"(X;Z), i.e.,
each element x € H"(X;Z) is represented by a homotopy map z : X —
K. Let n, € H"(K;Z) corresponding the identity map. We know the
image p(MU*(K)) C H*(K;Z)/p by Tamanoi.

Lemma 3.5. ([Ta], [Ra-Wi-Ya]) Let K = K(Z,n) We have the isomor-
phism

p: MU (K) @pu~ Z)p = Z/p|Qiy - Qi ,1n|0 < iy < ... <'ip_o]
where the notation Z/pla, ...] exactly means Z/pla,...]/(a?| |a| = odd).

The following lemma is an extension of Lemma 3.4 for s > 4. (Here
we use MU*-theory, and we assume H*(—; A) is the Betti cohomology.)

Lemma 3.6. Suppose that H*(X; A) is the Betti cohomology. Let o €
NeH"2¢(X), n > 2, ¢ > 1. Suppose that there is a sequence 0 < i, <
oo < Tyt with

Qi Qi 0 in H'(X:Z/p).
Then DCH*(X)/p = N°H*(X)/(p, N°H*(X)) D Z/p{a}.

Proof. Suppose a € N°H"?¢(X), i.e. there is a smooth Y of dim(Y) =
dim(X) — ¢ with f : Y — X such that the transfer f.(a/) = « for
o € H'(Y).
Let r : H*(X) — H*(X;Z/p) be the reduction map. We consider the
commutative diagram for I = (i1, ...,4,_2) and j = 4,4
I+

o € H*(Y) R a € H"(X)
Qﬂl Qﬂl
Qi) € Im(pMU*(Y))  —L— H*(X;Z/p)

QjJ/ le
0=Qi ,Qi(a)) € H(Y;Z/p) L= Qi ,Qi(a) € H*(X;Z/p).

Identify the map o : Y — K with o/ = (&/)*n,. We still see from
Lemma 3.5,

Qr(d) = Qi Qi ((&)mn) € Im(p : MU*(Y) — H*(Y;Z/p)).
From Lemma 3.3, we see
Qi, ,Q1()) = Qi, Qi Qi, ,(a) =0€ H*(Y;Z/p).

Therefore Q;, _,Q;(«) must be zero by the commutativity of f, and Q.
U



10 NOBUAKI YAGITA

4. ABELIAN p-GROUPS

At first, we assume H*(X) is the Betti cohomology so that the main
lemma (Lemma 3.6) holds. However we will see the most irrational
results hold for each k C C.

From the main lemma, we have

Lemma 4.1. Let « € N'H"(X) and Qr(a) # 0 € H*(X;Z/p) for
some I = (0 < iy < ... < i,_1). Let X' be a smooth projective variety.
Then

DH*(X x X")/p D Z/p{a ® 1}.
Hence X x X' is not stable rational,

Proof. The (Betti) cohomology H*(X;Z/p) satisfies the Kunneth for-
mula. Hence we have

Qila®1)=Q()®1#£0 in Y H(X;Z/p)® H*(X';Z/p).
s=0
From the main lemma, we have the lemma. U

Let G, = Z/p". Recall the mod(p) cohomology (for p odd)
H*(BG,;Z/p) =2 Z/ply1, ... yn] @ A1, ..., p)
where |z;| = 1 and Qo(x;) = y;, (for p = 2, 22 = y,).

Corollary 4.2. Forn > 3, let G, = (Z/p)". Then Xg, is not stable
rational. Moreover Xg, and Xg , are not stable birational equivalent for

n#n'.
Proof. Take G = G3 and o = Qg(x1w273) € H*(Xg). The last statement
follows from 1 ® ... ® 19 a ®1 ®..®1 %40 € DH*(Xg, ). O

We can take also another « for the proof of the last statement in the
above corollary.

Lemma 4.3. Take G = G, = (Z/p)" and o; = Qo(z175...7;) € H"™(X¢).
Then we have
DH*(X(;”) D) Z/p{ag, as, ..., Oén}.

Since o, = 0 in H*(Xg, ,) we also see that X, and X,,_; are not
stable birational equivalence.

The more detailed expression of DH*(X)/p seems somewhat compli-
cated.

Theorem 4.4. Let G = (Z/p)™. Then we have (for fized large N)
DH**N(X)/p = Z/p{Qo(xi,..x;,)|1 < iy < .., < iy < n}.
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Proof. The integral cohomology (modulo p) is isomorphic to
H*(BG)/p = Ker(Qo)

= H(H"(BG;Z/p); Qo) & Im(Qo)
where H(—; Qo) = Ker(Qo)/Im(Qy) is the homology with the differen-
tial Qo. It is immediate that H(H*(BZ/p;Z/p); Qo) = Z/p. By the
Kimneth formula, we have H(H*((BG;Z/p); Qo) = (Z/p)"® = Z/p.
Hence we have
H*(BG)/p = Z/p{1} & Im(Qy)
= @Z/plyrs - yn) (1, Qo(@iy .., )|1 < iy < ... <15 <)

where the notation R(a, ..., b) (resp. R{a,...,b}) means the R-submodule
(resp. the free R-module) generated by a, ...,b. Here we note H*(BG)
is just p-torsion.

Also note that yy, ..., y, are represented by the Chern classes ¢;. From
Lemma 2.3, we see Ideal(yy,...,yn) =0 € DH*(X).

We know Q;(z;) = yﬁ-’l and (), is a derivation. We have the theorem
from Lemma 4.3 and the reciprocity law

Qil-“QisngO(Iil-“xis) = yf:l...ygj;Qyisill'is + ... 7é 0.
(Note the n = |&/| in Lemma 4.3 is written by s — 1 here.) O
Corollary 4.5. Ifn # n' > 3, then X(N),, and X(N), are not stable

birational equivalent.

