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Abstract

This paper proposes the conformal online auction design (COAD), a novel mechanism for
maximizing revenue in online auctions by quantifying the uncertainty in bidders’ values
without relying on assumptions about value distributions. COAD incorporates both the
bidder and item features and leverages historical data to provide an incentive-compatible
mechanism for online auctions. Unlike traditional methods for online auctions, COAD
employs a distribution-free, prediction interval-based approach using conformal prediction
techniques. This novel approach ensures that the expected revenue from our mechanism
can achieve at least a constant fraction of the revenue generated by the optimal mechanism.
Additionally, COAD admits the use of a broad array of modern machine-learning methods,
including random forests, kernel methods, and deep neural nets, for predicting bidders’
values. It ensures revenue performance under any finite sample of historical data. Moreover,
COAD introduces bidder-specific reserve prices based on the lower confidence bounds of
bidders’ valuations, which is different from the uniform reserve prices commonly used in
the literature. We validate our theoretical predictions through extensive simulations and a
real-data application. All code for using COAD and reproducing results is made available
on GitHub.

Keywords: Optimal auction, revenue maximization, mechanism design, conformal pre-
diction, uncertainty quantification.

1 Introduction

Online auctions for advertisements have played a key role in providing individuals and
businesses with the opportunity to gain from trade in e-commerce. Advertisers place adver-
tisements on online platforms such as Google and Meta, where the ads are allocated through
real-time auctions. Advertisers bid for an ad slot in these auctions, and the winner pays the
platform to display their advertisement. Since these major online platforms can collect data
on user behaviors, online advertising enables personalized recommendations and leads to
more precise user targeting than traditional printed advertisements. Online advertisements
have generated a significant fraction of the revenue for online platforms (Evans, 2008; Choi
et al., 2020). The study of online auctions has become a key focus in computer science and
economics. Existing works on online auctions involve the analysis of the economic proper-
ties of auction designs and their computational efficiency (e.g., Riley and Samuelson, 1981;
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Milgrom and Weber, 1982; Roughgarden, 2010; Easley and Kleinberg, 2010; Mehta, 2013;
Ostrovsky and Schwarz, 2023).

It is critical to design auctions in order to achieve incentive compatibility and maximize
the revenue (Muthukrishnan, 2009; Milgrom, 2017). When the values of the bidders are
independently drawn from a known regular distribution, Myerson (1981) developed such an
auction by incorporating the Vickrey–Clarke–Groves (VCG, Vickrey, 1961; Clarke, 1971;
Groves, 1973) mechanism with a reserve price. This design has laid the groundwork for most
online auctions for advertisements (Easley and Kleinberg, 2010). In these auctions with a
single auction item, the highest bidder is required to pay either the second-highest bid or
the reserve price, whichever is higher. The platform sets the reserve price. The popularity
of these auctions stems from their incentive compatibility, meaning bidders are motivated
to bid exactly what they are willing to pay. However, implementing this auction mechanism
in practice poses several challenges. For instance, reasonably good approximations of value
distributions are often unknown in real-world auctions. Moreover, the platform’s revenue
is significantly influenced by how the reserve prices are set. Machine learning methods
are emerging as important tools for enhancing the efficiency of online auctions. Retailers
and marketplaces such as eBay, Google, and Meta are leveraging vast amounts of data to
identify patterns that help them increase the efficiency of their markets.

We propose the conformal online auction design (COAD), a new mechanism aimed at
maximizing revenue by quantifying the uncertainty in bidders’ valuations of auctioned items.
COAD admits the use of a wide range of modern machine-learning methods, including
random forests, kernel methods, deep neural networks, and various hybrids and ensembles
of these methods. COAD integrates three novel components. First, it leverages historical
data on both item and bidder features to statistically infer each bidder’s valuation for
the current item, along with its uncertainty. For instance, in online advertising on search
engines like Google, the bidders are advertisers, and the items are ad slots for different
keywords. The features of an ad slot may include information about the keywords, while
bidders’ features might include the advertiser’s rating level, ad brand, product information,
and other relevant ad details. The use of both item and bidder features is motivated by
real-world online auctions, such as those on eBay, which have heterogeneous bidders and a
diverse range of items over time. Thus, it is impractical to assume a fixed distribution of
values from a fixed group of bidders or to analyze value distributions for identical items.

The second novel component of COAD is a distribution-free, prediction interval-based
approach that does not depend on assumptions about the distribution of bidders’ values.
This approach is designed to be compatible with modern machine-learning algorithms, in-
cluding deep neural networks, to predict bidders’ values. It ensures robust revenue perfor-
mance under any finite sample of historical data. A key tool in this approach is the conformal
prediction method with conditional guarantees (Gibbs et al., 2023). This method generates
prediction intervals that provide exact coverage for each group within a set of finite sub-
groups. Given the finite types of auctioned items and a specified confidence level of 1 − α,
we construct prediction intervals for each bidder’s value in the new auction of any specific
item using conditional conformal prediction techniques. As a result, COAD does not require
extensive historical data or a large number of features to offer revenue guarantees. This is a
significant advantage over existing methods, which often require extensive bid data for the
same item (Cole and Roughgarden, 2014; Roughgarden and Schrijvers, 2016).
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The third new component is the bidder-specific reserve prices based on the lower confi-
dence bound of the bidder’s valuation for auctioned items. This approach is fundamentally
different from the traditional approach of applying a uniform minimum bid value for all
bidders (Riley and Samuelson, 1981; Cesa-Bianchi et al., 2014; Mohri and Medina, 2016).
Bidder-specific reserve prices have already been successfully implemented in real-world auc-
tions to generate higher revenue. For example, search engines like Google and Yahoo!
have leveraged these personalized reserve prices to not only increase revenues but also to
encourage the placement of high-quality advertisements (Even-Dar et al., 2008). Hence,
incorporating our data-driven, bidder-specific reserve prices in practical settings is feasible.
Moreover, we provide a lower bound that ensures the expected revenue is at least a constant
fraction of the optimal revenue, without requiring knowing the bidders’ value distributions.

Our proposed COAD mechanism differs significantly from the existing methods that use
historical data to estimate empirical distributions for revenue-maximization auctions when
underlying value distributions are unknown (Cole and Roughgarden, 2014; Huang et al.,
2015; Roughgarden and Schrijvers, 2016). The proposed COAD mechanism offers several
advantages. First, COAD incorporates features of bidder features, which allows for a more
realistic scenario in online auctions where non-identical data is common. For example,
new bidders might not have prior data for specific items, and bidders often participate in
auctions for various items, suggesting that each bidder’s distribution may differ by item.
Additionally, since online auctions frequently involve different sets of random bidders, it
is impractical to design mechanisms for a fixed number of bidders. Secondly, the sample
size required in previous studies depends on the number of bidders, which can become
impractically large. In contrast, our method does not rely on the number of new bidders.
Given the unpredictable nature of bidder participation in an online setting, COAD offers a
more feasible solution by not requiring prior knowledge of bidder numbers.

The COAD mechanism is also different from methods of learning optimal reserve prices
for optimal auctions (e.g., Mohri and Medina, 2016; Ostrovsky and Schwarz, 2023). Among
these, the approach by Mohri and Medina (2016) is most closely related to ours. It focuses
on using item features to determine optimal reserve prices, assuming known upper bounds
on bidders’ values. In contrast, COAD expands this by incorporating both bidder and item
features, allowing for bidder-specific rather than uniform reserve prices. Moreover, COAD
leverages the full spectrum of bid data, unlike methods like Mohri and Medina (2016) that
only use the highest and second-highest bids. Consequently, even auctions with a single
bidder can provide valuable data under COAD, bypassing the limitations of methods that
cannot employ data if only one bidder participates or that disregard additional data if more
than two bidders are involved. In our approach, each auction can yield as many data points
as there are participants. Additionally, COAD does not require the restrictive assumption
of a known upper bound on bidders’ valuations, making our model closely aligned with
real-world auctions (Cole and Roughgarden, 2014; Yao, 2014).

1.1 Related Works

We briefly review related work from several fields, including optimal auction design, posted-
price auction, mechanism design, and statistical uncertainty quantification.
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Optimal auction design. Most theoretical work on optimal auctions for revenue max-
imization can be traced back to the seminal papers by Myerson (1981) and Riley and
Samuelson (1981). Myerson (1981) specifically designed auctions that integrate the Vickrey-
Clarke-Groves (VCG) mechanism with a reserve price, assuming that bidders’ values are
independently and identically drawn from a known regular distribution. Recently, there has
been a surge in literature using machine learning for related problems, such as predicting
bid landscapes (Cui et al., 2011), studying pay-per-click auctions (Devanur and Kakade,
2009), and regret minimization in second-price auctions (Cesa-Bianchi et al., 2014). A line
of literature highly relevant to our paper focuses on using historical data to estimate em-
pirical distributions for revenue-maximization auctions when underlying value distributions
are unknown (Cole and Roughgarden, 2014; Huang et al., 2015; Roughgarden and Schri-
jvers, 2016; Mohri and Medina, 2016; Ostrovsky and Schwarz, 2023). Our proposed COAD
mechanism differs from these methods by incorporating bidder features and employing a
distribution-free, prediction interval-based approach for revenue-maximization auctions.

Posted-price auction mechanism. We have designed a bidder-specific reserve price
mechanism, which is related to the posted-price auction mechanisms in online auctions
(Blum et al., 2004). In these auctions, a seller offers goods at a set price, and buyers decide
whether to accept or reject this offer. Our mechanism works as a sequential posting price
mechanism in online settings where bidders participate sequentially. The key difference is
that our approach requires bidders to submit their bids before the seller discloses the price.
There is significant research on posted-price mechanisms with known priors, including works
by Blumrosen and Holenstein (2008); Chawla et al. (2010); Chakraborty et al. (2010); Feld-
man et al. (2014), which focus on scenarios where the price is determined based on prior
knowledge of buyers’ value distributions. For scenarios where the underlying distribution
is unknown, Balcan et al. (2008) proposed a strategy to set prices using buyers’ features.
Our mechanism extends this by also considering the features of the item being auctioned.
More recently, Babaioff et al. (2017) developed a mechanism that could guarantee a con-
stant fraction of the known distribution revenue when all candidate distributions have the
monotone hazard rate property and have known bounded support. Our method achieves
revenue guarantees without requiring support information on the value distributions and
offers a solution adaptable to practical auction settings.

Learning and robustness in mechanism design. The presence of private and unknown
preferences has motivated extensive research on learning-based mechanism designs. One
area of interest is designing auctions robust to errors in the distribution of bidder values,
without relying on Bayesian assumptions (Bergemann and Schlag, 2011; Cai and Daskalakis,
2017; Brustle et al., 2020; Cai and Daskalakis, 2022; Anunrojwong et al., 2023). Additionally,
there is a burgeoning interest in integrating machine learning into market designs (Dai and
Jordan, 2021a,b; Dai et al., 2022). In this paper, we employ high-confidence coverage
prediction intervals developed through conformal prediction techniques on historical data.
This approach ensures that our auction mechanism is not only practically implementable
but also capable of achieving a high level of expected revenue.

Statistical uncertainty quantification. The conformal prediction framework, intro-
duced by Vovk et al. (2005), is designed for effective uncertainty quantification through
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the formation of prediction intervals. These intervals have a marginal coverage guarantee
in finite samples without requiring assumptions about the underlying data-generating pro-
cesses (Lei et al., 2013, 2018). However, achieving conditional coverage guarantee alongside
marginal coverage has been shown to be challenging (Vovk, 2012; Foygel Barber et al.,
2021). Recently, Gibbs et al. (2023) proposed a conformal prediction approach for group-
conditional coverage and coverage under covariate shift. The conformal prediction has been
widely applied in various fields, including computer vision (Angelopoulos et al., 2021) and
natural language processing (Fisch et al., 2021). In our study, we extend the application
of conformal prediction to auction designs in economics, demonstrating a novel use of this
method.

1.2 Contributions and Outline

We propose a novel online auction mechanism that integrates both bidder and item features.
Here are our principal methodological and theoretical contributions:

• We introduce a regression model for online auctions that considers both bidder and
item features (Section 2). We propose a new auction mechanism design, the conformal
online auction design (COAD), which employs high-confidence coverage prediction
intervals of bidders’ values for any given item (Section 3). This involves using dual
conformal prediction intervals with conditional guarantees. We show the asymptotic
equivalence of the dual prediction interval to the primal interval (Proposition 1) and
establish the efficiency of the dual prediction interval (Theorem 1) when the regression
model is estimated accurately.

• We provide theoretical guarantees of COAD (Section 4). It includes the incentive
compatibility and individual rationality properties of COAD (Theorem 2). We es-
tablish that the expected revenue from COAD increases with the number of bidders
(Theorem 3) and that it is asymptotically at least a constant fraction of the maximum
expected social welfare (Theorem 4). Additionally, we discuss methods to optimize
the expected revenue from COAD (Theorem 5) and compare COAD with traditional
auction designs, demonstrating the advantages of COAD (Section 4.4).

• We conduct simulations to validate the properties of COAD and to compare the ex-
pected revenue it generates against that of the second-price auction and the maximum
expected social welfare (Section 5). COAD consistently provides high revenue guar-
antees in both low-dimensional and high-dimensional scenarios. We further validate
these findings using real auction data from eBay (Section 6), demonstrating the prac-
tical effectiveness of COAD.

We conclude the paper with further research directions in Section 7. All technical proofs
are provided in the Appendix.

