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Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino
experiment currently under construction in China. It is located 52.5 km away from two
nuclear power plants in a newly constructed 700-m-deep underground laboratory. JUNO
will be the largest liquid scintillator (LS) detector in the world comprising 20 kt of ultra-
pure LS filled in an acrylic sphere. Its main goal is to determine the neutrino mass or-
dering by measuring the energy spectrum of reactor neutrinos with highest accuracy. In
addition, JUNO will cover precision measurements of oscillation parameters and several
aspects in the field of astroparticle physics. Data taking will start in late 2024.

1 Introduction

One of the most important current missions in neutrino physics is to determine the neutrino
mass ordering (NMO). Since neutrino oscillations are enhanced by the matter effect, the pos-
itive mass splitting of ∆m2

21 = m2
2 −m2

1 > 0 is observed by solar neutrino experiments. The
question remains whether the third mass eigenstate m3 is the heaviest or the lightest leading
to two possible scenarios of normal ordering (NO) and inverted ordering (IO), respectively.
The primary goal of the Jiangmen Underground Neutrino Observatory (JUNO) is to deter-
mine the NMO by studying the oscillation pattern of reactor neutrinos. JUNO is currently
under construction in the Guangdong province in South China. It is located in a newly con-
structed 700-m-deep underground laboratory (1,800 m.w.e.) at an average distance of 52.5 km
to eight reactor cores of the two nearest nuclear power plants Yangjiang and Taishan, which
have a combined thermal power of 26.6 GWth [1]. The medium-baseline is chosen because
the survival probability of electron antineutrinos νe emitted from the reactor cores is mini-
mal as Figure 1 (Left) illustrates. Here, the ‘slow solar oscillation’ pattern causes the global
minimum and depends on ∆m2

21 and sin2 2θ12 while the ‘fast atmospheric oscillation’ pattern
causes the superimposed ripples and depends on ∆m2

31 and sin2 2θ13. Therefore, this optimal
location enables the first-time precision measurement of two oscillation patterns in one energy
spectrum. Compaired to long-baseline experiments, the advantage of reactor experiments is
that the survival probability is vacuum-dominated and independent of the mixing angle θ23
and the CP-violating phase δCP. Figure 1 (Right) illustrates the expected energy spectra after
six years of data taking. Absolute value and sign of ∆m2

31 lead to the different position of the
ripples in the energy spectra of NO and IO. JUNO can distinguish between the two scenarios
and reveal the realized NMO in Nature by recording large statistics and in high precision.
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Figure 1: Left: JUNO is located where the survival probability of the reactor neu-
trinos is minimal. Right: Expected reactor neutrino energy spectra are illustrated
assuming perfect detector resolution of JUNO and six years of data taking [1].

2 Detector Design and Status

The ability to resolve the NMO sets demanding design requirements for the detector. Civil
construction of the JUNO site was completed in December 2021. JUNO will be the largest
liquid scintillator (LS) detector in the world comprising 20 kt of ultra-pure LS filled in a 35.4-
m-diameter acrylic sphere. The vast volume is monitored by 17,612 large 20-inch and 25,600
small 3-inch photomultiplier tubes, denoted as LPMT and SPMT, respectively. They are mounted
on a stainless steel support structure that was finished in June 2022 followed by the assembly
of acrylic panels forming the sphere. Figure 2 presents an overview of the JUNO detector.
The central detector (CD) ensures a photocathode coverage of 78 % and provides an unprece-
dented energy resolution of better than 3 % at 1 MeV. The CD is surrounded by the 43.5-m-
diameter cylindrical water Cherenkov detector (WCD) comprising 35 kt of ultra-pure water
viewed by 2,400 LPMTs. The WCD provides a veto for cosmic muons and shields the CD from
environmental radioactivity [1–3]. The Top Tracker (TT) covers 60 % of the CD and WCD and
measures 30 % of cosmic muons passing through the CD with a median resolution of 0.2 % at
the bottom of the WCD. Combined with the CD and WCD, the TT provides well reconstructed
muon samples with > 99 % purity to calibrate and tune reconstruction algorithms and veto
affected regions [3,4]. Several subsystems use radioactive sources or pulsed UV light to regu-
lary calibrate the energy scale, which is necessary due to the non-linearity of the LS [5]. The
precision of the absolute energy scale better than 1 % is guaranteed [1–3].