The above corollary also holds when ch(k) = 0 and k is an algebraic
closed field by the base change theorem.
For each field k = k, it is known from Voevodsky (for p; odd)

H** (BGy: Z)p) = Z/p[y1, ..y, 7] @ A1, ..., )
where deg(x;) = (1,1) and Qo(x;) = y;. Therefor we can identify
Qo(x1...7) € H(BG; Z)p) when k = k.

Let us write H}(X;Z,) simply by H}(X). Let G be an algebraic
group which has an approximation Xg such that

H:(Xg;Zy,) = H(BG xP*)®Z, forx<N
We consider the maps
Y0 NUH(X) C Hyy(X) = Hz(X) = Hg(X(C)) — H'(X(C)).
Lemma 4.6. Let k C C (not assumed an algebraic closed field). Let
a € N'HY(X) and Q;(¢(a)) #0 € H*(X(C);Z/p). Then
DH(X;Zy)/p D Z/p{a}.

Hence X is not stable rational.



12 NOBUAKI YAGITA

Proof. By the assumption, the main lemma implies DH*(X (C)) D Z/p{va}.
This implies a contradiction if Z/p{a} = 0 in DH} (X). Similarly, the
stable rationality for X imlplies that for X (C), which is a contradic-

tion. (Note here, we do not assume of the stable birational invariance for
DH}(X).) O

For example, Lemma 4.3 holds for all £ C C.

5. CONNECTIVE GROUPS, SO,
Let SO, be the special orthogonal group. Its mod(2) cohomology is
H*(BSO,;Z/)2) = Z/2[w,, ..., w,]

where w; is the Stiefel-Whitney class for SO,, C O,,. We know Qows,, =
Wam4-1-

Theorem 5.1. ([Ya6]) Let X,, = X,,(N) be approzimations for BSO,,
for n > 3. Moreover, let |Q1...Qom—1(wami1)| < N. Then we have

DH*(X2m+1) D Z/2{w3,w5, ...,U)2m+1} fO’f’ all 2m+1 <% < N.

Remark. When G = SOs, the inclusion in the above theorem is iso-
morphic. However, when G = SOj5, we can not see whether Qq(wow,) €
H'(X) is zero or not in DH"(X)/2.

Let G = SOs. Indeed, we can see the homology by @ is given

H(H*(BG;7./2); Qo) = Z/2[cy, cs]  where ¢; = w?,

Im(@o) = Z/2[C2, C3, Cyq, C5](Q0(w2)-Qo(w4)7 Qo(w2w4))-

Hence H*(BG)/2 is generated by 1, w3, ws.Qo(wawy) as a Z/2[ca, c3, ¢4, C5)-
module. Hence we have

Lemma 5.2. Let G = SO5. There ie a surjection
Z/Q{’LUg.’LU5, Qo(w2w4)} - DH*(X(;)/Q

Corollary 5.3. Let X,, = X,,(N) be approximation for BSO,, for n >
3. For m # m/, we see that Xo,,11 and Xa, 11 are not stable rational
equivalence.

The above corollary holds for all k£ C C, by the similar arguments done
in the last places in the preceding section.
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6. SIMPLY CONNECTED SIMPLE GROUPS

We next consider simply connected groups. Let us write by X an
approximation for BG4 for the exceptional simple group G5 of rank = 2.
The mod(2) cohomology is generated by the Stiefel-Whitney classes w;
of the real representation G5 — SOz

H*(BGy; 2/2) = L/ 2[ws, we, wr], P(wy) = ws, Qo(ws) = wr,
H*(BGq) = (D' ® D'/2[w;]") where D' = Z[ws, cg).
Then we have Qw4 = wr, Qo(wr) = w2 = ¢; (the Chern class).
The Chow ring of BGs is also known
CH*(BGy) = (D{1,2ws} ® D/2[c;]T) where D = Zlcy,cs] ¢ = w?.

In particular the cycle map ¢l : CH*(BG) — H*(BG) is injective.

It is known [Yaf] that wy € N'H*(X;Z/2) and moreover we can iden-
tify wy € N'H*(X). Since Q;(ws) = wy; # 0, from Lemma 4.1, we
have DH*(X) # 0. This fact is also written in [Be-Ot]. Moreover the
isomorphism H*(BG)/(cy4, ¢, c7) = A(wy, wy) implies

Proposition 6.1. ([Ya6]) For X an approzimation for BGs, we have
the surjection

A wy, w7)™ — DH*(X)/2  for all x < N.

Remark. We can not see wr, wyw; = 0 or nonzero in DH*(X)/2.
The cohomology of other simply connected simple groups (with 2-
torsion) are written for example

H*(BSpin:;Z/2) = H*(BG9;Z/2) ® 7./ 2[ws),
H*(BSping;7Z/2) = H*(BGq;Z/2) ® Z/2|ws, w], ...
For the above groups G, there are the map j : Gy — G and the non zero
element w € H*(G) such that j*w = wy.

Proposition 6.2. ([Ya6]) Let G be a simply connected group such that
H*(BG) has p-torsion. Let X = X(N) be an approximation for BG for
N >2p+ 3. Then there is w € H*(X) such that

DH*(X)/p > Z/p{w}
Hence these X are not stable rational.