2 Online Auction Model with Bidder and Item Features

We begin by describing the online auction model and the learning setup. Consider a seller
possessing a finite variety of indivisible items, each available in unlimited supply (e.g.,
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ad slots). The seller conducts auctions at T time points, with each consisting of several
single-round auctions for individual items. Each time point has multiple bidders, each
participating in different auctions. At each time t = 1, . . . , T , a bidder can participate in
only one auction and each item is sold no more than once. Each item has a feature from
the finite set Z = {z̃1, z̃2, . . . , z̃q}, where each z̃j ∈ Rk for 1 ≤ j ≤ q. At time t, suppose there
are m(t) ≥ 1 bidders. The set of bidders at time t is denoted as [m(t)] = {1,2, . . . ,m(t)}.

Each bidder j ∈ [m(t)] has a feature x
(t)
j ∈ X ⊂ Rd, competes in the auction for the item

with feature z
(t)
j ∈ Z, and her valuation for the item is v

(t)
j ∈ R≥0. In the context of

online advertising, the items are ad slots associated with different keywords, where the item
features could include information related to these keywords. Each time, advertisers come
to the platform to bid for ad slots associated with different keywords. Each advertiser
chooses one keyword at a time and bids once. The bidders’ features might include the
advertiser’s rating level, ad brand, product information, and other relevant details about
the advertisement. The online auction process is illustrated in Figure 1.

Figure 1: An illustration of the online auction process.

2.1 Online Auction Design

In this section, we model the decision-making process and auction design for the new auc-
tions at time T +1. Our goal is to design an online auction mechanism for any specific item
that not only incentivizes bidders to reveal their true values but also maximizes expected
revenue by leveraging historical data up to time T , without knowing the bidders’ value
distributions. At time T + 1, we focus on an auction for an item with feature z∗ that is
randomly selected from the feature set Z, representing a specific auction at this time point.
We assume this auction attracts m∗ bidders. We let [m∗] = {1,2, . . . ,m∗} as the set of
bidders in the new auction. Consider that each bidder i ∈ [m∗] with feature x∗i ∈ X and
value v∗i submits a bid b∗i ∈ R≥0. We define v⃗∗ = (v∗1 , v

∗
2 , . . . , v

∗
m∗) as the vector of m

∗ bidders’
values, x⃗∗ = (x∗1 , x

∗
2 , . . . , x

∗
m∗) as the vector of their features, and b⃗∗ = (b∗1 , b

∗
2 , . . . , b

∗
m∗) as the

vector of their bids.
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For any m∗ ∈ N+ and (b⃗∗, x⃗∗, z∗) ∈ Rm∗

≥0 ×X
m∗ ×Z, an auction mechanism is a mapping

from the space of (b⃗∗, x⃗∗, z∗) to an allocation rule ai(b⃗
∗, x⃗∗, z∗) ∈ [0,1] for each bidder

i ∈ [m∗]. This allocation rule denotes the probability of bidder i being allocated the item.
Additionally, a payment rule, denoted by pi(b⃗

∗, x⃗∗, z∗) ∈ R≥0, specifies the price paid by
bidder i. Since only one item is to be allocated, the allocation rule satisfies,

m∗

∑
i=1

ai(b⃗
∗, x⃗∗, z∗) ≤ 1 and ai(b⃗

∗, x⃗∗, z∗) ≥ 0, (1)

for any i ∈ [m∗] and (b⃗∗, x⃗∗, z∗) ∈ Rm∗

≥0 ×X
m∗ ×Z. In this paper, we focus on a deterministic

mechanism so that ai ∈ {0,1}. The utility of bidder i is given by,

ui(b⃗
∗, x⃗∗, z∗) = v∗i ⋅ ai(b⃗

∗, x⃗∗, z∗) − pi(b⃗
∗, x⃗∗, z∗).

Since each bidder’s valuation is private information, a bidder might not disclose their
true value while bidding but may submit a different value to game the mechanism and
attempt to achieve higher utility. Therefore, a primary objective in mechanism design for
auctions is to incentivize bidders to bid their true values. The seller aims to design a
mechanism that maximizes expected revenue, subject to the constraints of ex-post incentive
compatibility (IC) given by,

ui(v
∗
i , b⃗
∗
−i, x⃗

∗, z∗) ≥ ui(b
∗
i , b⃗
∗
−i, x⃗

∗, z∗), (2)

for every v∗i , b
∗
i ∈ R≥0 and (b⃗∗−i, x⃗

∗, z∗) ∈ Rm∗−1
≥0 ×Xm∗ ×Z, and individual rationality (IR),

ui(v
∗
i , b⃗
∗
−i, x⃗

∗, z∗) ≥ 0. (3)

Under IC and IR, the dominant strategy for the bidders to obtain the highest utility is to
bid truthfully, that is, b⃗∗ = v⃗∗.

2.2 Learning with Bidder and Item Features

When there is no information about the values v⃗∗, any deterministic auction mechanism
that satisfies IC in (2) and IR in (3) can perform arbitrarily poorly in terms of revenue (e.g.,
Sandholm and Likhodedov, 2015). Hence, we consider a setting in which, although the val-
uations, prior distributions of values, and support information of values are all unknown to
the seller, the seller has access to historical data from the previous auctions up to time T .

Denote the data of historical auctions as D = {(x
(t)
j , z

(t)
j , v

(t)
j ) ∣ j ∈ [m

(t)], t = 1,2 . . . , T},

which includes bidder features x
(t)
i , bidder values v

(t)
i , and item features z

(t)
i from all auc-

tions up to time T . Let ∑T
t=1m

(t) = N . We rewrite D = {(xi, zi, vi) ∣ i = 1,2, . . . ,N} for
notation simplicity and make the following three assumptions.

Assumption 1 (iid historical data) The N data points in D are independent and identi-
cally distributed (iid) copies of (x, z, v) ∼ P , where P is a distribution function on X×Z×R≥0.
Let µ(x, z) = E[v∣x, z].

Assumption 2 (Independent noises) For (x, z, v) ∼ P , the noise ε = v−µ(x, z) is inde-
pendent of (x, z), and the density of ε is symmetric on 0 and has a bounded first derivative.
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Assumption 3 (Independent new bidders) The pairs (x∗i , v
∗
i ),1 ≤ i ≤m

∗, are iid con-

ditional on z∗. Additionally, {(x∗i , z
∗, v∗i ), (x1, z1, v1), . . . , (xN , zN , vN)}

iid
∼ P , ∀i ∈ [m∗].

Assumptions 1 and 2 are widely used in the auction and statistics literature (e.g., Mohri
and Medina, 2016; Lei et al., 2018; Ostrovsky and Schwarz, 2023). For any (x, z, v) ∼ P , we
consider the following regression model for the remainder of this paper:

v = µ(x, z) + ε. (4)

For each i ∈ [m∗], we denote ε∗i = v∗i − µ(x∗i , v
∗
i ). Assumption 3 assumes that bidders

participating in the new auction for the item with feature z∗ at time T +1 are independent.
Additionally, for each bidder i ∈ [m∗], the data (x∗i , z

∗, v∗i ) is assumed to be iid relative to
the historical data. We note that Assumption 3 allows various bidders to exhibit different
value distributions for a specific item, depending on their bidder features. Specifically, we
consider that (x∗i , v

∗
i )∣z

∗ are iid. However, when we factor in both the bidder’s and item’s
features, (x∗i , z

∗), the distribution of v∗i ∣(x
∗
i , z
∗) is expected to differ among bidders. This

variation arises because v∗i = µ(x
∗
i , z
∗) + ε∗i , where µ(x∗i , z

∗) changes due to the differences
in x∗i , making the mean of the value v∗i vary.

We introduce additional notations. For any (x∗, z∗, v∗) ∼ P , let Fv∗∣z∗ and Fv∗,x∗∣z∗ be
the distribution functions for v∗∣z∗ and (v∗, x∗)∣z∗, respectively. Let Fv⃗∗∣z∗ and Fv⃗∗,x⃗∗∣z∗ be
the joint distributions for the vectors v⃗∗∣z∗ and (v⃗∗, x⃗∗)∣z∗, respectively. Under Assumption
3, Fv⃗∗∣z∗(v⃗

∗) =∏m∗

i=1 Fv∗∣z∗(v
∗
i ) and Fv⃗∗,x⃗∗∣z∗(v⃗

∗, x⃗∗) =∏m∗

i=1 Fv∗,x∗∣z∗(v
∗
i , x

∗
i ).

2.3 Revenue Objective

For an auction mechanismM designed using historical data D, let R
M∣D
m∗ (Fv∗,x∗∣z∗) denote

the expected revenue generated by M when there are m∗ random bidders in the auction
for an item with feature z∗. That is,

R
M∣D
m∗ (Fv∗,x∗∣z∗) = E

⎡
⎢
⎢
⎢
⎣

m∗

∑
i=1

pi(v⃗
∗, x⃗∗, z∗)∣D, z∗

⎤
⎥
⎥
⎥
⎦
. (5)

Here pi(b⃗
∗, x⃗∗, z∗) is the price paid by bidder i ∈ [m∗], and the expectation in (5) is taken

over the distribution Fv⃗∗,x⃗∗∣z∗ . Let Wm∗(Fv∗∣z∗) be the maximum expected social welfare of
the m∗ random bidders,

Wm∗(Fv∗∣z∗) = E [ max
1≤i≤m∗

v∗i ∣z
∗
] , (6)

where the expectation in (6) is taken over the distribution Fv⃗∗∣z∗ . Since for a given item, the
payments of the bidders depend on both the features and the values of the bidders, while
the maximum value among the bidders depends only on the values of the bidders, there is

a difference between the underlying distributions in R
M∣D
m∗ and Wm∗ .

The maximum expected social welfare in (6) serves as a benchmark for revenue in (5)
since, by employing Equations (1) and (3), it can be easily proven that for any mechanism
M, ∑m∗

i=1 pi(v⃗
∗, x⃗∗, z∗) ≤ max1≤i≤m∗ v

∗
i holds for all (v⃗∗, x⃗∗, z∗) ∈ Rm∗

≥0 × X
m∗ × Z. Conse-

quently, R
M∣D
m∗ (Fv∗,x∗∣z∗) ≤ Wm∗(Fv∗∣z∗) holds for any mechanism M and distribution P ,

which means that Wm∗(Fv∗∣z∗) can be seen as the optimal revenue that could be obtained.
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Moreover, achieving the revenue of Wm∗(Fv∗∣z∗) would require the seller to know the bid-
ders’ values v⃗∗ for the item with feature z∗ before the auction, which is impractical in real
scenarios.

3 Conformal Online Auction Design

In this section, we present a new algorithm called conformal online auction design (COAD).
The key idea is to employ prediction intervals with high-confidence coverage for bidders’
values of any given item, which we derive using conformal prediction with a conditional
guarantee. We also demonstrate the statistical efficiency of the conditional conformal pre-
diction method employed in our algorithm.

3.1 The COAD Mechanism

Our conformal online auction design (COAD) consists of four main steps. The first step is to
construct high-confidence coverage prediction intervals for the bidders’ values for any given
item. Specifically, for each bidder i ∈ [m∗], we aim to construct a (1−α)-prediction interval
[v̂Li , v̂

U
i ] for their value v∗i , given the item’s feature z∗ ∈ Z. That is, P(v∗i ∈ [v̂Li , v̂Ui ] ∣ z∗ =

z̃) ≥ 1−α, for any z̃ ∈ Z and α ∈ (0,1), where v̂Li and v̂Ui are functions of x∗i and z∗. Although
these prediction intervals convey less information compared to the full distribution of values,
they are more readily obtainable. The method for constructing these prediction intervals
[v̂Li , v̂

U
i ] is presented in Section 3.2.

In the second step, we introduce a new virtual value designed to recalibrate each bid
to maximize the seller’s expected revenue. The key idea is to consider both the bidder’s
valuation and the competition among bidders. The proposed virtual values are based on
the lower bounds of the prediction intervals,

ci(v
∗
i , x

∗
i , z
∗
) = v∗i I{v

∗
i ≥ v̂

L
i }, ∀i ∈ [m∗]. (7)

Here ci in (7) is a monotone increasing function of v∗i . Note that this new virtual value
in (7) differs from the classical virtual value in optimal auction theory Myerson (1981),
where a virtual value is determined by the bidder’s own valuation and the distribution of
valuations among all bidders. Specifically, the classical virtual value formula adjusts the
bidder’s actual valuation based on the likelihood of higher bids occurring. However, in
our setting, the distribution of valuations among all participants is unknown. Hence, we
re-calibrate each bid by comparing it to the lower confidence bound.

In the third step, we determine the allocation rules {ai(v⃗
∗, x⃗∗, z∗)}m

∗

i=1 as described in (1).
We employ a deterministic mechanism where only one bidder can win the item, meaning
that at most one value in the set {ai(v⃗

∗, x⃗∗, z∗)}m
∗

i=1 is 1, with all others set to 0. We let the
seller retain the item at the new auction if maxi∈[m∗] ci(v

∗
i , x

∗
i , z
∗) = 0, or assigns it to the

bidder with the highest virtual value otherwise. If the seller retains the item, then for any
bidder i ∈ [m∗], ai(v⃗

∗, x⃗∗, z∗) = 0. If there is a tie between the bidders’ virtual valuations
when maxk∈[m∗] ck(v

∗
k , x

∗
k, z
∗) > 0, for example,

ci(v
∗
i , x

∗
i , z
∗
) = cj(v

∗
j , x

∗
j , z
∗
) = max

k∈[m∗]
ck(v

∗
k , x

∗
k, z
∗
),

the seller may break the tie by giving the item to the bidder with the largest prediction
lower bound; if there is still a tie, for example, v̂Li = v̂

L
j , then the seller can break the tie by
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Algorithm 1: Conformal Online Auction Design (COAD)

1: Input: Historical data D = {(xi, zi, vi) ∣ i = 1,2, . . . ,N}; New auction data
{(x∗i , z

∗, v∗i ) ∣ i = 1,2, . . . ,m
∗} at time T + 1; Miscoverage level α ∈ (0,1).