2.1 Liquid Scintillator Purification and OSIRIS

The liquid scintillator (LS) of JUNO is composed of LAB (linear alkylbenzene) as the sol-
vent mixed with 2.5 g/L PPO (2,5-diphenyloxazole) as fluor and 3 mg/L bis-MSB (1,4-bis(2-
methylstyryl)benzene) as additional wavelength shifter [6]. Optical properties are crucial
and require, e.g., very high light yield of about 10,000 photons per MeV and an attenua-
tion length ≳ 20 m at 430 nm due to the size of the CD. Radiopurity is crucial requiring U/Th
concentrations of ≲ 10−15 g/g for the NMO determination and ≲ 10−17 g/g for solar neutrino
measurements. Therefore, the LS passes a chain of purification steps onsite as Figure 3 shows.
Before the LS mixing, the LAB goes through the Al2O3 column to remove optical impurities.
The distillation plant removes heavy and high-boiling radioactive materials such as 238U, 232Th
and 40K. Then, the LS will be mixed with PPO and bis-MSB, pumped underground where water
extraction and steam stripping are applied to purify further and remove gaseous impurities,
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respectively [7]. The quality of a fraction of the produced LS is checked by the Online Scin-
tillator Internal Radioactivity Investigation System (OSIRIS) before and during the filling of
the CD. OSIRIS acts as a pre-detector and verifies the radiopurity and optical properties of
the LS [8]. The purification plants and OSIRIS are currently under commissioning.
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Figure 2: Overview of the JUNO detector [1].

Figure 3: Overview of the liquid scintillator systems with purification chains above
ground and underground including the pre-detector OSIRIS [3].

2.2 Taishan Antineutrino Observatory

The Taishan Antineutrino Observatory (TAO) [9] is a satellite detector of JUNO located 44 m
away from the Taishan reactor core 1. Its purpose is to measure the unoscillated antineutrino
energy spectrum with extremely high statistics and in unprecedented high-resolution, which is
smaller than 2 % at 1 MeV. This model-independent reference spectrum reduces the shape un-
certainty and improves the sensitivity of JUNO for the NMO. Besides, TAO provides benchmark
measurements to test nuclear databases. It also allows to search for short neutrino oscillations
caused by hypothetical coupling of sterile neutrinos to the flavor eigenstates violating the uni-
tarity of the usual 3 × 3 mixing matrix. TAO uses novel detector technologies, e.g., 10 m2

of silicon photomultipliers with 50% detection efficiency achieve an almost full optical cover-
age of the 2.8 t gadolinium-loaded LS volume operated at −50◦C [9]. The TAO detector has
been assembled and tested at the IHEP and will be moved to the Taishan site in 2024.
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3 Physics Prospects

JUNO will have a broad and rich physics program due to its large detector target mass, excel-
lent energy resolution, outstanding radiopurity and good shielding. Beyond the determination
of the NMO, JUNO will measure several neutrino mixing parameters with sub-percent preci-
sion, significantly contribute to the field of astroparticle physics and search for physics beyond
the Standard Model of Particle Physics [2,3]. A few examples are highlighted in the following.

3.1 Neutrino Mass Ordering and Neutrino Oscillation Parameters

JUNO measures approximately 45 reactor neutrino events per day via the inverse beta da-
cay (IBD), νe + p→ e+ + n, which has an energy threshold of Ethr = 1.8 MeV and features a
time-correlated scintillation signature in the detector. The prompt signal is caused by the scin-
tillation of the positron e+ and its annihilation producing two gammas of Eγ = 0.511 MeV each
exciting the LS. The antineutrino energy Eνe

can be reconstructed from the energy deposition
of the positron, i.e., Eprompt = 2×Eγ+Eνe

−Ethr = Eνe
−0.8MeV. After the thermalization of the

neutron, it is captured by a proton releasing 2.2 MeV in gamma radiation, which exites the LS
and causes the delayed signal. The measured energy spectrum of the reactor neutrinos will be
fit assuming normal ordering (NO) or inverted ordering (IO). The difference of the minimal
chi-square values between both fits is defined as the discriminator of the NMO, i.e., ∆χ2

min.
Figure 4 (Left) shows the expected sensitivity evolution to the NMO for both scenarios of NO
and IO including statistical and systematic uncertainties. Therefore, JUNO can determine
the NMO at a 3σ confidence level after about six years of data taking [3,10].

Besides, the sensitivity of JUNO for measuring several neutrino oscillation parameters
has been investigated in [1]. It is expected that JUNO will measure the two ‘solar’ parame-
ters, i.e.,∆m2

21 and sin2 θ12, and the ‘atmospheric’ mass splitting∆m2
31 with sub-perccent pre-

cision after six years of data taking as Figure 4 (Right) shows. It is also predicted that JUNO will
already cross the current world-leading precision after the first 100 days [1]. Therefore, JUNO
will contribute significantly to global tests of the unitarity of the neutrino mixing matrix.
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Figure 4: Left: Evolution of sensitivity for NO and IO [10]. Right: Evolution of rel-
ative precision for the oscillation parameters ∆m2

31, ∆m2
21, sin2 θ12 and sin2 θ13 [1].