Proof. It is only need to prove the theorem when G is a simple group
having p torsion in H*(BG). Let p = 2. It is well known that there is
an embedding j : Go C G such that (see [Pi-Ya], [Ya5] for details)

-k

J

H*(BG) = HY(BG,) = Z{w,}.
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Let w = (5*)'wy € HY(BG). From Lemma 3.1 in [Yah], we see that
2w is represented by Chern classes. Hence 2w is the image from CH*(X),
and so 2w € N'H*(X). This means there is an open set U C X such
that 2w = 0 € H*(U) that is, w is 2-torsion in H*(U). Hence from
Lemma 2.4, we have w € N'H*(U), and so there is U’ C U such that
w=0¢€ HYU’). This implies w € N'H*(X).

Since j*(Q1x) = Qrwy = wr, we see Qw # 0. From the main lemma
(Lemma 4.1), we see DH*(X) # 0 for G.

For the cases p = 3, 5, we consider the exceptional groups F}, Eg respec-
tively. Each simply connected simple group G contains F} for p = 3, Ey
for p= 5. There is w € H*(BG) such that pr is a Chern class [Ya5], and
Qiw) # 0 € H*(BG;Z/p). In fact, there is embedding j : (Z/p)® C G
with j7*(w) = Qo(z12223). Hence we have the theorem.

Corollary 6.3. Let X be an approzimation for BSpin, with n > 7 or
BG for an exceptional group G. Then X is not stable rational.

7. RETRACT BIRATIONAL AND UNRAMIFIED COHOMOLOGY

Here we note the relations to retract rationally. Recall (in §2) that
Bloch-Ogus give a spectral sequence such that its Fs-term is given by

E(c)y"™" = Hy (X, HyC) = Hy(X5 A).
By Orlov-Vishik-Voevodsky [Or-Vi-Vo, ([Te-Ya2] for p : odd,) we know
Lemma 7.1. (/Or-Vi-Vo], [Vo5]) There is the long exact sequence

Hyo "N (X Hyy,) — H™" (X Z/p) = H™ (X3 Z/p)
— Hp (X Hy),) — H™ Y (X2 p) 5
In particular, when m = n, the first x7 is injective.

Corollary 7.2. We have the short exact sequence

0 — H*(X;Z/p)/(T) = Hzor(X;H7),)

— Ker(t: H*"""Y(X;Z/p) — H*™*(X;Z/p)) — 0.

(Note H**(X;Z/p)/(t) & H*(X;Z/p)/(N*H*(X;Z/p)). Hence we
also write it as H*(X;Z/p)/N'. This cohomology is called a stable co-
homology and studied well by Bogomolov [Bo], [Te-Ya2]

Remark. The Z/2° coffeciants version of Lemma 7.1, Corollary 7.2
also hold.

The unramified cohomology is written by this HY,, (X;H; /p)s When X
is complete,

H,, (X;Z/p) = Hy, (k(X): Z/p) = Hye, (X5 Hipp),
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and it is an invariant of the retract rationality of X (Lemma 3.1, 3.4
[Me]).
By Totaro [Ga-Me-Se], the cohomological invariant of G is written
(while BG is not complete)
[nv*(Gv Z/p) = Hgar(BG; H%/p)?

Here we consider the following lemma which shows the relation among
DH*(Xg), Inv*(GQ) and H}, (X¢).

Lemma 7.3. Assume that 0 # x € H™(BG;Z/p)/(N') and x is ded-
icated by An = (Z/p)™ i.e. res;n(x) # 0 for the restriction (of stable
cohomologies)

resn : H*(BG;Z/p)/N' — H*(BAw; Z/p)/N' = A(x1, ... ).
Then (for projective approzimation X for BG) we have

Inv*(G;Z/p) D Z/p{z},
Hy (X;Z/p) D Z/p{x},
DH*(X)/p D Z/p{Qo(x)}

Proof. The first formula follows from
Inv*(G;Z/p) = H*(BG; Hy,,) D H*(BG; Z/p)/N'.
The fact x # 0 in Inv*(G;Z/p) follows from that x is dedicated.

The second formula comes from H}, (X;Z/p) = H(X;H;, /p) where X
is smooth projective.

The last formula follows from the main lemma (Lemma 3.4). Let
Qo(r) = a € N°H"2¢(X), (m = n+2c— 1), i.e. there is a smooth Y of
dim(Y') = dim(X) — c with f : Y — X such that the transfer f,(a/) = «
for o/ € H™(Y).

Identify the map o : Y — K with o/ = (&/)*n,. We still see from
Lemma 3.5,

Q) = Qi Qi (()"mn) € IM(MU™(Y') — H*(Y; Z/p)).
From Lemma 3.4, we see
Qinle(O/) = Qinleil"’Qinf2 (O/> =0¢€ H*(Y, Z/p)

Therefore @;, ,Q(a) must be zero by the commutativity of f, and @;.
But Q;;...Qs, ,Qo(x) # 0 from the assumption that = is deduced from
A,iq. In fact in H*(BA,1+1;Z/p), we see (without mod(N'))

i in—1
Qil---Qin,1Q0<xl---xn+1) = yif 1...yZ_1 YnLpi1 + ... §£ 0.
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Now we consider the examples. At first, we consider the case G =
A, = (Z/p)". and X = Xg. It is known from Garibarldy-Merkurjev-
Serre [Ga-Me-Se], Theorem 6.3 in [Te-Ya2] that

Inv*(G;Z)2) = H*(BG;Z/2) /(1) = Axq, ..., p).
Since X is (proper) approximation of BG, we have
Theorem 7.4. Let G = G,, = (Z/p)" and X = Xg. Then
Hy (X3 Z/p) D H** (X3 Z/p) /(1) = A1, 23, ..., 7)
wn Corollary 7.2.
Writing a; = Qo(z1...x;), we still have (Lemma 4.3)
DH*(X)/p D Z/p{aa, as, ..., an }.
Then X, and X¢ , are not retract rational equivalent if n # n'.
Remark. From ( Saltman [Sa]) , it is well known that there is a finite
group G (e.g. |G| =p", p: odd)) such that
0 # x5 € Hy, (k(W)% Z/p) 0 H**(BG; Z/p)/(7)
Here G acts freely on a C-vector space W, and we have
Hop(K(W)% Z/p) = Hzar(W/ /G5 H3,),) € Hzar(BG3 H,)

such that k(W//G) = k(W)C. Hence H}, (k(W)%: Z/p) ¥ H*(k;Z/p).
So k(W)Y is not purely transcendent over k. (Hence BG is not retract
rational.)