2: for i = 1 to m∗ do
3: Step 1: Construct the (1 − α)-prediction interval [v̂Li , v̂

U
i ] for v

∗
i by Eq. (10);

4: Step 2: Obtain the virtual values ci(v
∗
i , x

∗
i , z
∗) by Eq. (7);

5: end for
6: for i = 1 to m∗ do
7: Step 3: Determine the allocation rule ai(v⃗

∗, x⃗∗, z∗) by the following procedure:
8: if maxi∈[m∗] ci(v

∗
i , x

∗
i , z
∗) = 0 then ai(v⃗

∗, x⃗∗, z∗) = 0;
9: else if ci(v

∗
i , x

∗
i , z
∗) =maxi∈[m∗] ci(v

∗
i , x

∗
i , z
∗) then ai(v⃗

∗, x⃗∗, z∗) = 1;
10: else ai(v⃗

∗, x⃗∗, z∗) = 0;
11: end if
12: Step 4: Calculate payment pi(v⃗

∗, x⃗∗, z∗) by Eq. (8).
13: end for
14: Output: The allocations {ai(v⃗

∗, x⃗∗, z∗)}m
∗

i=1 and payments {pi(v⃗
∗, x⃗∗, z∗)}m

∗

i=1 for all
bidders in [m∗].

giving it to the lower-numbered bidder or by using other arbitrary rules. After breaking the
tie, the winner will have an allocation rule with value 1, and all others have an allocation
rule with value 0.

Finally, the fourth step involves determining the payment. In our model, the payment
is designed as follows. Let

ri(v⃗
∗
−i, x⃗

∗, z∗) = inf{b∗i ∣ ci(b
∗
i , x

∗
i , z
∗
) ≥ 0, ci(b

∗
i , x

∗
i , z
∗
) ≥ cj(v

∗
j , x

∗
j , z
∗
),∀j ∈ [m∗], j ≠ i},

which represents the lowest winning bid for bidder i against values of other bidders v⃗∗−i.
Then the payment is defined by

pi(v⃗
∗, x⃗∗, z∗) =

⎧⎪⎪
⎨
⎪⎪⎩

ri(v⃗
∗
−i, x⃗

∗, z∗), ai(v⃗
∗, x⃗∗, z∗) = 1,

0, ai(v⃗
∗, x⃗∗, z∗) = 0,

(8)

where i ∈ [m∗], v⃗∗ ∈ Rm∗

≥0 , (x⃗
∗, z∗) ∈ Xm∗ × Z. We show in Section 4.1 that the payment

structure in (8) ensures the COAD mechanism is IC and IR for the new auction at time
T + 1. The four-step COAD procedure is summarized in Algorithm 1.

3.2 Construction of Prediction Intervals

We now construct the prediction intervals in Section 3.1 based on the historical data D.
Without loss of generality, let the number of data points N = 2n. We randomly split
the 2n data points equally into two sets: a set of training data, and a set of calibration
data. To simplify the notations, we let Dcal = {(xi, zi, vi) ∣ i = 1,2, . . . , n} denote the set

of calibration data, and Dtrain = {(xi, zi, vi) ∣ i = n + 1, n + 2, . . . ,2n} denote the set of
training data. We can use the machine learning algorithms An to estimate the regression
function µ in Assumption 1 based on the set of training data. That is, µ̂n = An(Dtrain).
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A recently developed conformal prediction method constructs prediction intervals for new
response variables, offering conditional guarantees (Gibbs et al., 2023) that are particularly
pertinent to our analysis.

We now outline the key steps of the conditional conformal prediction method, with
additional details provided in Appendix A. For each bidder i ∈ [m∗] in the new auction for
the item with feature z∗ at time T + 1, we define a primal prediction interval for her value
v∗i as follows,

Ĉprimal(x
∗
i , z
∗
) = {v ∶ S({x∗i , z

∗
}, v) ≤ ĝiS({x∗i ,z∗},v)

(x∗i , z
∗
)}. (9)

Given a miscoverage level α ∈ (0,1), the function ĝiS({x∗i ,z∗},v)
∶ X ×Z → R varies based on

the calibration data Dcal and a conformity score function S, ensuring coverage guarantees
for v∗i conditional on z∗. While the primal prediction interval accurately meets coverage
guarantees, it is computationally intensive and does not provide an explicit prediction in-
terval.

To efficiently compute the interval, we shift to employing the dual form of the prediction
interval for the value v∗i . Let S({x, z}, v) = ∣v − µ̂n(x, z)∣, for (x, z, v) ∈ X × Z × R≥0. The
dual prediction interval can be written as,

Ĉdual(x
∗
i , z
∗
) = [v̂Li , v̂

U
i ] = [µ̂n(x

∗
i , z
∗
) − S∗, µ̂n(x

∗
i , z
∗
) + S∗], ∀i ∈ [m∗]. (10)

Here, S∗ > 0 is chosen to ensure that P(v∗i ∈ Ĉdual(x∗i , z∗) ∣ z∗ = z̃) ≥ 1 − α,∀z̃ ∈ Z.

3.3 Properties of the Conformal Prediction Intervals

We first aim to demonstrate that the dual prediction interval Ĉdual in (10) closely approxi-
mates the primal prediction interval Ĉprimal(x

∗
i , z
∗) in (9). To establish this, we require the

following mild condition on the estimator µ̂n.

Assumption 4 (Convergence of the estimator) The machine-learning estimator µ̂n sat-
isfies that E [∣µ̂n(x, z) − µ(x, z)∣

2] = O(n−2τ), for some τ > 0.

Assumption 4 holds for a wide range of popular machine learning methods. For instance, it
holds for the l1-penalized linear regression in a variety of sparse models (e.g., Bickel et al.,
2009), a class of regression trees and random forests (e.g., Wager and Walther, 2015), a
class of neural networks (e.g., Chen and White, 1999), and a class of kernel methods (e.g.,
Dai and Li, 2023). In each of these methods, Assumption 4 is satisfied with τ ≥ 1/8.

Proposition 1 Under Assumptions 1-4, the primal prediction interval Ĉprimal(x
∗
i , z
∗) and

the dual prediction interval Ĉdual(x
∗
i , z
∗) satisfy that,

L(Ĉprimal(x
∗
i , z
∗
)△ Ĉdual(x

∗
i , z
∗
)) = O (n−min{τ,1}

) , ∀i ∈ [m∗].

Here L(A) denotes the Lebesgue measure of a set A, and A△B is the symmetric difference
between two sets A and B.

The proof is provided in Appendix B.1. Proposition 1 demonstrates that the primal and
dual prediction intervals are asymptotically equivalent. Due to its computational efficiency,
we use the dual prediction intervals in the proposed COAD in Algorithm 1.

Next, we demonstrate the efficiency of the dual conformal prediction interval in (10).
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Theorem 1 Let δn = min(x,z)∈X×Z µ(x, z) +max(x,z)∈X×Z ∣µ̂n(x, z) − µ(x, z)∣. Then under
Assumptions 1-3, the length S∗ in the dual prediction interval (10) satisfies S∗ ≤ δn almost
surely. Moreover, if µ̂n = µ almost surely, we have that v̂Li ≥ 0, i ∈ [m

∗] almost surely.

The proof is provided in Appendix B.2. Theorem 1 shows that the length of the prediction
interval S∗ is controlled by δn. A more accurate estimator, µ̂n, results in a smaller δn, which
in turn leads to tighter conformal prediction intervals.

Finally, we point out that under Assumptions 1 and 3, the dual prediction interval
exhibits the following coverage property (see, e.g., Gibbs et al., 2023),

∣P(v∗i ∈ Ĉdual(x
∗
i , z
∗
) ∣ D, z∗ = z̃) − (1 − α)∣ = OP (

√
q

n
) .

Hence, the dual conformal prediction interval provides exact coverage as n→∞.

4 Analysis of Incentives and Revenues

In this section, we study the economic properties of the proposed COAD mechanism in
Algorithm 1, including the incentive guarantees and revenue analysis. We also compare the
COAD mechanism with alternative data-driven auction designs.

4.1 Incentive Guarantees

We present the following theorem indicating the incentive guarantees for the bidders under
the COAD mechanism in Algorithm 1.

Theorem 2 The COAD mechanism enjoys the IC and IR properties as defined in (2) and
(3), respectively.

The proof, which employs the well-known envelope formula (Myerson, 1981), is provided in
Appendix B.3. From Theorem 2, it is established that bidders have a dominant strategy to
truthfully reveal their valuations in new auctions at the time T + 1.

4.2 Revenue Guarantees

We now analyze the revenue of the COAD mechanism. First, we demonstrate that as the
number of bidders m∗ increases, there is a corresponding increase in the expected revenue.

Theorem 3 For any given item with features z∗ = z̃ ∈ Z, the expected revenue of the COAD
mechanism will increase as the number of bidders m∗ increases. That is, for any integers
m∗1 ≥m

∗
2 ≥ 1,

R
COAD∣D
m∗1

(Fv∗,x∗∣z∗=z̃) ≥ R
COAD∣D
m∗2

(Fv∗,x∗∣z∗=z̃), almost surely.

The proof is provided in Appendix B.4. The result in Theorem 3 supports an intuitive
property of COAD: the entry of more independent bidders into the auction increases com-
petition, resulting in higher revenues for the seller. This finding aligns with a well-known
result in second-price auctions by Bulow and Klemperer (1996), which demonstrated that
adding an additional bidder and setting a zero reserve price is always preferable to setting
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the optimal reserve price. Both our result in Theorem 3 and the study by Bulow and
Klemperer (1996) highlight the benefits of attracting more bidders to the auction.

Next, we provide a lower bound of the expected revenue achieved by the COAD mech-
anism. For any distribution F with density f(x) = dF (x)/dx, let S(x) = 1 − F (x) denote
the survival probability and H(x) = f(x)/S(x) denote the hazard rate of F . We say a
distribution F has a monotone hazard rate (MHR) if H is monotone non-decreasing in
x. This MHR assumption applies to commonly used distributions such as uniform, normal,
and exponential distributions and is widely used in auction design (see, Hartline, 2013; Cole
and Roughgarden, 2014; Schweizer and Szech, 2019).

Theorem 4 For any given item with features z∗ = z̃ ∈ Z, we assume there exists a constant
C > 0 such that

Var(µ̂n(x
∗
1 , z
∗
)∣µ̂n, z

∗
= z̃) ≤ C, almost surely. (11)

Under Assumptions 1-4 and for α ∈ (0,1), the expected revenue of the COAD satisfies

R
COAD∣D
m∗ (Fv∗,x∗∣z∗=z̃) ≥

2(1 − α)

(1 + h)Hm∗
Wm∗(Fv∗∣z∗=z̃) +OP (n

−min{τ/2,1/2}
) ,

for m∗ = 1, and for m∗ ≥ 2 if Fv∗∣z∗=z̃ has a MHR. Here, τ is defined in Assumption 4,

Hm∗ = ∑
m∗

i=1 i
−1 is the m∗th harmonic number, and h = E[v̂U1 ∣D, z∗ = z̃]/E[v̂L1 ∣D, z∗ = z̃].

The proof of this theorem is given in Appendix B.5. The assumption in (11) is satisfied
in many practical scenarios. For instance, if the bidders’ valuations are bounded, then a
good prediction µ̂n would also be bounded by some constant almost surely. Consequently,
this would imply that the variance of µ̂n is also bounded because Var(µ̂n(x

∗
1 , z
∗)∣µ̂n, z

∗ =
z̃) ≤ E(µ̂2

n(x
∗
1 , z
∗)∣µ̂n, z

∗ = z̃). Theorem 4 provides a revenue guarantee by comparing the
revenue to the maximum expected social welfare, Wm∗(Fv∗∣z∗=z̃) defined in Section 2.3. It
shows that for the new auction at T + 1, the revenue of COAD is asymptotically no less
than a constant fraction of the maximum expected social welfare when conditioning on D.

Comparing Theorems 3 and 4, we note that the ratio between the expected revenue and
the maximum expected social welfare in the worst-case scenario, 2(1 − α)/[(1 + h)Hm∗],
decreases as the number of bidders increases. This indicates that although a larger number
of bidders will yield increased revenue for the seller, it concurrently widens the discrepancy
between the expected revenue and the maximum expected social welfare. This finding
aligns with previous research that uses data to design mechanisms achieving a constant
fraction of the optimal revenue, such as in (Cole and Roughgarden, 2014). Their work
demonstrates that to maintain a fixed constant fraction of the optimal revenue, the sample
size required increases polynomially with the number of bidders. This implies that as the
number of bidders increases, the gap between the designed mechanism and the optimal
revenue will widen if the same amount of data is used. In their study, data is used to learn
the distribution, whereas in our approach, we use data to establish prediction intervals.