3.2 Geoneutrinos

Geoneutrinos originate from radioactive decay chains of naturally abundant and long-lived
isotopes inside Earth such as 238U and 232Th. The observation of geoneutrinos is a unique
and non-invasive tool to study, e.g., the amount of radiogenic heat, the chemical composition
or formation processes of the Earth. JUNO will measure around 400 events per year via IBD
significantly improving the statistics of the existing global geoneutrino event sample [2,3].
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3.3 Solar Neutrinos

Solar neutrinos provide valuable information, e.g., about the solar metallicity or neutrino os-
cillations. They are produced as electron neutrinos along reaction chains of nuclear fusion
processes in the core of the Sun. JUNO measures solar neutrinos via elastic neutrino scatter-
ing (ES), νe+e−→ νe+e− and they are studied via neutrino spectroscopy. Sensitivity studies
of 8B solar neutrinos predict a precision of 5 %, 8 % and 20 % for their flux, sin2 θ12 and∆m2

21,
respectively [11,12]. Sensitivity studies of 7Be, pep and CNO solar neutrinos were conducted
assuming several radiopurity scenarios of the LS. The precision on the fluxes can be improved
in most cases [13].

3.4 Supernova Neutrinos and Multi-Messenger Trigger System

The observation of supernova burst neutrinos is a unique opportunity to study, e.g., stages and
mechanisms of supernova (SN) explosions or search for collective neutrino oscillations. As-
suming one nearby core-collapse supernova (CCSN) at a distance of 10 kpc, JUNO will detect
large statistics of SN burst neutrinos in multiple-flavor detection channels, i.e., about 5,000 IBD
events, about 2,000 all-flavor neutrino-proton ES events via ν + p → ν + p, and about 300
neutral-current (NC) ES signals while CC and NC interactions on 12C nuclei are also observ-
able [3,14]. Besides, an independent multi-messenger (MM) trigger system provides an ultra-
low detection threshold of few tens of keV allowing to observe low-energy transient signals and
to monitor CCSNe with an extended energy band. JUNO will play a major role in the global net-
work of MM observatories and in the next-generation Supernova Early Warning System [3,14].
Another objective is the search of the diffuse supernova neutrino background (DSNB), which
is the cumulative neutrino flux from past supernovae in the visible Universe. The observa-
tion would provide information about the average CCSN energy spectrum, the cosmic star-
formation rate or the fraction of black hole formation. JUNO could identify a few DSNB
events per year via IBD within an energy window between around 10 MeV to 30 MeV de-
fined by the IBDs of reactor and atmospheric neutrinos. Main background within this window
are the NC interactions of atmospheric neutrinos, which can be effectively reduced by apply-
ing pulse shape discrimination. The discovery potential of the DSNB is estimated to 3σ after
three years of data taking while non-observation would significantly improve current limits
and constrain the model parameter space [3,15].

3.5 Atmospheric Neutrinos

JUNO measures several atmospheric neutrinos per day below and within the GeV range.
The reconstruction of atmospheric electron and muon neutrino energy spectra is expected to
reach 10 % to 25 % precision with five years of data. Beyond that, detecting oscillated atmo-
spheric neutrinos allows to investigate the octant of the mixing angle θ23 and to enhance the
sensitivity of JUNO for the NMO by providing complementary inputs [3, 16]. Besides, JUNO
will be able to detect the appearance of tau neutrinos ντ [17].

3.6 Proton Decay

The observed matter-antimatter asymmetry in the Universe can be explained by baryon num-
ber violation, which is an inevitable consequence of Grand Unified Theories. JUNO is able to
probe the possible proton decay channel p→ ν+ K+, which features a clear three-fold time-
correlated scintillation signature due to the prompt signal of the kaon, a short delayed signal
of its daughter and the late signal of the daughter’s decay positron. JUNO will be competitive
to world-leading lower limits on the proton lifetime by being sensitive to > 9.6× 1033 years
at 90 % C.L. after 10 years of data taking [3,18].
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4 Conclusion

JUNO is a next-generation large-scale neutrino observatory whose main goal is to determine
the neutrino mass ordering with a 3σ significance after six years of data taking. Among
other things, the study of several neutrino properties and neutrino sources, including the Sun,
the Earth’s interior, the atmosphere or core-collapse supernovae complement the rich physics
program. The filling of the JUNO detector and the start of data taking are expected before the
end of 2024.
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