Remark. We do not assume Hy, (X;Hy,) = Hy, (X'; ;) for an

Z[p
other approximation X’.
Next we consider the case G = SOq,, 11 and X = Xg, . It is known
from Garibarldy-Merkurjev-Serre [Ga-Me-Se], Theorem 6.3 in [Te-Ya]
that

Inv*(G;Z/2) = H**(BG;Z/2) /(1) 2 Z/2{1,ws, ..., won }.
Since X is (proper) approximation of BG, we have
Theorem 7.5. Let G = SOq,,11 and X = Xg. Then

Hy (X3 Z/p) D H**(X32/2) /(1) D Z/2{1,ws, ... wap }
in Lemma 7.1.

We also have (Theorem 5.2) DH*(X)/2 D Z/2{Qo(w2), ..., Qo(wam) }
Hence X¢,, and X , are not retract rational if m # m/.
From Theorem 5.2 and the preceding theorem, we have

Corollary 7.6. Let G}, = SO,, and X = X¢g. Then Xg, and X¢g , are
not retract rational if n # n'.
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Proof. By Serre [Ga-Me-Se|, we know
[nv*(BSO%na Z/Q) = Z/Q{la W2, .-, Wom—2, u2m—1}

with |ug,—1] = 2m — 1. We see Xs,, and Xy,,41 are not retract rational
since way,,11 is zero in the invariant for BSO,,. We see Xo,,—1 and Xo,,
are not retract rational since uo, is zero in the invariant for B.SOy,,_1.

O

Remark. Kordonskii [Ko], Merkurjev (Corollary 5.8 in [Me]), and
Reichstein-Scavia show [Re-Sc| that BSpin, itself is stably rational when
n < 14. These facts imply that the (Ekedahl) approximation X is not
stable rationally equivalent to BG. (The author thanks Federico Scavia
who pointed out this remark.)

At last of this section, we consider the case G = PGL, projective
general linear group. We have (for example Theorem 1.5,1.7 in [Ka-Ya])
additively

add.
H*(BG7Z/p) = M@N with M = Z/p[l'4,l’6, ...,l’gp],

N =SD & AQo, Q1){ua} with SD = Z/p[xapi2, Top2 o))
where 9,10 = @Q1Qou2 and suffix means its degree. The Chow ring is
given as

CH*(BG)/p= M ® SD{QoQ1(uz)}.

From Lemma 7.3, we have :

Theorem 7.7. Let p be odd. For an approximation X for BPGL,, we
see

DH*(X)/p D Z/p{Qous},
H,.(X;Z/p) D Z/p{1, ua}, Inv*(G; Z[p) O Z/p{1, uz}.

In the above case, we do not see here that DH*(X) for * < N is
invariant of BG, (under taking another X’ as approximations for G).
8. RETRACT RATIONAL FOR SIMPLY CONNECTED (G

We will see that simply connected groups G satisfy the similar facts,
but such as Ker(r|H*™*~1(X;Z/p)) # 0 in Lemma 7.1. In §6, we see

there is 0 # w € H*(X) such that DH*(X)/p D Z/p{w}. We will see
that this w corresponds a nonzero element in H3 (X;Z/p).

Theorem 8.1. ([Yah]) Let G be a simply connected simple group. Then
there is the element (Rost invariant) such that

H; (X3 Z/p) — Ker(r|H"(X;2/2)) > Z/p{w}.

Hence X is not retract rational.
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Proof. We consider the following diagram

H:,(BG;Z/p) A H;.(X;Z,/p)

(Dl (2) %l

Inv*(G : Zfp) = HO(BG; H3,)) —2— HO(X;Hy,,) — Ker(r).

Here H,, (BG;Z/p) = 0 when BG is retract rational. (The map (1)
need not isomorphism.) We see that the map (2) : H (X;Z/p) =
HO(X;H;, /p) because X is projective and smooth. Recall Lemma 7.1
that we have the surjection

HO(X;M5,) - Ker(r|H* 71X - Z/p)).

Hereafter, we consider the case * = 3. We consider the following
commutative diagram.

j* =

pw € HY(BG;Z/p*) —— pw € HY(X;Z/p*) —— 0€ H* (X;Z/p)

T/T T/T T (mJ)T
€ HY(BG,Z/p?) —— o € HY(X;Z/p?) —— 0€ HY(X

&y € HY2(BG,Z/p?) —— o € HY2(X,Z/p?) —— " € H**(X : Z/p)

From the proof in Proposition 6.2, we see that there is ¢, € H**(BG; Z/p?)
so that (for 7/ : H**(X;Z/p*) — H***Y(X;7Z/p?)) we have

(7')*¢y = pw € HY(BG; Z/p").

s Z/p)

(In fact pw is represented by a Chern class, but w itself is not in the
image of the cycle map.)