4.3 Optimizing Revenue

We can maximize the revenue of the COAD mechanism through two main strategies. The
first strategy involves increasing the number of bidders m∗. By Theorem 3, this strategy is
guaranteed to increase the revenue.
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The second strategy focuses on developing a more accurate estimator µ̂n. We now show
that it is advantageous for maximizing revenue in the COAD mechanism. As discussed in
Section 2.3, the maximum expected social welfare Wm∗(Fv∗∣z∗) serves as the optimal bench-
mark for maximizing COAD’s revenue. Due to the lower bound specified in Theorem 4, we
want to maximize the ratio 2(1 − α)/(1 + h)Hm∗ . Essentially, this involves minimizing the
parameter h defined in Theorem 4 as h = E[v̂U1 ∣D, z∗ = z̃]/E[v̂L1 ∣D, z∗ = z̃]. The following
theorem shows that the upper bound of h is monotone increasing with respect to the param-
eter δn, which is defined in Theorem 1 as δn =min(x,z)∈X×Z µ(x, z)+max(x,z)∈X×Z ∣µ̂n(x, z)−
µ(x, z)∣.

Theorem 5 For any given item with features z∗ = z̃ ∈ Z, we assume that

E(µ̂n(x
∗
1 , z
∗
)∣D, z∗ = z̃) > δn, almost surely. (12)

Then under Assumptions 1-4,

1 ≤ h ≤ 1 +
2δn

E(µ(x∗1 , z∗)∣z∗ = z̃) +OP(n−τ) − δn
.

The proof is given in Appendix B.6. The assumption in (12) is satisfied when µ̂n is a good es-
timator. For instance, if µ̂n achieves uniform consistency such that max(x,z)∈X×Z ∣µ̂n(x, z)−
µ(x, z)∣ = oP(1), then E(µ̂n(x

∗
1 , z
∗)∣D, z∗ = z̃) = [E(µ(x∗1 , z̃)) −min(x,z)∈X×Z µ(x, z)] + δn +

oP(1) is greater than δn in probability under mild conditions. Theorem 5 shows that a more
accurate estimator µ̂n leads to a smaller h in the worst-case scenario and, consequently,
a larger lower bound for the expected revenue of COAD. Therefore, developing a more
accurate estimator µ̂n is advantageous for maximizing revenue in the COAD mechanism.

4.4 Comparisons with Alternative Auction Designs

We now compare the COAD mechanism detailed in Algorithm 1 with alternative auction
designs, including Myerson’s optimal auction design (Myerson, 1981), the first-price auction
(Harrison, 1989), the second-price auction (Vickrey, 1961), and the second-price auction
with an item-specific reserve price (Riley and Samuelson, 1981; Cesa-Bianchi et al., 2014;
Mohri and Medina, 2016).

4.4.1 Comparison with optimal auctions

Myerson’s optimal auction cannot be applied in scenarios where the seller lacks prior knowl-
edge of the bidders’ value distributions. In contrast, Theorem 4 demonstrates the practical
utility of COAD in these settings by guaranteeing revenues.

4.4.2 Comparison with first-price and second-price auctions

Unlike the first-price auction, which is not incentive-compatible, the second-price auction
mechanism is known for its incentive compatibility. The COAD mechanism effectively
bridges the first-price and second-price auction mechanisms. By Theorem 2, COAD ensures
truthful bidding, similar to the second-price auction, but typically achieves higher revenue.
This higher revenue is observed particularly when the highest bidder’s reserve price lies
between the highest and the second-highest bids. To illustrate this point, consider the
following example.
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Example 1 (Comparison with second-price auctions) If m∗ = 1, then the revenue
from a second-price auction is 0, while the revenue from COAD is that max{0, v̂L1 } ≥ 0. If
m∗ ≥ 2, without loss of generality, let bidder i = 1 have the highest value v∗1 and bidder i = 2
the second highest v∗2 . Assume that v∗1 − v

∗
2 ≥ 2 and that the residuals ε’s are standardized

within the range [−1,1]. If the prediction rule is sufficiently accurate such that µ̂n = µ and
S∗ is equal to qα/2, the (1−α/2) quantile of the distribution of ε. Then the probability that

the revenue of COAD surpasses that of a second-price auction is given by P(v∗1 ≥ vL1 > v∗2) ≥
1 − α/2.

4.4.3 Comparison with item-specific reserve price

The item-specific reserve price is characterized by a uniform reserve price applicable to all
bidders for a given item. In contrast, the proposed COAD mechanism employs bidder-
specific reserve prices, meaning the reserve price is tailored to each bidder for the same
item. We present the following example to illustrate the potential for increased revenue
when using bidder-specific reserve prices.

Example 2 (Comparison with item-specific reserve pricing auctions) Consider the
distribution Fv∗∣z∗=z̃ defined as follows: with probability 1/H, the value is H where H > 1
and is very large, and with probability 1 − 1/H, the value is 1. The optimal auction could
achieve an expected revenue of 2−1/m∗ when the seller knows the distribution of the bidders’
values (Hartline, 2013), which approaches 2 as the number of bidders m∗ increases. In com-
parison, the best item-specific reserve price auction can only achieve an expected revenue
of 1 (Roughgarden and Schrijvers, 2016). By Theorems 3 and 4, the COAD mechanism
achieves an expected revenue of at least,

R
COAD∣D
1 (Fv∗,x∗∣z∗=z̃) ≥

2(1 − α)

(1 + h)H1
W1(Fv∗∣z∗=z̃)

=
2(1 − α)

1 + h
E(v∗1 ∣z

∗
= z̃) =

2(1 − α)

1 + h
(2 −

1

H
) .

When α is small and H is large, the expected revenue of COAD is at least 4/(1+ h), which
exceeds 1 as long as 1 ≤ h < 3. If h = 1, then the expected revenue of COAD approaches the
optimal revenue.

Moreover, bidder-specific reserve prices have been successfully implemented in real-world
auctions to generate higher revenue. For example, search engines like Google and Ya-
hoo! use advertiser-specific features to set unique reserve prices for each advertiser. This
strategy ensures that the bids and prices per click for different advertisers have varying min-
imum thresholds, a strategy that not only generates higher revenues but also encourages
advertisers to place high-quality ads (Even-Dar et al., 2008). This demonstrates the practi-
cal relevance of the bidder-specific reserve price strategy adopted by COAD. Additionally,
COAD is the first auction mechanism that incorporates both bidder and item features in
an online setting.
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5 Simulation Studies

In this section, we provide simulation examples to support our theoretical findings. We
compare the expected revenue achieved by COAD with that of the second-price auction
and with the maximum expected social welfare. We set the miscoverage level at α = 0.1. In
each simulation, we randomly generate N iid data points based on the model specified in
(4). We use half of the data as calibration data and the remaining half as training data.

5.1 A Low-Dimensional Example

The first example considers an auction where both the bidder’s feature and the item’s
feature are one-dimensional. For (x, z, v) ∼ P , let z be uniformly drawn from Z = {3,5,7},
x be drawn from a normal distribution with mean z/10 and variance 1, i.e., x ∼ N (z/10,1),
and the residual ε = v −µ(x, z) be drawn from a truncated standard normal distribution in
[−1,1]. Assume that

µ(x, z) = exz + 1.

A similar example has been studied in Ostrovsky and Schwarz (2023). We employ eighth-
order polynomial regression to fit the model µ(x, z). Further details on the consistency of
this regression model are available in Appendix C.1.

Figure 2a presents boxplots illustrating the conditional coverage of the prediction in-
tervals. These plots show the empirical distribution of P(v∗i ∈ Ĉdual(x

∗
i , z
∗) ∣ D, z∗ = z̃) for

z∗ ∈ Z, with N = 1000 and m∗ = 1000. The results confirm that the conformal prediction
method described in Section 3.2 effectively provides prediction intervals for bidders’ values,
achieving conditional coverage approximately equal to 1 − α.

Figure 2b shows the effect of historical data size N on expected revenue. Here N ∈
{100,500,1000,2500,5000}, m∗ = 50, and the results are averaged over 1000 simulations. It
is observed that as N increases, both the maximum expected social welfare and the expected
revenues from the second-price auction remain stable. In contrast, the expected revenue of
COAD increases and surpasses that of the second-price auction. Moreover, the expected
revenue from COAD approaches the maximum expected social welfare, which serves as the
revenue benchmark discussed in Section 2.3. This benchmark can only be achieved when
the seller knows the bidder’s values v⃗∗ for the item z∗ before the auction, a scenario that is
impractical in real-world settings. Hence, it demonstrates that COAD can asymptotically
generate a large constant fraction of the optimal revenue, aligning with Theorem 4.

Figure 2c shows the boxplots illustrating the revenue difference between COAD and the
second-price auction in each auction. That is, the COAD revenue minus the second-highest
bid in each auction across different possible values of z∗, with N = 1000 and m∗ = 50. It is
seen that COAD frequently generates higher revenue than the second-price auction, as the
majority of revenue differences are greater than 0. These findings agree with the discussion
in Section 4.4.

Figure 2d illustrates the effect of the number of bidders m∗ on expected revenue, with
m∗ ∈ {50,100,150,200,250,300,350,400}, N = 1000, and results averaged over 1000 sim-
ulations. As m∗ increases, the expected revenue of COAD increases, which confirms the
predictions of Theorem 3. Moreover, the gap between the expected revenue of COAD and
the maximum expected social welfare widens as m∗ increases, which is consistent with the
implications of Theorem 4.
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(a) (b)

(c) (d)

Figure 2: The numerical results for the example in Section 5.1 based on 1000 simulations. (a)
Conditional coverage of prediction intervals for different z∗ values with N = 1000 and
m∗ = 1000. The red line indicates the target level of 1−α = 0.9. (b) The effect of varying
the number of historical data points N ∈ {100,500,1000,2500,5000} on the expected
revenue when m∗ = 50. (c) A comparison of the revenues with the second-price auction
for N = 1000 and m∗ = 50. The y-axis represents the COAD revenue minus the second-
highest bid in an auction. The red line at 0 indicates no difference. (d) The effect
of varying the number of bidders m∗ ∈ {50,100,150,200,250,300,350,400} on expected
revenue when N = 1000.

5.2 A High-Dimensional Example Using Polynomial Regression

The second example studies an auction where both the bidder’s and the item’s features
are 100-dimensional, i.e., x ∈ R100, z ∈ Z ⊂ R100, respectively. For any (x, z, v) ∼ P , z is
uniformly selected from Z = {z̃1, . . . , z̃q} with q = 30. For each i = 1, . . . , q, we sample z̃i
from a multivariate Gaussian distribution N (µz,Σz), where µz = 0⃗ and Σz = I100. The
bidder’s feature x is generated from a multivariate Gaussian distribution N (µx,Σx), where
µx = (∣∣z∣∣

2
2/100, ∣∣z∣∣

2
2/100, . . . , ∣∣z∣∣

2
2/100) and Σx = I100. The residual ε = v−µ(x, z) is drawn

from a truncated standard normal distribution in [−1,1]. Consider the following regression
model in (4),

µ(x, z) = (βT
1 x)

2
⋅ [sin2(βT

2 z)] + 1,

where each element of the vectors β1 ∈ R100, β2 ∈ R100 is independently drawn from a uniform
distribution Unif[−1,1]. We employ the quadratic polynomial regression to fit the model
µ(x, z).

Figure 3a shows a boxplot illustrating the conditional coverage of the prediction intervals
for a randomly selected item with N = 10000 and m∗ = 50. It confirms that the desired
conditional coverage at the level 1 − α is achieved even in this high-dimensional setting.
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(a) (b) (c) (d)

Figure 3: The numerical results for the example in Section 5.2 based on 1000 simulations. (a)
Conditional coverage of prediction intervals for a random item with N = 10000 and
m∗ = 50. The red line indicates the target level of 1 − α = 0.9. (b) A comparison
of the revenue with the second-price auction for N = 10000 and m∗ = 50. The y-axis
represents the COAD revenue minus the second-highest bid in an auction. The red line
at 0 indicates no difference. (c) The effect of varying the number of historical data points
N ∈ {1000,3000,5000,7000,9000,11000,13000} on expected revenue when m∗ = 50. (d)
The effect of varying the number of bidders m∗ ∈ {50,100,150,200,250,300} on expected
revenue when N = 20000.

Figure 3b presents a boxplot comparing the revenues between COAD and the second-
price auction in each auction. It shows the difference in revenue (COAD revenue minus the
second-highest bid) for the same randomly selected item as in Figure 3a, with N = 10000 and
m∗ = 50. The plot demonstrates that COAD typically achieves a larger revenue than the
second-price auction, corroborating the discussion in Section 4.4 in this high-dimensional
setting.

Figure 3c illustrates the effect of historical data size N on expected revenue, with
N ∈ {1000,3000,5000,7000,9000,11000,13000} and m∗ = 50. For each fixed N , the same
historical data are used for training. The results clearly show that COAD consistently
outperforms the second-price auction in terms of expected revenue. Compared to the low-
dimensional setting shown in Figure 2b, a high-dimensional setting requires more historical
data to achieve higher revenue. This increase in data requirement is due to two factors:
first, the complexity of the high-dimensional model necessitates more training data to ef-
fectively train the regression estimator; second, the extensive range of possible values for z∗

demands more calibration data to accurately produce the conditional prediction intervals.

Figure 3d shows the effect of the number of bidders m∗ on expected revenue, with
m∗ ∈ {50,100,150,200,250,300} and N = 20000. As m∗ increases, the expected revenue of
COAD increases, which agrees with Theorem 3 in this high-dimensional setting.