Next take ¢’ = j*c, € H**(X;Z/p?). Since j is a projective approxi-
mation, we have

H*BG;Z/p*) = H*(X;Z/p").

Here (7')2¢" = pw. Hence ¢’ # 0 € HY*(X;Z/p?).
Let us write by ¢” the image of ¢’ in H*?(X;Z/p). We note ¢’ €
Ker(r)|H"*(X;Z/p), because T : H*3(X;Z/p) — H**(X;Z/p) is injec-
tive from [Or-Vi-Vol.
Moreover, ¢ is a module generator in Ker(7), in fact if ¢’ = pzx, then
72x = w which is not Ker(7).
Hence there is a € H2 (X;Z/p) which corresponds ¢” € Ker(t|H**(X;Z/p).
U
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Corollary 8.2. Let G be a simply connected group having p-torsion in
H*(BG), and X = Xg be a projective approzimation for BG. Then
H3 (X;Z/p) # 0 and so X is not retract rational.

In the last of this section, we consider the case G = Fy, p = 2 the
exceptional simple group of rank 4. By [Ga-Me-Se], the cohomology
invariant is known

Inv*(G;Z)2) 2 Z/2{1,us, f5} |us| =3, |fs| =5.
Since H5?(BG;7Z/2) = 0, we know f5 corresponds

0# € Ker(r|H*(BG;Z/2)) « H°(BG;Hy5).
But we can not say here that 0 # z € H%(X;7Z/2).

Proposition 8.3. If there is an approzimation such that HS*(BG;Z/2) =
H%Y(X;7Z/2), then

Hy (X52/2) D 7/ 2{us, f5}-

Hence if the assumption is correct. then Xqg, and Xp, are not retract
rational equivalent.

9. EXTRASPECIAL p-GROUPS

We assume at first that p is an odd prime. The extraspecial p-group
E(n) = pi™" is the group such that exponent is p, its center is C' = Z/p
and there is the extension

0—-C—=En 5V,—0

with V' = @?"Z/p. (For details of the cohomology of E(n) see [Te-Yal].)
We can take generators ay,...,as,, ¢ € E(n) such that w(ay),.., 7(az,)
(resp. ¢ ) make a base of V,, (resp. C) such that commutators are

[agi_l, agi] =c and [agi_l, aj] =1 Zf j §£ 21.
We note that F(n) is also the central product of the n-copies of E(1)
E, = E(l) s E(l) = E(l) X (c) E(l) X(c) E(l)
Take cohomologies
H*(BC; Z/p) = Z[plu] @ A(z), Bz =u,

H*(BVys Z[p) = Z[pyr, s you] @ M1, ..220), By = i,

identifying the dual of a; (resp.c) with x; (resp. z). That means
HY(E(n);Z/p) = Hom(E(n); Z/p) > z; : aj + ;.
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The central extension is expressed by

f= Zﬁzi—ﬁ% € H*(BV,;Z/p).

i=1
Hence 7*f = 0 in H?(BE(n);Z/p). We consider the Hochshild-Serre
spectral sequence

By = H*(BV,; Z/p) @ H*(BC; Z[p) = H(BE(n); Z/p).

Hence the first nonzero differential is d2(z) = f and the next differential
is

ds(“) = d3(Q0(2)) = Qo(f) = Zyzi—ﬂ’zi — Y2;T2—1-
In particular
EY 2 Z/plyr, -y y2n) © M, .2,)/ (f, Qo(f))-
Lemma 9.1. We have the inclusion

Ay, w00)/(f) € HY(BE(n); Z/p).

Proof. We consider similar group E(n) such that its center is C' = Z/p
and there is the extension

0 C —— E(n) ==V — 0
but V| = &?"Z, such that there is the quotient map ¢ : E(n) — E(n).
We also consider the spectral sequence

Ey" = H*(BV';Z/p) @ H'(BC;Z/p) = H*(BE(n)'; Z/p).

Here H*(BV,;Z/p) = A(x1,...x9,). The first nonzero differential is
dy(z) = f but the second differential is

ds(u) = Z Y2i—1T2; — YoiToi—1 = 0 € A(xq, ..., Top).
Hence E; is (multiplicatively) generated by u and z; (permanent cy-
cles). So E;™ = E%* . Therefore we have
H*(BE(n);Z/p) 2 Z/p[u] @ A1, ..., x2,)/(f)-

From the map ¢* : H*(BE(n);Z/p) — H*(BE(n)';Z/p), we get the
result. O

However H*(BE(n);Z/p)/(N*') % A(z1, ..., 12,)/(f), in fact, when n =
1, from Theorem 3.3 in [Ya6] we see

Proposition 9.2. We have
H*(BE(1);Z/p)/(N") 2 Z/p{1, 21,2, a3y, a5} deg(a;) = 2.
DH"(X)/2 = Z/2{Qo(a}), Qo(da))}.
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Lemma 9.3. Letn > 2. Then
vy —viy; #0 € H*(BE(n);Z/p).
Proof. By the inclusion E(2) C E(n) and induced quotient map
H*(BE(n); Z/p) — H*(BE(2); Z/p)
we only need to see
iy —yys #0 € H'(BE(2);Z/p) ®F,

for the algebraic closure F, of the finite field F,,.
Let n = 2. Note here

QiQo(f) = yfl?h — yl?/g + y§ly4 — y3yfz
= Yollxer (y1 — Ay2) + Yallxer (ys — Aya).
Hence this formula Q;Qo(f) is a sum of multiplies of
Yrys — y1yh = yollner, (y1 — Ay2)  and  y5ys — ysyh,

Suppose that y7ys — y1y5 = 0. Then by the symmetry of the group.

we see yhys — ysyy = 0. But it is known [Te-Yal] (Q1Qo(f), Q2Q0(f)) is
regular in Z/p[y1, y2, y3.y4]. This is a contradiction. O

The more concrete expression of DH*(X)/p seems somewhat compli-
cated. So we only give it for x = 3.

Proposition 9.4. Let G = E(n), n > 1. Then we have
DH*(X)/p = Z/p{Qo(wiz;)|(i, j) # (1,2), 1 <i < j <n}.
HZ (X;Z/[p), Inv*(G : Z/[p) D Z/p{zix;|(i,7) # (1,2), 1 <i< j<n}

Proof. The degree 3 integral cohomology mod(p) H?(X)/p is generated
as a Z/plyi...., ynJ-module by Qo(x;z;). The proposition follows from the
main lemma and

Q1Qo(zivs) = yiy; — viy; #0 in H*(X;Z/p).

Bogomolov-Bohning-Pirutka study the kernel of the map
K = Ker(¢jy : H(BV,; Z/p)/N' — H*(BG;Z/p)/N").

where H*(BV,,;Z/p)/N' = A(xy, ....,x2,). Their theorem in [Bo-Bo-Pi|
induces

Theorem 9.5. (Theorem 1.3 in [Bo-Bo-Pi]) If p > n, G is extraspecial
group of order p**" then Ker(qjy) = (f). Hence

Hy (X5 Z/p) D M, oo an) / ().
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Remark. There is the another group p' ™" with the degree 2" + 1.

When p = 2, the situation becomes changed. The extraspecial 2-group
D(n) = 212" in the n-th central extension of the dihedral group Dg of
order 8. It has the central extension

0—7%2/2— D(n)—V,—0
with V,, = &?"Z/2. Hence H*(BV,,;Z/2) = 7Z/2[x1, ..., T3,]. Then using
the Hochschild-Serre spectral sequence, Quillen proved [Qu]
H*(BD(n); Z/2) = Z2[xy, ..., xan] [ (f, Qo ([), s Qu—2(f)) ® Z]war (A)].

Here wan(A)) is the Stiefel-Whitney class of 2"-dimensional (spin) rep-
resentation A which restricts nonzero on the center. Moreover Quillen
proves the following two theorems (Theorem 5.10-11 in [Qu])

Theorem 9.6. (/Qu/) H*(BD(n);Z/2) is detected by the product of co-

homology of maximal elementary abeian groups.

Theorem 9.7. ([Qu]) The nonzero Stiefel-Whitney w;(A) are those of
degrees 2" and 2" — 2° for 0 < i < n.

In fact w;(A) generates the Dickson algebra in the cohomology of the
maximal elementary abelian 2-groups.

Proposition 9.8. When n > 2, there is the surjection
Ay, ..., 0,)/(f) = H*(BD(n); Z/2)/(N*).

Proof. By the same arguments with p = odd, we see
A=A, ...,29,)/(f) C H(BD(n); Z/2).

The fact we(A) = 0 follows from the above third Quillen’s theorem.
Hence we have wyn(A) € N' from Becher’s theorem (Theorem 6.2 in
[Te-Ya2]). i.e., w; is multiplicative generated by w; and wy. Thus we get
the proposition. 0

However this map (in Proposition 9.8) is not need injective. In fact,
in [Bo-Bo-Pi], it is proven that the above map is not injective when
G = D(3) = 21 They also see that the map in the proposition is
injective when we restrict the degree x = 2

Theorem 9.9. Let G = D(3) and X = Xg. Then we have
DH*(X)/2 2= Z/p{Qo(wix;)|(i,j) # (1,2), 1 <i < j<3}.
H2,(X;Z/p), Inv*(G : fp) > Zfpleass| (i) # (1,2), 1< < j <3},

However, the map in Proposition 9.8 is not injective for some * > 2.
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10. THE MOTIVIC COHOMOLOGY OF QUADRICS OVER R WITH
COEFFICIENTS Z/2

Let X be a smooth variety over the field R of real numbers, and we
consider the cohomologies of Z/2 coefficients. In this paper the mod(2)
étale cohomology means the motivic cohomology of the same first and
the second degrees H} (X;Z/2) = H**(X.Z/2).

It is well known ([Vol], [Vo2])

H;,(Spec(C); Z/2) = /2,  H™*(Spec(C); Z/2) = Z/2[),
H,(Spec(R); 2/2) = Z/2[p], H™* (Spec(R); Z/2) = Z,/2[r, p]
where 0 # 7 € H%!'(Spec(R); Z/2) = Z/2 and where
p=-1€R"/(R")* = K{"(R)/2 = H;(Spec(R); Z/2).
We recall the cycle map from the Chow ring to the étale cohomology
cl/2: CH*(X)/2 — HZ (X;7/2).
This map is also written as H**(X;Z/2) 5 H>**(X:7Z/2).

Let X = Q¢ be an anisotropic quadric of dimension 2" — 1 (i.e. the
norm variety for (p"™ € KM (R)/2)). Then we have the Rost motive
M C Q% [Ro]. It is known ( the remark page 575 in [Ya2))

H3(M;2/2) = 2/2]p)/(0*" " 1) = Z/2{1, p, %, .. ¥ 2}

The Chow ring is also known [Ro]

CH*(M)/2 = 7/2{1,co,c1....,cu1}, clc;) =p* 27
The cycle map cl/2 is injective. The elements ¢; is also written as
Ci _ p2n+1_2i+17__2n+2i Z’)’L CH*(M)/Q C He?t*(M . Z/Q)[T—l]
The mod(2) motivic cohomology is known (Theorem 5.3 in [Ya2]).