5.3 A High-Dimensional Example Using Neural Networks

The third example considers an auction with a more complex regression model in a high-
dimensional setting. Both the bidder’s and item’s features are 100-dimensional, and z fol-
lows the same distribution as in Section 5.2. The bidder’s feature x is generated from a mul-
tivariate Gaussian distribution N (µx,Σx), where µx = (∣∣z∣∣

2
2/100, ∣∣z∣∣

2
2/100, . . . , ∣∣z∣∣

2
2/100)

and Σx = 8I100. The residual ε = v − µ(x, z) is drawn from Unif[−1,1]. Consider the
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regression model in (4) as follows,

µ(x, z) = e∣β
T
1 x∣/40

⋅ [cos2(βT
2 z)] + 1,

where each element of the vectors β1 ∈ R100, β2 ∈ R100 is independently drawn from Unif[−1,1].
To fit the model µ(x, z), we employ a neural network regression with two hidden layers,
each having 128 and 64 neurons respectively, and use LeakyReLU activation (Maas et al.,
2013) with L2 regularization. The network also includes a 30% dropout layer to mitigate
overfitting. We use the Adam optimizer with a learning rate of 0.001 and apply mean
squared error as loss. The model is trained for 15 epochs with a batch size of 32.

(a) (b) (c) (d)

Figure 4: The numerical results for the example in Section 5.3 based on 1000 simulations. (a)
Conditional coverage of prediction intervals for a random item with N = 10000 and
m∗ = 50. The red line indicates the target level of 1 − α = 0.9. (b) A comparison
of the revenue with the second-price auction for N = 10000 and m∗ = 50. The y-axis
represents the COAD revenue minus the second-highest bid in an auction. The red line
at 0 indicates no difference. (c) The effect of varying the number of historical data points
N ∈ {1000,3000,5000,7000,9000,11000,13000} on expected revenue when m∗ = 50. (d)
The effect of varying the number of bidders m∗ ∈ {50,100,150,200,250,300} on expected
revenue when N = 20000.

Figure 4a shows a boxplot illustrating the conditional coverage of the prediction intervals
for a randomly selected item with N = 10000 and m∗ = 50. It confirms that the conformal
prediction method still achieves the desired conditional coverage at the level 1 − α even in
this complex high-dimensional setting.

Figure 4b presents a boxplot comparing the revenues between COAD and the second-
price auction in each auction. It shows the difference between COAD revenue and the
second-highest bid for the same randomly selected item as in Figure 4a, with N = 10000
and m∗ = 50. The plot demonstrates that COAD typically achieves a larger revenue than
the second-price auction, corroborating the discussion in Section 4.4 in this complex high-
dimensional setting.

Figure 4c illustrates the effect of historical data size N on expected revenue, with
N ∈ {1000,3000,5000,7000,9000,11000,13000} and m∗ = 50. For each fixed N , the same
historical data are used for training. The results clearly show that COAD consistently
outperforms the second-price auction in terms of expected revenue. However, compared to
the example in Figure 3c, this complex high-dimensional setting shows a smaller revenue
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difference between COAD and the second-price auction. This small difference can be at-
tributed to the relatively small price differences among bidders, as indicated in Figure 4c
where the maximum expected social welfare is less than 15. Additionally, the complexity
and high dimensionality of the model make it challenging to accurately set bidder-specific
reserve prices between the highest and second-highest bids, especially when these differences
are small. In such cases, developing an accurate estimator, such as using neural network
methods, can significantly improve COAD’s revenue, as shown by Theorem 5.

Figure 4d shows the effect of the number of bidders m∗ on expected revenue, with
m∗ ∈ {50,100,150,200,250,300} and N = 20000. As m∗ increases, the expected revenue of
COAD increases, which agrees with Theorem 3 in this complex high-dimensional setting.
Hence, it demonstrates the substantial practical value and the effectiveness of COAD in
enhancing auction revenues as bidder participation grows.

6 Real Data Analysis

In this section, we illustrate our method with a real data set from eBay auctions, specifically
featuring 149 auctions of Palm Pilot M515 PDAs, each lasting seven days. This data set
is public (https://www.modelingonlineauctions.com/datasets). Here the bidders can place
multiple bids, with the requirement that each subsequent bid must exceed the previous one.
Our analysis focuses on each bidder’s highest bid, regarded as their final bid. However, we
exclude the bidders whose final bids were placed in the last half-day of the auction, as these
may not truthfully reveal their private values, which could potentially be higher. Therefore,
we consider only the bidders whose final bids were made during the first six and a half days
of each auction. Additionally, we treat the seller’s identity as an item feature, similar to a
brand. We focus on auctions by three primary sellers, labeled as z̃1 for ‘syschannel’, z̃2 for
‘michael-33’, and z̃3 for ‘saveking’, who are responsible for the majority of the auctions in
the data set. Now we have 884 historical entries, with item features categorized into the set
Z = {z̃1, z̃2, z̃3}. We define the bidder’s features using three key elements: bid time, bidder
rating, and the average of their historical bids. The historical data represents scenarios
where, at each time point, a seller offers an item (Palm Pilot M515 PDA) for sale. Multiple
bidders simultaneously enter eBay to bid, choosing their preferred seller. Each bidder can
select only one seller at a time, and those who choose the same seller then participate in an
auction.

In our analysis, we randomly select one auction from the data set to serve as the new
auction for prediction. The remaining data is then split randomly into two equal parts:
a training set and a calibration set. Our analysis includes only bidders from the new
auction who have previously placed bids in the remaining data. For this new auction,
we perform conformal prediction conditioned on different item features using polynomial
regression, and then implement our mechanism. We set the miscoverage level at α = 0.1.
In each experiment, we fix an item feature and conduct 50 new auctions conditioned on
that item feature. To verify the practical effectiveness of COAD, we calculate the coverage
probability of the prediction interval, the revenue difference between COAD and the second-
price auction, and the ratio of COAD’s revenue to the maximum social welfare (i.e., the
highest bid known post-auction) for each individual auction. We then compute the average
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(a) (b)

(c)

Figure 5: The numerical results of the real data example in Section 6, based on 1000 experiments.
(a) The average conditional coverage of prediction intervals for different item features
z∗. (b) A comparison of the average revenues with the second-price auction, for different
item features. The y-axis represents the average of COAD revenue minus the second-
highest bid in each experiment. (c) The average ratio of the revenue of COAD to the
maximum social welfare for different item features and varying historical data sizes N ∈
{200,250,300,350}.

coverage, average revenue difference, and average revenue ratio from the 50 random new
auctions in each experiment. This process is repeated 1000 times.

Figure 5a shows boxplots illustrating the average conditional coverage of the prediction
intervals for different item features. It indicates that the conformal prediction method
in Section 3.2 effectively provides prediction intervals with a high coverage guarantee in
practice. Figure 5b presents boxplots comparing the difference between the average COAD
revenue and the second-highest bid. It demonstrates that COAD consistently generates
higher revenue than the second-price auction in real-world applications. Figure 5c shows
the effect of the historical data size N on the average ratio of the revenue of COAD to
the maximum social welfare, across different item features. Here, maximum social welfare
represents the highest bid known post-auction for each auction, which is not known in
advance. The results are averaged over 1000 simulations. It shows that the expected
revenue of COAD consistently exceeds a significant fraction (over 0.83) of the optimal
expected revenue. Moreover, increasing the historical data size enhances this revenue ratio.

We make three additional remarks on the findings from this data experiment. First,
COAD does not require a large data set or an extensive number of features to provide
robust revenue guarantees, which demonstrates its practical utility. This shows a distinct
advantage over other methods, which often depend on a large bid data for the same item
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(Cole and Roughgarden, 2014; Roughgarden and Schrijvers, 2016). In real-world data sets,
the number of available data is often limited, making it challenging to achieve desired
outcomes with auction methods that rely on learning the distribution of bidder bids. How-
ever, COAD employs a distribution-free, prediction interval-based approach that provides
coverage-guaranteed confidence intervals regardless of the number of data. Consequently,
this prediction interval-based methodology is not only easier to learn but also supported by
theoretical guarantees for revenues.

Second, COAD efficiently leverages historical information. In our approach, each auction
can yield as many data points as there are participants. Thus, even an auction with a single
bidder can provide valuable data. This is in contrast to methods such as those described by
Mohri and Medina (2016), which rely on the highest and second-highest bids and cannot
employ data if only one bidder participates or may disregard additional data if more than
two bidders participate in an auction.

Third, practical auctions, like those illustrated in this eBay auction example, often in-
volve heterogeneous bidders and items across various rounds. Therefore, it is impractical to
assume a fixed distribution of values from a consistent group of bidders or to analyze bid-
ders’ valuation distributions for identical items. COAD addresses this variability effectively
by using the features of both bidders and items. In real-world scenarios, platforms usually
have access to extensive feature data on both bidders and items, which could potentially
further enhance the performance of COAD.

7 Conclusion

We introduce a new approach to online auction mechanism design, called the conformal
online auction design (COAD), which leverages data-driven methods to maximize revenue
while ensuring incentive compatibility. By using historical data to predict each bidder’s
valuation with uncertainty quantification and introducing bidder-specific reserve prices,
COAD addresses the dynamic and heterogeneous nature of online auctions. This flexibility
is particularly advantageous in applications like online advertising, where bidders’ features
and values can vary significantly. COAD employs conformal prediction techniques that
accommodate any finite sample of historical data and does not rely on assumptions about
known value distributions. Our simulations and real-data applications validate that COAD
outperforms traditional revenue benchmarks, offering a useful alternative to existing online
auction designs. The code for reproducing the numerical results in this paper is available
at https://github.com/JialeHan22/Conformal-Online-Auction-Design.git.

There are several interesting future directions. One area of interest is adapting the
COAD framework to online pricing problems, which corresponds to the special case where
there is only one bidder (Goldberg et al., 2006). Another possible extension is to explore
the multi-item case where multiple items are auctioned simultaneously (Daskalakis, 2015).
A further direction is developing a dynamic auction model where bidders sequentially enter
the market, such as an online travel agency (e.g., Expedia.com or Orbitz.com) selling airline
tickets to a series of bidders, each potentially offering a different price.
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Appendix

Appendix A provides a detailed explanation of the construction of the conformal prediction
interval discussed in Section 3.2. Appendix B contains all the proofs of the theories presented
in the paper. Specifically, Appendix B.1 presents the proof of Proposition 1; Appendix B.2
provides the proof of Theorem 1; Appendix B.3 includes the proof of Theorem 2; Appendix
B.4 gives the proof of Theorem 3; Appendix B.5 contains the proof of Theorem 4; Appendix
B.6 includes the proof of Theorem 5. Additionally, Appendix C presents supplementary
experimental results related to Section 5.1.

Appendix A. Details of Constructing Conformal Prediction Intervals

The conformal prediction method in this paper is based on Gibbs et al. (2023) and provides a
conditional guarantee for the valuation of each bidder in [m∗]. The construction procedure
consists of two main steps. Step 1 is to generate the primal prediction interval Ĉprimal. Step

2 is to redefine Ĉprimal in terms of the dual formulation and obtain the dual prediction band

Ĉdual.
Given the conformity score function S ∶ X × Z × R≥0 → R defined as S({x, z}, v) =

∣v − µ̂n(x, z)∣ for any (x, z, v) ∈ X × Z × R≥0, let S̃i denote the score S({x∗i , z
∗}, v∗i ) for

i ∈ [m∗], and S1, . . . , Sn denote the calibration scores S({x1, z1}, v1), . . . ,S({xn, zn}, vn) of
all the calibration data. For each i ∈ [m∗], from Assumption 3, (x∗i , z

∗, v∗i ) is iid of the Dcal,
so that S̃i, S1, . . . , Sn are also iid random variables.

Let G = {{X , z̃1}, . . . ,{X , z̃q}}, which is a finite collection of groups in 2X×Z , and it

divides the domain X ×Z into q pieces. And let

F = {(x, z)z→ ∑
G∈G

βGI{{x, z} ∈ G} ∣ βG ∈ R, ∀G ∈ G},

which is a linear function space spanned by the identification function over G.
The augmented quantile regression estimate for the bidder i ∈ [m∗] and the item with

feature z∗ is defined as:

ĝiS = argmin
g∈F

1

n + 1

n

∑
j=1

ℓα(g(xj , zj), Sj) +
1

n + 1
ℓα(g(x

∗
i , z
∗
), S). (13)

where ℓα is the ”pinball” loss and α ∈ (0,1):

ℓα(θ,R) =

⎧⎪⎪
⎨
⎪⎪⎩

(1 − α)(R − θ) if R ≥ θ,

α(θ −R) if R < θ.

Then, take the prediction interval for v∗i , which is the value of the bidder i, to be

Ĉprimal(x
∗
i , z
∗
) = {v ∶ S({x∗i , z

∗
}, v) ≤ ĝiS({x∗i ,z∗},v)

(x∗i , z
∗
)}. (14)

From group-conditional coverage guarantee in Gibbs et al. (2023), we have that,

P(v∗i ∈ Ĉprimal(x
∗
i , z
∗
) ∣ z∗ = z̃) ≥ 1 − α for all z̃ ∈ Z. (15)
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Before getting the dual formulation, first, we note from equation (13) that ĝiS is the
optimal solution of the following unconstrained optimization problem when x = x∗i , z = z

∗:

minimize
g∈F

1

n + 1

n

∑
j=1

ℓα(g(xj , zj), Sj) +
1

n + 1
ℓα(g(x, z), S). (16)

Let pj = (Sj − g(xj , zj))I(Sj ≥ g(xj , zj)), and qj = (g(xj , zj) − Sj)I(Sj < g(xj , zj)), for
j = 1,2, . . . , n. Let pn+1 = (S − g(x, z))I(S ≥ g(x, z)), and qn+1 = (g(x, z) − S)I(S < g(x, z)).
Denote p = (p1, p2, . . . , pn+1), and q = (q1, q2, . . . , qn+1). Then the problem (16) can be
re-formulated into the following (relaxed) constrained optimization problem:

minimize
p,q∈Rn+1, g∈F

n+1
∑
j=1
[(1 − α)pj + αqj],

sbject to Sj − g(xj , zj) − pj + qj = 0, j = 1,2, . . . , n,

S − g(x, z) − pn+1 + qn+1 = 0,

pj , qj ≥ 0, j = 1,2, . . . , n + 1.

(17)

Hence, for the constrained problem (17), we can use the Lagrange multipliers η =
(η1, η2, . . . , ηn+1), γ = (γ1, γ2, . . . , γn+1), ξ = (ξ1, ξ2, . . . , ξn+1) and consider its Lagrangian

minimize
p,q,η,γ,ξ∈Rn+1, g∈F

L(g,p,q,η,γ,ξ) =
n+1
∑
j=1
[(1 − α)pj + αqj] +

n

∑
j=1

ηj(Sj − g(xj , zj) − pj + qj)

+ ηn+1(S − g(x, z) − pn+1 + qn+1) −
n+1
∑
j=1
(γjpj + ξjqj).

The Karush-Kuhn-Tucker (KKT) conditions for this Lagrangian also include

stationary equations ∆pL = 0, ∆qL = 0, ∆gL = 0,

dual feasibility γj , ξj ≥ 0, j = 1,2, . . . , n + 1,

complementary slackness γjpj = 0, ξjqj = 0, j = 1,2, . . . , n + 1.

Now if we focus on finding the optimal solution for η, from the stationary equations of p,q,
we have that,

γ = (1 − α) ⋅ 1 − η,

ξ = α ⋅ 1 + η.
(18)

By (18) and dual feasibility, it follows that the constraint on η is defined as,

−α ⋅ 1 ≤ η ≤ (1 − α) ⋅ 1.

Consequently, we can derive the dual formulation with respect to η,

maximize
η∈Rn+1

n

∑
j=1

ηjSj + ηn+1S +min
g∈F
{−

n

∑
j=1

ηjg(xj , zj) − ηn+1g(x, z)},

sbject to − α ≤ ηj ≤ 1 − α, 1 ≤ j ≤ n + 1.

(19)
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Gibbs et al. (2023) has shown that the primal-dual pair (17) and (19) satisfies the
strong duality by Slater’s condition; thus, the optimal primal-dual solution will also satisfy
the KKT conditions. If we let (ĝiS ,η

S
i ) denote the primal-dual solution for (g,η) given S

when x = x∗i , z = z
∗, from (18) and the complementary slackness conditions when j = n + 1,

we obtain

ηSi,n+1 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−α, if S < ĝiS(x
∗
i , z
∗),

[−α,1 − α], if S = ĝiS(x
∗
i , z
∗),

1 − α, if S > ĝiS(x
∗
i , z
∗).

(20)

From (20) we know that checking whether S ≤ ĝiS(x
∗
i , z
∗) is nearly equivalent to check

ηSi,n+1 < 1 − α. Intuitively, we can go back to (14) by letting S = S({x∗i , z
∗}, v) in (20), so

that we can replace Ĉprimal(x
∗
i , z
∗) by the dual prediction interval,

Ĉdual(x
∗
i , z
∗
) = {v ∶ η

S({x∗i ,z
∗},v)

i,n+1 < 1 − α}.

We can find that Ĉdual(x
∗
i , z
∗) is obtained from Ĉprimal(x

∗
i , z
∗) by removing a negligible

portion of the points v that lie on the boundary,

{v ∶ S({x∗i , z
∗
}, v) = ĝiS({x∗i ,z∗},v)

(x∗i , z
∗
)}.

The following theorem states that S ↦ ηSn+1 is non-decreasing.

Theorem 6 (Gibbs et al. (2023) Theorem 4). For all maximizes {ηSn+1}S∈R of (19), S ↦
ηSn+1 in non-decreasing in S.

Using Theorem 6, if we compute a S∗i which is the largest value of S such that ηSi,n+1 < 1−α,
we can rewrite the dual prediction interval as

Ĉdual(x
∗
i , z
∗
) = {v ∶ S({x∗i , z

∗
}, v) ≤ S∗i } = [µ̂n(x

∗
i , z
∗
) − S∗i , µ̂n(x

∗
i , z
∗
) + S∗i ].

Gibbs et al. (2023) gives the algorithm to compute the S∗i by using the binary search, and
similar to the (15), it also follows:

P(v∗i ∈ Ĉdual(x
∗
i , z
∗
) ∣ z∗ = z̃) ≥ 1 − α for all z̃ ∈ Z.

In our setting, based on the definition of F , for any g ∈ F , the value of g(x, z) is unrelated
to x, so that S∗1 = S

∗
2 = ⋅ ⋅ ⋅ = S

∗
m∗ , we can denote them simply by S∗.

Appendix B. Proofs of Main Results

In this section, we provide technical proof for the main results. Appendix B.1 presents
the proof of Proposition 1; Appendix B.2 provides the proof of Theorem 1; Appendix B.3
includes the proof of Theorem 2; Appendix B.4 gives the proof of Theorem 3; Appendix
B.5 contains the proof of Theorem 4; Appendix B.6 includes the proof of Theorem 5.
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B.1 Proof of Proposition 1

Proof In the analysis presented in of Appendix A, it is established that Ĉdual(x
∗
i , z
∗) is

derived from Ĉprimal(x
∗
i , z
∗) by removing a negligible portion of the points v lying on the

boundary {v ∶ S({x∗i , z
∗}, v) = ĝiS({x∗i ,z∗},v)

(x∗i , z
∗)}. Thus, we can express this relationship

as follows:

Ĉdual(x
∗
i , z
∗
) ⊂ Ĉprimal(x

∗
i , z
∗
), almost surely.

From equation (10),it is evident that

Ĉdual(x
∗
i , z
∗
) = [µ̂n(x

∗
i , z
∗
) − S∗, µ̂n(x

∗
i , z
∗
) + S∗].

Hence, we can assume that

Ĉprimal(x
∗
i , z
∗
) = [µ̂n(x

∗
i , z
∗
) − S∗ − δ1, µ̂n(x

∗
i , z
∗
) + S∗ + δ2],

where δ1, δ2 ≥ 0, almost surely.

From the results in Gibbs et al. (2023), the following inequalities are established:

1 − α ≤ P(v∗i ∈ Ĉdual(x
∗
i , z
∗
)) ≤ 1 − α +

q

n + 1
, (21)

and similarly,

1 − α ≤ P(v∗i ∈ Ĉprimal(x
∗
i , z
∗
) ≤ 1 − α +

q

n + 1
. (22)

The inequality (21) can be reformulated as follows:

1 − α ≤ P(µ̂n(x
∗
i , z
∗
) − S∗ ≤ v∗i ≤ µ̂n(x

∗
i , z
∗
) + S∗) ≤ 1 − α +

q

n + 1

⇐⇒ 1 − α ≤ P(µ̂n(x
∗
i , z
∗
) − S∗ ≤ µ(x∗i , z

∗
) + ε∗i ≤ µ̂n(x

∗
i , z
∗
) + S∗) ≤ 1 − α +

q

n + 1
.

(23)

Let Fε and fε denote the distribution and density functions of ε∗i , respectively. It follows
that fε must be a bounded function. Suppose a common uniform bound for both fε and f

′

ε

is M > 0. Denote ∆n(x
∗
i , z
∗) = µ̂n(x

∗
i , z
∗) − µ(x∗i , z

∗), we have that,

P(µ̂n(x
∗
i , z
∗
) − S∗ ≤ µ(x∗i , z

∗
) + ε∗i ≤ µ̂n(x

∗
i , z
∗
) + S∗)

= P(∆n(x
∗
i , z
∗
) − S∗ ≤ ε∗i ≤∆n(x

∗
i , z
∗
) + S∗)

= E[Fε(∆n(x
∗
i , z
∗
) + S∗) − Fε(∆n(x

∗
i , z
∗
) − S∗)],

(24)

where the last equation holds by Fubini’s theorem and independence between ε∗i and
(∆n(x

∗
i , z
∗), S∗).

Employing a first-order Taylor expansion at S∗ and −S∗, we obtain

Fε(∆n(x
∗
i , z
∗
) + S∗)

= Fε(S
∗
) +∆n(x

∗
i , z
∗
)fε(S

∗
) +∆2

n(x
∗
i , z
∗
)R(S∗,∆n(x

∗
i , z
∗
)),

Fε(∆n(xi, z
∗
) − S∗)

= Fε(−S
∗
) +∆n(x

∗
i , z
∗
)fε(−S

∗
) +∆2

n(x
∗
i , z
∗
)R(−S∗,∆n(x

∗
i , z
∗
)).

(25)
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where R(x, y) = 1
2 ∫

1
0 (1 − u)f

′

ε(x + uy)du satisfies

sup
x,y∈R

∣R(x, y)∣ ≤M/4.

Plug (25) into (24), we have that,

E[Fε(∆n(x
∗
i , z
∗
) + S∗) − Fε(∆n(x

∗
i , z
∗
) − S∗)]

= E[Fε(S
∗
) − Fε(−S

∗
) +∆n(x

∗
i , z
∗
)(fε(S

∗
) − fε(−S

∗
)) +∆2

n(x
∗
i , z
∗
)W ]

= E[Fε(S
∗
) − Fε(−S

∗
) +∆2

n(x
∗
i , z
∗
)W ],

where the second equation holds because of the Assumption 2 and W = R(S∗,∆n(x
∗
i , z
∗))−

R(−S∗,∆n(x
∗
i , z
∗)) that satisfies ∣W ∣ ≤ M/2, almost surely. Based on Assumption 4, it

follows that E[∆2
n(x

∗
i , z
∗)] = O(n−2τ). So we have that,

E[Fε(∆n(x
∗
i , z
∗
) + S∗) − Fε(∆n(x

∗
i , z
∗
) − S∗)] = E[Fε(S

∗
) − Fε(−S

∗
)] +O(n−2τ) (26)

Combining (23), (24), and (26), we have that,

1 − α ≤ E[Fε(S
∗
) − Fε(−S

∗
)] +O(n−2τ) ≤ 1 − α +

q

n + 1

⇐⇒ 1 − α ≤ P(−S∗ ≤ ε∗i ≤ S
∗
) +O(n−2τ) ≤ 1 − α +

q

n + 1
.

Thus, it follows that,

P(−Ŝ∗ ≤ ε∗i ≤ Ŝ
∗
) = 1 − α +O(n−min{2τ,1}

). (27)

Then, doing the similar calculation to Ĉprimal(x
∗
i , z
∗), from (22), we can obtain:

P(µ̂n(x
∗
i , z
∗
) − S∗ − δ1 ≤ µ(x

∗
i , z
∗
) + ε∗i ≤ µ̂n(x

∗
i , z
∗
) + S∗ + δ2)

= E[Fε(∆n(x
∗
i , z
∗
) + S∗ + δ2) − Fε(∆n(x

∗
i , z
∗
) − S∗ − δ1)]

= E[Fε(S
∗
+ δ2) − Fε(−S

∗
− δ1)

+∆n(x
∗
i , z
∗
)(fε(S

∗
+ δ2) − fε(−S

∗
− δ1)) +∆

2
n(x

∗
i , z
∗
)W ∗

],

(28)

whereW ∗ = R(S∗+δ2,∆n(x
∗
i , z
∗))−R(−S∗−δ1,∆n(x

∗
i , z
∗)) that satisfies ∣W ∣ ≤M/2, almost

surely, and ∣fε(S
∗ + δ2) − fε(−S

∗ − δ1)∣ < 2M , almost surely. Based on Assumption 4 and
Jensen’s equality, we derive that,

∣E[∆n(x
∗
i , z
∗
)]∣ ≤ E[∣∆n(x

∗
i , z
∗
)∣] ≤

√

E[∆2
n(x

∗
i , z
∗)] = O(n−τ). (29)

Hence, it follows that

E[∆n(x
∗
i , z
∗
)(fε(S

∗
+ δ2) − fε(−S

∗
− δ1))] = O(n

−τ
),

and

E[∆2
n(x

∗
i , z
∗
)W ∗

] = O(n−2τ).
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Consequently, plugging into (28), we have that,

P(µ̂n(x
∗
i , z
∗
) − S∗ − δ1 ≤ µ(x

∗
i , z
∗
) + ε∗i ≤ µ̂n(x

∗
i , z
∗
) + S∗ + δ2)

= E[Fε(S
∗
+ δ2) − Fε(−S

∗
− δ1)] +O(n

−τ
).

(30)

Plugging (30) into the inequality (22), we have that,

1 − α ≤ E[Fε(S
∗
+ δ2) − Fε(−S

∗
− δ1)] +O(n

−τ
) ≤ 1 − α +

q

n + 1

⇐⇒ 1 − α ≤ P(−S∗ − δ1 ≤ ε∗i ≤ S
∗
+ δ2) +O(n

−τ
) ≤ 1 − α +

q

n + 1
.