Theorem 10.1. (Theorem 5.3 in [Ya2]) The cohomology H** (M,;7/2)
is isomorphic to the Z/2[p, T]-subalgebra of

Z)2lp, 7,77/ (0" )
generated by a = p", o' =ar™1, and elementsin A(Qy, ..., Qn_1){d’}.
The following lemma is used in the next sections.

Lemma 10.2. We have Qo(77 1) = pr=2. Hence Qy(a’) = pat=2, while
Qo(a) =0.

Proof. We see the first equation from

0=Qo(1) = Qo(r77") = pr~" + 7Qo(77").
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Lemma 10.3. (Lemma 5.13 in [Ya2] ) Let X4 be anisotropic quadric of
the degree d. Let h € H*Y(Xy) be the hyper plain section. If 2" — 2 < d,
then we have a graded ring isomorphism

H*’*/(Xd;Z/2) =7/)2p,7,h] when x <mn.
In particular, H**~Y( Xy : Z/2) = 0 mod(Ideal(h)) for * < n.

11. THE COHOMOLOGY OF QUADRICS WITH COEFFICIENTS IN Z2
In this section we consider integral coefficients case. In this paper, the
2-adic integral Z, cohomology means the inverse limit
H(M;Zs) = Limoo s H*(M; 7,/ 2°%)

of motivic cohomologies.
We recall here the Lichtenberg cohomology [Vol,2] such that

HyY(X:Z) = H (X:Z)  for <« +1.
(The right side is the motivic cohomology.) By the five lemma, we see
(for 1/s € k)

HY(X:Z)s) = H (X;Z)s) for % <+

Moreover we have H2"* (X Z/s) = H% (X u2'®).

In this paper we consider the cycle maps to this Lichitenberg (or mo-
tivic) cohomology in stead of the étale cohomology itself. The cycle map
is written

o :CHY(X)®Zy = H**(X;Zy) — H; " (X;Zy) = HE(X; Zy(%))
where Z(x) is the Galois module, when k = R, it acts as (—1)*. Here we
can write

HE (X3 Zo(x)) = @mzo(Hg" X3 Zo) & Hi" (X Zs(1)).
Note that it is the (graded) ring.

Let £ = R. Moreover let * = even. Then the right hand side cohomol-
ogy is written

HE (X3 Lo (x)) = Hg (X Zo(even)) = HE (X Zo(2+))
=~ [75(X; L) = H (X Zs).
Similarly, when x = odd, we see HZ (X ;Zo(x)) = H****T1(X; Zy).
Thus in this paper, the cycle map means ;
H?***(X;Zy) for x = even
H**TUX:Zy) for * = odd.

We say that x € HZ(X;Z(*) is non-algebraic if  # 0 mod(Im(cl)).

c: CHY(X)®Zy — Hy (X Zo(x)) = {
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The short exact sequence 0 — Z A7 - Z/2 — 0 induces the long
exact sequence of motivic cohomology

oo WM Z)2) S Ho (MG Z) S Ho* (M Z) 5 H*(M;Z)2) — ...
By Voevodsky [Vol], [Vo2]), it is known [(7) = p for the Bockstein
operation 3. Let us write §(7p""') = p; € H**(M;Z) so that r(p;) =
B(tp'™t) = p' since r§ = B. Moteover p; is 2-torsion from the above
exact sequence.

Hence for all 1 < ¢ < 2" — 2 we see H(M;Z) # 0. The same fact
holds each HE,(M;7Z/2°%) and so HE,(M;Zs).

Lemma 11.1. Let N = 2"t — 2. Then
Zo{1, cl(co)} ® Z/24pr, ... pn} C Hi(M; Zy) ® HE (M Zo(1)).
The element p. with ¢ = 0 mod(4) and ¢ # 2" — 2771 4s a non-algebraic
element (i.e., not in the image of the cycle map).
Remark. When ¢ = 2 mod(4), the element p. € H¢(M;Zs) but not
in H¢(M;Z5(1)). So we identify here p, is not in H% (M; Zsy(*)).
Writing 7 = ¢l(cp), we have the following theorem.

Theorem 11.2. (/Ya7]) Let M,, C Q*"~! be the Rost motive of the norm

variety. Then there are element m € He?:H_Q(Mn;ZQ(l)) and pay, €
HX™(M,;Z5(0)) such that

He?t*(Mru Z2(*)) = 22{17 ﬂ-} D Z/Q{ﬁ47 ﬁSv e ﬁ2"+1—4}
~ Zo{1, 7} & Z/20pa T/ (P} )-
The image of the cycle map is given
CH*<Mn) ® Zg = Zg{l, 7T} @ Z/2{ﬁ2n+1_2n, ﬁ2n+1_2n717 ceey ﬁ2n+1_4}.

12. NORM VARIETIES

Let X = Q*"~! be the norm variety, and M, be its Rost motive. We
have the decomposition of motives ([Rol, §6 in[Yal])

M(Q¥ ™Y = M, ® M,_; ® M(P> )

where M(P*) =T @ ... 3 T*®.
Hence we have the additive structure from Theorem 11.2 in the pre-
ceding section. More strongly, we can prove

Theorem 12.1. [Ya6] We have a ring isomorphism

7277,72 2n71 7277,71

HEH(Q% 75 Zo(%)) = Zolh, pa] /(B 24, hpy— iah®, pF ).
Here h € H?(Q*' Y, Zy(1)) is the hyper plain section, and we can take
7w =h¥"1. (The ring is generated by only two elements.)
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We give only an outline of the proof for Q7 here, for ease of arguments.