Subsequently, from the inequality above, we derive that,

P(−S∗ − δ1 ≤ ε∗i ≤ S
∗
+ δ2) = 1 − α +O(n

−min{τ,1}
). (31)

Let C = [−S∗, S∗]△ [−S∗ − δ1, S
∗ + δ2]. Upon comparing (27) and (31), it follows that

P(ε∗i ∈ C) = O(n−min{τ,1}), thereby indicating that,

∫
C
fε(x)dx = O(n

−min{τ,1}
).

Given that ∫C fε(x)dx ≥M ∫C dx =M ⋅L(C), it follows that L(C) = O(n−min{τ,1}).
Recall that

Ĉprimal(x
∗
i , z
∗
)△ Ĉdual(x

∗
i , z
∗
)

= [µ̂n(x
∗
i , z
∗
) − S∗, µ̂n(x

∗
i , z
∗
) + S∗]△ [µ̂n(x

∗
i , z
∗
) − S∗ − δ1, µ̂n(x

∗
i , z
∗
) + S∗ + δ2].

Consequently, we have that

L(C) = L(Ĉprimal(x
∗
i , z
∗
)△ Ĉdual(x

∗
i , z
∗
)), almost surely.

Therefore,
L(Ĉprimal(x

∗
i , z
∗
)△ Ĉdual(x

∗
i , z
∗
)) = O(n−min{τ,1}

).

This completes the proof of Proposition 1.

B.2 Proof of Theorem 1

Proof Based on Assumption 2, given that the value of v = µ(x, z)+ε is always non-negative
and the independence between ε and x, we have that,

min
(x,z)∈X×Z

µ(x, z) −max
ε
∣ε∣ ≥ 0, (32)

where the maximum is taken over the support of the density function of ε.
From the construction procedure of the dual prediction interval outlined in Appendix

A, it is evident that 0 < S∗ ≤ ĝiS∗(x
∗
i , z
∗) < ∞ for any i ∈ [m∗]. By referring to the

definition of the augmented quantile regression estimate ĝiS∗ , as provided in (13), we can
infer ĝiS∗(x

∗
i , z
∗) ≤ max{S1, S2, . . . , Sn, S

∗}. Given that S∗ < ∞, it can be deduced that
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at least one of the points among z1, . . . , zn is equal to z∗. This is because otherwise,
S({x∗i , z

∗}, v) = ĝiS({x∗i ,z∗},v)
(x∗i , z

∗) always holds for any v ∈ R≥0, therefore resulting in

S∗ =∞. Additionally, considering that S∗ ≤ ĝiS∗(x
∗
i , z
∗) together with the definition of the

pin-loss function, we have that S∗ ≤max{S1, S2, . . . , Sn}. Hence, we can derive that,

S∗ ≤max{S1, S2, . . . , Sn}

=max{∣v1 − µ̂n(x1, z1)∣, ∣v2 − µ̂n(x2, z2)∣, . . . , ∣vn − µ̂n(xn, zn)∣}.
(33)

If we denote εi = vi − µ(xi, zi) for i = 1,2, . . . , n, then (33) implies:

S∗ ≤max{∣µ(x1, z1) − µ̂n(x1, z1) + ε1∣, . . . , ∣µ(xn, zn) − µ̂n(xn, zn) + εn∣}

≤ max
(x,z)∈X×Z

∣µ̂n(x, z) − µ(x, z)∣ +max
ε
∣ε∣

≤ max
(x,z)∈X×Z

∣µ̂n(x, z) − µ(x, z)∣ + min
(x,z)∈X×Z

µ(x, z)

= δn.

(34)

where the last inequality holds because of (32).

Recalling the definition of v̂Li = µ̂n(x
∗
i , z
∗) − S∗. If µ̂n = µ holds almost surely, then

according to (34), it follows that S∗ ≤ min
(x,z)∈X×Z

µ(x, z). Hence, we can derive that,

v̂Li ≥ µ̂n(x
∗
i , z
∗
) − min
(x,z)∈X×Z

µ(x, z) = µ(x∗i , z
∗
) − min
(x,z)∈X×Z

µ(x, z) ≥ 0, almost surely.

This completes the proof of Theorem 1.

B.3 Proof of Theorem 2

Proof In the proposed COAD mechanism, for any bidder i ∈ [m∗], ai(v⃗
∗, x⃗∗, z∗) = 1

implies,

ci(v
∗
i , x

∗
i , z
∗
) = max

k∈[m∗]
ck(v

∗
k , x

∗
k, z
∗
) > 0.

In other words, a bidder who has a virtual value greater than all other bidders is guaranteed
to win the item. Conversely, if a bidder’s virtual value is less than that of any other bidder,
that bidder will not win the item. That is,

ai(b
∗
i , v⃗
∗
−i, x⃗

∗, z∗) =

⎧⎪⎪
⎨
⎪⎪⎩

1, b∗i > ri(v⃗
∗
−i, x⃗

∗, z∗),

0, b∗i < ri(v⃗
∗
−i, x⃗

∗, z∗).

The well-known envelope formula (Myerson, 1981) indicates that if the payment is,

pi(v⃗
∗, x⃗∗, z∗) = ai(v⃗

∗, x⃗∗, z∗)v∗i − ∫
v∗i

0
ai(b

∗
i , v⃗
∗
−i, x⃗

∗, z∗)db∗i , (35)
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for any i ∈ [m∗], v⃗∗ ∈ Rm∗

≥0 , (x⃗
∗, z∗) ∈ Xm∗ ×Z, then the mechanism is both IC and IR. Now

we plug in the allocation rule into the envelope formula (35). Note that

∫

v∗i

0
ai(b

∗
i , v⃗
∗
−i, x⃗

∗, z∗)db∗i =

⎧⎪⎪
⎨
⎪⎪⎩

v∗i − ri(v⃗
∗
−i, x⃗

∗, z∗), v∗i ≥ ri(v⃗
∗
−i, x⃗

∗, z∗),

0, v∗i ≤ ri(v⃗
∗
−i, x⃗

∗, z∗).

On the one hand, if the allocation rule ai(v⃗
∗, x⃗∗, z∗) = 1, it follows that v∗i ≥ ri(v⃗

∗
−i, x⃗

∗, z∗),
so that we can deduce pi(v⃗

∗, x⃗∗, z∗) = v∗i − (v
∗
i − ri(v⃗

∗
−i, x⃗

∗, z∗)) = ri(v⃗
∗
−i, x⃗

∗, z∗). On the
other hand, if ai(v⃗

∗, x⃗∗, z∗) = 0, it holds that v∗i ≤ ri(v⃗
∗
−i, x⃗

∗, z∗), from which we deduce
that pi(v⃗

∗, x⃗∗, z∗) = 0. The payment (8) is thus derived by the envelop formula. Following
Myerson’s result (Myerson, 1981), the COAD mechanism in Algorithm 1 has the IC and IR
properties, which completes the proof of Theorem 2.

B.4 Proof of Theorem 3

Proof For any integer m∗ ≥ 1, to establish the desired result, it suffices to demonstrate
that,

R
COAD∣D
m∗+1 (Fv∗,x∗∣z∗=z̃) ≥ R

COAD∣D
m∗ (Fv∗,x∗∣z∗=z̃), almost surely.

Subsequently, by employing recursion, the desired result can be established.
For any m∗ bidders with valuation {v∗1 , . . . , v

∗
m∗} ∈ R

m∗

≥0 , by using the COAD mechanism,
we can calculate the virtual value ci(v

∗
i , x

∗
i , z
∗) of each bidder. If maxi∈[m∗](ci(v

∗
i , x

∗
i , z
∗)) =

0, the seller keeps the item and gets the 0 revenue.
If maxi∈[m∗](ci(v

∗
i , x

∗
i , z
∗)) > 0, without generation, suppose that the first k ∈ N+ bidders

among these m∗ bidders satisfy v∗i ≥ v̂
L
i . We can rewrite the set {v∗1 , . . . , v

∗
k , v̂

L
1 , . . . , v̂

L
k } as

{a1, . . . , a2k} and let a(2k−1) be the second largest value among {a1, . . . , a2k}. Then the
COAD mechanism will sell the item with price max{0, a(2k−1)}.

Now, for each new bidder joining the auction with a valuation of v∗m∗+1 ∈ R≥0, we can
implement the COAD mechanism for the m∗ + 1 bidders.

• If v∗m∗+1 < v̂
L
m∗+1, then implementing the COAD mechanism for these m∗ + 1 bidders

is equivalent to implementing the COAD mechanism for the first m∗ bidders, which
means that the COAD mechanism will also sell the item at price max{0, a(2k−1)} if
maxi∈[m∗](ci(v

∗
i , x

∗
i , z
∗)) > 0, otherwise keep the item and get 0 revenue.

• If v∗m∗+1 ≥ v̂Lm∗+1, then we define a2k+1 as v∗m∗+1 and a2k+2 as v̂Lm∗+1, and let a(2k+1)
denote the second highest value among {a1, . . . , a2k, a2k+1, a2k+2}. In such a sce-
nario, the COAD mechanism will sell the item with price max{0, a(2k+1)}. It fol-
lows that a(2k+1) ≥ a(2k−1) for any k ≥ 1, given that the second highest value in the set
{a1, . . . , a2k} will not exceed the second highest value in the set {a1, . . . , a2k, a2k+1, a2k+2}.

Based on the two different cases, conditioning on any first m∗ bidders, the revenue
generated by the COAD mechanism on m∗ + 1 bidders will be no less than that achieved
with m∗ bidders for any additional bidder m∗ + 1, thus we have that,

R
COAD∣D
m∗+1 (Fv∗,x∗∣z∗=z̃) ≥ R

COAD∣D
m∗ (Fv∗,x∗∣z∗=z̃), almost surely.
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Subsequently, employing recursion, we finalize the proof of Theorem 3.

B.5 Proof of Theorem 4

Proof of the case when m∗ = 1: By equation (5), it is defined that,

R
COAD∣D
1 (Fv∗,x∗∣z∗=z̃) = E[p1(v⃗∗, x⃗∗, z∗) ∣ Dtrain,Dcal, z

∗
= z̃] (36)

Under the COAD mechanism and m∗ = 1, we have p1(v⃗
∗, x⃗∗, z∗) = v̂L1 I{v∗1 ≥ v̂L1 }. Thus,

E[p1(v⃗∗, x⃗∗, z∗) ∣ Dtrain,Dcal, z
∗
= z̃] = E[v̂L1 I{v

∗
1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, z

∗
= z̃]

By the definition of v̂L1 , we have that,

E[v̂L1 I{v
∗
1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, z

∗
= z̃]

= E[(µ̂n(x
∗
1 , z
∗
) − S∗)I{v∗1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, z

∗
= z̃]

= E[(µ̂n(x
∗
1 , z
∗
) − S∗) ∣ Dtrain,Dcal, z

∗
= z̃]E[I{v∗1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, z

∗
= z̃]

+Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{v∗1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, Z = z̃),

(37)

where the last equality uses the definition of covariance.

Given that the value of I{v∗1 ≥ v̂L1 } is equal to or greater than I{v̂U1 ≥ v∗1 ≥ v̂L1 } almost
surely, we have,

E[I{v∗1 ≥ v̂
L
1 } ∣ Dtrain,Dcal, z

∗
= z̃]

≥ E[I{v̂U1 ≥ v
∗
1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, z

∗
= z̃]

= P(v̂U1 ≥ v
∗
1 ≥ v̂

L
1 ∣ Dtrain,Dcal, z

∗
= z̃).

(38)

It is known that (see, Gibbs et al., 2023),

∣P(v∗1 ∈ Ĉdual(x
∗
1 , z
∗
) ∣ D, z∗ = z̃) − (1 − α)∣ = OP (

√
q

n
) .

Hence,

P(v̂U1 ≥ v
∗
1 ≥ v̂

L
1 ∣ Dtrain,Dcal, z

∗
= z̃) = 1 − α +OP(n

−1/2
). (39)

By combining equations (36)-(39), we obtain that,

R
COAD∣D
1 (Fv∗,x∗∣z∗=z̃)

≥ E[(µ̂n(x
∗
1 , z
∗
) − S∗) ∣ Dtrain,Dcal, z

∗
= z̃](1 − α +OP(n

−1/2
))

+Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{v∗1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, z

∗
= z̃).

(40)
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From the model of v∗1 (i.e., equation 4), it follows that v∗1 can be defined as:

v∗1 = µ(x
∗
1 , z
∗
) + ε∗1 , (41)

where the residual ε∗1 = v
∗
1 − µ(x

∗
1 , z
∗) is independent of (x∗1 , z

∗). Together with (41) and
the definition of v̂L1 , we have that,

Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{v∗1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, z

∗
= z̃)

= Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{µ(x∗1 , z

∗
) + ε∗1 ≥ µ̂n(x

∗
1 , z
∗
) − S∗} ∣ Dtrain,Dcal, z

∗
= z̃)

= Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{ε∗1 ≥∆n(x

∗
1 , z
∗
) − S∗} ∣ Dtrain,Dcal, z

∗
= z̃),

(42)

where ∆n(x
∗
1 , z
∗) = µ̂n(x

∗
1 , z
∗) − µ(x∗1 , z

∗).
Let E = [∆n(x

∗
1 , z
∗) − S∗,∞)△ [−S∗,∞), we have that,

I{ε∗1 ≥∆n(x
∗
1 , z
∗
) − S∗} ≤ I{ε∗1 ≥ −S

∗
} + I{ε∗1 ∈ E}, almost surely. (43)

By the results in Appendix A, S∗ is the largest value such that ηS1,n+1 < 1 − α. Con-
sequently, given Dtrain, Dcal, and z∗ = z̃, then S∗ is determined accordingly. Additionally,
when Dtrain is given, µ̂n(⋅) is also determined, so that ∆n(⋅) is determined.

Plugging the inequality (43) into (42), we have that,

Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{v∗1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, z

∗
= z̃)

≤ Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{ε∗1 ≥ −S

∗
} + I{ε∗1 ∈ E} ∣ Dtrain,Dcal, z

∗
= z̃)

= Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{ε∗1 ≥ −S

∗
} ∣ µ̂n, S

∗, z∗ = z̃)

+Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{ε∗1 ∈ E}∣ µ̂n, S

∗, z∗ = z̃)

= Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{ε∗1 ∈ E}∣ µ̂n, S

∗, z∗ = z̃),

(44)

where the last equation holds because ε∗1 is independent of x∗1 . Subsequently, by Cauchy-
Schwarz inequality, it follows that

Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{ε∗1 ∈ E}∣ µ̂n, S

∗, z∗ = z̃)

≤

√

Var(µ̂n(x∗1 , z
∗) − S∗ ∣ µ̂n, S∗, z∗ = z̃)Var(I{ε∗1 ∈ E} ∣ µ̂n, S∗, z∗ = z̃)

=

√

Var(µ̂n(x∗1 , z
∗) ∣ µ̂n, z∗ = z̃)Var(I{ε∗1 ∈ E} ∣ µ̂n, S∗, z∗ = z̃).

(45)

By assumption (11), we have that,
√
Var(µ̂n(x1, z∗) ∣ µ̂n, z∗ = z̃) ≤

√
C, almost surely.

Observe that,

Var(I{ε∗1 ∈ E} ∣ µ̂n, S
∗, z∗ = z̃)

= E[I2{ε∗1 ∈ E} ∣ µ̂n, S
∗, z∗ = z̃] − (E[I{ε∗1 ∈ E} ∣ µ̂n, S

∗, z∗ = z̃])2

= E[I{ε∗1 ∈ E} ∣ µ̂n, S
∗, z∗ = z̃](1 −E[I{ε∗1 ∈ E} ∣ µ̂n, S

∗, z∗ = z̃])

= P(ε∗1 ∈ E ∣ µ̂n, S
∗, z∗ = z̃)(1 − P(ε∗1 ∈ E ∣ µ̂n, S

∗, z∗ = z̃))

≤ P(ε∗1 ∈ E ∣ µ̂n, S
∗, z∗ = z̃), almost surely.

(46)
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If we denote the cumulative distribution function of ε∗1 as Fε, then we can obtain:

P(ε∗1 ∈ E ∣ µ̂n, S
∗, z∗ = z̃) = E[∣Fε(∆n(x

∗
1 , z
∗
) − S∗) − Fε(−S

∗
)∣ ∣ µ̂n, S

∗, z∗ = z̃]. (47)

Recalling (25), we have,

Fε(∆n(x
∗
1 , z
∗
) − S∗) − Fε(−S

∗
) =∆n(x

∗
1 , z
∗
)fε∗(−S

∗
) +∆2

n(x
∗
1 , z
∗
)R(−S∗,∆n(x

∗
1 , z
∗
)).

Hence, we have that,

E[∣Fε(∆n(x
∗
1 , z
∗
) − S∗) − Fε(−S

∗
)∣ ∣ µ̂n, S

∗, z∗ = z̃]

= E[∣∆n(x
∗
1 , z
∗
)fε(−S

∗
) +∆2

n(x
∗
1 , z
∗
)R(−S∗,∆n(x

∗
1 , z
∗
))∣ ∣ µ̂n, S

∗, z∗ = z̃]

≤ME[∣∆n(x
∗
1 , z
∗
)∣ ∣ ∆n, z

∗
= z̃] + (M/4)E[∣∆2

n(x
∗
1 , z
∗
)∣ ∣ ∆n, z

∗
= z̃], almost surely.

(48)

Based on Assumption 4, it follows that E[∆2
n(x

∗
1 , z
∗)] = O(n−2τ), and from (29), we have

that E[∣∆n(x
∗
1 , z
∗)∣] = O(n−τ). Consequently, by employing Markov’s inequality, we obtain

that
E[∣∆2

n(x
∗
1 , z
∗
)∣ ∣ ∆n, z

∗
= z̃] = OP(n

−2τ
),

and
E[∣∆n(x

∗
1 , z
∗
)∣ ∣ ∆n, z

∗
= z̃] = OP(n

−τ
).

Therefore, we can derive that,

ME[∣∆n(x
∗
1 , z
∗
)∣ ∣ ∆n, z

∗
= z̃] + (M/4)E[∣∆2

n(x
∗
1 , z
∗
)∣ ∣ ∆n, z

∗
= z̃] = OP(n

−τ
). (49)

Combining equations (44)-(49), we deduce that

Cov(µ̂n(x
∗
1 , z
∗
) − S∗, I{v∗1 ≥ v̂

L
1 } ∣ Dtrain,Dcal, z

∗
= z̃) = OP(n

−τ/2
). (50)

By (40) and (50), we can derive that,

R
COAD∣D
1 (Fv∗,x∗∣z∗=z̃)

≥ E[(µ̂n(x
∗
1 , z
∗
) − S∗) ∣ Dtrain,Dcal, z

∗
= z̃](1 − α +OP(n

−1/2
)) +OP(n

−τ/2
)

= E[v̂L1 ∣ Dtrain,Dcal, z
∗
= z̃](1 − α +OP(n

−1/2
)) +OP(n

−τ/2
)

(51)

According to the definitions of v̂L1 , v̂
U
1 , and v∗1 , we have that,

E(v∗1 ∣z
∗
= z)

= E(µ(x∗1 , z
∗
) + ε∗1 ∣ z

∗
= z̃)

= E(µ(x∗1 , z
∗
) ∣ Dtrain,Dcal, z

∗
= z̃) +E(ε∗1)

= E(µ̂n(x
∗
1 , z
∗
) ∣ Dtrain,Dcal, z

∗
= z̃) +OP(n

−τ
) + 0

=
E(µ̂n(x

∗
1 , z
∗) − S∗∣µ̂n, S

∗, z∗ = z̃) +E(µ̂n(x
∗
1 , z
∗) + S∗∣µ̂n, S

∗, z∗ = z̃)

2
+OP(n

−τ
)

=
E[v̂L1 ∣ Dtrain,Dcal, z

∗ = z̃] +E[v̂U1 ∣ Dtrain,Dcal, z
∗ = z̃]

2
+OP(n

−τ
),
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where the third equation uses E[∣∆n(x
∗
1 , z
∗)∣ ∣ ∆n, z

∗ = z̃] = OP(n
−τ) and Assumption 2.

Hence, we have that

E[v̂L1 ∣ Dtrain,Dcal, z
∗
= z̃]

=
2(E(v∗1 ∣z∗ = z̃) +OP(n

−τ))

E[v̂L1 ∣ Dtrain,Dcal, z∗ = z̃] +E[v̂U1 ∣ Dtrain,Dcal, z∗ = z̃]
E[v̂L1 ∣ Dtrain,Dcal, z

∗
= z̃]

=
2

1 + h
E(v∗1 ∣z

∗
= z̃) +OP(n

−τ
),

(52)

where

h =
E[v̂U1 ∣ Dtrain,Dcal, z

∗ = z̃]

E[v̂L1 ∣ Dtrain,Dcal, z∗ = z̃]
= 1 +

2S∗

E[v̂L1 ∣ D, z∗ = z̃]
.

Combining equations (51) and (52), we have that,

R
COAD∣D
1 (Fv∗,x∗∣z∗=z̃)

≥
2(1 − α)

1 + h
E(v∗1 ∣z

∗
= z̃) +OP(n

−min{τ/2,1/2}
)

=
2(1 − α)

1 + h
W1(Fv∗∣z∗=z̃) +OP(n

−min{τ/2,1/2}
).

(53)

This completes the proof of the situation m∗ = 1.

Proof of the case when m∗ ≥ 2 and Fv∣z=z̃ has a Monotone hazard rate: In order to
prove the result, we will use the following lemma.

Lemma 1 (Babaioff et al. (2017) Lemma 5.3). If {v∗1 , . . . , v
∗
m∗} are drawn iid from a

monotone hazard rate distribution Fv∗, we have

Ev⃗∗∼Fm∗

v∗
[ max
1≤i≤m∗

v∗i ] ≤Hm∗Ev∗1∼Fv∗
(v∗1),

where Hm∗ = ∑
m∗

i=1 i
−1 denotes the m∗th harmonic number.

In our setting, for any given item with feature z∗ = z̃, since Fv∗∣z∗=z̃ has a monotone
hazard rate, it follows from Lemma 1 that,

Wm∗(Fv∗∣z∗=z̃) = Ev⃗∗∼Fm∗

v∗ ∣z∗=z̃

[ max
1≤i≤m∗

v∗i ]

≤Hm∗Ev∗1∼Fv∗ ∣z∗=z̃
(v∗1) =Hm∗W1(Fv∗∣z∗=z̃).

(54)

Furthermore, in accordance with Theorem 3, where m∗ ≥ 2, it follows that,

R
COAD∣D
m∗ (Fv∗,x∗∣z∗=z̃) ≥ R

COAD∣D
1 (Fv∗,x∗∣z∗=z̃). (55)

By leveraging inequality (53) and inequality (55), we derive that,

R
COAD∣D
m∗ (Fv∗,x∗∣z∗=z̃) ≥

2(1 − α)

1 + h
W1(Fv∗∣z∗=z̃) +OP(n

−min{τ/2,1/2}
). (56)
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Finally, by the direct derivation from inequalities (54) and (56), we obtain:

R
COAD∣D
m∗ (Fv∗,x∗∣z∗=z̃)

≥
2(1 − α)

1 + h

Wm∗(Fv∗∣z∗=z̃)

Hm∗
+OP(n

−min{τ/2,1/2}
)

=
2(1 − α)

(1 + h)Hm∗
Wm∗(Fv∗∣z∗=z̃) +OP(n

−min{τ/2,1/2}
).

This completes the proof of Theorem 4.

B.6 Proof of Theorem 5

Proof From the prescribed definition of h = E[v̂U1 ∣D, z∗ = z̃]/E[v̂L1 ∣D, z∗ = z̃], coupled with
the definitions of v̂U1 = µ̂n(x

∗
1 , z
∗) + S∗ and v̂L1 = µ̂n(x

∗
1 , z
∗) − S∗, we derive the following:

h =
E[v̂U1 ∣ D, z∗ = z̃]

E[v̂L1 ∣ D, z∗ = z̃]
= 1 +

2S∗

E[v̂L1 ∣ D, z∗ = z̃]
= 1 +

2S∗

E[µ̂n(x∗i , z
∗) ∣ D, z∗ = z̃] − S∗

. (57)

By Theorem 1, it follows that S∗ ≤ δn almost surely. Consequently,

E[v̂L1 ∣ D, z
∗
= z̃] = E[µ̂n(x

∗
i , z
∗
) − S∗ ∣ D, z∗ = z̃]

= E[µ̂n(x
∗
i , z
∗
) ∣ D, z∗ = z̃] − S∗

≥ E[µ̂n(x
∗
i , z
∗
) ∣ D, z∗ = z̃] − δn

> 0, almost surely.

Hence, h is an increasing function of S∗. From the construction procedure of the dual
prediction interval, it follows that S∗ ≥ 0, thereby ensuring that 0 ≤ S∗ ≤ δn. Substituting
the range of S∗ into equation (57), we can deduce that,

1 ≤ h ≤ 1 +
2δn

E[µ̂n(x∗i , z
∗) ∣ D, z∗ = z̃] − δn

. (58)

By Assumption 4 and using Markov’s inequality, we have,

E[∣µ̂n(x
∗
1 , z
∗
) − µ(x∗1 , z

∗
)∣ ∣ D, z∗ = z̃] = OP(n

−τ
),

from which we have that E[µ̂n(x
∗
i , z
∗) ∣ D, z∗ = z̃] = E[µ(x∗i , z∗) ∣ D, z∗ = z̃] + OP(n

−τ).

Therefore, combined with inequality (58), we obtain:

1 ≤ h ≤ 1 +
2δn

E(µ(x∗1 , z∗)∣z∗ = z̃) +OP(n−τ) − δn
.

This completes the proof of Theorem 5.
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Figure 6: Conformal prediction conditioning on item features with N = 1000,m∗ = 1000.

Appendix C. Additional Numerical Results

C.1 Consistency of the Polynomial Regression

Table 1 shows the Mean Squared Error (MSE) and Standard Deviation (SD) of the errors
between the predicted regression value and the true regression value of the calibration data,
where the model is trained on the training data. HereN ∈ {100,500,1000,5000,10000,50000},
and the results are averaged over 500 simulations. It is observed that as N goes large, both
the average MSE and SD approach to 0. Hence, Assumption 4 is asymptotically satisfied.

N 100 500 1000 5000 10000 50000

Average MSE 1764137 44.81 3.86 0.056 0.018 0.005

Standard Deviation 333.60 2.72 0.92 0.143 0.087 0.045

Table 1: Average MSE and SD.

Figure 6 illustrates the accuracy of the fitting model and part of the conformal prediction
bands when conditioned on different values of z, with N = 1000, m∗ = 1000. The black solid
line is the true regression function, the red dashed line is the fitted line of the polynomial
regression, and the light blue area is the conditional prediction band. It is seen that most
of the points are covered by the conformal prediction bands.
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