Lemma 12.2. We have a ring isomorphism
Hz (QT Za(x)) = Zo[h]/(h*) & Z/2[R)/(W*){pa} ® Z/2{p}. 3}
2 Zolh, pa)/(h®, 2pa, W' pa, W3, )
where h" = ¢y =7, ¢ = p3, co = p3 and cyh = hpy. Hence we have
HZ (Q" Za(%))/(Im(l)) = Z/2{pa}.

Proof. From the decomposition of the motive, we see (additively)

HZ(Q7; Zo()) =2 H* (M3; Zo(x)) @ H** (My; Zo (%)) ® Za{h, h?, h*}.

Hence it can be written additively (with |co| = 14, |c1] = 12, |co| = 8,
|col = 6, |ci| = 4)

(Zo{1, co} @ Z/2{pa, c1, c2}) @ (Za{1, ¢y} ® Z/2{c\}) ® Zo{h, 1*, W}
It is well known (for X = X(C))
H*(X; Z) = Zo[h,y]/ (K, 2y = K", y?).

Hence, from the restriction map, the ring H*(X;Zy) D Zy[h]/(h®).
First note

Zo{chh, chh?, chh®}y = Zy{h*, b, h®}.

Thus we have

Zo{1, h,y ... h"} =2 Zo{1, h, h* B3, hey, h*c), h*c), co}.
So we have the above H?*(Q"; Zy(*)) is isomorphic to

Zslh)/(h®) @ Z.)2{ps, ca, 1} ® Zo{C\h, ¢\ h?, b3}
Taking ¢y = p3, ¢1 = ps, hc| = hpy, we have the result. O

We want to see the following theorem.
Theorem 12.3. Let X,, = Q*'~', n > 2 the norm variety. Then
DH*(X,;Zs()) = 0.

_2n71

Her (X3 Zo(x)) D Z/2[pa] /(57 )
Hence for n # n'/, we see that X,, and X, are not retract rationally
equivaliant.

Remark. When n = 1, we see X; = P! that is, X, stable birational.

Corollary 12.4. The second and the last formulas in the above theorem,
hold when k is a real number field.
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Proof. Recall that the norm variety X,, = X,,(k) is defined naturaly.
Let 71 > 1 be real embedding number. Then we have the restriction

r: Hg(Spec(k); Z2/2) — @™ HZy(Spec(R); 2/2)
such that r is surjective for x« > 1 and isomorphic for * > 3, Hence we
can define p(k) € HL(Spec(k);Z/2) so that r(p(k)) = p. Similarly we

can define py(k) in H, (X;Zs). It is nonzero since so for k = R.
U

Since the hyper plain section h is represented by a first Chern class
and ™ = ¢y = h?"~!'. By Frobenius reciprocity, we only check elements
Py & N'H* (X Zs(x))
for the first equality in theorem. Then Ideal(h) € N* and
HE(X2/2) 5 H*(X 1 2/2)/N' > Z/2[.)/(72)

implies the second formula.

Since H?*(M,;Zy(x)) is a direct summand of H?*(X;Zy(*)) and py
is defined in H?*(M,; Zy(x)), we only need to see the following Lemma
12.5, (by using Lemma 10.1-10.3) for the proof of the above theorem.

Lemma 12.5. We have p, ¢ N*H*(M,; Zs(x)) fori > 1.

Proof. Consider the following diagram

ps € H*(X;Z3) —1— p* € H**(X : Z/2)

e H" Y (X 1 Z) —— H"YX;Z/2) —2

Suppose ps € NYH**(X; Z,), which means that thereisz € H** (X :
Zs) such that 7'z = ps;. We consider the reduction maps r to the coho-
mology of Z/2 cefficients. Then 7r(x) = p®. and Qo(r(x)) must be zero
(since z is in the integral coefficients Z,). We will prove this does not
happen.

Recall a = p"* and @ = ar™! in H**71(M,,;Z/2).

The case * < n ; The cohomology H** (M,;Z/2) = 0 mod(Ideal(h))
for * > *’ from Lemma 10.3. Hence there is no non zero element 7-!p* €
H**"Y(M,:Z/2) mod(Ideal(h) (where h € N*).

The case x = n + 1; Then there is a’ such that 7a’ = a. But this
element @’ is not in the integral H**~1(M,; Z,), because

Qo(a') = Qo(p" 771 = p" 272,
which is nonzero in H** (M,,;Z/2), and so a ¢ N*H**(M,; 7).
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The case * > n+1 . Let us write i’ = Qo(a’) = p"™2772. Next consider
the element b = 7b'. Then we note
h =71 =" = ap = p" T2
That is b = p"™?77tand b = 7Qy(a’). Hence from Theorem 10.1, we see
be H*(M,;7/2).
Since Qo(b') = QoQo(a’) = 0, we can compute
Qo(b) = Qo(1b") = pb' + 7Qu(V') = pb/
is nonzero in H** (X;7/2) and hence b is not in the integral H** (X; Z,).
Therefore p" ™ ¢ N'H*(X; Zy).
Similarly we can show for j > n+2, the element p/ is not in N*H*(X; Z,).
U

The elements a, ..., are written in Z/2[p,7,771]/(p*"~!) as follows.
(Recall Theorem 10.1 and Lemma 10.2.)

pn+2 c Hn+2,n+2

a = ptt e grintl b= prt2rl Qo 32
d d
pn c gnn a = pn—l—l,r—l Qo s b = pn+2,7_—2 Qo . 0
d
0= Hn,n—l
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